A multifaceted approach for beech forest conservation: environmental drivers of understory plant diversity

Short running title: A multifaceted approach for conservation

Ottaviani Gianluigi¹*, Götzenberger Lars ${ }^{1 *}$, Bacaro Giovanni², Chiarucci Alessandro³, de Bello Francesco ${ }^{4.5}$, Marcantonio Matteo ${ }^{6}$
${ }^{1}$ Department of Functional Ecology, Institute of Botany, The Czech Academy of Sciences, 135 Dukelská, 37982, Třeboň, Czech Republic
${ }^{2}$ Department of Life Sciences, University of Trieste, 10 Via L. Giorgieri, 34127, Trieste, Italy
${ }^{3}$ Department of Biological, Geological and Environmental Sciences, Alma Mater Studiorum University of Bologna, 42 Via Irenerio, 40126 Bologna, Italy
${ }^{4}$ Department of Botany, Faculty of Sciences, University of South Bohemia, Na Zlate Stoce 1, 37005 České Budějovice, Czech Republic
${ }^{5}$ CIDE-CSIC, C. Naquera Km 4.5, Montcada, Valencia, 46113, Spain
${ }^{6}$ Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, 95616, Davis, USA

E-mail address for correspondence: gianluigi.ottaviani@ibot.cas.cz
*Equal contribution

Abstract

Studies addressing multiple aspects of biodiversity simultaneously (i.e., multifaceted approaches) can quantify plant diversity-environment links comprehensively, however they are scant in forests. This is because of the multidimensional nature of plant diversity. We studied taxonomic, functional and phylogenetic diversity patterns in 19 beech forest understory plots in two areas belonging to a biodiversity monitoring plan in Tuscany, Italy. We performed linear-mixed-effect models to quantify the influence of elevation (proxy for macroclimate), aspect (affecting microclimate), and basal area (related to microclimate and stand maturity) on diversity facets of vascular plants. Elevation played a major role in shaping diversity: high-elevation plots were less rich in species and had a reduced functional diversity of storage organs that may promote cold-tolerance. Conversely, the diversity of flowering phenology increased with elevation, thus low-elevation vegetation converged functionally towards a common, short blooming period. This strategy may be advantageous for understory plants in the deciduous beech forests experiencing longer growing seasons, hence more extended canopy closure at lower elevations. Basal area negatively affected foliar and multiple-trait functional diversity which may be associated with highly selective and competitive environment for light capture in closed canopy, mature stands. Slope aspect did not exert any significant effect on diversity facets, neither did interactions among predictors. Overall, these results confirm the usefulness of implementing multifaceted approaches to i) better understand the influence of environmental drivers on different aspects of plant diversity, and ii) inform the biodiversity monitoring plan that is in place in the study forests by systematically including functional diversity instead of taxonomic metrics only.

Keywords: conservation practices; elevation gradient; forest ecology; functional diversity; phylogenetic diversity; species richness

1. Introduction

Climate and management regimes both contribute to determine forest diversity, functioning, and dynamics (Laughlin et al., 2011; Pausas, 2015). Changing climatic conditions can trigger widespread plant responses, and these changes may generate feedback-effects on forest assembly and functioning (Sánchez-Salguero et al., 2017). Also, alteration of management regimes, such as logging frequency, can produce considerable effects on forest biota (Campetella et al., 2016). Management is generally associated with disturbance involving biomass removal and defines stand maturity (Lebrija-Trejos \& Bongers, 2008; Lebrija-Trejos et al., 2010; Pinho et al., 2017). Therefore, both changes in climate and disturbance regime can alter forest diversity, composition, and dynamics, such as treeline upward shifts (e.g., Gazol et al., 2017; Vitali et al., 2018).

Examining biodiversity patterns is a complex and multidimensional task by nature. Studies that simultaneously consider relations between different diversity metrics capturing different facets of diversity (i.e., taxonomic, functional, phylogenetic indices) and environmental variables can assist along this challenging quest (Cadotte \& Tucker, 2018). These multifaceted approaches can therefore greatly advance the understanding about drivers of plant diversity (e.g., Spasojevic \& Suding, 2012; Molina-Venegas et al., 2016). Thus far, such approaches have been applied across different ecosystems and regions: alpine tundra (Spasojevic \& Suding, 2012), Mediterranean dune (Marcantonio et al., 2014), shrub (Molina-Venegas et al., 2016) and mountain communities (Lopez-Angulo et al., 2018), and tropical forests (Swenson, 2011; Kandlikar et al., 2018). To our knowledge, multifaceted studies are scarce in temperate forests (but see Swenson et al., 2017).

In Europe, forests dominated by beech (Fagus sylvatica L., Fagaceae) are important for wood production, but are also of particular interest for plant ecology, biogeography and conservation (Magri, 2008; Bradshaw et al., 2010; Marcantonio et al. 2013; Jiménez-Alfaro et al., 2018). Within the Mediterranean basin, beech forests found in the Apennines are exposed to warmer, drier climates compared to northern occurrences of this forest type, influencing their composition and dynamics (Scolastri et al., 2017; Vacchiano et al., 2017). Additionally, their persistence can be affected by the spatial isolation from the Central European distribution area that may compromise gene-flow (Magri, 2008; Bradshaw et al., 2010). Also, intensifying landuse changes and climate fluctuations may have large interplaying ecological consequences, such as treeline upward shift in mountains (Gazol et al., 2017; Vitali et al., 2018). Yet, plant diversity-environment links remain still challenging to be quantified. Therefore, more research aiming at disentangling effects caused by climate and management on beech forests diversity is timely.

In beech forests, previous research from Apennines investigated species and functional diversity patterns in response to changing management regimes, i.e., species richness decreasing towards older plots, and clonal and bud bank traits tightly linked to stand maturity (Canullo et al., 2011). However, little is known about the effects of environmental conditions driven by, e.g., elevation, slope aspect, stand maturity on taxonomic, functional and phylogenetic diversity settings of beech forest understory vascular plants. In relation to climate, we predict that plants at higher elevations (experiencing colder temperatures) would exhibit lower taxonomic, functional and phylogenetic diversity than at lower elevations. This expectation is based on the assumption that long-term harsher thermal conditions may select for a restricted bunch of species and traits suited to cope with constraining thermal environments (Milla \& Reich, 2011; Spasojevic et al., 2014). Also, as functionally similar species tend to be closely related (Webb et al., 2002), we expect high-elevation plots to be distinguished by lower phylogenetic diversity than at lower elevations.

In relation to management, mature stands result from relative habitat stability which generally generates a highly selective and competitive environment for light capture filtering for forest floor species capable to persist under reduced light availability (Campetella et al., 2011; Lohbeck et al., 2013; Landuyt et al., 2018). Persistence under closed canopy conditions should be promoted by traits and resource strategies that should be shared across species (Campetella et al., 2011; Lohbeck et al., 2013). As a result, mature stands of beech forests are generally associated with reduced levels of species diversity and characterized by plants with similar strategies to withstand limiting light conditions in the understory layer than younger, more disturbed plots (Campetella et al. 2011; Scolastri et al. 2017; Landuyt et al., 2018). Therefore, we anticipate closed canopy, mature stands to be characterized by lower values of plant diversity (taxonomic, functional, phylogenetic) than younger plots. Furthermore, slope aspect provides additional habitat heterogeneity and possibilities for ecological differentiation (e.g., Copeland \& Harrison, 2015). For example, in rugged landscapes of the Northern Hemisphere, mesic-related species tend to occur on north-facing slopes, whereas termophilous taxa prefer south-facing slopes (Warren, 2008; Copeland \& Harrison, 2015). However, multifaceted studies have not specifically taken the role of aspect into account.

Here, we examined effects of elevation (macroclimatic factor), slope aspect (proxy for microclimate) and stand maturity (management-related and microclimatic variable) on taxonomic, functional and phylogenetic diversity in Northern Apennines beech forest understories. With our multifaceted study we aim at i) offering a more comprehensive view of plant diversity patterns, and ii) providing insights about effectiveness of the biodiversity monitoring plan that is in place for the studied beech forests, that generally examined changes in taxonomic diversity as the core indicator of forest conservation status (e.g., Chiarucci \& Bonini, 2005; Arévalo et al. 2012; Maccherini et al., 2018). We formulated three specific questions: 1) Are high-elevation plots characterized by less species, trait convergence and phylogenetic clustering, i.e., lower taxonomic, functional and phylogenetic diversity, than low-
elevation plots? 2) Do understory plants in less disturbed and more mature habitats show a reduction in plant diversity (lower taxonomic, functional and phylogenetic diversity) when compared with more disturbed forests? 3) Are taxonomic, functional and phylogenetic diversity affected by slope aspect?

2. Materials and methods

2.1. Study area, climate and management

We studied vascular plants in the understory vegetation of two forested areas, namely Pistoia (PIS) and Casentino (CAS), both located in Northern Apennines, Italy. These forests are dominated by European beech (F. sylvatica) and correspond to two distinct mountainous regions (Figure 1), located at different elevations between approximately 1000 and 1600 m a.s.l. (Table 1). Casentino forests are found at lower elevations than Pistoia (Table 1). The main geological substrate of both PIS and CAS is represented by sandstone, and the forests are found on acidic brown soils, embedded in similar landscape mosaics. The forest plots (originally 20 for PIS and 22 for CAS) are part of a biodiversity monitoring plan of forests in Tuscany (Forest Inventory of Tuscany; Chiarucci \& Bonini, 2005; Arévalo et al., 2012). As a selection of the original set, nineteen $20 \mathrm{~m} \times 20 \mathrm{~m}$ plots were located using GPS and delimited - nine plots in CAS and ten in PIS. This selection was operated aiming at collecting plots with comparable characteristics both for edaphic conditions and land use. The same plots were surveyed twice for floristics, in 2001 and 2009, always during late June and beginning of July, when most of the species were in their phenological maximum (flowering and aboveground biomass production).

Plant species composition was recorded within each plot, as presence/absence data.
Traditionally, Apennines beech forests are logged for firewood and timber supply every 15-30 years (Campetella et al., 2016). Time since last disturbance event, hence stand maturity, is
considered a key management-related driver of diversity in the understory of these forests, with lower species diversity found in older stands (Canullo et al., 2011; Campetella et al., 2016). Basal area is effectively associated with stand maturity and stage of succession, as it shows strongly positive correlation with stand age (Lebrija-Trejos \& Bongers, 2008; Lebrija-Trejos et al., 2010; Pinho et al., 2017), while being also affected by climatic and edaphic conditions. Yet, in this case, we consider basal area as a reliable predictor for stand maturity. During the study period 2001-2009, no logging occurred in the nineteen beech forest stands.

Table 1 Average values and standard deviation (at plot scale) of environmental variables related to macroclimate (elevation, MAP, MAT), microclimate (aspect, slope) and stand maturity (basal area) in the two forested areas. Bold text identifies variables used as predictors (fixed effects) in the model - see below.

	Elevation $(\mathrm{m}$ a.s.I. $)$	MAP $\left(\mathrm{mm} \mathrm{y}^{-1}\right)$	MAT $\left({ }^{\circ} \mathrm{C}\right)$	Aspect (rad)	Slope $\left({ }^{\circ}\right)$	Basal area $\left(\mathrm{m}^{2} \mathrm{ha}^{-1}\right)$
Casentino (CAS)	1107 ± 145	1400 ± 69	6.5 ± 0.6	4.2 ± 1.7	37.8 ± 10.8	34.4 ± 8.9
Pistoia (PIS)	1503 ± 108	2166 ± 162	5.1 ± 2.5	4.1 ± 1.9	19.3 ± 9.1	40.9 ± 4.7

To define the environmental conditions of the forest stands, we collected six variables for each plot (in 2001), namely elevation (m), mean annual precipitation (MAP; mm^{-1}), mean annual temperature $\left(\mathrm{MAT} ;{ }^{\circ} \mathrm{C}\right)$, aspect (rad), slope $\left({ }^{\circ}\right)$, and basal area $\left(\mathrm{m}^{2} \mathrm{ha}{ }^{-1}\right)-$ Table 1 . We included here MAP and MAT to describe the climatic context of the study areas, but not for statistical analyses as they were both spatially interpolated from weather stations (close to plots) using elevation as predictor. Slope was also discarded from the analyses, as it was negatively correlated with elevation (Pearson's correlation test: -0.68 ; p-value <0.01).

Figure 1. Location of the two study areas (Pistoia = PIS; triangles, and Casentino = CAS; circles) in the Tuscany region, Central Italy.

2.2. Species, functional traits and phylogenetic data

We focused on vascular plant species occurring in the beech forest understory layer, and across all plots the total species richness counted 130 species. Species nomenclature follows Pignatti (1982). For plant functional traits, we gathered data from online databases, namely CLO-PLA (Klimešova \& de Bello, 2009), BiolFlor (Kühn et al., 2004), LEDA (Kleyer et al., 2008). Specifically, we compiled fifteen traits, some of which were combined to groups to reflect a certain dimension of plant ecological strategy (data coverage in percent of species given in parentheses for each trait and trait group): 1) life form (100\%); 2) plant lifespan (100\%); 3) reproduction type (89\%); 4) flowering phenology (100\%) - defined by onset (100\%) and
timespan (100\%) of flowering; 5) clonal traits (100\%) - i.e., clonal ability (100\%), clonal growth organs (86%), lateral spread (88%); 6) storage organ type (89%); 7) plant height (100%); 8) foliar traits (100\%) - i.e., specific leaf area (73\%), leaf dry matter content (72\%), leaf mass (70\%), leaf size (70\%), and leaf persistence (100\%); see also Appendix I containing the species-traits matrix. These traits or trait groups were used to calculate species pairwise distances based on Gower distance, i.e., allowing for different variable types to be combined and for missing values, and subsequently used for calculating community-level mean pairwise distance (see below). We had trait data for at least 70\% of species but more complete data for most traits. The fact that some traits were combined to groups, together with the use of Gower distance, further mitigated the potential effect of missing trait data. This is because within these trait groups, at least one trait had complete data so that distances between all species pairs could be calculated.

The used traits are informative on an array of different ecological functions (Weiher et al., 1999; Ottaviani et al., 2017; Klimešová et al., 2018), that is, resource acquisition, retention, use and competitive ability (i.e., plant height, foliar and clonal traits), reproduction (i.e., type, flowering phenology, clonal traits), on-spot persistence (i.e., plant lifespan, storage organ type), space occupancy (i.e., clonal traits), ability to resprouting after disturbance (i.e., life form, storage organ type). For phylogeny, we consulted Daphne database (phylogenetic supertree for Central European flora; Durka \& Michalski, 2012) obtaining a phylogenetic tree for 112 of our 130 species which has been used for calculating cophenetic distances between pairs of species. Species missing phylogenetic information were excluded from this analysis.

We calculated taxonomic (species richness), functional and phylogenetic diversity indices in each plot for both the sampling years (2001 and 2009). We computed functional diversity (FD) by using mean pairwise distances (Weiher et al., 1998) for each trait (or trait group), as well as for all the traits combined (multiple-trait). Mean pairwise trait distances were calculated based on Gower distance. For phylogenetic diversity (PD), we used the same index as per FD (i.e.,
mean pairwise distances), but based on cophenetic distances between pairs of species stemming from the species phylogenetic tree (Webb et al., 2002).

2.3. Statistical analyses

We performed linear mixed effect models (LMEs; Zuur et al., 2009) to examine the relations between response variables (i.e., taxonomic, functional or phylogenetic diversity) and predictors (i.e., elevation, aspect, basal area; not correlated among them; Appendix II). We ran eleven LMEs, that is, one for each response variable, and each model included the three predictors (set as fixed effects). From visual inspection, response variables did not exhibit issues related to normality and homoscedasticity. In the models, we accounted both for repeated measures across years (same plots visited twice, in 2001 and 2009 for floristics) and nested sampling design (plots nested into two separate sites, CAS and PIS), by setting the identity of plots as a random effect nested within sites (random intercept). In each model, we identified important predictors for each diversity facet as variables showing marginally significant (p-values < 0.1) or significant p-values $(p \leq 0.05)$. We then quantified the variance explained by the fixed effects, and fixed plus random terms in the LMEs (hereafter indicated as marginal and conditional R^{2}, respectively; Nagakawa \& Schielzeth, 2013). We also controlled for significant effects of twoways interaction terms among predictors on the response variables.

We ran Non-metric Multidimensional Scaling (NMDS) to ordinate plots in the two forested areas (CAS and PIS) in both years (2001 and 2009) based on their species composition. NMDS was performed on Bray-Curtis distances on untransformed cover data reducing the number of dimensions to two, without step-across dissimilarities (because only a small fraction of plots (< $5 \%)$ did not share any species). The start configuration of the NMDS was defined by results of a metric scaling ordination (i.e., principal coordinate analyses, PCoA). Then 50 iterations of NMDS with random start configurations where run and compared to the start configuration by
means of Procrustes analysis. This resulted in a slightly lower stress value compared to the start configuration (0.18) and was used to plot the samples in the ordination space. To test for significant distinctiveness in species composition, we performed Analysis of Similarity (ANOSIM; Bray-Curtis similarity measure; N of permutations $=999$): i) between sites with years combined (i.e., CAS vs PIS), and ii) across sites comparing years separately (i.e., CAS 2001 vs PIS 2001 and CAS 2009 vs PIS 2009). R-values close to 1 indicate highly dissimilar groups, while Rvalues close to 0 identify highly similar groups (Clarke, 1993). We carried out all the analyses in the statistical environment $R(R$ Core Team, 2016), using the packages picante (Kembel et al., 2010; calculation of FD and PD), FD (Laliberté \& Legendre, 2010; Gower distance matrices of traits), ape (Paradis et al., 2004; cophenetic distance matrix), vegan (Oksanen et al., 2017; NMDS, ANOSIM), nIme (Pinheiro et al., 2016; LMEs) and MuMIn (Bartoń, 2018; marginal and conditional R^{2}).

3. Results

Five significant relations between predictors and diversity indices resulted from LMEs (Table 2; Figure 2; models for all response variables, including insignificant relationships, are reported in Appendix III). Elevation was significantly associated with changes in diversity for three metrics: species richness, flowering phenology FD, and storage organ FD. Elevation had a negative effect on species richness, that is, low-elevation plots (CAS) were species-richer than high-elevation plots (PIS). Storage organ type FD also decreased with elevation, whereas flowering phenology FD increased with elevation. Aspect did not predict any change in diversity metrics, while basal area was negatively correlated with two diversity indices: foliar traits and multiple traits FD (Table 2; Figure 2). Phylogenetic diversity did not show any significant relationship with predictors. Two-way interaction terms between predictors did not affect any diversity pattern.

Table 2. Summary statistics reporting the significant (p-value ≤ 0.05; in bold), or marginally significant (p-value ≤ 0.1) relationships between environmental predictors and diversity facets. Coefficient values, p-values, marginal R^{2} (variance explained by fixed effects in the models, i.e., by predictors), conditional R^{2} (variance explained by fixed plus random effects) are indicated.

Diversity facet	Predictor	Coefficient value	P-value	Marginal R (\%)	Conditional R (\%)
Taxonomic (SR)	Elevation	-0.008	$\mathbf{0 . 0 2 5}$	33.0	71.8
Flowering phenology (FD)	Elevation	<0.001	$\mathbf{0 . 0 4 3}$	14.2	22.6
Storage organs (FD)	Elevation	<-0.001	$\mathbf{0 . 0 3 3}$	29.0	29.0
Foliar traits (FD)	Basal area	-0.003	0.072	15.0	76.6
Multiple-traits (FD)	Basal area	-0.002	$\mathbf{0 . 0 4 7}$	13.6	35.2

Figure 2. Scatterplots with fitted regression lines reporting the significant relationships between environmental predictors and diversity facets. Grey-shaded areas identify 95\% Cls.

The ordination analysis (NMDS, stress $=0.179$; Figure 3) revealed that beech forest understory vegetation in CAS and PIS have different compositions, as confirmed by ANOSIM between sites with years combined $(R$-value $=0.60 ; p$-value $=0.001)$. In the ANOSIM that compared years separately between sites, we found that while CAS and PIS remained significantly different in their compositions in 2001 and 2009, they were becoming more similar over time (CAS 2001 vs PIS 2001: R-value = 0.65; p-value = 0.001; CAS 2009 vs PIS 2009: Rvalue $=0.51 ; p$-value $=0.001$)

Figure 3. Ordination of species compositions with ellipses representing one standard deviation around the median of each of the four groups (CAS and PIS, 2001 and 2009). Crosses represent ellipse centroids.

4. Discussion

The macroclimatic factor, elevation, operated as the main driver of diversity (Read et al., 2014; Milla \& Reich, 2011). Elevation (the most important predictor among the fixed effects in the models) determined patterns of three diversity metrics, namely species richness and functional diversity of two traits. Yet, stand maturity which we considered in the models through basal area (Lebrija-Trejos et al., 2010; Pinho et al., 2017) played a significant role in driving FD patterns of two traits. Aspect, a proxy for microclimate that can affect species and functional composition of plant communities (Warren, 2008; Copeland \& Harrison, 2015), did not predict any diversity pattern in our case. This lack of influence may be caused by microclimatic effects being overruled by variables related to macroclimate and management. Nevertheless, this inference requires deeper scrutiny. The large amount of variance explained by fixed plus random effects (conditional R^{2}), varied between 22.6% and 76.6% whereas the variance explained by fixed terms only ranged between 13.6% and 33% (Table 2). This suggests that other environmental parameters (e.g., resource availability, humidity, solar irradiance at the forest floor; Lohbeck et al. 2013; Landuyt et al., 2018), processes (e.g., biotic interactions), and likely edge-effect related to surrounding forest patches (Canullo et al., 2017) not considered in this study may be important in shaping different facets of diversity. For storage organ FD, the lack of difference between conditional and marginal R^{2} would imply that diversity of this trait was exclusively affected by the fixed effects, especially elevation. Unexpectedly, interactions among predictors did not exert any significant effect on diversity patterns. This may be caused by limitations related to small sample size. Phylogenetic diversity did not significantly vary in
relation to elevation, slope aspect and stand maturity. This lack of tangible change indicates that phylogeny was not significantly affected by any of the environmental variables considered in this study.

4.1. Effects of elevation and stand maturity on multifaceted diversity patterns

Focusing on specific relations between elevation and diversity facets, we have found partial support to our hypothesis. Consistent with expectations, a lower number of species was found at higher elevations. This finding, when combined with reduced FD values for storage organs at high-elevation plots, suggests that limiting abiotic conditions may have selected for a reduced number of specialized species sharing similar resource-storage strategies, and that may promote cold tolerance at higher elevations (Milla \& Reich, 2011; Read et al., 2014). Conversely, more benign thermal conditions at lower elevations may facilitate the coexistence of a greater number of species, functionally more diverse in resource-storage strategies than those found at higher elevations (Spasojevic et al., 2014). Flowering phenology instead did not follow the research predictions. On the one hand, increasing FD of flowering phenology with elevation implies a functional differentiation for timing and length of flowering in the understories at higher elevations (being onset and timespan of flowering forming this trait; see above, and Appendix I). On the other hand, understory vegetation at low elevations converged functionally towards a common, short blooming period. This may be advantageous for understory plants in the deciduous beech forests at lower elevations experiencing longer growing seasons, hence more extended canopy closure than at higher elevations. This may indicate that forest-floor plants can avoid the light limitation caused by the canopy shading effect by anticipating and restricting their flowering phenology in plots at lower elevations. Examples of these early-flowering, shortblooming species belong to Ranunculaceae (e.g., Anemone nemorosa L., Helleborus bocconei Ten., Helleborus foetidus L., Hepatica nobilis Mill.) and to Euphorbiaceae (e.g., Mercurialis
perennis L., Euphorbia amygdaloides L., Euphorbia dulcis L). In addition, climatic variations are predicted to be particularly exacerbating in mountainous regions (Dobrowski \& Parks, 2016; Lamprecht et al., 2018). Intensifying climate fluctuations may also alter flowering phenology (Godoy et al., 2009; Crimmins et al., 2010) which may facilitate the coexistence of species with different flowering phenology. We can therefore cautiously infer that changing climate may have contributed to determine shifts in flowering phenology of forest understories at higher elevations, but we have no direct information on this aspect which should be better explored in future studies.

Basal area, a reliable proxy for stand maturity and management regime (Lebrija-Trejos \& Bongers, 2008; Lebrija-Trejos et al., 2010; Pinho et al., 2017), showed a negative correlation with functional diversity, a finding consistent with predictions. Increasing stand maturity is reflected in greater basal area, and this exerted negative effects on multiple traits and foliar traits FD. Light limitation under closed canopy, mature stands may have imposed strong ecological constraints on beech forest understory plants (e.g., Campetella et al., 2011; Lohbeck et al., 2013). This may have filtered for specialized understory biota sharing similar functional strategies, mainly related to foliar traits and overall functional type (identified by all traits combined, informing on an array of functions). Conversely, in young, open-canopy forests, FD of understory vascular species increased thanks to more diverse and possibly more exploitative strategies that may foster competitive ability for resource acquisition, such as light capture (Canullo et al., 2011; Lohbeck et al., 2013).

4.2. Spatial and temporal turnover of species composition

The ordination analysis unraveled how forest understories in the two areas were compositionally distinct, and this inference was confirmed by the ANOSIM test. Further, we have found that the two areas were becoming compositionally more similar over the period

2001-2009, as highlighted by results from NMDS and ANOSIM comparing plots of the same years between the two sites. We indeed found that in 2009 understory vegetation between CAS and PIS were less distinct (i.e., lower R-value) than the 2001-plots, a trend that may potentially progress with intensifying land-use and climate change (McKinney \& Lockweed, 1999; Li \& Waller, 2015). Such trend to biotic homogenization is generally linked to a reduced group of "winner" species tending to outcompete "loser" species under abruptly changing environmental conditions (McKinney \& Lockweed, 1999). Understanding the implications for ecology and conservation associated with biotic homogenization is a challenging task, and would require further attention. Lastly, we can carefully infer that regional species pool may have exerted an effect on multifaceted diversity patterns (Zobel, 2016) as the two forested areas were compositionally well distinct (even though this separation is decreasing over time). We encourage future research to tackle this interesting biogeographic task by using larger datasets that are better suited to study such macroecological issue.

5. Conclusions: implications for conservation practices

Our results, even if emerging from a limited dataset, emphasize the importance of considering different diversity facets simultaneously (Cadotte \& Tucker, 2018). Such a multifaceted approach can promote a better understanding on relations between plant diversity and environmental conditions - key information for improving effectiveness of conservation efforts. Conservation planning and priorities may be defined based on which diversity facets are of major ecological and biogeographic relevance. This is a context- and case-dependent matter, always challenging to tackle. Different metrics can indeed display incongruent patterns, as in this case, and may be difficult to be translated into conservation practices, but more informed decisions can be taken using insights gathered from multifaceted studies (Cadotte \& Tucker, 2018).

Regarding the performance of the specific biodiversity monitoring plan that is in place for the Tuscany forests, this research provides a more comprehensive ecological understanding about plant diversity-environment links. This information is key for refining the existing monitoring plan. We suggest to systematically include functional diversity (and, on a cautionary ground, also phylogenetic diversity because of the small sample size of this study) instead of relying only on taxonomic metrics (e.g., Bonini \& Chiarucci, 2005).

Author contributions

GO conceived the research idea; AC directed the project in which data were collected (cooperation between University of Siena and LAMMA); GB coordinated the collection and assembly of the floristic data; GO, LG and MM gathered the functional trait and phylogenetic data; LG conducted the analyses; GO wrote the first version of the manuscript; all the coauthors significantly contributed to revisions.

Acknowledgements

GO was supported by the Grant Agency of the Czech Republic (Centre of Excellence PLADIAS, 14-36079G and 16-19245S). AC acknowledges the financial and administrative support of the Regional Administration of Tuscany and LAMMA consortium. We thank Prof Ladislav Mucina (Perth, Australia) and Prof Gunnar Keppel (Adelaide, Australia) for providing useful insights on previous versions of the manuscript. The manuscript has significantly benefitted from comments made by the Subject Editor (Prof Karsten Wesche) and two anonymous reviewers.

Orcid

Gianluigi Ottaviani: http://orcid.org/0000-0003-3027-4638

References

Arévalo, J.R., Cortés-Selva, F., Chiarucci, A., 2012. Ecological determinants of species composition in the forest vegetation of Tuscany, Italy. Plant Ecol. Evol., 145, 323-331.

Bartoń, K., 2018. MuMIn: Multi-Model Inference. R package version 1.40.4. https://CRAN.Rproject.org/package=MuMIn

Bradshaw, R.H.W., Kito, N., Giesecke T., 2010. Factors influencing the Holocene history of Fagus. For. Ecol. Manage. 259, 2204-2212.

Cadotte, M.W., Tucker, C.M., 2018. Difficult decisions: Strategies for conservation prioritization when taxonomic, phylogenetic and functional diversity are not spatially congruent. Biol. Conserv. 225, 128-133.

Campetella, G., Botta-Dukát, Z., Wellstein, C., Canullo, R., Gatto, S., Chelli, S., Mucina, L., Bartha, S., 2011. Patterns of plant trait-environment relationships along a forest succession chronosequence. Agr. Ecosyst. Environ. 145, 38-48.

Campetella, G., Canullo, R., Gimona, A., Garadnai, J., Chiarucci, A., Giorgini, D., Angelini, E., Cervellini, M., Chelli, S., Bartha, S., Hermy, M., 2016. Scale-dependent effects of coppicing on the species pool of late successional beech forests in the central Apennines, Italy. Appl. Veg. Sci. 19, 474-485.

Canullo, R., Campetella, G., Mucina, L., Chelli, S., Wellstein, C., Bartha, S., 2011. Patterns of clonal growth modes along a chronosequence of post-coppice forest regeneration in beech forests of Central Italy. Fol. Geobot. 46, 271-288.

Canullo, R., Simonetti, E., Cervellini, M., Chelli, S., Bartha, S., Wellstein, C., Campetella, G., 2017. Unravelling mechanisms of short-term vegetation dynamics in complex coppice forest systems. Fol. Geobot. 52, 71-81.

Chiarucci, A., Bonini, I., 2005. Quantitative floristics as a tool for the assessment of plant diversity in Tuscan forests. For. Ecol. Manage. 212, 160-170.

Clarke, K.R., 1993. Non-parametric multivariate analysis of changes in community structure. Austral. J. Ecol. 18, 117-143.

Copeland, S.M., Harrison, S.P., 2015. Identifying plant traits associated with topographic contrasts in a rugged and diverse region (Klamath-Siskiyou Mts, OR, USA). Ecography 38, 569-577.

Crimmins, T.M., Crimmins, M.A., Bertelsen, D.C., 2010. Complex responses to climate drivers in onset of spring flowering across a semi-arid elevation gradient. J. Ecol. 98, 1042-1051.

Dobrowski, S.D., Parks, S.A., 2016. Climate change velocity underestimates climate change exposure in mountainous regions. Nat. Comm. 7, 12349.

Durka, W., Michalski, S.G., 2012. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology 93, 2297-2297.

Gazol, A., Moiseev, P., Camarero, J.J., 2017. Changes in plant taxonomic and functional diversity patterns following treeline advances in the South Urals. Plant Ecol. Divers. 10, 283-292.

Godoy, O., Castro-Díez, P., Valladares, F., Costa-Tenorio, M., 2009. Different flowering phenology of alien invasive species in Spain: evidence for the use of an empty temporal niche? Plant Biol. 11, 803-811.

Jiménez-Alfaro, B., Girardello, M., Chytrý, M., Svenning, J-C., Willner, W., Gégout, J-C., Agrillo, E., Campos, J.A., Jandt, U., Kącki, Z., Šilc, U., Slezák, M., Tichý, L., Tsiripidis, I., Turtureanu, P.D., Ujházyová M., Wohlgemuth, T., 2018. History and environment shape
species pools and community diversity in European beech forests. Nat. Ecol. Evol. 2, 483490.

Kandlikar, G.S., Vaz, M.C., Kriebel, R., Vargas, G., Michelangeli, F.A., Cordero, R., Almeda, F., Avalos, G., Fetcher, N., Kraft, N.J.B., 2018. Contrasting patterns of taxonomic, phylogenetic and functional variation along a Costa Rican altitudinal gradient in the plant family Melastomataceae. J. Trop. Ecol. 34, 204-208.

Kembel, S.W., Cowan, P.D., Helmus, M.R., Cornwell, W.K., Morlon, H., Ackerly, D.D., Blomberg, S.P., Webb, C.O., 2010. Picante: R tools for integrating phylogenies and ecology. Bioinformatics 26, 1463-1464.

Kleyer, M., Bekker, R., Knevel, I., Bakker, J., Thompson, K., Sonnenschein, M., Poschlod, P., Van Groenendael, J., Klimeš, L., Klimešová, J., Klotz, S., Rusch, G., Hermy, M., Adriaens, D., Boedeltje, G., Bossuyt, B., Dannemann, A., Endels, P., Götzenberger, L., Hodgson, J., Jackel, A., Kühn, I., Kunzmann, D., Ozinga, W., Römermann, C., Stadler, M., Schlegelmilch, J., Steendam, H., Tackenberg, O., Wilmann, B., Cornelissen, J., Eriksson, O., Garnier, E., Peco, B., 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 96, 1266-1274.

Klimešova, J., de Bello, F., 2009. CLO-PLA: the database of clonal and bud bank traits of Central European flora. J. Veg. Sci. 20, 511-516.

Klimešová, J, Martínková, J, Ottaviani, G., 2018. Belowground plant functional ecology: Towards an integrated perspective. Funct. Ecol. 32, 2115-2126.

Kühn, I., Durka, W., Klotz, S., 2004. BiolFlor - a new plant-trait database as a tool for plant invasion ecology. Divers. Distrib. 10, 363-365.

Laliberté, E., Legendre, P., 2010. A distance-based framework for measuring functional diversity from multiple traits. Ecology 91, 299-305

Lamprecht, A., Semenchuk, P.R., Steinbauer, K., Winkler, M., Pauli, H., 2018. Climate change leads to accelerated transformation of high-elevation vegetation in the central Alps. New Phytol. 220, 447-459.

Landuyt, D., Perring, M.P., Seidl, R., Taubert, F., Verbeeck, H., Verheyen, K., 2018. Modelling understorey dynamics in temperate forests under global change-Challenges and perspectives. Persp. Plant Ecol. Evol. Syst. 31, 44-54.

Laughlin, D.C., Fulé, P.Z., Huffman, D.W., Crouse, J., Laliberté, E., 2011. Climatic constraints on trait-based forest assembly. J. Ecol. 99, 1489-1499.

Lebrija-Trejos, E., Bongers, F., 2008. Successional change and resilience of a very dry tropical deciduous forest following shifting agriculture. Biotropica 40, 422-431.

Lebrija-Trejos, E., Pérez-García, E.A., Meave, J.A., Bongers, F., Poorter, L., 2010. Functional traits and environmental filtering drive community assembly in a species-rich tropical system. Ecology 91, 386-398.

Li, D., Waller, D., 2015. Drivers of observed biotic homogenization in pine barrens of central Wisconsin. Ecology 96, 1030-1041.

Lohbeck, M., Poorter, L., Lebrija-Trejos, E., Martínez-Ramos, M., Meave, J.A., Paz, H., PérezGarcía, E., Romero-Pérez, E., Tauro, A., Bongers, F., 2013. Successional changes in functional composition contrast for dry and wet tropical forest. Ecology 94, 1211-1216.

Lopez-Angulo, J., Swenson, N.G., Cavieres, L.A., Escudero, A., 2018. Interactions between abiotic gradients determine functional and phylogenetic diversity patterns in Mediterraneantype climate mountains in the Andes. J. Veg. Sci. 29, 245-254.

Magri, D., 2008. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J. Biogeogr. 35, 450-463.

Maccherini, S., Bacaro, G., Giovannetti, G., Angiolini, C., Chiarucci, A., 2018. Analysing methodological issues in short-term monitoring of rare European beech forests restoration. Plant Biosyst., doi: 10.1080/11263504.2018.1454529

Marcantonio, M., Rocchini, D., Geri, F., Bacaro, G., Amici, V., 2013. Biodiversity, roads, \& landscape fragmentation: Two Mediterranean cases. Appl. Geogr., 42, 63-72.

Marcantonio, M., Rocchini, D., Ottaviani, G., 2014. Impact of alien species on dune systems: a multifaceted approach. Biodivers. Conserv. 23, 2645-2668.

McKinney, M.L., Lockweed, J.L., 1999. Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol. Evol. 14, 450-453.

Milla, R., Reich, P.B., 2011. Multi-trait interactions, not phylogeny, fine-tune leaf size reduction with increasing altitude. Ann. Bot. 107, 455-465.

Molina-Venegas, R., Aparicio, A., Lavergne, S., Arroyo, J., 2016. How soil and elevation shape local plant biodiversity in a Mediterranean hotspot. Biodivers. Conserv. 25, 1133-1149.

Oksanen, J., Blanchet, F.G., Friendly, M., Kindt, R., Legendre, P., McGlinn, D., Minchin, P.R., O'Hara, R.B., Simpson G.L., Solymos, P., Stevens, M.H.H., Szoecs, E., Wagner, H., 2017. vegan: Community Ecology Package. R package version 2.4-5. https://CRAN.Rproject.org/package=vegan

Ottaviani, G., Martínková, J., Herben, T., Puasas, J.G., Klimešová, J., 2017. On plant modularity traits: Functions and challenges. Trends Plant Sci. 8, 648-651.

Paradis, E., Claude, J., Strimmer, K., 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289-290.

Pausas, J.G., 2015. Evolutionary fire ecology: lessons learned from pines. Trends Plant Sci. 20, 318-324.

Pignatti, S., 1982. Flora d'Italia. Edagricole, Bologna.
Pinho, B.X., Melo, F.P.L., Arroyo-Rodríguez, V., Pierce, S., Lohbeck, M., Tabarelli, M., 2017. Soil-mediated filtering organizes tree assemblages in regenerating tropical forests. J. Ecol., https://doi.org/10.1111/1365-2745.12843.

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., R Core Team, 2016. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-125. https://cran.rproject.org/web/packages/nIme

R Core Team, 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.

Read, Q.D., Moorhead, L.C., Swenson, N.G., Bailey, J.K., Sanders, N.J., Fox, C., 2014. Convergent effects of elevation on functional leaf traits within and among species. Funct. Ecol. 28, 37-45.

Sánchez-Salguero, R., Camarero, J.J., Carrer, M., Gutiérrez, E., Alla, A.Q., Andreu-Hayles, L., Hevia, A., Koutavas, A., Martínez-Sancho, E., Nola, P., Papadopoulos, A., Pasho, E., Toromani, E., Carreira, J.A., Linares, J.C., 2017. Climate extremes and predicted warming threaten Mediterranean Holocene firs forests refugia. Proc. Nat. Acad. Sci. USA doi, 10.1073/pnas. 1708109114

Scolastri, A., Bricca, A., Cancellieri, L., Cutini, M., 2017 Understory functional response to different management strategies in Mediterranean beech forests (central Apennines, Italy). For. Ecol. Manage. 400, 665-676.

Spasojevic, M., Suding, K.N., 2012. Inferring community assembly mechanisms from functional diversity patterns: the importance of multiple assembly processes. J. Ecol. 100, 652-661.

Spasojevic, M., Grace, J.B., Harrison, S., Damschen, E.I., 2014. Functional diversity supports the physiological tolerance hypothesis for plant species richness along climatic gradients. J. Ecol. 102, 447-455.

Swenson, N.G., 2011. The role of evolutionary processes in producing biodiversity patterns, and the interrelationships between taxonomic, functional and phylogenetic biodiversity. Am. J. Bot. 98, 472-480.

Swenson, N.G., Weiser, M.D., Mao, L., Araújo, M.B., Diniz-Filho, J.A.F., Kollmann, J., Nogués-Bravo, D., Normand, S., Rodríguez, M.A., García-Valdés, R., Valladares, F.,

Zavala, M.A., Svenning, J.-C., 2017. Phylogeny and the prediction of tree functional diversity across novel continental settings. Glob. Ecol. Biogeogr. 26, 553-562.

Vacchiano, G., Garbarino, M., Lingua, E., Motta, R., 2017. Forest dynamics and disturbance regimes in the Italian Apennines. For. Ecol. Manage. 388, 57-66.

Vitali, A., Urbinati, C., Weisberg, P.J., Urza, A.K., Garbarino, M., 2018. Effects of natural and anthropogenic drivers on land-cover change and treeline dynamics in the Apennines (Italy). J. Veg. Sci. 29, 189-199.

Warren, R.J., 2008. Mechanisms driving understory evergreen herb distributions across slope aspects as derived from landscape position. Plant Ecol. 198, 297-308.

Webb, C.O., Ackerly, D.D., McPeek, M.A., Donoghue, M.J., 2002. Phylogenies and community ecology. Annu. Rev. Ecol. Syst. 33, 475-505.

Weiher, E., Clarke, G.D.P., Keddy, P.A., 1998. Community assembly rules, morphological dispersion, and the coexistence of plant species. Oikos 81, 309-309.

Weiher, E., van der Werf, A., Thompson, K., Roderick, M., Garnier, E., Eriksson, O., 1999. Challenging Theophrastus: A common core list of plant traits for functional ecology. J. Veg. Sci. 10, 609-620.

Zobel, M., 2016. The species pool concept as a framework for studying patterns of plant diversity. J. Veg. Sci. 27, 8-18.

Zuur, A.F., Ieno, E.N., Walker, N.J., Saveliev, A.A., Smith, G.M., 2009. Mixed effects models and extensions in ecology with R. Springer, New York.

Appendix I. Table reporting the species x traits matrix for the 130 understory vascular plant species occurring in the 19 beech forest plots included in this study.

Species	$\begin{aligned} & \text { Life } \\ & \text { form } \end{aligned}$	Plant lifespan	Reproduction type		Flowering phenology		Clonal traits				Storage organ	Plant height	Foliar traits				
			Gen	Veg	Start	Timespan	CIonal ability	$\begin{aligned} & \text { Main } \\ & \text { CGO } \end{aligned}$	Lateral spread 1	Lateral spread 2			LM	SLA	LS	LDMC	LP
Adenostyles australis	H	P	NA	NA	6	2	1	NA	NA	NA	NA	0.8	NA	NA	NA	NA	0
Adiantum capillus-veneris	G	P	NA	NA	7	3	1	10	R	NA	R	0.4	NA	NA	NA	NA	0
Aegopodium podagraria	H	P	0	1	6	2	1	10	R	1	R	0.558	753.55	28.8	13500.23	230	0
Agrostis tenuis	H	P	0.5	0.5	6	2	1	10	R	1	R	0.25	10.17	34.43	335.67	259.67	0
Ajuga reptans	H	P	0.5	0.5	5	4	1	9	S	H	R	0.16	17.37	34.7	556	153	1
Alliaria petiolata	H	WA	1	0	4	3	1	15	0	L	TR	0.45	213.94	41.28	7514	161.3	1
Anemone nemorosa	G	P	0	1	3	3	1	10	R	1	R	0.14	123.87	27.6	3003	205	0
Aquilegia vulgaris	H	MLP	1	0	5	3	1	15	0	L	TR	0.55	142.01	26	9402	295	0
Arabis hirsuta	H	P	1	0	5	3	1	9	R	I	R	0.32	15.76	28.1	374	166	1
Aremonia agrimonoides	H	P	0.5	0.5	5	2	1	9	R	L	R	0.24	NA	NA	NA	NA	1
Asplenium adiantum nigrum	H	SLP	0.5	0.5	7	2	1	9	R	L	R	0.3	NA	NA	NA	NA	1
Asplenium trichomanes	H	P	0.5	0.5	7	2	1	9	R	L	R	0.175	95.5	10.9	1042	337	0
Athyrium filix-foemina	H	LLP	0.5	0.5	7	2	1	9	R	L	R	0.65	5603.01	12.1	67730	292	0
Avenella flexuosa	H	P	0.5	0.5	6	3	1	NA	0	NA	NA	0.07	2.92	17.41	40.56	329.55	1
Blechnum spicant	H	MLP	0.5	0.5	7	3	1	9	R	L	R	0.325	860.86	10.9	9350	266	1
Brachypodium rupestre	H	P	0.5	0.5	6	2	1	9	R	1	R	0.7	NA	NA	NA	NA	0
Brachypodium sylvaticum	H	P	0.5	0.5	7	2	1	9	R	L	R	0.825	20.43	44.34	3886.55	308.47	0
Bunium bulbocastanum	G	P	1	0	6	2	1	11	0	L	B	0.41	37.88	17.01	745	150.48	0
Campanula trachelium	H	P	0.5	0.5	7	2	1	9	R	L	R	0.6	92.25	39	3601	159	0
Cardamine bulbifera	G	P	0	1	5	2	1	10	R	1	R	0.4	52.89	40.41	2207	149.56	0
Cardamine chelidonia	T	A	NA	NA	6	2	0	NA	NA	NA	NA	0.4	NA	NA	NA	NA	0
Cardamine heptaphylla	G	P	NA	NA	4	3	1	10	R	1	R	0.37	700	38.38	28081.25	137.07	0
Cardamine impatiens	H	A	0.5	0.5	5	3	1	NA	NA	NA	TR	0.36	7.08	33.8	239	311	1
Carex digitata	H	P	1	0	5	1	1	9	R	L	R	0.1	15.65	30.31	480	274.15	1
Carex flacca	G	P	0	1	5	3	1	9	R	1	R	0.4	34.35	15.21	634.75	332.96	1
Carex sylvatica	H	P	0.5	0.5	6	2	1	9	R	L	R	0.42	29.75	30.9	677	324	1
Cephalanthera damasonium	G	P	0.5	0.5	5	2	1	10	R	L	R	0.35	55.27	30.63	1607.25	166.06	0
Cephalanthera Iongifolia	G	P	0.5	0.5	5	2	1	10	R	L	R	0.23	50.79	35.57	1770.34	185.12	0
Cephalanthera rubra	G	P	0.5	0.5	6	2	1	10	R	L	R	0.25	NA	NA	NA	NA	0
Circaea lutetiana	G	LLP	0.5	0.5	6	3	1	12	R	1	T	0.31	69.45	36.7	2643	193.5	0
Cirsium arvense	G	P	0.5	0.5	7	3	1	10	R	1	R	0.86	190.54	15.4	3857.5	141.66	0
Clinopodium vulgare	H	P	0.5	0.5	7	3	1	10	R	1	R	0.37	44.78	23.6	1055	258	0

Crepis leontodontoides	H	P	NA	NA	4	7	0	NA	NA	NA	NA	0.4	NA	NA	NA	NA	0
Cruciata glabra	H	P	0.5	50	4	3	1	10	S	1	R	0.2	NA	NA	NA	NA	0
Dactylis glomerata	H	P	1	0	5	3	1	9	R	L	R	0.45	83.17	23.12	2303.67	262.5	0
Digitalis micrantha	H	P	NA	NA	5	3	0	NA	NA	NA	NA	0.9	NA	NA	NA	NA	0
Dryopteris affinis	H	MLP	0.5	0.5	7	3	1	9	R	L	R	1.3	2172.01	25.53	54489.25	233.55	1
Dryopteris filix-mas	H	P	0.5	0.5	7	3	1	9	R	L	R	0.75	3953.17	24.2	95617	295	0
Epilobium angustifolium	H	P	0.5	0.5	7	2	1	10	R	1	R	0.5	201.6	22.61	3811	228	0
Epilobium montanum	H	P	0.5	0.5	6	4	1	10	R	1	R	0.35	91.76	27.45	2187	229.33	0
Epipactis helleborine	G	SLP	0.5	0.5	6	3	1	10	R	L	R	0.6	95.03	29.04	2582.67	204.17	0
Epipactis microphylla	G	P	0.5	0.5	6	3	1	10	R	L	R	0.1	NA	NA	NA	NA	0
Euphorbia amygdaloides	C	P	0.5	0.5	4	2	1	15	0	L	TR	0.37	13.34	24.04	312.75	286.04	1
Euphorbia dulcis	G	P	0.5	0.5	5	1	1	10	R	1	R	0.3	12.26	33.27	420	238.54	0
Festuca altissima	H	P	1	0	6	2	1	9	R	L	R	0.75	62.7	29.15	2403.5	254.05	1
Festuca heterophylla	H	P	1	0	6	3	1	9	R	L	R	0.27	NA	NA	NA	NA	1
Festuca robustifolia	H	P	1	0	5	4	1	9	R	L	R	0.15	2.55	14.8	25.79	324.14	1
Fragaria vesca	H	P	0.5	0.5	5	2	1	9	R	H	R	0.11	132.86	23.17	2393.5	388	1
Galeopsis pubescens	T	A	1	0	7	3	0	NA	NA	NA	TR	0.35	8.34	63.81	NA	170.87	0
Galium album	H	P	0.5	0.5	6	4	1	10	R	1	R	0.87	2.9	23.42	58.5	162.37	0
Galium aparine	T	A	1	0	6	5	0	NA	NA	NA	TR	0.71	5.7	34.68	161.33	140	1
Galium odoratum	G	P	0.5	0.5	5	2	1	10	R	1	R	0.22	13.64	53.2	361	243	1
Galium rotundifolium	C	MLP	0.5	0.5	6	4	1	1	S	1	NA	0.15	1.95	45.96	110	140.34	0
Geranium columbinum	T	A	1	0	6	2	0	NA	NA	NA	TR	0.27	20.38	27.45	560.5	268	1
Geranium nodosum	H	P	0.5	0.5	5	3	1	10	R	NA	R	0.3	NA	NA	NA	NA	0
Geranium purpureum	T	SA	1	0	5	5	0	NA	NA	NA	TR	0.22	NA	NA	NA	NA	1
Geranium robertianum	T	SA	NA	NA	5	6	0	NA	NA	NA	TR	0.22	41.18	32.68	1224	185.7	1
Geranium sanguineum	H	P	0.5	0.5	6	3	1	10	R	1	R	0.22	57.24	21.83	1167	259	0
Gymnocarpium dryopteris	G	MLP	0.5	0.5	7	2	1	10	R	1	R	0.25	115.68	65.51	7176	175.95	0
Helleborus bocconei	G	P	NA	NA	2	3	1	10	R	NA	R	0.4	NA	NA	NA	NA	1
Helleborus foetidus	C	P	1	0	3	3	1	10	R	L	R	0.34	467.55	14.5	8718.08	180.71	1
Hepatica nobilis	H	MLP	0.5	0.5	3	2	1	9	R	L	R	0.1	108.17	27.16	2887.75	186.4	1
Hieracium sylvaticum	H	P	NA	NA	5	4	0	10	R	NA	R	0.5	NA	NA	NA	NA	0
Holcus lanatus	H	P	0.5	0.5	6	3	1	9	R	1	R	0.32	21.8	34.03	970.83	230.18	1
Hypericum montanum	H	SLP	0.5	0.5	6	3	1	14	S	1	TR	0.35	18.03	24.6	444	274	0
Hypericum perfoliatum	H	P	0.5	0.5	7	2	1	14	s	1	NA	0.7	NA	NA	NA	NA	0
Hypericum perforatum	H	P	0.5	0.5	7	2	1	14	S	1	TR	0.36	8.73	26.06	147.3	303	0
Koeleria macrantha	H	P	1	0	6	2	1	10	R	L	R	0.07	NA	11.81	454	327	0
Lamiastrum galeobdolon	H	P	NA	NA	5	4	1	NA	NA	NA	NA	0.39	68.19	25.35	1564	270	0

Lamium album	H	P	0.5	0.5	4	7	1	10	R	1	R	0.32	42.65	35.9	1970.51	170
Lathyrus latifolius	H	P	0.5	0.5	7	2	1	10	R	1	R	2	435.76	18.7	7017	220
Lathyrus venetus	G	P	NA	NA	4	2	1	10	R	L	R	0.5	NA	NA	NA	NA
Lathyrus vernus	G	P	0.5	0.5	4	2	1	10	R	L	R	0.25	132.09	39.64	4380	198.1
Lilium bulbiferum	G	P	0.5	0.5	6	2	1	13	0	L	B	0.6	26.79	18.43	461	140.52
Lilium martagon	G	P	1	0	6	2	1	13	O	L	B	0.47	162.39	25.58	4471	136
Luzula forsteri	H	P	0.5	0.5	4	2	1	9	R	L	R	0.15	NA	NA	NA	NA
Luzula Iuzulina	H	P	0.5	0.5	6	2	1	9	R	I	R	0.14	NA	NA	NA	NA
Luzula nivea	H	P	0.5	0.5	6	3	1	9	R	1	R	0.65	NA	NA	NA	NA
Lycopodium annotinum	C	P	0.5	0.5	8	2	1	1	S	H	NA	0.15	0.23	25	5.8	363.64
Melica uniflora	H	P	0.5	0.5	5	2	1	9	R	1	R	0.32	NA	39.6	NA	NA
Melititis melissophyllum	H	P	0.5	0.5	5	2	1	10	R	L	R	0.3	45.22	53.5	2586.75	148.29
Mercurialis perennis	G	P	0.5	0.5	4	2	1	10	R	1	R	0.21	83.87	25.68	1890.5	224.5
Milium effusum	H	P	0.5	0.5	5	3	1	10	R	1	R	0.62	28.94	33.35	1621.5	251
Moehringia trinervia	T	A	1	0	5	3	1	14	0	L	TR	0.17	2.39	36.1	81.33	179.33
Mycelis muralis	H	P	1	0	7	2	1	9	R	L	R	0.5	NA	NA	NA	NA
Myosotis arvensis	T	A	1	0	4	6	1	5	0	NA	NA	0.23	28.22	29.38	759.5	123
Myosotis sylvatica	H	P	0.5	0.5	5	3	1	NA	R	NA	R	0.22	19.72	29.68	613.33	146
Orchis maculata	G	P	1	0	5	4	1	16	\bigcirc	L	TR	0.7	54.2	23.8	1391	119.77
Oxalis acetosella	G	P	0.5	0.5	4	2	1	9	R	1	R	0.09	7.69	63.39	806	129.79
Phyteuma orbiculare	H	P	1	0	6	4	1	14	\bigcirc	L	TR	0.29	NA	36.1	NA	NA
Phyteuma scorzonerifolium	H	P	NA	NA	6	3	0	NA	NA	NA	NA	0.9	NA	NA	NA	NA
Poa nemoralis	H	P	0.5	0.5	6	2	1	9	R	1	R	0.5	8.86	49.9	536.5	323.5
Polygonatum multiflorum	G	P	0.5	0.5	5	2	1	10	R	1	R	0.44	48.35	43.84	2038.25	148.21
Polypodium vulgare	C	P	0.5	0.5	8	2	1	9	R	1	R	0.3	525.33	12.35	6246	289
Polystichum aculeatum	G	P	1	0	8	2	1	9	R	L	R	0.8	2439.34	13.97	40709.58	299.06
Polystichum lonchitis	H	P	1	0	7	3	1	9	R	L	R	0.3	1092.98	7.37	8352.22	307.8
Polystichum setiferum	G	P	1	0	8	2	1	9	R	L	R	0.8	NA	19.75	NA	NA
Potentilla micrantha	H	P	0.5	0.5	3	3	1	9	R	L	R	0.07	NA	NA	NA	NA
Prenanthes purpurea	H	P	0.5	0.5	7	2	1	10	R	L	R	0.87	43.2	65.86	2945.25	123.72
Primula vulgaris	H	P	0.5	0.5	2	4	1	9	R	L	R	0.12	224.4	28.6	2187.75	154
Pteridium aquilinum	G	P	0.5	0.5	7	3	1	10	R	H	R	0.97	NA	18.44	NA	298
Ranunculus lanuginosus	H	P	0.5	0.5	5	3	1	9	R	L	R	0.43	236.14	NA	5917.37	153.62
Ruscus hypoglossum	C	P	NA	NA	12	5	1	NA	NA	NA	NA	0.6	NA	NA	NA	NA
Salvia glutinosa	H	P	1	0	7	4	1	14	O	L	TR	0.47	213.42	53.62	11482.75	102.89
Sanguisorba minor	H	P	1	0	5	4	1	9	R	L	R	0.2	159.72	20.5	3124.25	311.1
Sanicula europaea	H	P	0.5	0.5	5	2	1	9	R	L	R	0.27	70.91	30.95	2414	198

Saxifraga rotundifolia	H	P	0.5	0.5	6	4	1	9	R	L	R	0.25	NA	NA	NA	NA	1
Scrophularia scopolii	H	P	0.5	0.5	6	4	1	10	R	L	R	1.2	NA	NA	NA	NA	0
Sedum cepaea	T	A	1	0	6	2	0	NA	NA	NA	TR	0.13	1.37	21.81	30.33	53.04	1
Senecio fuchsii	H	P	0.5	0.5	8	2	1	10	R	1	R	1.5	NA	NA	NA	NA	0
Silene dioica	H	P	0.5	0.5	4	6	1	10	R	1	R	0.56	73.28	36.78	3533	112	1
Silene viridiflora	H	P	NA	NA	6	3	0	NA	NA	NA	NA	1	NA	NA	NA	NA	0
Solidago virgaurea	H	P	0.5	0.5	7	4	1	9	R	L	R	0.5	94.49	21.68	2302.5	227	0
Stellaria media	T	A	1	0	1	12	1	1	S	L	TR	0.16	8.74	53.68	488	84	1
Stellaria nemorum	H	P	0.5	0.5	5	5	1	1	s	1	R	0.32	37.44	45.06	1613	145.91	1
Tamus communis	G	P	1	0	5	2	1	15	O	L	TR	2.25	220.04	30.3	6124	151	0
Teucrium chamaedrys	C	P	0.5	0.5	7	2	1	10	R	H	R	0.13	7.59	15.68	134	305.71	1
Teucrium scorodonia	C	P	0.5	0.5	7	3	1	10	R	1	R	0.27	87.47	17.78	939	378.5	1
Thymus pulegioides	C	P	1	0	6	5	1	14	O	1	TR	0.18	NA	24.7	NA	NA	1
Trifolium medium	H	P	0.5	0.5	6	3	1	10	R	1	R	0.4	65.74	20.61	1437	263	0
Trifolium ochroleucum	H	P	1	0	6	2	1	14	R	L	TR	0.5	NA	NA	NA	NA	0
Urtica dioica	H	P	0.5	0.5	7	4	1	10	R	H	R	0.87	101.22	28.48	3842	212.5	0
Vaccinium myrtillus	C	P	0	1	4	5	1	10	R	1	R	0.31	4.04	20.46	77.65	331.83	0
Veronica chamaedrys	C	P	0.5	0.5	5	3	1	10	R	1	R	0.23	15.8	31.59	355.5	270.46	1
Veronica officinalis	C	P	0.5	0.5	6	3	1	9	R	1	R	0.14	10.47	NA	54	280	1
Veronica urticifolia	C	P	0.5	0.5	6	3	1	10	R	1	R	0.4	NA	NA	NA	NA	0
Vicia ochroleuca	H	P	NA	NA	5	2	0	NA	NA	NA	NA	0.6	NA	NA	NA	NA	0
Viola alba	H	P	0	1	3	2	1	9	R	1	R	0.07	NA	NA	NA	262	1
Viola biflora	H	P	0.5	0.5	5	4	1	9	R	1	R	0.11	2.88	52.12	140.25	134.1	1
Viola reichenbachiana	H	P	0.5	0.5	3	3	1	9	R	L	R	0.11	17.56	30	488	225.69	1

Abbreviations, units and variable types of plant functional traits

1) Raunkiaer life form ($\mathrm{P}=$ phanerophyte, $\mathrm{NP}=$ nano-phanaerophyte, $\mathrm{H}=$ hemicryptophyte, $\mathrm{Ch}=$ chamaphyte, $\mathrm{G}=$ geophyte, $\mathrm{T}=$ therophyte). Nominal
2) Plant lifespan ($A=$ annual, $S A=$ summer annual, $W A=$ winter annual, $P=$ Perennial, $S L P=$ short lived perennial <5 years, MLP = medium lived perennial $5-50$ years, LLP $=$ long lived perennial >50 years). Nominal
3) Reproduction type (Gen = predominantly generative, Veg = predominantly vegetative). Fuzzy
4) Flowering phenology: Start of flowering (number of month), Timespan of flowering (number of months). Ordinal
5) Clonal traits: Clonal ability ($1=$ presence, $0=$ absence), Main clonal growth organ (CGO, refer to CLOPLA3 for classification of the 17 organ types), Lateral spread 1, Runners ($\mathrm{S}=$ Stolon, $\mathrm{R}=$ Rhyzome, $\mathrm{O}=$ Other), Lateral spread 2, Distance per year ($\mathrm{L}=$ low if $<0.01 \mathrm{~m} /$ year, $\mathrm{I}=$ intermediate if 0.01 $0.25 \mathrm{~m} /$ year, $\mathrm{H}=$ high if $>0.25 \mathrm{~m} /$ year). Combination of different variable types: Nominal, Binary, Ordinal
6) Storage organs ($B=$ bulb, $T=$ tuber, $R=$ rhyzome, $T R=$ tap root). Nominal
7) Plant height (m). Continuous
8) Foliar traits: $\mathrm{LM}=$ leaf mass $(\mathrm{mg}), \mathrm{SLA}=$ specific leaf area $\left(\mathrm{mm}^{2} \mathrm{mg}^{-1}\right), \mathrm{LS}=$ leaf size $\left(\mathrm{mm}^{2}\right), \mathrm{LDMC}=$ leaf dry matter content $\left(\mathrm{mg} \mathrm{g}{ }^{-1}\right)$, $\mathrm{LP}=$ leaf persistence ($1=$ presence $=$ evergreen, $0=$ absence $=$ deciduous). Combination of different variable types: Continuous, Binary
NA = not available or missing data

	Elevation	Basal area	Aspect
Elevation	1		
Basal area	0.54^{*}	1	1
Aspect	-0.11	-0.22	

Appendix II: Coefficient of correlation (Pearson's test) among the three environmental predictors (${ }^{*}=\mathrm{p}$-value ≤ 0.05).

Appendix III. Overview of significant fixed effects of the linear mixed effects models for each diversity facet, in which random effects accounted for repeated measures of each plot (i.e., in two different years, 2001 and 2009) and clustering of the plots in the two sites (PIS and CAS). Marginal and conditional R^{2} describe the explained variance by the fixed, and by the fixed and random effects together, respectively.

Species richness

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	-0.01	0.003	14	-2.52	$\mathbf{0 . 0 2 4 7}$
Aspect	-0.10	0.364	14	-0.29	0.7784
Basal area	-0.06	0.100	14	-0.59	0.5674
Marginal $R^{2}(\%)$					
Conditional $\mathrm{R}^{2}(\%)$	0.33				

Foliar traits FD

	Coefficient value	Standard error	DF	t-value	P-value
Elevation	0.00	0.000	14	-0.74	0.4722
Aspect	0.00	0.006	14	0.54	0.6002
Basal area	0.00	0.002	14	-1.95	$\mathbf{0 . 0 7 1 7}$
Marginal R^{2} (\%)	0.15				
Conditional R R^{2} (\%)	0.77				

Flowering phenology FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	2.22	$\mathbf{0 . 0 4 3 2}$
Aspect	0.00	0.002	14	0.40	0.6961
Basal area	0.00	0.000	14	-0.59	0.5628
Marginal $\mathrm{R}^{2}(\%)$	0.14				
Conditional $\mathrm{R}^{2}(\%)$	0.23				

Canopy height FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	1.01	0.3299
Aspect	0.00	0.000	14	-0.01	0.9899
Basal area	0.00	0.000	14	-0.79	0.4432
Marginal $\mathrm{R}^{2}(\%)$	0.12				
Conditional $\mathrm{R}^{2}(\%)$	0.19				

Clonal traits FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	1.69	0.1130
Aspect	0.00	0.008	14	0.64	0.5309
Basal area	0.00	0.002	14	-1.61	0.1302
Marginal $\mathrm{R}^{2}(\%)$	0.11				
Conditional $\mathrm{R}^{2}(\%)$	0.20				

Reproduction type FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	-1.70	0.1106
Aspect	0.00	0.005	14	0.04	0.9718
Basal area	0.00	0.001	14	-1.04	0.3172
Marginal $\mathrm{R}^{2}(\%)$	0.19				
Conditional $\mathrm{R}^{2}(\%)$	0.19				

Storage organ type FD

Elevation	0.00	0.000	14	-2.37	$\mathbf{0 . 0 3 2 9}$
Aspect	0.00	0.011	14	-0.28	0.7810
Basal area	0.00	0.003	14	-0.82	0.4250
Marginal R $R^{2}(\%)$					
Conditional $\mathrm{R}^{2}(\%)$	0.29				

Life form FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	1.02	0.3234
Aspect	0.00	0.008	14	0.16	0.8731
Basal area	0.00	0.002	14	0.35	0.7280
Marginal $\mathrm{R}^{2}(\%)$					
Conditional $\mathrm{R}^{2}(\%)$	0.06				

Plant lifespan FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	-0.96	0.3542
Aspect	0.01	0.015	14	0.76	0.4570
Basal area	0.00	0.004	14	-0.56	0.5839
Marginal $\mathrm{R}^{2}(\%)$	0.12				
Conditional $\mathrm{R}^{2}(\%)$	0.78				

Multiple traits FD

	Coefficient value	Standard error	DF	t -value	P-value
Elevation	0.00	0.000	14	0.51	0.6177
Aspect	0.00	0.003	14	0.32	0.7544
Basal area	0.00	0.001	14	-2.18	$\mathbf{0 . 0 4 7 0}$
Marginal $\mathrm{R}^{2}(\%)$	0.14				
Conditional $\mathrm{R}^{2}(\%)$	0.35				

Phylogenetic diversity

	Coefficient value	Standard error	DF	t-value	P-value
Elevation	0.09	0.107	14	0.81	0.4330
Aspect	4.08	8.305	14	0.49	0.6307
Basal area	0.25	2.274	14	0.11	0.9150
Marginal R2 (\%)					
Conditional R2 (\%)	0.04				

