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While people with mild cognitive impairment (MCI) portray noticeably incipient memory

difficulty in remembering events and situations along with problems in decision making,

planning, and finding their way in familiar environments, detailed neuropsychological

assessments also indicate deficits in language performance. To this day, there is no

cure for dementia but early-stage treatment can delay the progression of MCI; thus, the

development of valid tools for identifying early cognitive changes is of great importance.

In this study, we provide an automated machine learning method, using Deep Neural

Network Architectures, that aims to identify MCI. Speech materials were obtained using

a reading task during evaluation sessions, as part of the Gothenburg MCI research study.

Measures of vowel duration, vowel formants (F1 to F5), and fundamental frequency

were calculated from speech signals. To learn the acoustic characteristics associated

with MCI vs. healthy controls, we have trained and evaluated ten Deep Neural Network

Architectures and measured how accurately they can diagnose participants that are

unknown to the model. We evaluated the models using two evaluation tasks: a 5-fold

crossvalidation and by splitting the data into 90% training and 10% evaluation set. The

findings suggest first, that the acoustic features provide significant information for the

identification of MCI; second, the best Deep Neural Network Architectures can classify

MCI and healthy controls with high classification accuracy (M = 83%); and third, the

model has the potential to offer higher accuracy than 84% if trained with more data (cf.,

SD ≈ 15%). The Deep Neural Network Architecture proposed here constitutes a method

that contributes to the early diagnosis of cognitive decline, quantify the progression of

the condition, and enable suitable therapeutics.

Keywords: speech production, vowels, prosody, neural network, machine learning, dementia, MCI

1. INTRODUCTION

Individuals with mild cognitive impairment (MCI) portray a noticeable memory difficulty in
remembering events and situations along with problems in decisionmaking, planning, interpreting
instructions, and orientation (1–5). These cognitive problems become frequent and more severe
compared to the cognitive decline in normal aging (see also 6, 7). As the MCI progresses, MCI
individuals face a higher risk of developing Alzheimer’s Disease (AD).
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In search of less strenuous and non-invasive techniques for
assessing MCI, currently, there has been substantial interest
on the role of speech and language and its potentials as
markers of MCI. Language impairment in AD is well established
(e.g., 8–10) and can be evaluated by using assessments, such
as naming tests (11), discourse (12–14), verbal fluency tests
(e.g., 15), complexity measures, such as phonemes per word,
phone entropy, verbal fluency, and word recall (8–10, 13, 16–
22). Findings with respect to syntax and phonology have been
inconsistent though (for a discussion on the role of syntax in
MCI, see 23). Also, many studies explored the interactions of
language and other predictors from imaging, biomarkers etc.,
in dementia (24–30). The fact that language impairment occurs
early and commonly in the progression of AD, motivated many
researchers to identify markers of language impairment in MCI.
For example, Manouilidou et al. (31) showed that while MCI
individuals preserve morphological rule knowledge, they face
processing difficulties of pseudo-words (for a discussion and
review of current studies, see 32, 33). As there is only a handful of
studies on the acoustic properties of MCI speech (e.g., 30, 34),
more research on speech acoustics is required to gain a better
understanding of how MCI speech differs from that of healthy
controls.

The development of automated machine learning models
that can learn the characteristics of MCI and provide an early
and accurate identification of MCI is of utmost importance
for two main reasons: First, an early identification can enable
multidomain life style interventions and/or pharmacological
treatments at theMCI stage, or even earlier, which can potentially
delay or might even prevent the development of AD and other
types of dementia (5, 35). Second, the early identification, will
provide time to patients and their families to make decisions
about their care, family issues, and legal concerns (5).

The aim of this study is to provide an automated method that
can identify MCI individuals and distinguish them from healthy
controls using acoustic information. Specifically, in this study,
we provide an automated machine learning method using Deep
Neural Network Architectures that identifies individuals with
MCI from healthy controls. We demonstrate its performance by
using data from Swedish. Specifically, 55 Swedish participants,
30 healthy controls and 25 MCI, were instructed by a clinician
to read a short passage, consisting of 144 words, as part of
their evaluation. Reading tasks are being employed extensively
in research because they provide rich linguistic data without
straining the participants (36). Also, they have the advantage that
they are restrictive with respect to the segmental environment of
vowels and consonants, which is the same for all participants.
Next, the speech material was transcribed and segmented into
vowels and consonants. From the segmented material, we
measured vowel F1 − F5 formant frequencies, F0, and duration.
Vowel formants are a range of vowel frequency peaks in the
sound spectrum. Formant frequencies are the primary acoustic
correlates for the production of vowels. F1 and F2 usually suffice
for the identification of vowels in most languages but higher
order formant frequencies can provide information about the
social—such as the age, gender, and dialect—and physiological
properties of speakers (37–39). In Swedish, F3 also contributes

to the distinction of rounded and unrounded vowels (40). F0
is the acoustic correlate of intonation. Speakers vary the F0 of
their utterances to produce various melodic patterns, such as
when emphasizing parts of the utterance, asking questions, giving
commands, etc. F0 (e.g., mean F0, F0 minimum and maximum)
is found to be lower in individuals with depression (41, 42).
In addition to frequency measurements, we measured vowel
duration.

For the classification task, we have evaluated several Deep
Neural Network Architectures based on Multilayer Perceptrons
(MLP). MLPs are a type of sequential, Feed-Forward Neural
Network, which when trained on a dataset, can learn a non-linear
function approximator for the classification of MCI and healthy
participant:

f (·) :Rm → Ro (1)

where m is the number of dimensions for input and o is the
number of dimensions for output. Given a set of vowel features
X = x1, x2, ..., xm and a target y; namely, an array of values
determining the condition of the participant (healthy controls vs.
MCI), the neural network can learn the classification function.
The advantage of this type of network for our data is that it can
learn non-linear structures.

2. METHODOLOGY

In this section, we describe the development of the dataset and
the structure of the predictors.

2.1. Speech Materials
Participants for this study were recruited from the Gothenburg
MCI study, which is a large clinically based longitudinal study
on mild cognitive impairment (5). This study aims to increase
the nosological knowledge that will enable rational trials in AD
and other types of dementia. It also includes longitudinal in-
depth phenotyping of patients with different forms and degrees of
cognitive impairment using neuropsychological, neuroimaging,
and neurochemical tools (5). Speech recordings were conducted
as part of the additional assessment tests that conduced for
the purposes of the Riksbankens Jubileumsfond – The Swedish
Foundation for Humanities & Social Sciences “Linguistic and
extra-linguistic parameters for early detection of cognitive
impairment” research grant (NHS 14-1761:1).

2.2. Participants
The recordings were conducted in an isolated environment at
the University of Gothenburg. Thirty healthy controls and 25
MCI—between 55 and 79 years old (M = 69, SD = 6.4)
participated in the study (see Table 1). The two groups did
not differ with respect to age [t(52.72) = −1.8178, p = n.s.]
and gender (W = 1567.5, p = n.s.), as is evident by the
non-significant results from a t test and an independent 2-
group Mann-Whitney U-test, respectively. Participants were
selected based on specific inclusion and exclusion criteria: (i)
participants should not have suffered from dyslexia and other
reading difficulties; (ii) they should not have suffered from
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TABLE 1 | Age and gender of healthy controls (HC) and participants with Mild

Cognitive Impairment (MCI).

N Age

F M F M

HC 19 11 68 (7.6) 69 (5.7)

MCI 13 12 72 (5.1) 70 (5.6)

major depression, ongoing substance abuse, poor vision that
cannot be corrected with glasses or contact lenses; (iii) they
should not have been diagnosed with other serious psychiatric,
neurological or brain-related conditions, such as Parkinson’s
disease; (iv) they had to be native Swedish speakers; (v) they
had to be able to read and understand information about
the study; and (vi) they had to be able to give written
consent.

Healthy controls had a significantly higher Mini-Mental State
Exam (MMSE) score. (The MMSE score is a scale of 0–30 and
represents the cognitive status of an individual). Mean MMSE
score for the MCI participants was 28.2, which is close to
normal (43). Ethic approvals for the study were obtained by the
local ethical committee review board (reference number: L091-
99, 1999; T479-11, 2011); while the currently described study
was approved by the local ethical committee decision 206-16,
2016.

2.3. Acoustic Features
2.3.1. Segmentation
Each vowel was segmented in the acoustic signal; that is, we
located the right and left boundary of vowels and consonants.
A segmentation example is shown in Figure 1. Specifically, the
figure shows the waveform (upper panel) and spectogram of the
word havsbottnen ‘seabed’ taken here as an example from a larger
sentence: öar kan uppstå när vulkaner höjer sig från havsbottnen
eller när vattennivån i havet stiger eller faller “islands can occur
when volcanoes rise from the seabed or when water levels in
the ocean rise or fall” (see the Appendix for the whole passage).
There are also three different tiers with the transcriptions, the
top tier defines the boundaries of sentences; the second tier in
the middle shows the word boundaries; and the lower tier shows
the segmental boundaries, namely the boundaries of consonants
and vowels (see also the thin lines extending from the lower
tier to the middle of the spectogram and demarcate vowels
and consonants). For the segmentation, we have employed an
automatic module for Swedish developed by the first author (44).
As measurements and processes rely on accurate segmentation
this step is crucial; therefore, all segmentation decisions were
evaluated twice based on the following segmentation criteria:
vowel onsets and offsets were demarcated by the beginning and
end of the first two formant frequencies; the rise of the intensity
contour at the beginning of the vowel and its fall at the end of
the vowel served as additional criteria for vowel segmentation.
Then, we measured the acoustic properties of using Praat (45).
Overall, there were 4396 HC and 4273 MCI productions, which
is a relatively balanced data set.

2.3.2. Acoustic Measurements
Vowel formants were measured at multiple positions.
Traditionally vowel formants are measured using a single
measurement at the middle of the vowel, which is supposedly
the vowel target. Nevertheless, the shape of the formant contour
can also convey information about participants’ sociophonetic
properties (see for a discussion 37). To this end, we conducted
three measurements of formants at the 15, 50, 75% of vowels’
duration. Vowel formants were calculated using standard Linear
Predictive Coding (LPC-analysis) (46). We also measured vowel
duration and fundamental frequency (F0) (47). The latter is
the lowest frequency of speech; and it constitutes the main
acoustic correlate of speech melody (a.k.a., intonation) (48).
We calculated the minimum, maximum, and mean F0 for
each vowel. F0 and formant frequencies were measured in
Hertz.

2.3.3. Sociophonetic Features
In addition to the acoustic features, the model included as
predictors information about participants’ age and gender.
Overall, the classification tasks included the following 24 acoustic
and sociophonetic predictors:

1. Vowel Formants: We measured the first five formant
frequencies of vowels (i.e., F1, F2, F3, F4, F5) at the
15%, 50%, and 75% of the vowels’ total duration: i.e.,
F1 15%, F1 50%, F1 75% . . . F5 15%, F5 50%, and F5 75%; We
also provided the log-transformed values of F1, F2, F3.

2. Fundamental frequency (F0):Wemeasured the F0 across the
duration of the vowel and calculated themean F0,min F0, and
max F0.

3. Vowel duration: Vowel duration measured in seconds from
vowel onset to vowel offset.

4. Gender: Participants’ gender.
5. Age: Participants’ age.

2.4. Models and Experiments
In this section, we describe the neural network architectures
employed in this work. Ten neural network architectures that
differed in the total number of hidden layers from h1 . . . h10 were
evaluated twice using validation split and cross-validation (the
other parameters were the same across models). We present all
ten models and not the best model only because (i) we want to
demonstrate the whole methodological process that led to the
selection of the best model and stress out that the final model
is the result of a dynamic process of model comparison; (ii)
different randomization of the data may provide different output;
thus, a rigorous evaluation can demonstrate whether the output
is consistent across models. For example, by demonstrating that
the output is not random and that there is a pattern between the
different models; and (iii) the evaluation process is being part of
the model and not external to the model as it can explain the final
architecture of the model, such as the number of hidden layers in
the model. An overview of the architectures is shown in Figure 2

and in Table 2. The neural architectures were implemented in
Keras, a high-level neural networks API (49) running on top
of TensorFlow (50) in Python 3.6.1. For the normalization and
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FIGURE 1 | Waveform, spectrogram, and F0 contour—superimposed on the spectrogram—of an example utterance (upper tier). Shown in the plot is the

segmentation of the word havsbottnen “seabed” (middle tier); the individual sounds are shown in the lowest tier. Sound boundaries are indicated with thin vertical

lines. The ordinate shows the F0 values whereas the abscissa shows the time in second.

FIGURE 2 | Network architecture. We developed 10 different networks with

21 predictors each. The networks differed in the number of hidden layers

ranging from 1 . . . 10. Each network architecture was evaluated twice using

cross-validation and evaluation split. Model comparison measures are

reported for each evaluation separately.

scaling of predictors, we employed modules from SCIKIT-LEARN,
which is a machine learning library implemented in Python
(51, 52).

TABLE 2 | Deep neural network architectures with 1 to 10 hidden layers.

Layer Shape Activation

Input layer Dense 300 (21 Input Dimensions) ReLU

1 . . .10 hidden layers Dense 300 ReLU

Output layer 1 Sigmoid

All models employed stochastic gradient descent optimizer with 0.9 Nesterov momentum.

2.4.1. Model Design
1. Transformation. All predictors were centered and scaled,

using standard scaling, which standardizes the features by
removing the mean and by scaling to unit variance (for the
scikit-learn implementation of a Standard Scaler, see 52). The
mean and standard deviation are estimated on the training
set. Then these estimated measures are used to transform
the training and test sets separately. So, data in training and
test sets are not transformed simultaneously. The reason for
conducting different transformations is to avoid a bias from
the test features when the mean and the standard deviation
are estimated during standard scaling.

2. Layers. We tested ten different network architectures that
differed in the number of hidden layers from h1 . . . h10; the
input and output layers are excluded. The number of layers in
the network can affect its accuracy. Most layers except from
the output layer were trained with a ReLU activation function
(53, 54). The last layer had a sigmoid activation.

3. Optimization. We employed a Nesterov stochastic gradient
descent (SGD) optimization algorithm. The learning rate was
set to 0.1 and the momentum was set to 0.9.
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4. Epochs and Batch Size. (a) In cross-validation: network
architectures were trained for 80 epochs with 35 as a batch size.
(b) In 90%-10% validation split: networks were trained for 100
epochs with 35 as a batch size.

2.4.2. Model Comparison and Evaluation Measures
During the training phase, the neural network learns the acoustic
properties that characterize MCI and HC. During the evaluation
phase, the network evaluates unknown data vectors from the test
set; this time the corresponding label (i.e., MCI or HC) is not
available to the model and makes a prediction whether these
unknown data vectors correspond to MCI or HC productions.
To estimate the performance of the neural network, we compare
the predictions of the neural network with the classification
made by clinicians using combined imaging and neurological,
neuropsychological examination.

A confusion matrix represents the relationship between
predicted values and actual values (see Table 3). The columns of
Table 3 represent the actual condition (MCI or HC) and the rows
represent the positive and negative predictions. A true positive
(TP) indicates how many times the condition was MCI and the
neural network actually predicted MCI; the false positive (FP)
indicates when the condition was HC but the network predicted
MCI; the false negative (FN) indicates when the condition was
MCI and the network predicted HC; and lastly, the true negative
indicates when the condition was HC and the neural network
made the correct prediction, namely HC. The different neural
network models were compared with each other based on the
following evaluation measures: (i) accuracy, (ii) precision, (iii)
recall, (iv) F1 score, and (v) ROC/AUC.

1. Accuracy: The accuracy is the most commonly employed
evaluation measure in classification studies. It refers to the
number of correct predictions made by the model divided
by the total number of all estimations: Accuracy = (TP +

TN)/(TP+TN+FP+FN). However, the accuracy is not always
the best evaluation measure when the design is unbalanced
and corrections are often required. To this end, the precision,
recall, F1 score, and ROC/AUC curve provide more balanced
estimates.

2. Precision: The precision is the number of true positives
divided by the sum of true positives and false positives, i.e.,
Precision = TP/(TP + FP). So, when there are many FPs, the
precision measure will be low.

3. Recall:Recall (a.k.a. sensitivity) is the number of true positives
divided by the sum of true positives and false negatives, i.e.,
Recall = TP/(TP + FN). This suggests that a low recall will
indicate that there are many FNs.

4. F1 score: The F1 score is the weighted average of Precision
and Recall: F1 score = 2 × [(Precision × Recall)/(Precision +

TABLE 3 | Confusion matrix.

Condition positive Condition negative

Predicted condition positive True positive (TP) False positive (FP)

Predicted condition negative False negative (FN) True negative (TN)

Recall)]. The F1 score captures the performance of the
models better than the accuracy, especially when the design
is unbalanced. A value of 1 indicates a perfect precision and
recall, whereas a value of 0 designates the worst precision
and recall. Because the F1 score can be less intuitive than the
accuracy, most machine learning studies usually report the
accuracy of the model.

5. ROC/AUC curve: The receiver operating characteristic
(ROC) and the area under the curve (AUC) are two evaluation
measures that display the performance of a model. The ROC
is a curve that is created by plotting the true positive rate (i.e.,
the precision) against the false positive rate (i.e., 1-Recall). An
optimal model has an ROC closer to 1 whereas a bad model
has an ROC closer to 0.

2.4.3. Model Evaluation
1. 5-fold group cross-validation. In a “5-fold group cross-

validation,” the data are randomized and split into five
different folds and the network is trained five times. In each
training setting, a different part of the available data is hold
out as a test set. The “5 fold group crossvalidation” also ensures
that there are no measurements from the same participants in
the training and test sets as all data from a given participant
will be either in the test set or in the training set but not in
both sets (In a simple “5-fold cross-validation” measurements
from a given participant might be in both the training and
test set after randomization which creates a bias, because the
network will be trained on properties from given participants
and then asked to provide predictions with respect to these
participants). To evaluate the cross-validation, we provide the
mean and standard deviation of the accuracy we get from
each evaluation. We also provide the ROC curve and the AUC
scores that provide a corrected measure of the accuracy.

2. 90–10% Evaluation split. We also provide the findings from
the validation split and discuss in detail validation measures,
namely the accuracy of the model, the precision, recall, and
F1 score. To this end, we split the data into two parts. The
first part consists of the 90% of the data and functions as a
training corpus whereas the second part, the remaining 10%
functions as an evaluation set. Just like in the cross-validation,
the speakers in the evaluation and test sets are different.

3. RESULTS

First, we present the results from the evaluation task and then, we
present the results from the validation split.

3.1. 5-Fold Group Crossvalidation
We conducted a 5-fold group cross-validation. Within each fold
the model is validated 80 times, which is the number of epochs
of the model and the mean accuracy, mean validation accuracy,
and the corresponding standard deviation are calculated. Table 4
provides the mean accuracy and the mean validation accuracy
along with the corresponding standard deviation that results
from the 5-fold crossvalidation. As seen by Table 4 models six
to ten are consistent with respect to their classification accuracy.
These models have six to ten hidden layers and all resulted
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TABLE 4 | Model M1 . . .M10 mean classification accuracy and mean validation

accuracy and the corresponding SD from the 5-fold crossvalidation.

Model Accuracy Val. Accuracy

Mean SD Mean SD

M1 98 3 75 12

M2 99 3 80 14

M3 99 2 81 15

M4 99 2 82 15

M5 99 2 82 14

M6 99 2 83 15

M7 99 2 83 16

M8 99 2 83 15

M9 99 2 83 16

M10 98 3 83 17

FIGURE 3 | Mean ROC curve and AUC of the 5-fold crossvalidation.

Model—M1 . . .M10— are represented by solid line with a different color. The

baseline is represented by a dashed gray line. All models provided ROC curves

that were over the baseline. The best model is the model whose ROC curve

approaches the left upper corner. The shaded area indicates the M10’s SD

that is the outperforming model both in terms of ROC/AUC (83%) and

validation accuracy (83%).

in 83% mean cross-validated accuracy. Figure 3 displays the
mean ROC curve and AUC of the 10 neural network models.
The shaded area indicates the SD for the final model: M10.
The results from the cross-validation clearly show that when
trained using a Sequential Neural Network, speech features can
be employed for the identification of MCI. To establish this
finding, we provide a second evaluation by training the same
networks on the 90% of the data and evaluating on the remaining
10%.

TABLE 5 | 90%/10% validation split results.

Model Accuracy Precision Recall F1 score

M1 67 86 56 63

M2 68 92 56 66

M3 67 100 49 65

M4 68 63 62 62

M5 71 73 71 71

M6 68 73 72 72

M7 75 100 49 65

M8 65 100 49 65

M9 69 100 49 65

M10 66 95 51 64

The table shows the accuracy, precision, recall, and f1 score for M1…M10.

3.2. 90–10% Evaluation Split
Table 5 shows a comparison of the accuracy scores on the
training set. The highest accuracy was provided by Model 7 that
resulted in 75% classification accuracy and the second best model
wasModel 5 with 71% classification accuracy at the validation set.

4. DISCUSSION

The number of people that are developing dementia is increasing
worldwide. Identifying MCI early is of utmost importance
as it can enable a timely treatment that can delay its
progression. A number of studies have shown that speech and
language, which are ubiquitous in everyday communication,
can provide early signs of MCI and other prodromal stages
of Alzheimer’s disease (e.g., 22). The aim of this study has
been to provide a classification model for the quick and
fast identification of MCI individuals, using data from speech
productions.

To this end, we have automatically transcribed, segmented,
and acoustically analyzed Swedish vowel productions. The
acoustic properties of vowels, namely their formants (F1 − F5),
duration, fundamental frequency, age, and gender of participants
were employed as predictors. Specifically, ten Deep Neural
Networks Architectures were trained on the acoustic productions
and evaluated on how well they can identify MCI and healthy
individuals, by comparing model predictions (i.e., MCI or HC),
with the evaluations conducted by clinicians using combined
imaging and neuropsychological examination. We have trained
ten models each with a different number of hidden layers.
Models 6 to 10 resulted in 83% mean classification accuracy (see
Table 4).

One important contribution of this study is that it provides
a model that can identify MCI individuals automatically and
with high accuracy, providing a quick and early assessment of
MCI, by using only a simple acoustic recording, without other
neuropsychological or neurophysiological information. Also, it
demonstrates that speech acoustic properties play a central role in
MCI identification and points to the necessity for more acoustic
studies with respect to MCI. Nevertheless, 83% accuracy might
still be low for clinical use, if it is going to be employed as the
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only assessment. Two aspects can account for these accuracy
results. First, there is a significant symptom variability among
individuals with MCI, which has been stressed out by a number
of papers including consensus papers for the diagnosis of MCI
(e.g., 2, 4). Some of these symptoms are not related to speech,
thus additional phonemic, moprhosytactic, etc., predictors might
increase the accuracy. Also, by increasing the data and retraining
the model, it is possible to improve model accuracy as it is
evidenced by the fact that some of the crossvalidation folds
resulted in considerably higher accuracy (cf., the SD is between
14 and 17%).

Moreover, this study presents the methodological process
that can lead to the selection of the classification model of
MCI vs. HC and the evaluation techniques that enable the
selection of the final model from a set of ten different models.
We have discussed two methods: i. validation split, and ii.
crossvalidation. In the validation split, model 7 resulted in
the highest accuracy, namely 75%. Nevertheless, the validation
split is a weak evaluation method as it depends on the
data selected as a training set and as a test set; different
randomization of the data may provide a different output.
It also depends on the split size (e.g., 75–25%, 80–20%,
90–10%). To avoid these confounds, we conducted a 5-fold
crossvalidation, which performs multiple splits of the data,
depending on the number of validation folds (cf. 55, 56). Most
importantly, the significance of the proposed machine learning
model formulation is not that it provides a specific model only
but also because it offers a process for continuous evaluation
and improvement of the model. Therefore, model evaluation
andmodel comparison constitute indispensable parts of machine
learning.

Future research is required (i) to evaluate multivariable
acoustic predictors, e.g., predictors from consonants and

non-acoustic predictors, i.e., linguistic features, such as parts
of speech, syntactic and semantic predictors, sociolinguistic
predictors like the education of the speaker; (ii) to establish
whether these acoustic variables could be useful in predicting
conversion from MCI to dementia; and (iii) to create an
automated differential diagnostic tools, which will enable the
classification of unknown MCI individuals from conditions
with similar symptoms (cf., 57). A system of this form,
will require more data from a larger population, yet our
current findings do provide a promising step toward this
purpose.

In conclusion, this study has showed that a Deep
Neural Network architecture can identify MCI speakers
and can potentially enable the development of valid
tools for identifying cognitive changes early and enable
multidomain life style interventions and/or pharmacological
treatments at the MCI stage, which can potentially delay
or even prevent the development of AD and other types of
dementia.
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APPENDIX

• Text in Swedish: Ordet ö beskriver ett område som är helt
avskuret från land och som är omgivet av vatten på alla sidor.
Öar kan uppstå när vulkaner höjer sig från havsbottnen eller
när vattennivån i havet stiger eller faller. Ett flertal öar uppstod
mot slutet av den förra istiden. När isen smälte och vattnet
rann ut i havet höjdes vattennivån så mycket att de låga
landområdena översvämmades. Idag ser man bara de högsta
topparna sticka upp över vattenytan som öar. Djur och växter
som på något sätt lyckas ta sig till en avlägsen ö kan sedan
vanligtvis inte komma därifrån igen. För att överleva är de
därför tvungna att mycket snabbt anpassa sig till den nya
omgivningen. De levande arter som finns på öar löper en
ständig risk att bli utrotade. Detta kan inträffa när nya djur
dyker upp eller när människor kommer dit och börjar störa
dem.

• Translated text in English: The word island describes an area
that is completely cut off from the land and is surrounded
by water on all sides. Islands can occur when volcanoes rise
from the seabed or when water levels in the ocean rise or fall.
A number of islands occurred at the end of the last ice age.
When the ice melted and the water ran out into the sea, the
water level was raised so much that the low lands were flooded.
Today, only the highest peaks can be seen across the water
surface as islands. Animals and plants that somehow manage
to get to a distant island usually do not leave the place again.
Therefore, in order to survive, they are forced to adapt very
quickly to the new environment. The living species on islands
run a constant risk of being extinct. This can happenwhen new
animals appear or when people get there and start to disturb
them.
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