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Abstract. We investigate snow depth distribution at peak

accumulation over a small Alpine area (∼ 0.3 km2) using

photogrammetry-based surveys with a fixed-wing unmanned

aerial system (UAS). These devices are growing in popular-

ity as inexpensive alternatives to existing techniques within

the field of remote sensing, but the assessment of their perfor-

mance in Alpine areas to map snow depth distribution is still

an open issue. Moreover, several existing attempts to map

snow depth using UASs have used multi-rotor systems, since

they guarantee higher stability than fixed-wing systems. We

designed two field campaigns: during the first survey, per-

formed at the beginning of the accumulation season, the digi-

tal elevation model of the ground was obtained. A second sur-

vey, at peak accumulation, enabled us to estimate the snow

depth distribution as a difference with respect to the previous

aerial survey. Moreover, the spatial integration of UAS snow

depth measurements enabled us to estimate the snow volume

accumulated over the area. On the same day, we collected

12 probe measurements of snow depth at random positions

within the case study to perform a preliminary evaluation

of UAS-based snow depth. Results reveal that UAS estima-

tions of point snow depth present an average difference with

reference to manual measurements equal to −0.073 m and

a RMSE equal to 0.14 m. We have also explored how some

basic snow depth statistics (e.g., mean, standard deviation,

minima and maxima) change with sampling resolution (from

5 cm up to∼ 100 m): for this case study, snow depth standard

deviation (hence coefficient of variation) increases with de-

creasing cell size, but it stabilizes for resolutions smaller than

1 m. This provides a possible indication of sampling resolu-

tion in similar conditions.

1 Introduction

The spatial distribution of snow depth and snow water equiv-

alent, SWE, has been widely measured and modeled, both

at the local, slope, and catchment scale (Grünewald et al.,

2010). Modeling techniques include statistical approaches,

such as Carroll and Cressie (1996), Elder et al. (1998),

Erxleben et al. (2002), Anderton et al. (2004), Molotch et al.

(2004), Dressler et al. (2006), López-Moreno and Nogués-

Bravo (2006), Skaugen (2007), Bavera et al. (2014), and

conceptual, or physically based models – e.g., Lehning et

al. (2006; 2008). These works have improved our knowledge

about, e.g., the relevance of single forcings in determining

the distribution of snow on complex terrains (Anderton et al.,

2004). In addition, they provide an useful tool to estimate the

impact of future modifications of climate on the Earth system

(Bavay et al., 2009, 2013).

Running a model often needs input and evaluation data

at fine temporal resolutions (e.g., daily or hourly). These

can be obtained by means of automated devices, such as

snow pillows (De Michele et al., 2013), cosmic ray coun-

ters (Morin et al., 2012) and ultrasonic depth sensors (Ryan

et al., 2008). These devices are usually placed in areas that
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are believed to be suitable locations for representative mea-

surements at wider scales (i.e., unaffected by local hetero-

geneity). Nonetheless, their spatial resolution is often sparse,

while Grünewald and Lehning (2015) report that, usually,

point stations on flat areas tend to overestimate catchment

mean snow depth, and that representative cells are usually

randomly located – i.e., impossible to be determined a priori.

These represent important drawbacks of point weather sta-

tions in the study of snowpack dynamics (see Rice and Bales,

2010; Meromy et al., 2013; Grünewald and Lehning, 2015

and references therein). Moreover, such instruments are usu-

ally affected by systematic and random errors, that degrade

the precision of measurements (Avanzi et al., 2014).

Consequently, increasing interest is nowadays growing

around distributed measurements of snow extent, depth, and

SWE (Dietz et al., 2012), able to substitute, or integrate,

point, and usually sparse, measurements. Existing techniques

include terrestrial or airborne laser scanning (e.g., Hopkin-

son et al., 2004; Deems et al., 2006, 2013; Prokop et al.,

2008; Dadic et al., 2010; Grünewald et al., 2010, 2013; Lehn-

ing et al., 2011; Hopkinson et al., 2012; Grünewald and

Lehning, 2015; Hedrick et al., 2015), SAR (synthetic aper-

ture radar, Luzi et al., 2009), aerial photography (Blöschl

and Kirnbauer, 1992; König and Sturm, 1998; Worby et al.,

2008), time-lapse photography (Farinotti et al., 2010), and

optical and micro-wave data from satellite platforms (Para-

jka and Blöschl, 2006; Dietz et al., 2012). The good per-

formance of these methods has been widely discussed, but

survey expenses are still a constraint (Hood and Hayashi,

2010). Recently, digital photogrammetry has emerged as a

cheaper tool to perform these surveys: as an example, Nolan

et al. (2015) have evaluated this methodology in three study

cases in Alaska and have compared airborne measurements

of snow depth with ∼ 6000 manual measurements. They

have found a standard deviation between these two data sets

around ±0.1 m. Bühler et al. (2016) have applied a similar

method in Switzerland and have estimated snow depth distri-

bution with a root mean square error (RMSE) of 0.30 m. This

technique is therefore an accurate solution that may be used

to obtain distributed information about snow depth dynamics

at meter (or centimeter) resolution.

Traditional airborne photogrammetry is usually performed

by manned aircraft and this increases its costs and limits

the temporal resolution of surveys. Unmanned aerial sys-

tems (UASs, also known as drones) could potentially over-

come these limitations. These systems provide an inexpen-

sive airborne support for sensors operating at different wave-

lengths. A UAS can autonomously determine its own posi-

tion in a 3-D reference, reproduce a pre-arranged photogram-

metric flight, and reconstruct a high-resolution digital sur-

face model (hereinafter, DSM) of a given area (Watts et al.,

2012) by setting a suitable (low) flight height over the tar-

get (say, ∼ 100 m). All these features can potentially enable

automated, repeatable, cheap (Colomina and Molina, 2014)

and low-risk surveys to be performed. Their use is nowa-

days rapidly increasing (Eisenbeiss, 2009; Watts et al., 2012;

Colomina and Molina, 2014). Some examples regard ecology

(Dunford et al., 2009; Koh and Wich, 2012), coastal engi-

neering (Delacourt et al., 2009), geomorphological mapping

(Lejot et al., 2007; Hugenholtz et al., 2013) or dust detection

on snow (Di Mauro et al., 2015), see Colomina and Molina

(2014) for an exhaustive review. In optical surveys, they usu-

ally adopt compact digital cameras, due to the limited pay-

load (say ∼ 102 g). Nonetheless, these are affected by higher

deformations as compared with those of photogrammetric

calibrated cameras (Pollefeys et al., 1999; Remondino, 2006;

Stretcha et al., 2010; Sona et al., 2014). Performing pho-

togrammetric surveys using UASs may therefore represent

a definitive solution to the problem of mapping snow depth

with fine spatial and temporal resolutions. In the last few

months, some early attempts, mainly using multi-rotor de-

vices, have been published (Vander Jagt et al., 2015; Bühler

et al., 2016) and they show promising results. Using multi-

rotor devices guarantees high safety conditions due to their

stability and resistance to wind. Nonetheless, this limits the

areal extension of UAS surveys due to logistical constraints

(battery duration). Fixed-wing devices may on the contrary

perform larger investigations, but they need stable wind con-

ditions and regular topography for landing operations.

Here, we investigate the possibility of using a fixed-

wing UAS to measure snow depth patterns at peak ac-

cumulation within a small mountainous basin, using cen-

timeter/decimeter resolution. We chose as a field test the

bare plateau around Lake Malghera, within the western Val

Grosina Valley (around 2300 m a.s.l.), northern Italy. A dou-

ble airborne survey of this area was designed. During the first

one, the DSM of the ground was mapped, while during the

second one, at peak accumulation, the same area was sur-

veyed again to determine the DSM of the snow cover. A pre-

liminary performance evaluation of this technique was oper-

ated using manual probe measurements at 12 points within

the study domain.

2 The study area

The case study is located in the western Val Grosina Val-

ley, Lombardy region, northern Italy. It is a small plateau lo-

cated near to Lake Malghera, ∼ 46◦20′2′′ N, ∼ 10◦7′14′′ E,

2320 m a.s.l. The approximate extent of the study area is

0.3 km2, see Fig. 1. This figure includes also a topographic

map of bare soil, produced by the local regional administra-

tion (Lombardy region).

This site is characterized by sparse grass coverage and

rocks, with no tree, firn, or glacier ice. As a result, ground

surface is bare during summer and autumn. Topography is

relatively homogeneous and marked by frequent gullies and

crests. Site aspect is northeast, whereas the average slope in

the NE–SW direction is ∼ 14 %. Snow conditions are gener-

ally undisturbed, given site elevation and inaccessibility dur-
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Figure 1. Location of the study area in western Val Grosina Valley, Lombardy region, northern Italy. The right panel shows a topographic map

of the area, with isolines every 10 m and the elevation (in meters) of some points of interest. Topographic map from http://www.geoportale.

regione.lombardia.it/.

ing winter. During our surveys, the only (visible) perturba-

tion of snow was represented by unsystematic ski traces.

3 Methods

3.1 Design of the surveys

We design our study test to map snow depth distribution at

peak accumulation. For this purpose, two different surveys

are needed: one before accumulation starts (snow is absent

and the survey can therefore map bare soil) and another one

at peak accumulation. The first survey of the study area was

performed on 26 September 2013, while the second survey

was operated on 11 April 2014.

We used a light-weight fixed-wing SwingletCAM system

(SenseFly®). This device is characterized by limited weight

(∼ 500 g) and size (wingspan of 80 cm). These features make

it suitable for performing photogrammetric flights over lim-

ited areas (about 1 km2) at a very high spatial resolution

(3–7 cm of ground sample distance – GSD). The device is

mainly made by an expanded polypropylene (EPP) foam, a

carbon structure and composite parts. The propulsion is elec-

tric, with a maximum flight time around 30 min. The nomi-

nal cruise speed is ∼ 36 kmh−1, with a wind resistance up to

25 kmh−1 and a radio link range up to 1 km from the mas-

ter station on the ground. The SwingletCAM is able to per-

form pre-planned flights in a fully automated mode, since it

continuously analyzes data from the onboard GPS/IMU sys-

tem. However, the operator can always recover full control

of the system. It incorporates a compact camera Canon Ixus

220HS (12 Mp and fixed focal length of 4.0 mm) which can

acquire images at a GSD of some centimeters (depending on

flight height). The camera uses a bandpass filter for the three

colors RGB. These are placed ahead of the complementary

metal–oxide–semiconductor (CMOS) according to a Bayer

filter.

In these two field surveys, the GSD was set to 4.5 cm, since

such a value enables to perform a survey at a flying elevation

Figure 2. Camera images and their overlaps during each of the

two surveys. The left panel corresponds to the survey made dur-

ing September 2013, while the right panel corresponds to the sur-

vey made in April 2014. The legend indicates the number of images

covering each area.

of around 130 m above ground surface (the complete range of

the height values is between 130 and 135 m). This is a good

safety condition for this UAS device in a mountain area that

is potentially subjected to strong winds. To gain the maxi-

mum stereoscopy and to avoid uncovered areas, forward and

side overlaps were set to 80 %. Following this approach, from

six to seven strips were necessary to cover the area of inter-

est.

3.2 Digital surface model production

For both the surveys, the flight lasted around 15–20 min;

Fig. 2 reports the location of camera photos and their over-

lap. The left panel regards the survey made during September

2013, while the right panel refers to the survey performed

during April 2014. Colors indicate the number of images

covering each point of the study area. It is well known that

the precision in coordinate estimation increases with an in-

creasing number of images in which a point is present (Re-

mondino and El-Hakim, 2006). In this respect, most of the

study area has been imaged at least by three or four images.

Clearly, the overlap increases at the center of the study area.

In that area, points have been imaged by a number of images

≥ 9.
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In the survey made on 26 September 2013, the UAS col-

lected a block of 47 images divided into six strips. Due to the

high image overlap, all the ground points are visible in many

images (from 3 to 9). Thirteen pre-signalized ground con-

trol points (henceforth, GCPs), measured through GPS rapid

static survey, enabled the referencing of the block and the ac-

curacy analyses. The standard deviation of the three coordi-

nates of GCPs are around 3 cm in the horizontal components,

and 5 cm in the vertical one.

In the survey performed on 11 April 2014, the UAS col-

lected a block of 84 images divided in 12 strips (six regular

strips as in the autumn survey plus six cross-strips). Fourteen

pre-signalized GCPs, measured through a GPS static survey

and theodolite, enabled the referencing of the block. This set

of GCPs is different from the one used during the first sur-

vey. We chose points that were reasonably distributed over

the area, and we referred them to the same reference frame.

Based on this survey, GCPs coordinates have been estimated

with a standard deviation of about 1 cm.

The blocks of images were processed using Agisoft Photo-

scan. This is a 3-D modeling software that enables the exte-

rior orientation of large data sets, by carrying out the image

relative orientation, together with the self-calibration, in an

arbitrary reference system, which is often obtained using a

minimum constraint coming from the approximate orienta-

tion provided by telemetry. Details about the processing pro-

cedure can be found in the Photoscan user manual (Agisoft,

2014), as well as at the Agisoft website (http://www.agisoft.

com/). Moreover, several papers are available that describe

the use of Photoscan to generate 3-D models of surfaces

(Verhoeven, 2011; Koutsoudis et al., 2014). Firstly, for each

block of images, the position of the camera for each image

is determined by searching common points on the images.

Then, the extraction of topographic points (which represent

a cloud of points) and the rejection of outliers are made for

each survey. The subsequent use of GCPs allows translating

and rotating the photogrammetric blocks in a specific refer-

ence frame – i.e., ETRF2000. Then, starting from the cloud

of points, DSMs at different spatial resolutions are extracted

by generating a polygonal mesh model from the cloud data

through interpolation. By making the differences of the two

DSMs (at the same spatial resolution), maps of snow depth

distribution can be obtained.

In this application, we considered spatial resolutions of

5, 10, and 20 cm. These are very fine with respect to other

existing data sets of snow depth (see López-Moreno et al.,

2015 as an example). However, UASs make it possible to

collect high-resolution data with sensible lower effort than,

e.g., manual probing; this can provide useful indications for

future surveys using the same devices. Increasing spatial res-

olution means that computational/logistical costs are higher:

for instance, flight elevation must be lower. Note that 5 cm is

probably a proper lower limit given the typical size of snow

grains/clusters (Fierz et al., 2009).

3.3 Point data collection

During the survey performed in April 2014, 12 point man-

ual measurements of snow depth were operated using probes.

Locations of these measurements were randomly chosen, but

they were distributed as much as possible over the study area.

We have used these data to perform a preliminary evaluation

of UAS performance in retrieving point values of snow depth,

as already done by, e.g., Bühler et al. (2016). In particular,

we have calculated the mean, standard deviation and RMSE

of the differences between manual and UAS-based estima-

tions of snow depth. Note that point locations were chosen

neglecting spatial correlation in snow depth.

Snow depth distribution is usually marked by strong spa-

tial variability at small scales (Grünewald et al., 2010; López

Moreno et al., 2013; López-Moreno et al., 2015; Mott et al.,

2014) and this hampers our evaluation since coordinates of

probe data must be collected with a very high spatial preci-

sion due to the spatial resolution we have considered. For this

purpose, coordinates were obtained by total station theodo-

lite observations referred to GPS baselines that were sur-

veyed by static approach (40 min sessions). The horizontal

accuracy of the obtained coordinates is of the order of 2–3 cm

(i.e., comparable with the spatial resolution of the DSM at the

maximum resolution). This procedure makes it difficult to

collect a massive database of evaluation data, but guarantees

a very high spatial precision in coordinates retrieval. On the

other hand, this amount of data is clearly reduced in compar-

ison with previous evaluations of remote sensing techniques

by, e.g., Prokop et al. (2008), Nolan et al. (2015), and Bühler

et al. (2016). Photogrammetry is rather traditional, and this

increases our confidence towards its performance. However,

we stress that this amount of points allows only a preliminary

evaluation, since the main focus here is on using a fixed-wing

UAS in mountain areas to map snow depth, and that more

data are needed to perform a definitive evaluation.

On the same day, a snow pit was excavated, and a

snow density profile was measured through gravimetry (us-

ing a cylindrical sample holder, 15 cm long and with a

7.5 cm diameter). Measurements were taken at ∼ 20 cm in-

tervals along 210 cm of snow depth at that point. Density

values spanned between 330 and 570 kgm−3 (mean value

∼ 450 kgm−3).

3.4 Spatial sampling vs. snow depth statistics and

volume

In the following, we will consider three different tests to as-

sess how spatial sampling affects snow depth measurement at

peak accumulation. As a first step, we have estimated some

basic snow depth statistics – i.e., minimum, mean, and max-

imum snow depth and total snow volume, using the three

snow depth maps we obtained directly from the survey cloud

of points (i.e., maps at 5, 10, and 20 cm resolution). This aims
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Figure 3. Orthophoto of the survey performed on 26 September

2013.

at clarifying any benefit to increasing spatial resolution from

decimeter to centimeter scale.

As a second step, we have repeatedly resampled the snow

depth map using an increasing cell size, starting from 5 cm

resolution (e.g., Cline et al., 1998). For this purpose, we have

progressively aggregated cells by doubling cell size and es-

timating snow depth for each new cell using the mean of the

snow depth of the aggregated cells. Consequently, we have

produced estimated snow depth distributions using the fol-

lowing cell sizes: 5 cm (the original one), 10, 20, 40, 80, 160,

320, 640, 1280, 2560, 5120, 10 240 cm. Missing values have

been disregarded. We have then calculated mean snow depth

(µ), standard deviation (σ ), coefficient of variation (CV) and

minimum(maximum) value within each of these maps. The

main purpose of this calculation is assessing how snow depth

variability evolves with increasing/decreasing cell size.

As a third step, we have compared the estimates of snow

volume by simple spatial interpolations of snow probe data

with the distributed estimation of snow volume obtained us-

ing UAS. Different spatial interpolation methods have been

considered for snow (Fassnacht et al., 2003; López-Moreno

and Nogués-Bravo, 2006; Marsh et al., 2012); we will con-

sider here inverse distance weighting, the Thiessen method,

and ordinary kriging. In addition, we will consider also the

arithmetic mean of snow depth measured at probes. We have

chosen these techniques since they are easy to be interpreted

and are among the most used techniques in interpolation

problems. The application of more complex techniques (e.g.,

co-kriging) is also hampered by the paucity of ground truth

data collected.

Figure 4. Orthophoto of the survey performed on 11 April 2014.

4 Results and discussion

4.1 DSM evaluation

Figures 3 and 4 report the two orthophotos of autumn and

spring surveys. Figure 5 describes the related DSMs, both

characterized by a pixel size of 5 cm. Red lines depict contour

lines (10 m interval).

The autumn DSM (Fig. 5a) shows good coherence with

the topographic map reported as background. For example,

rivers and Malghera Lake outlet are correctly located. We

have carried out a quantitative evaluation of this DSM by

using as an independent map of the area, a 5× 5 m2 DSM

of the Lombardy Regional Authority, which is based on the

digitalization of the 1 : 10 000 map reported as background

in all the figures of this paper. In particular, Fig. 6a reports

a map of the differences between the UAS-based DSM and

this reference DSM. Maximum and minimum differences are

5.58 and−6.61 m, whereas the mean difference and the stan-

dard deviation are −0.92 and 1.63 m. The precision of orig-

inal contours in the 1 : 10 000 map by the regional adminis-

tration is ±2.5 m: differences in the range ±7.5 m between

these two DSMs are therefore within the range ±3 standard

deviations, i.e. within tolerance. The statistics of the differ-

ences are therefore coherent with the accuracy of the DSM.

In Fig. 6b, UAS-based contours (in red) are directly superim-

posed to the contours of the topographic map. This compari-

son shows that the agreement increases with steeper terrains.

An evaluation of the spring survey (Figs. 4 and 5b) is less

straightforward due to lack of independent maps of snow

surface at this site. The snow depth surface on this area

is marked by patchy coverage of sand dust transported by

wind storms. This is visible as brown areas in the orthophoto

(Fig. 4), and has helped referencing the images of the spring

survey since it provided common points on photographs. In

www.the-cryosphere.net/10/511/2016/ The Cryosphere, 10, 511–522, 2016
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Figure 5. Digital surface model (DSM) of the two surveys. (a) DSM

of the survey performed during September 2013. (b) DSM of the

survey performed during April 2014. For both DSMs, a 5× 5 cm2

cell size has been used.

fact, the density of points obtained within one of these brown

areas (randomly chosen) is equal to 44.7 pointsm−2, whereas

the density of points in one white area (i.e., an area with

no dust, again randomly chosen) is 35.9 pointsm−2. How-

ever, we note that within our study case several additional

topographic irregularities (e.g., snow depressions near rivers,

emerging rocks or buildings) may help as well. The DSM

shows contour lines which are different from those obtained

during the September survey. This is an effect of snow depth

presence on the ground; this causes a slight reduction in to-

pography irregularities too.

4.2 Snow depth map

Figure 7 reports a map of snow depth distribution over

the study area (at 5 cm resolution) and the location of the

12 manual measurements. Snow depth shows a remarkable

micro-topographic variability (i.e., at distances comparable

with map resolution), although this area is rather limited in

extension and characterized by bare soil. Most of the cen-

tral study area is characterized by an alternation of low and

high snow depth values. Clusters of high values of snow

depth correspond to rivers’ location or depressions in micro-

topography. In contrast, low snow depths are observed on to-

pographic local maxima, probably because of wind effects.

The legend scale shows that micro-topographic differences

Figure 6. Validation of the DSM of bare soil (September 2013).

(a) Map of the differences between the UAS-based DSM and an

existing DSM provided by the Lombardy Regional Authority (5 m

cell size, differences in m). (b) Comparison between UAS-based

contours (10 m, in red) and those reported in the topographic map

of the area (in black).

Figure 7. A map of snow depth distribution over the study area, ob-

tained by means of difference of the elevations of the maps reported

in Fig. 5 (5×5 cm2 cell size). Different colors indicate different val-

ues of snow thickness (see the legend scale). Black dots indicate the

location of the 12 manual measurements of snow depth (see Table 1

for IDs of the points).

can be equal to ∼ 2–3 m. This illustrates the relevant varia-

tion of accumulation dynamics of snow depth (Nolan et al.,

2015), and the scarce representativeness of point measure-

ments (Grünewald and Lehning, 2015).

We report in Table 1 a comparison between manual (HM)

and UAS based (HUAS) snow depth measurements. Man-

ual measurements are associated with a standard resolu-

tion of ±1 cm. Differences span −0.21 and 0.08 m, whereas

The Cryosphere, 10, 511–522, 2016 www.the-cryosphere.net/10/511/2016/
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Table 1. Comparison of manual (HM) and UAS (HUAS) snow depth

measurements.

ID HM HUAS HM−HUAS HUAS/HM

(m) (m) (m)

1 1.48 1.40 0.08 94.6 %

2 2.07 2.06 0.01 99.5 %

3 1.75 1.96 −0.21 112 %

4 1.88 2.05 −0.17 109 %

5 1.68 1.93 −0.25 114 %

6 1.85 2.13 −0.28 115 %

7 1.96 2.03 −0.07 103 %

8 2.11 2.17 −0.06 102 %

9 1.91 1.96 −0.05 102 %

10 1.89 1.81 0.08 95.7 %

11 1.45 1.49 −0.04 102 %

12 1.60 1.52 0.08 95.0 %

Average difference (m) −0.073

SD difference (m) 0.128

RMSE (m) 0.143

the average difference between measurements is equal to

−0.073 m, with an associated standard deviation of 0.128 m.

The RMSE is equal to 0.143 m. These statistics are coher-

ent with previous attempts at using a combination between

digital photogrammetry and UAS to measure snow depth. As

an example, Vander Jagt et al. (2015) found RMSEs equal

to 0.096 and 0.184 m while mapping snow depth distribu-

tion in Tasmania within an area of ∼ 0.007 km2 (differences

in performance depend on the methodology considered dur-

ing bundle adjustment), whereas Bühler et al. (2016) re-

cently reported an RMSE around 0.07–0.30 m (depending on

ground properties – e.g., the presence of vegetation under-

neath snow) when mapping snow depth in two study sites in

Switzerland (areas spanning 0.363 and 0.057 km2). A sim-

ilar performance has been recently reported also for digital

photogrammetry surveys of snow distribution using manned

aircraft (Nolan et al., 2015; Bühler et al., 2016).

Thus, this survey provides evidences that UASs seem able

to locally estimate the snow depth values with a precision

of ∼ 10 cm. Errors could be explained by slight differences

(at centimeter scale) in the position of manual measurements

and UAS estimates, instrumental resolution, or vegetation ef-

fects, as already reported by Vander Jagt et al. (2015) and

Bühler et al. (2016). However, the amount of points data we

have used is very small, and snow depth at probe positions

varies between 1.48 and 2.11 m, which represents a reduced

variability with respect to the complete range of variation of

UAS snow depth values. These represent important limita-

tions of this study: additional investigations are necessary to

extensively assess UAS performance in the case of, e.g., shal-

low or patchy snow cover conditions (see Sect. 4.4).

Table 2. Snow volume calculation using UAS measurements and

three different spatial resolutions: 5, 10, 20 cm.

Resolution Pixels H̄ Hmax Hmin V

(cm) (#) (m) (m) (m) (m3)

5 81 918 743 2.26 4.21 −0.22 463 652.3

10 20 479 686 2.26 4.35 −0.24 462 957.8

20 5 119 921 2.27 4.15 −0.24 464 093.0

4.3 Snow depth statistics

4.3.1 Test 1: spatial resolution vs. snow depth

distribution

Table 2 proposes a comparison in terms of number of pixels,

average/maximum/minimum snow depth and snow volume

estimated according to the DSMs at 5, 10, and 20 cm that

have been directly obtained from the cloud of points of this

survey. Clearly, increasing spatial resolution from decimeter

to centimeter scale would increase the number of pixels. Nev-

ertheless, this seems to marginally affect the estimations of

average/maximum/minimum snow depth or total snow vol-

ume. Based on these results, we do not see clear benefits in

increasing cell size of snow depth maps from decimeter (10

or 20 cm) to centimeter (5 cm) scale at peak accumulation.

Clearly, keeping resolution at 20 cm may help limiting logis-

tical/operational costs, as flight height is related to precision.

Additional investigations on this point are proposed in the

next section.

Note that minimum snow depth is systematically negative

for all these three resolutions. These values were set to 0 in

Fig. 7 for readability. Spurious negative snow depths have

been already noted during photogrammetric surveys by, e.g.,

Nolan et al. (2015) and can be attributed to the effect of com-

pressible vegetation (and instrumental precision). As Nolan

et al. (2015) note, this effect hampers the general assumption

that snow depth distribution can be simply obtained by differ-

entiating two DSMs. A similar effect may be also the cause

of the large differences between HM and HUAS at points

from 3 to 6 in Table 1, that nonetheless lie in areas with

scattered rocks, which may have caused additional noise in

the DSM. During the autumn survey, we did not notice sys-

tematic presence of shrubs, bushes, or other vegetation types

that might be compressed by snow in areas that were subse-

quently probed in April. This highlights the need for future

investigations to address the issue of varying UAS precision

with vegetation.

4.3.2 Test 2: the effect of spatial sampling on snow

depth statistics

We report in Fig. 8 some examples of the snow depth maps

we have obtained by progressively doubling the cell size of

the original map at 5 cm. In particular, we report maps with
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Figure 8. Rescaled maps of snow depth (in m) at different cell sizes.

(a) 640 cm, (b) 2560 cm, (c) 10 240 cm. See Sect. 4.3.2 for details.

cells size equal to 640 cm (panel a), 2560 cm (panel b) and

10 240 cm (panel c). The coarsest map (∼ 100 m resolution)

retains only a small fraction of original spatial variability

(i.e., a lower-than-average snow depth in the proximity of

the Malghera Lake, and a greater-than-average snow depth

on slopes). Most of the spatial patterns in snow depth are

lost.

A spatial resolution of 10–100 m is much higher than the

typical spatial density of instrumental networks that are cur-

rently implemented worldwide to monitor snow dynamics

(e.g., Serreze et al., 1999). Such a cell size is also smaller

than the ordinary resolution of satellite products (e.g., Dietz

et al., 2012). In this perspective, UAS may be a valid interme-

diate step between point measurements of snow variables at

high temporal resolutions (e.g., pillows or depth sensors) and

satellites, which usually provide distributed information with

low temporal and spatial resolution (see also Nolan et al.,

2015 on this point). Our results show in fact that a metric

(or lower) resolution provides relevant spatial patterns to de-

scribe the relation between topography and snow accumula-

tion (Grünewald et al., 2010; Grünewald and Lehning, 2015).

Figure 9. Snow depth statistics within the study domain as a func-

tion of map cell size. (a) Minimum, mean, and maximum snow

depth; (b) snow depth standard deviation (σ ) and coefficient of vari-

ation (CV).

Figure 9 reports statistics in terms of minimum, mean (µ),

and maximum snow depth, its standard deviation σ , and the

corresponding CV of each map, as a function of cell size.

This figure reveals that µ is quite constant across all the reso-

lutions (values range between 2.25 and 2.33 m). This is prob-

ably due to the algorithm we used for this aggregation, that

estimates the snow depth for an aggregated cell as the mean

of the cells that are aggregated. Consequently, spatial differ-

ences are gradually homogenized when increasing the cell

size. Minima and maxima are rather constant below∼ 1.6 m.

In this range of resolution, maximum snow depth spans 4.38

and 4.21 m, whereas minima are spuriously lower than zero,

probably due to vegetation effects or instrument resolution

(negative values set to zero in Fig. 9 for clarity). For larger

cell sizes, these quantities start to converge towards the mean

due to progressive homogenization.

An interesting result of Fig. 9 is that, within our case

study, σ presents a well-defined upper boundary (as well

as CV). In particular, it is minimum for coarser resolutions

(σ = 0.28 m for a cell size equal to 10 240 cm), whereas it

increases monotonically with smaller cell sizes (σ = 0.39 m

for a cell size equal to 160 cm). This effect may be due again

to the methodology used for the aggregation, but it shows that

increasing the spatial resolution of the survey makes it pos-

sible to add significant information, since this captures addi-

tional variability in snow depth. On the other hand, σ stabi-

lizes when cell size is ≤ 1 m. The CV has similar dynamics.

In the literature, it has been observed that snow depth vari-

ability increases with higher sampling resolutions (López-

Moreno et al., 2015), but, to our knowledge, few data sets
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are available with a sub-meter horizontal sampling resolution

(Nolan et al., 2015). Consequently, it is not easy to compare

this behavior with other analyses. These dynamics will be the

object of future investigations since, if confirmed, they may

define a threshold for sampling resolution when measuring

snow depth during the accumulation season (say, 1 m resolu-

tion).

The range of CV that we have found here is lower than

those reported by, e.g., López-Moreno et al. (2015), but

seems in agreement with the results by López-Moreno et al.

(2011) for a survey performed during January. Snow depth

spatial variability increases with time during the year (Mé-

nard et al., 2014; López-Moreno et al., 2015), due to local

heterogeneity in ablation dynamics. It follows that a reduced

CV at peak accumulation may be expected.

4.3.3 Test 3: UAS-based volume of snow vs. spatial

interpolation

Table 3 reports the comparison between the estimated snow

volume using a set of simple interpolation techniques of the

12 snow depth probes and the estimation of snow volume

operated by the UAS system (5 cm resolution). Results show

that the average difference between estimations by interpola-

tion techniques and the snow volume estimated by the UAS

system is equal to ∼ 21 %. In terms of absolute values, the

average difference is ∼ 96 350 m3. Considering an average

bulk snow density of 450 kgm−3 (as measured in the snow

pit), this would entail an absolute difference in SWE estima-

tion of ∼ 43 358 m3.

A ∼ 21 % difference provides interesting suggestions

about the possible impact of UAS for hydrologic applica-

tions, as interpolating points data has represented a widely

used technique in snow hydrology for decades. In fact, such

a high difference clarifies the benefits of using a distributed

estimation of snow depth at high spatial resolution. However,

the snow volume obtained by UAS is affected by uncertain-

ties and noise and must not be considered as the best estimate

among those reported in Table 3. For example, all interpola-

tion techniques return an underestimated volume of snow, but

this is a case-specific result, that is due to the choice of probe

positions. In fact, Fig. 7 shows that manual measurements

were accidentally taken in areas that were mainly character-

ized by shallow snow cover.

4.4 Using fixed-wing UAS for mapping snow depth:

lessons learnt and outlook

UASs have interesting potentialities within the framework

of available methods to reconstruct the spatial variability

of snow surface. In fact, they enable us to obtain semi-

automated, quick, and repeatable surveys of limited areas,

with a quite high vertical precision. Although the device that

we used here needs the operator to assist it during take-off

operations, other devices (currently not available to the au-

Table 3. Comparison between the snow volume via UAS VUAS =

463 652.3 m3 and the one obtained via spatialization techniques

(VT).

Technique VT (m3) VUAS−VT (m3)

Arith.c mean 369 146.3 94 505.9

IDW 368 216.9 95 435.3

Thiessen 363 400.5 100 251.7

Kriging 368 433.1 95 219.2

thors) can take off and land in a semi-automated way, and

can cover much wider areas. This could let repeated (say,

daily) surveys to be autonomously obtained, even without

needing an operator to reach the target area. This, together

with the possibility to substitute, or integrate, optical sensors

with sensors at different wavelengths, could represent in the

future an alternative to automated point stations to directly

obtain distributed measurements of snow variables.

Results by Vander Jagt et al. (2015) and Bühler et al.

(2016) were obtained using multi-rotor systems. These de-

vices have the clear advantage of a higher stability to strong

winds. Moreover, they can take off and land along a ver-

tical direction and this is advantageous in mountain areas.

On the other hand, battery duration is restricted and this is a

major drawback since maximizing areal extension is impor-

tant when using UAS in hydrologic applications given the

extension (and spatial variability) of the processes investi-

gated. This has been the main reason why we initially chose

a fixed-wing device. From an operational point of view, us-

ing a fixed-wing UAS in Alpine areas means that the success

of the survey is highly dependent on fair and stable weather

conditions. This may cause frequent failures in surveys due

to, e.g., unexpected changes in weather conditions. However,

note that attempts have been already made to design sup-

ports that could resist harsh climatic conditions (Funaki et al.,

2008) – conditions which would make unfeasible a survey

using the same sensor used here. Other challenges include

the possible absence of satellites signal or reduced battery

duration due to air temperature effects.

Future developments of this work should compare the per-

formance of this technique during multi-year study cases in

different snow conditions and using more extensive data sets

of snow depth data for evaluation purposes. The main rea-

son is that this test has been performed during just 1 day,

and at one location, in order to provide a preliminary as-

sessment of the feasibility of using UASs to retrieve snow

depth over a limited area. No evident limitation hampers the

use of these devices over larger areas, apart from battery du-

ration, or within areas characterized by patchy snow cover

conditions. On the other hand, different weather conditions

(such as precipitation events, or scarce visibility), different

snow cover conditions (such as shallow snow covers) and/or

different topographic patterns could have an impact on the
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performance of these devices that must be still assessed. A

shallow snow cover (say, snow depth lower than 20/30 cm) is

likely to be difficult to be measured correctly given the stan-

dard deviation we found here (12.8 cm), whereas unexpected

vegetation represents an important challenge and source of

errors or ambiguity that must be carefully addressed in future

investigations. This problem may be partially solved by using

optical data to detect snow-covered areas, only. An additional

challenge is represented by moving glacier surfaces, that may

hamper DSM differentiation. Moreover, scarce visibility can

potentially undermine a photogrammetry-based survey given

the difficulties in detecting the ground (or snow) surface from

an elevation of around 100 m during, e.g., fog events or in-

tense rainfalls (or snowfalls). We suggest a multi-site multi-

temporal framework like that performed by, e.g., Nolan et al.

(2015) as a possible future development of this work. Simi-

lar analyses using UAS are still lacking: an evidence is given

by the sparse literature on this topic that is nowadays grow-

ing within cryospheric sciences (Lucieer et al., 2014; Vander

Jagt et al., 2015; Bühler et al., 2016; Di Mauro et al., 2015;

Fugazza et al., 2015; Ryan et al., 2015).

5 Conclusions

For the first time, we have here mapped snow depth vari-

ability at centimeter scale by means of a photogrammetry-

based survey using fixed wing UAS over a small Alpine area

(∼ 0.3 km2). For this purpose, we performed two surveys.

The first one, during September 2013, enabled us to recon-

struct ground topography. This survey will not be necessary

for future assessments of snow distribution in the same area.

Then, during April 2014, a second survey enabled us to re-

construct the variability of snow depth, by vertical differen-

tiation of the maps.

Results show that: (1) the orthophoto and DSM of autumn

survey are in agreement with the topographic map available

for the study area (standard deviation of the differences be-

tween these two DSMs is 1.63 m); (2) the average differ-

ence between manual and UAS-based measurements of snow

depth (and the associated standard deviation) seems compet-

itive with the typical precision of point measurements and

other distributed techniques (the average difference obtained

is equal to −7.3 cm, with an associated standard deviation of

12.8 cm). The overall RMSE is equal to 0.143 m; (3) the stan-

dard deviation (and CV) across the study area increases with

decreasing spatial sampling distances, but stabilizes below

1 m resolution, thus suggesting the existence of a possible

compromise between increasing spatial resolution of surveys

and the amount of significant information obtained for hy-

drological applications.
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