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Perceiving the surrounding environment in terms of objects is useful for any general

purpose intelligent agent. In this paper, we investigate a fundamental mechanism making

object perception possible, namely the identification of spatio-temporally invariant

structures in the sensorimotor experience of an agent. We take inspiration from the

Sensorimotor Contingencies Theory to define a computational model of this mechanism

through a sensorimotor, unsupervised and predictive approach. Our model is based on

processing the unsupervised interaction of an artificial agent with its environment. We

show how spatio-temporally invariant structures in the environment induce regularities

in the sensorimotor experience of an agent, and how this agent, while building a

predictive model of its sensorimotor experience, can capture them as densely connected

subgraphs in a graph of sensory states connected by motor commands. Our approach is

focused on elementary mechanisms, and is illustrated with a set of simple experiments

in which an agent interacts with an environment. We show how the agent can build

an internal model of moving but spatio-temporally invariant structures by performing

a Spectral Clustering of the graph modeling its overall sensorimotor experiences.

We systematically examine properties of the model, shedding light more globally on

the specificities of the paradigm with respect to methods based on the supervised

processing of collections of static images.

Keywords: object perception, sensorimotor contingencies theory, unsupervised learning, predictive coding,

grounding problem

1. INTRODUCTION

Humans flexibly interpret their rich sensorimotor experience of the world in terms of objects in
the environment. In that respect, we assume that this ability to discover, identify, and manipulate
objects is required for any general purpose intelligent robot. Despite great progress in object
detection (Redmon et al., 2015) or classification (He et al., 2016) in the last few years, the
computer vision community still lacks a clear formalization of the problem of autonomous
object identification by an artificial agent. Understanding the fundamental nature of objects and
their perception is a core philosophical question that we do not pretend to fully address in
this work. Rather, we focus on a specific property that we assume plays an important role in
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the above question: the spatio-temporal invariance of objects.
More precisely, we propose to investigate a mechanism assumed
to be fundamental for autonomous object perception, namely
the unsupervised identification of invariant spatio-temporal
structures in the sensorimotor flow of an agent.

Perception, and in particular artificial perception, is
traditionally considered as a passive process in which the
sensory state obtained through sensors is projected onto higher-
level representations, which in turn inform higher-level cognitive
processes which generate actions. This perspective has however
been challenged by multiple philosophers and neuroscientists
who claim that perceptive experience emerges from internal
predictive modeling of the sensorimotor interaction with the
environment (Helmholtz, 1896; Gibson, 1979; Friston et al.,
2006; Clark, 2013). Our work fits in with such a predictive
and sensorimotor description of perception. It is based on two
prominent theories, namely the Sensorimotor Contingencies
Theory (SMCT) (O’Regan and Noe, 2001) and Predictive
Coding (Rao and Ballard, 1999, 2005). The former claims that
perception is based not only on sensory information but also
on the knowledge of regularities in the way an agent’s actions
can transform its sensory inputs. The latter suggests that the
brain hierarchically builds a predictive model of the causes of
its sensory experience. The two viewpoints align nicely when
considering that regularities in the sensorimotor flow can be
used as support for a predictive model (Seth, 2014).

In this framework, we focus on an elementary property
of objects and we study how this property can be exploited
to contribute to their discovery by extracting regularities in
the sensorimotor experience of an artificial agent. Namely, we
assume that objects have an intrinsic structure which is spatio-
temporally invariant, and limited in space. In that respect, we
assume on the one hand that the intrinsic properties of objects,
such as shape, size, or appearance, are preserved across time and
space. On the other hand, being limited in space simply means
that the objects are smaller than the world explored by the agent.

This spatio-temporal stability of objects implies structure in
the sensorimotor experience an agent has when interacting with

FIGURE 1 | Simulation setup and four example consecutive exploration steps. The position of the agents sensor is outlined in orange, whereas the proto-objects are

outlined in purple. The sensor of the agent moves at each time step (but since the null movement is possible, it has a non-zero probability of keeping the same

position). At each time step, each proto-object has a probability to move, independently from the other proto-objects and the rest of the environment. At each time

step, the rest of the environment has a probability to randomly change. Here for instance, the agent moves at steps 2 and 4. At step 3 both proto-objects move, and

at step 4, only one of the them moves, partially overlapping the other proto-object (zone highlighted in purple). At step 4 the environment also changes. Note that the

purple outline of the objects is added here for visualization and that the agent does not have any access to it.

them. This way, observing one part of a known object, the agent
can predict what would be observed on other parts of this object.
For example, seeing one side of a tomato, it can predict what the
other side of the tomato would look like, as put forward through
the concept of perceptual presence in Seth (2014). According
to the SMCT, this property is constitutive of the experience of
objects (O’Regan and Noë, 2001).

In this paper, we propose a minimalistic simulation in which
an agent visually explores in a random way an environment
containing spatio-temporally invariant structures. We assume
having a spatio-temporally invariant structure is one generic
property of objects, but it may not be the only one. Hence we
refer to identifying these spatio-temporally invariant structures
as identifying proto-objects in the rest of the paper. Admittedly, as
long as the decisions of our agent are random and its actions only
consist of visual exploration, we may consider our work from the
perspective of pattern identification in signal processing (see e.g.,
Jain et al., 2000). However, we present this work from an agent-
based perspective for three reasons. First, in our framework,
an agent is generically “that which acts”: it is sufficient that
it produces actions to be considered as an agent. Second, in
section 3.3.6, we investigate a case where the agent actively rotates
objects in its environment. Third, the case of an agent deciding
which future action is optimal according to a goal is an important
step in our future work agenda.

In our simulations, the world explored by the agent can
change in two ways. First, the proto-objects, while keeping their
internal structure, can move randomly in the world, or even be
introduced/removed. Second, the rest of the environment can
itself change randomly. Importantly, despite these changes, the
world is statistically invariant enough so that the agent is able to
partially explore it between two successive changes. This setup,
illustrated in Figure 1, can intuitively be interpreted as having
proto-objects that can move in the environment, and can be
encountered in different contexts. Our model is minimalistic
in the sense that we assume no prior knowledge on the world
or on the agent itself, neither on its spatial structure, on the
environment structure, nor on the proto-objects. The naive
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agent follows a random exploration policy, and interacts in a
generic way with an external environment through an interface of
uninterpreted sensorimotor information (Hoffman, 2015; Rafael
et al., 2017). In line with Predictive Coding, we propose a
method for the agent to build a sensorimotor predictive model
of its exploratory experience, and to identify the sensorimotor
regularities induced by the proto-objects. More precisely, we
model the sensorimotor experience as a weighted multigraph
in which the nodes correspond to sensory states, and each
pair of states is linked by several edges representing different
motor commands. The weight of each edge corresponds to
the conditional probability of the corresponding sensorimotor
transition. Regularities in the sensorimotor interaction with
the environment should then appear as stronger connections
between some pairs of nodes. In particular, we hypothesize that
the presence of proto-objects should induce the presence of some
densely intra-connected subgraphs that the agent can identify as
its own experience of these proto-objects. The representation of
these regularities can then be used by the agent for counterfactual
prediction, which makes the identification of proto-object a
worthy objective.

The paper is organized as follows. In section 2, we describe
a simple simulation to illustrate the approach, as well as a
computational method to identify the sensorimotor regularities
induced by proto-objects. In section 3, the results produced
by the method applied to the simulated system are thoroughly
presented. Additional experiments are also designed to highlight
the properties and limitations of the approach. Finally, in
section 4, we discuss the benefit of our paradigm with regards to
the perception of objects. We also consider the future steps that
would extend the current illustrative simulation toward more
complex and realistic setups. This work is a direct extension to the
preliminary results presented in Laflaquière and Hemion (2015);
Hemion (2017).

2. METHODS

In this section, we introduce a simplistic simulation in which
an agent explores an environment containing proto-objects. We
then propose a method to process its sensorimotor experience
and identify the regularities induced by these structures.

2.1. Simulation
The simulation we propose consists in an agent exploring a
environment containing proto-objects. The environment is a
two-dimensional square gridworld of fixed size 20 × 20 discrete
elements, or “pixels.” Each pixel can take values in {1, 2, 3}, and
is initialized randomly at the beginning of the simulation. At
each time step, the environment can change with a probability
penv = 0.05, in which case the values of all its pixels are randomly
redrawn. At the beginning of the simulation, Nobj = 2 proto-
objects are created in the environment. They correspond to Nobj

sets of contiguous pixels drawn from the same distribution as
pixels of the environment, but which keep the same internal
structure during the whole simulation. They are of minimum
size 5 × 5 and maximum size 7 × 7, and do not necessarily
have a square shape, as illustrated in Figure 1. During the

simulation, the proto-objects are moved in the environment
with a probability pobj = 0.1 at each time step. Furthermore,
they can be independently removed from the environment with
a probability pabs = 0.2. If present, the proto-objects pixels
occlude those of the environment, and also potentially occlude
each other, as illustrated in Figure 1 . Note that an agent cannot
distinguish proto-objects from the environment simply based on
a single sensory input, since the pixels that constitute them are
drawn from the same distribution. They only differ in the spatio-
temporal consistency that proto-objects maintain in contrast
with the environment during the simulation.
The agent observes this two-dimensional world with a limited
sensor, which is a 3 × 3 patch window, through which it
receives sensory inputs. It can move its sensor anywhere in
the environment, using motor commands. At each time step,
the sensorimotor input of the agent contains a sensory input
st (which is a 9-dimensional vector of pixels) and a motor
command mt (which is a 2-dimensional vector, representing the
horizontal et vertical components of the sensor displacement
in the visual scene). Together with the sensory input st+1

experienced after performing mt , this sensorimotor experience
forms a sensorimotor transition triplet (st ,mt , st+1).

At each time step of the simulation, the agent moves its
sensor by randomly picking a new position in the environment
(possibly the same as the current one), and stores the experienced
sensorimotor triplet. Since the environment and the proto-
objects change with a lower probability than the sensor position,
the agent can statistically explore their content over several time
steps and extract the regularities they induce.

2.2. Processing Method
We now describe the way the agent processes its sensorimotor
experience in order to identify proto-objects in the environment.
First, the data are compacted by a clustering step. Then, the
sensorimotor transitions are stored in a three-dimensional
tensor, representing a statistical model of the agent’s
sensorimotor experience. This tensor is analyzed to extract
densely connected subgraphs.

2.2.1. Storing of the Sensorimotor Experience
The agent interacts with the environment during nstep = 3e7
steps and its sensorimotor experience is stored and processed
off-line. We store the empirical conditional probabilities
p(st+1|st ,mt) of each sensorimotor triplet (st ,mt , st+1)
experienced by the agent in a three-dimensional tensor T.
In T, st and st+1 correspond to the row and the column
respectively, while m is a one-dimensional encoding of the
movement performed at time t and corresponds to the depth
in the tensor. However, in order to limit the size of T and the
computational cost of the simulation, the representation of
the sensory experience is compacted beforehand by clustering
together similar sensations. We use a simple K-MEANS algorithm
to perform this clustering, where the number of clusters is
arbitrarily set to Nkm = 250. These clusters group together the
sensory inputs considered by the agent to build its predictive
model, as illustrated in Figure 2. In the following, the resulting
centroids produced by the K-MEANS clustering algorithm are
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called “states.” The number of possible movements the agent can
perform in this 20 × 20 environment is Nmv = 1024. Thus, the
size of the tensor T is (Nkm×Nkm×Nmv) = (250× 250× 1024).

2.2.2. Densely Connected Subgraph Identification
The tensor T can be seen as an approximation of the
weighted graph mentioned in section 1, in which the weights
of the multiple edges between two nodes are the conditional
probabilities of the corresponding transition, labeled by the
action. We want to identify densely connected subgraphs of
sensory states in this graph. To do so, we propose to use Spectral
Clustering (Luxburg, 2006; Meila, 2015), which requires the
definition of a similarity between each pair of nodes (sa, sb) in
the graph.
Intuitively, two nodes will be considered similar if a transition
between them is experienced with a high enough probability.
In order to define the similarity, we first filter out some
transitions lacking statistical relevance, by discarding rows
T[sa, :,m] such that the movement m has been performed less
than nmin = 20 times while experiencing state sa. Then, for
other triplets, let E be the subset of sensorimotor transitions: E =

{(sa,m, sb) | p(sb|sa,m) ≥ psim}, where psim is a threshold set to
0.3. For a discussion on the choice of this threshold value, please
see section 1.6 of our Supplementary Material. We define the
sensorimotor similarity 3sm(sa, sb) between each pair of states
(sa, sb) as:

3sm(sa, sb) =
∑

m∈E

p(sb|sa,m).

Applying this method to all pairs of states, we derive the 2D
sensorimotor similarity matrix3sm. Finally, since similarities are
usually defined for undirected graphs, we make 3sm symmetric
by averaging it with its transpose. This procedure is formally
summarized in Algorithm 1. We then apply Spectral Clustering
to the graph defined by the similarity 3sm. Spectral Clustering
is a graph clustering method that is often used when the
relation between the nodes of the graph is quantified by a
general measure of similarity, that is not necessary a distance.
To define the clusters, the eigenvectors of the Laplacian of
the graph are computed. A change of representation is then
performed by building new vectors with the components of
the main eigenvectors of the Laplacian. A regular clustering
is then performed in the space corresponding to these new
vectors, yielding the final clusters. More details can be found in
Luxburg (2006); Meila (2015).

2.2.3. Extracting the Number of Clusters
Spectral Clustering requires the specification of the returned
number of clusters. Since we wish to introduce as little
supervision as possible in our algorithm, we propose to
automatically determine it. There is no universal criterion to
automatically determine the relevant number of clusters in a
general situation, and most criteria are heuristics (Luxburg,
2006). We propose to use the cut gap criterion (Meila, 2015).
The cut gap is identified by finding a knee in the curve of the
normalized cut as a function of the number of clusters. Consider a

Algorithm 1 : Building the similarity matrices 3sm and 3s

Data: 3D tensor T of sensorimotor transitions
initialize emptymatrices3sm and3s of sizeNkm×Nkm all entries
set to 0
for sa in 1..Nkm do

for m in 1..Nmv do
row = T[sa, :,m]
3s[sa, :] = 3s[sa, :]+ row
if sum(row) > nmin then

pmax = max(row)/sum(row)
sbmax

= argmax(row)
if pmax > pmin then

3sm[sa, sbmax
] = 3sm[sa, sbmax

]+ pmax

end

end

end

end

3sm = 1
2 (3sm + 3sm

T)

3s =
1
2 (3s + 3s

T)
return Similarity matrices 3sm and 3s between sensory states

graphG clustered inN clusters, forming a clustering denoted C =

(C1, . . . ,CN). Given C and a graph similarity 3ij between each
pair of nodes i and j, the normalized cut Ncut(N) is a measure of
the quality of C. The lower Ncut, the better the clustering: if Ncut
is very low, it means that the clusters are very weakly connected
between each other. It is defined as:

Ncut(C) =

N∑

k=1

cut(Ck,G\Ck)

dCk

=

N∑

k=1

∑
i∈Ck

∑
j∈G\Ck

3ij
∑

i∈Ck

∑
j∈G 3ij

, (1)

where the numerator cut(Ck,G\Ck) is the cut between clusters Ck

and G\Ck, which is a measure of the strength of the connection
between Ck and the rest of the graph. The denominator dCk

is the
degree of Ck, which represents the “weight” of the cluster in the
graph. Having low cut(Ck,G\Ck) terms encourages clusters to be
weakly interconnected, while having high dCk

terms favors large
clusters, which prevents from yielding trivial isolated outliers as
clusters. Thus, the normalized cut leads to a compromise between
these two tendencies. In order to find the optimal number of
clusters N∗, we automatically detect the largest N which leads to
a low Ncut. To do so, we also compute the second order finite
difference of Ncut as a function of N,

1Ncut(N) = Ncut(N + 2)+Ncut(N)− 2Ncut(N + 1),

and we take the value N∗ that yields the maximum result, that is:
N∗ = argmaxN 1Ncut(N). Thus, the minimal value that can be
returned by this criterion is 2.

2.2.4. Visualizing Predictions From the Tensor
We can also use T as a predictive model of the agent’s
sensorimotor experience. When it receives a certain sensory
input, it can use the tensor to try to predict the next sensory input
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FIGURE 2 | Examples of k-means clustering. Two states and example sensory inputs associated to each of these states by k-means clustering.

for each possible motor command. More formally, say that the
agent experiences state st at time t. For each motor command
m, the agent has learned a conditional probability distribution on
the next state, p(: |st ,m), and it can use this distribution to make
predictions.

However, the visualization of the predictive model is non-
trivial, since the predictions of two distinct motor commands
may overlap each other, given that the receptive field of the agent
is made of several pixels. In order to illustrate some predictions
below, we use a mixture of the distributions, in the following
way. Let us consider a pixel position zt+1 out of the scope of
the agent’s sensor. Given that the size of this sensor is 3 × 3
pixels, 9 motor commands predict the future value of zt+1. We
manually average the predictions of these 9 motor commands by
computing the weighted average of the states predicted with most
certainty by each of these 9 movements. This process requires
some knowledge on the sensorimotor structure of the agent, but
it is used for illustration purposes only, and not by the agent itself.

3. RESULTS

We now present and analyze the experimental results of the
simulations. We then explore alternative setups where the
performance of the algorithm is more variable, in order to
illustrate the robustness of the approach, but also its limitations.

3.1. Subgraphs Extracted From the
Predictive Model
As a reminder, in the simulation, two proto-objects are placed
in the environment, with probabilities pobj = 0.1, pabs = 0.2,
and penv = 0.05 of movement of the proto-objects, absence of
the proto-objects, and of change of the environment, respectively.
Figure 3A presents the normalized cut Ncut as a function ofN, as
well as the second order finite difference1Ncut(N). The curve of
Ncut presents a knee atN = 3, and themaximal value of the finite
difference is attained for N∗ = 3. Thus, 3 subgraphs have been
identified through Spectral Clustering. This is a good result, since
we expect 3 subgraphs to emerge: two subgraphs corresponding
to both proto-objects and a third subgraph corresponding to
the environment. Figure 3B shows the similarity matrix, whose
lines and columns have been reordered to group together sensory
states belonging to the same cluster. The color of each entry in the
matrix corresponds to the similarity between both states. Thus,
we can visually see that two subgraphs are strongly connected and
a third subgraph is weakly connected.

One can also remark that the probabilities on the diagonal of
the matrix are higher than elsewhere. This reflects the stability of
the world: there is always a non-zero probability that the agent
will encounter two identical sensory states consecutively. Let
p(st+1 = st|m = 0) be the probability that the agent receives the
same sensory input after a time step, given that the agent did not
move. If neither of the proto-objects move and the environment
did not change, the agent will receive the same input. These
conditions being independent but not simultaneously necessary,
we can write that p(st+1 = st|m = 0) ≥ (1 − pobj)

2(1 − penv) ≃
0.76. This explains the high values found on the diagonal of the
similarity matrix.

3.2. Sensorimotor Prediction
As explained in 2.2.4, the three-dimensional tensor built by the
agent can be used as a predictive model of its sensorimotor
experience. We illustrate it in Figure 3C , for three input states.
To clarify visualization, the size of each pixel depends on the
probability of each prediction : the largest predicted pixels in
the figure are the ones predicted with most certainty. In order
to compare the prediction with a ground truth, we also show
the ground-truth proto-objects introduced in the environment. If
the current state was categorized in one of the densely connected
clusters, the model successfully reconstructs the total structure of
the corresponding proto-object from the small patch it receives:
this is the case for instance for states 24 and 137. On the contrary,
for a state categorized in the third, weakly connected cluster,
the model predicts no future sensory state with certainty: this
happens for instance for state 85.

3.3. Additional Experiments
We propose additional experiments to illustrate the properties
and limits of the simulation, the overall approach, and the
computational method letting the agent discover proto-objects
from its sensorimotor flow.

3.3.1. Importance of the Motor Flow
In order to illustrate the importance of taking the motor
commands into account for discovering proto-objects, we
propose a similar processing of the experience of the agent, where
motor commands are not recorded by the agent. Instead of the
sensorimotor similarity 3sm, we derive through Algorithm 1 a
sensory similarity:

3s(sa, sb) = p(sa → sb),
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FIGURE 3 | Detection of the number of proto-objects, clustering and prediction. (A) Normalized cut and finite difference. Ncut (in blue) and second

order finite difference of Ncut, 1Ncut (in purple) as a function of the number of spectral clusters. A knee in the Ncut curve is clearly visible and
detected by the second-order derivative at N∗ = 3. (B) Spectral Clustering of the similarity. The rows and columns of the matrix are reorganized
according to the clusters. Three clusters are identified: two densely connected ones corresponding to the proto-objects, and one weakly

connected corresponding to the environment. The colored strips at the left of the matrix identify the different clusters. The similarity scale is
represented at the right of the image. The states that are used to visualize the predictive model are indicated by their number. (C) Sensorimotor
prediction. Predictive model of the agent for three input states. If the sensory input is classified as part of a proto-object, the agent can predict its
future sensory states as a function of its movement (states 24 and 137). If the input state is classified as part of the environment, no probable

prediction is made (state 85).

where p(sa → sb) is the probability of transitioning from state
sa to sb, regardless of the motor command. Spectral Clustering
of this similarity matrix leads to the results shown in Figure 4.
The agent is no longer able to detect the correct number of
clusters. No clear knee in the cut curve is detected and the cut
gap criterion returns two clusters, that is the default outcome of
our method when it does not find a cut. In Figure 4B, we see
that this “sensory” similarity matrix, even reorganized, does not
display any densely connected subgraph. In our setting, the agent
is thus unable to extract the structure of proto-objects without
using its motor commands.

3.3.2. Influence of the Number of Proto-Objects
We now propose to study the influence of the meta-parameters
of the simulation on the results. We first investigate the impact of

the number of proto-objects nobj introduced in the environment
on the identification of the densely connected subgraphs. The
results are shown in Figure 5A. For values up to 4, the number
of proto-objects is correctly estimated and the clusters are well
defined and densely connected. As the number of proto-objects
increases, it becomes harder to detect the correct number of
proto-objects. If the number is very large, the sensorimotor
experience of the agent contains too much randomness and is
poorly predictable, since the proto-objects constantly occlude
each other in a random order. As a consequence, the probability
of consistently experiencing sensorimotor regularities associated
with a given proto-object becomes very low. Here, we see that
for nobj ≥ 5, the Spectral Clustering algorithm does not yield
well defined clusters. Note that if the environment was bigger,
this overlapping problem would arise for a greater number of
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FIGURE 4 | Detection of the number of proto-objects and Spectral Clustering without motor information. (A) Applying the normalized cut criterion as presented in

Figure 3 to the sensory similarity ∧S yields poorer results. The number of clusters is not correctly detected by the agent. (B) Spectral Clustering of the sensory

similarity ∧S does not present densely nor weakly connected subgraphs. The states seem to be more uniformly weakly connected (note the change in the colormap

scale).

proto-objects. It must also be noted that our simulation is not
sophisticated enough to properly deal with object occlusions in a
consistent way, as a 3D simulation taking the perspective of the
agent into account would do. Better dealing with these occlusion
issues is left for future work as it requires tackling more difficult
questions about memory and the perception of space.

3.3.3. Influence of the Probabilities pobj, penv, and

pabs
We investigate the impact of the probability of displacement
of proto-objects, pobj, on the result of the clustering. We run
the simulation for several values of pobj between 0 and 1, and
we show the results in Figure 5B. The difficulty of proto-object
discovery increases with their probability of movement. This
result is expected because the discovery of proto-objects depends
on the probabilities of sensorimotor regularities implied by their
structure. These regularities vanish when the expected structure
cannot be statistically differentiated from randomness, which
happens when the proto-objects never keep the same position
between time steps. Intuitively, this means that if the world
around us were to change constantly, we would not be able to
discover objects.

We also investigate the impact of the probability of updating
the environment penv on the result of Spectral Clustering. The
simulation is run with penv ranging from 0 to 1, with results
presented in Figure 5C. When penv is high, for instance when
penv = 0.8, the diagonal of the matrix does not contain
high probabilities anymore, since the environment changes
too frequently. Although optimal for our simulation, this setup
is not realistic considering our own sensorimotor experience,
where an environment with no spatio-temporal structure at
all is rarely encountered. Another special case arises when
penv = 0, which means that the environment never changes.
Then, the sensorimotor experience while interacting with the

environment is completely predictable and the environment
should be identified as a third proto-object, as illustrated in
the first column of Figure 5D. Figure 6 shows sensorimotor
predictions for penv = 0. Since the environment never changes,
this specific setup highlights sensory ambiguity as one potential
limitation of the simulation. Indeed, it is possible for a sensory
state to appear in multiple proto-objects, or multiple times
in a single object, making it ambiguous. The probability of
such a situation is low in the standard setup of the simulation
due to the limited size of the proto-objects. However, when
penv = 0, the whole environment appears as a big proto-object,
which significantly increases the probability of encountering
ambiguous sensory states. Spectral Clustering is robust to this
kind of ambiguity, as it assigns the sensory state to one cluster
only, but we can see in the third panel of Figure 6 that
ambiguity can interfere with sensorimotor prediction. Indeed the
reference sensory input seems to appear twice in the constant
environment.

As a consequence, the sensory prediction of the agent is a
mixture of two contributions that overlap. The pixels which
correspond to an ambiguous prediction are highlighted in pink.
To disambiguate such a situation, the agent would need to have
a memory, or a way to hierarchically extract contexts from its
sensorimotor experience, as proposed in Hemion (2017).

Finally, we analyze the effect of varying the probability of the
proto-objects being absent in the environment. To do so, we run
the simulation with changing values of pabs and show the results
in Figure 5D. Intuitively, the identification of densely connected
subgraphs is easier when the proto-objects are present at each
time step. On the contrary, it becomes harder when pabs is high,
since the sensorimotor regularities associated with proto-objects
are encountered with less consistency. Other complementary
experiments are presented in the Supplementary Material section
of the article.
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FIGURE 5 | Influence of the parameters of the simulation. (A) The agent is not able to discover and differentiate more than 4 proto-objects in this setup. (B) When the

proto-objects move more frequently, it is harder to extract them from the environment. (C) The more the environment changes, the easiest it is to extract

proto-objects. When the environment never varies, three proto-objects are identified. (D) When the proto-objects are removed too frequently, their extraction fails and

the number of clusters is not correctly determined.
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FIGURE 6 | Sensorimotor prediction with a static environment (penv = 0). Left: prediction of the pixels corresponding to a proto-object. Center: the entire

environment learned by the agent. Right: given the input state, the prediction associated with some specific movements is ambiguous. The corresponding pixels are

highlighted in red. For those, several predictions can contradict each other.

3.3.4. Rigidly Linked Proto-Objects
Here we illustrate a property of our definition of proto-objects
as spatio-temporally invariant structures. We run a simulation
where two proto-objects are rigidly linked: they move together
and thus keep their relative spatial position constant during
exploration. In Figure 7, we see that the agent extracts only one
densely connected subgraph. This experience of the agent with
two linked proto-objects is thus interpreted as an interaction
involving a single proto-object, as the agent extracts a single
densely connected graph of sensorimotor transitions. Indeed,
the agent looks for sensorimotor regularities without having a
notion of spatial contiguity. Thus it does not distinguish the two
components of the linked proto-objects. Intuitively this suggests
that if we were to live in a world where objects are made of several
rigidly linked but disconnected parts, we might interpret them as
single entities.

3.3.5. Identical Proto-Objects
We investigate the special case where both proto-objects in the
environment are identical instances of the same proto-object. We
run the standard simulation where the second proto-object is a
copy of the first one, and show the results in Figure 8. The agent
extracts a single densely connected subgraph. This is expected
as the agent cannot separate the sensory inputs coming from
one instance of the proto-object from the inputs coming from
the other instance. The method can only distinguish types of
proto-objects, but not identical instances. A possible solution to
separate inputs coming from different instances would be to have
a memory and a notion of position in the environment, which the
agent does not currently have.

3.3.6. Agent Rotating the Proto-Objects
An important aspect of our approach is that the extraction of
proto-objects from the environment should not depend on their
visual appearance, which means that it does not depend on their
pattern of pixels. Additionally, the actions performed by the
agent could be of any nature, meaning they are not limited to
sensor movements. In order to illustrate these properties, we
run a simulation where the agent can move its sensor and also
rotate the proto-objects. This action has no effect on the pixels

of the environment, but has the consequence of rotating both
proto-objects by 90 degrees. Thus, such a rotation changes the
appearance of the proto-objects and the set of sensory inputs
that the agent can receive by interacting with the proto-objects is
larger than when it cannot rotate them. Results of this simulation
are presented in Figure 9. After exploration and processing of
the sensorimotor data, two densely connected subgraphs are still
correctly extracted from the experience of the agent. However,
it appears that the clusters are slightly less densely connected
than in previous simulations. This might come from the K-
MEANS clustering step, since the sensory inputs are distributed
differently in the input space, and from the larger number of
possible movements.

This shows that if the agent performs non-spatial actions, it
can still extract structure induced in its sensorimotor flow by
the presence of invariant proto-objects. More generally, any
type of action could be performed to learn any structure in the
interaction with the world, as long as its effect on the sensory
flow of the agent generates some statistical regularities, such as
changing the light projected to the global scene, resulting in
different pixel values.

3.3.7. Small Proto-Object
We propose a last simulation in which the proto-objects are
smaller than the receptive field of the agent. Results are shown
in Figure 10. No densely connected subgraph is detected by
the agent, and it is not able to predict pixels outside the
scope of its own receptive field. Since the proto-objects are
smaller than the receptive field, the states obtained after the K-
MEANS clustering cannot represent the proto-objects accurately,
because they also represent pixels that come from the randomly
changing environment. Thus, it is likely that these states mix
together sensory inputs coming from proto-objects with sensory
inputs coming from the environment. Hence, the sensorimotor
structure induced by the presence of proto-objects in the world
is blurred. Thus, proto-objects smaller than the receptive field
cannot be discovered by the agent. A possible way to overcome
this limitation could be to consider a set of smaller receptive
fields and to process them collectively. This is left for future
work.
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FIGURE 7 | Rigidly linked proto-objects. (A) Two consecutive exploration steps when the proto-objects are linked. Between both steps, the proto-objects keep their

relative spatial position. (B) A single densely connected cluster is identified, corresponding to a single global proto-object. (C) Given an instantaneous sensory input

from one proto-object, the agent is able to accurately predict states from the other proto-objects if it performs one of the corresponding movements.

FIGURE 8 | Proto-object with multiple instances. (A) Both proto-objects look identical. (B) A single densely connected subgraph is identified by the Spectral

Clustering step.

FIGURE 9 | Agent rotating proto-objects. (A) Being able to rotate the proto-objects generate additional regularities in the sensorimotor flow of the agent. (B) The

agent is still capable of discovering them.

4. DISCUSSION

In this work, we addressed object discovery from a sensorimotor
perspective. Taking inspiration from SMCT and predictive
coding, we defined proto-objects as spatio-temporally invariant
structures, that an autonomous agent can detect through
regularities in its sensorimotor experience when interacting with

its environment. More precisely, the agent discovers such proto-
objects by collecting sensorimotor transitions and clustering
together sensory states according to a sensorimotor similarity,
which we derived from a statistical analysis of those transitions.
We illustrated the method by applying it to simplistic simulations
and outlined some limitations. We now discuss the specificities
of our approach with respect to the standard computer vision
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FIGURE 10 | Proto-objects smaller than the receptive field. (A) The two proto-objects are smaller than the receptive field. (B) No densely connected subgraph is

identified by the Spectral Clustering.

paradigm and other related work, we highlight some key
properties of the model and we point to future work given the
limitations we highlighted.

4.1. Specificities of the Paradigm
In the standard computer vision paradigm, the problem of
object identification is generally tackled in a supervised way
by training a representation learning algorithm, for instance
Deep Convolutional Neural Networks (Gu et al., 2015). These
algorithms are trained on a large database of static images
containing objects, where the identity of the object is provided
as a label (see for instance the well-known ImageNet database
Deng et al., 2009). Labeling such databases requires a large
human effort which can be mitigated by using semi-supervised
or transfer learning approaches, without fundamentally changing
the underlying object perception paradigm. In this paradigm,
identifying an object consists in extracting from a collection of
static images of the same object some invariant set of visual
features which are sufficient for discriminating this object from
any other. From an engineering point of view, this paradigm is
quite efficient as it provides a working solution for many concrete
applications. From a more fundamental standpoint, it captures
some important aspects of perception in terms of invariant visual
features which are not captured in our work. But this paradigm
goes with some issues, as revealed for instance by failure on
adversarial examples (Szegedy et al., 2013). Another well-known
issue is that relying on external labels makes the agent limited to
the recognition of objects present in the database. In that respect,
using unsupervised learning methods is mandatory if one wishes
to design a truly autonomous learning agent. Our work reveals
a third issue. Indeed, any approach processing static images
individually cannot extract any object from our simulations since
the distribution of pixel values is the same in proto-objects and
in the environment. Thus in our work, we are not interested in
the visual features characterizing the appearance of an object, but
rather in its spatio-temporal consistency.

Thus our approach is focused on a property of objects that is
orthogonal to the one captured by the standard computer vision
paradigm. Instead of focusing on the extraction discriminative

spatial features in static images, we focus on extracting spatio-
temporally invariant patterns in the sensorimotor flow of the
agent. Our approach has several assets. First, it is unsupervised,
as opposed to most approaches to the problem of objects
detection and classification outlined above. The agent relies
neither on externally provided labels nor on rewards, and does
not solve a specific task. It discovers the presence of proto-objects,
fundamentally driven by the prediction of its sensorimotor
experience, and without knowing the structure of these proto-
objects in advance. The agent has prior knowledge neither on
its sensory structure, nor on the environment, and not even on
the structure of the proto-objects: their number, sizes, shapes,
appearances, and positions are unknown.

Importantly, the interaction of the agent with the environment
does not have to be spatial: the actions performed do not have to
be spatial displacements, such as the translations of the sensor as
used in the simulations, and the agent does not need to know its
spatial position. More generally, the actions performed by the
agent and their effects in the environment can be of any nature,
as long as they remain consistent in time. As an example, we
have shown in Figure 9 that the agent can extract proto-objects
performing actions that modify their appearance by rotating
them. The determination of the class of actions that are necessary
and sufficient to build an artificial object perception system
following our approach is an important and open question, left
for future work.

4.2. Related Work
There are other approaches to the problem of artificial
perception that exploit either unsupervised learning, the
temporal information in the sensory flow of an agent, or the
interaction between an agent and its environment.

Unsupervised learning algorithms typically capture statistical
structure in the data in order to compress them, hopefully
creating more abstract representations (Bengio et al., 2013).
Despite some interesting attempts around generative models
(Doersch et al., 2015), it is still unclear how such statistical
method applied to static images could lead to the development
of a complete autonomous perceptual system. Most of the
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time, although pretraining a neural network in an unsupervised
way can be used to bootstrap a supervised learning system
(Erhan et al., 2010), the representations built this way are
interpreted a posteriori by a human.

There are some implementations of unsupervised learning
which exploit the temporal link between two successive
images. As an example, in Wang and Gupta (2015), tracked
patches in a video stream are constrained to have similar
internal representations. In Vondrick et al. (2015), the built
representations are used to predict future states, whereas in
Walker et al. (2016) they are used to define a probability over the
trajectories of pixels in an image.

Other approaches to the problem of artificial perception
claim that in order to build a truly perceiving agent, it is
essential to take its actions into account. Instead of exploiting
a mere sensory flow, the actions performed by the agent are
processed in parallel. These approaches have been gathered under
the term Interactive Perception (Bohg et al., 2016). Namely, the
actions are used to learn representations consistent with ego-
motion in Jayaraman and Grauman (2015), or to predict ego-
motion from two successive images in Agrawal et al. (2015).
In Oh et al. (2015) representations that allow the prediction of
the next image conditioned on the agent’s action are learned,
while the effect of a physical action on an object is learned in
Pinto et al. (2016). Bothmotor and sensory information have also
been considered to build state representations consistent with
robotic priors in Jonschkowski and Brock (2015).

Our approach is in line with these three paradigms: we
process the temporal information between sensory inputs and
the interaction of an agent with its environment, through
unsupervised learning and a drive for prediction. Compared to
the works previously cited, the specificity of ours is that we focus
on the identification of spatio-temporally invariant structures
from the sensorimotor flow of the agent.

Learning sensorimotor transition triplets (st ,mt , st+1)
share some similarity with learning (object, action, effect)
triplets in the affordance learning literature
(Montesano et al., 2008; Zech et al., 2017), but these triplets
are learned based on lower level modules extracting independent
visual features for objects, effects, and eventually actions. In
that respect, our positioning is more radical than most works in
this literature, since we do not call upon such low-level feature
extraction.

Other attempts have also been made to propose a
computational model allowing for a sensorimotor grounding
of knowledge for an artificial agent. One of the closest works
with respect to ours in terms of investigating the nature of
perception is Hay et al. (2018). In this work, the authors try to
demonstrate how a naive agent may extract useful concepts from
its sensorimotor experience. However, their concept learning
framework assumes that there exists a separate reward function
for each concept, an assumption that we consider too strong.
In former works investigating the sensorimotor grounding of
knowledge, such as Dorigo and Colombetti (1994) and Scheier
and Pfeifer (1995), an external reinforcement signal was also
used. In Cohen et al. (1997), a large amount of semantics is
associated a priori with the actions performed by the agent and

with its sensory stimulation, putting this work at a different
level of abstraction. Finally, in Der et al. (1999) an agent uses a
model of its sensorimotor interaction with the world in order to
optimize at the same time its own structure (the parameters of the
body of the agent) and the model itself . However, this work does
not propose a mechanism to process the sensorimotor flow of the
agent in order to build more abstract knowledge, like our agent
does when learning to identify proto-objects as subgraphs in its
general sensorimotor experience. In Maye and Engel (2011), an
agent learns to predict the effect of its actions on its sensorimotor
flow, depending on previous actions and states, learning a model
which is very similar to ours. However, while the agent can
learn by random exploration, the experimental setup contains
no randomness, and the possible actions performed by the agent
and its sensory inputs are defined at a more abstract level than
ours. Importantly, clustering together sensory states to identify
proto-objects is absent from these works, and robustness to
randomness in the environment is not studied.

4.3. Limitations and Future Work
Despite its versatility, the approach we presented in this paper
also suffers from multiple limitations. As revealed in the
experiments, our algorithm is not able to handle the case
where proto-objects are smaller than the receptive field. In
the real world, however, proto-objects appear smaller to us
than our field of view. As a consequence, instead of a single
receptive field, several elementary receptive fields could be used
in combination to define a visual field, as is the case in our
own visual system. This should also open possibilities to tackle
the problem of distinguishing multiple instances of the same
proto-objects, and to reduce the ambiguity of a visual scene.
Some preliminary results in this direction have already been
published (Laflaquière, 2016). Instead of considering a small
sensor moving in the environment, one could also imagine
having a larger sensor with an attention mechanism focusing on
a small part of it. Besides, the implementation presented here
was intended to illustrate fundamental mechanisms making it
possible to extract proto-objects, but would not scale to a more
realistic setting. In a real-life context, the quantification of the
sensorimotor experience of the agent would need a way larger
amount of memory and computation time, making the method
intractable. A more relevant way to process the sensorimotor
experience might require an algorithm able to directly process
the sensorimotor data without a preliminary K-MEANS clustering
stage. It should be rather clear from section 4.1 that combining
some properties from the standard computer vision paradigm
with ours is the way to go in order to address the discovery of
objects in real world environments. As an immediate example,
using a neural network taking the sensory states and motor
commands as input, and predicting the next sensory input could
be a promising alternative to the initial K-MEANS clustering
stage. However, given their very different nature and underlying
assumptions, combining both paradigms into a more general
framework is a difficult problem which will require careful
examination in the future. Finally, learning a more compact
representation of the sensorimotor experience, with a tool such as
a deep neural network instead of a graph might make it possible
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to compare our approach to common benchmarks used in the
computer vision community.

Finally, when the complexity of the problem increases, or in
order to deal with locally ambiguous sensory input, a hierarchical
processing of the experience might be necessary. On the one
hand, it has been shown that the hierarchical processing of
information is probably one of the reasons of the success
of deep networks (Bengio et al., 2013; Lin et al., 2017). On the
other hand, from a more biological point of view, it has
been shown that biological brains are organized hierarchically
(Modha and Singh, 2010), while the interpretation of the reasons
for a hierarchical processing have been investigated but are still
subject to debate (Damasio, 1989; Fuster, 2006). A proto-object
or even an object could then be detected through a hierarchy
of features. This approach should also be followed to tackle the
problem of ambiguity, by exploiting sequences of transitions
in order to define contexts, instead of exclusively exploiting
instantaneous transitions (Hemion, 2017).
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