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Abstract

The thesis contributes to the financial econometrics literature by improving
the estimation of the covariance matrix among financial time series. To such
aim, existing econometrics tools have been investigated and improved, while
new ones have been introduced in the field. The main goal is to improve
portfolio construction for financial hedging, asset allocation and interest rates
risk management. The empirical applicability of the proposed innovations has
been tested trough several case studies, involving real and simulated datasets.
The thesis is organised in three main chapters, each of those dealing with a specific
financial challenge where the covariance matrix plays a central role. Chapter 2
tackles on the problem of hedging portfolios composed by energy commodities.
Here, the underlying multivariate volatility among spot and futures securities
is modelled with multivariate GARCH models. Under this specific framework,
we propose two novel approaches to construct the covariance matrix among
commodities, and hence the resulting long-short hedging portfolios. On the one
hand, we propose to calculate the hedge ratio of each portfolio constituent to
combine them later on in a unique hedged position. On the other hand, we propose
to directly hedge the spot portfolio, incorporating in such way investor’s risk
and return preferences. Trough a comprehensive numerical case study, we assess
the sensitivity of both approaches to volatility and correlation misspecification.
Moreover, we empirically show how the two approaches should be implemented
to hedge a crude oil portfolio.
Chapter 3 focuses on the covariance matrix estimation when the underlying data
show non–Normality and High–Dimensionality. To this extent, we introduce
a novel estimator for the covariance matrix and its inverse – the Minimum
Regularised Covariance Determinant estimator (MRCD) – from chemistry and
criminology into our field. The aim is twofold: first, we improve the estimation
of the Global Minimum Variance Portfolio by exploiting the MRCD closed
form solution for the covariance matrix inverse. Trough an extensive Monte
Carlo simulation study we check the effectiveness of the proposed approach in
comparison to the sample estimator. Furthermore, we take on an empirical case
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study featuring five real investment universes characterised by different stylised
facts and dimensions. Both simulation and empirical analysis clearly demonstrate
the out–of–sample performance improvement while using the MRCD. Second, we
turn our attention on modelling the relationships among interest rates, comparing
five covariance matrix estimators. Here, we extract the principal components
driving the yield curve volatility to give important insights on fixed income
portfolio construction and risk management. An empirical application involving
the US term structure illustrates the inferiority of the sample covariance matrix
to deal with interest rates.
In chapter 4, we improve the shrinkage estimator for four risk-based portfolios. In
particular, we focus on the target matrix, investigating six different estimators.
By the mean of an extensive numerical example, we check the sensitivity of each
risk-based portfolio to volatility and correlation misspecification in the target
matrix. Furthermore, trough a comprehensive Monte Carlo experiment, we offer
a comparative study of the target estimators, testing their ability in reproducing
the true portfolio weights. Controlling for the dataset dimensionality and the
shrinkage intensity, we find out that the Identity and Variance Identity target
estimators are the best targets towards which to shrink, always holding good
statistical properties.
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Chapter 1
Introduction

The estimation of the covariance matrix plays a central role in portfolio construction and
optimisation. [Markowitz, 1952] defined the covariance matrix among financial time series
as a key input for his well–known portfolio building technique. In recent years, findings
suggested that investment portfolios solely based on the covariance matrix yield better
out–of–sample stability and performance [DeMiguel and Uppal, 2009]. Hence, the general
tendency has been to put risk – and so the covariance matrix – at the very centre of the
portfolio construction process. Seminal contributions as the Global Minimum Variance
[Black and Litterman, 1992], the Maximum Diversification [Choueifaty and Coignard, 2008],
the Equal–Risk–Contribution [Maillard et al., 2010] and more recently the Inverse Volatility
portfolios [Leote et al., 2012] have clearly shown that on the one hand, this object conveys
almost all the important information needed to allocate wealth. On the other hand, it carries
a lower estimation error than the mean, leading to more robust asset allocation choices for
investors.

From a statistical viewpoint, the true covariance matrix is an unfeasible object, given that
we only observe a sample of the whole population data. Hence, the covariance matrix used
in empirical applications is merely an estimate, suffering from different errors: estimation
error from the inferential process; model error from employing a certain model with specific
assumptions; curse of dimensionality because the number of parameters to estimate must
be lower than the number of available observations. Ignoring these issues leads to severe
inferential distortions, with pernicious consequences for investment portfolio allocations,
especially when the covariance matrix is the only input. As largely documented in the
literature (see e.g. [Ardia et al., 2017]), these distortions have striking implications in
out–of–sample portfolio weights and out–of–sample portfolio performances.

In light of the above considerations, we focus our efforts on improving the estimation of
the covariance matrix for portfolio applications. To do so, we build on existing econometric
methodologies and propose the adoption of new ones. In particular, we contribute to the
existing literature under different angles. Special emphasis have been given to issues in
portfolio construction and optimisation. In this area, we investigate the estimation of both
the covariance matrix and its inverse, considering several portfolio building rules for asset
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Chapter 1. Introduction 2

allocation purposes. Moreover, we also face issues related to portfolio hedging as well as
interest rates modelling for risk management purposes. Henceforth, this work has been
divided into three main chapters to accommodate the heterogeneous nature of the analysis.

Chapther 2 focuses on hedging energy commodity portfolios in the multivariate GARCH
framework. To such aim, we take on the case when the underlying spot and futures process
are driven by heteroskedastic volatility and correlation. We introduce and discuss two novel
methodologies to construct the hedging long–short portfolio: the Block Approach, where
each spot position is hedged in a stand–alone fashion to be aggregated to the hedged portfolio
in a second step; and the Objective–Driven approach, where we account for investor’s risk
and return preferences by hedging the spot positions in a portfolio fashion. This chapter
features a numerical illustration to assess the sensitivity of the hedge to both approaches,
and an empirical case study where a crude oil portfolio is hedged.

Chapter 3 revolves around the introduction of the Minimum Regularised Covariance estimator
(MRCD) into the financial econometrics literature. This is a robust estimator for the
covariance matrix and its inverse, particularly suitable to work with non–Normal and high–
dimensional datasets. The chapter is divided into two main sections: first, we try to exploit
the convenient closed form solution of the MRCD covariance inverse to improve the out–of–
sample performance of the Global Minimum Variance Portfolio. This is achieved trough a
comprehensive comparison with the sample covariance matrix estimator, carried on with both
simulated and real–world dataset. Second, we turn our attention to fixed income modelling
for portfolio risk management purposes. In this case, we compare the MRCD against four
alternative covariance matrix estimators with different statistical features. Through an
empirical case study, we search for the principal components driving the volatility of the
US term structure, giving a freshly new application of the MRCD within the fixed income
framework.

Chapter 4 concentrates on improving the shrinkage estimator for four risk–based portfolios.
The chapter compares several estimators for the shrinkage target matrix with the aim
of reducing the impact of covariance misspecification on the resulting portfolio weights.
Following the results in [Ardia et al., 2017], we first design a numerical illustration to assess
the effect of misspecification in the shrinkage target matrix. In a second instance, the study
features a comprehensive Monte Carlo exercise where we control for the dimensionality of
the dataset as well as the shrinkage intensity parameter. This allows us to pinpoint which
target matrix estimator leads to portfolio weights closer to the population ones.

Finally, chapter 5 concludes the thesis, highlighting possible futures research paths and
extensions of this work.
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1.1 Contribution of the thesis

The main contribution of this thesis revolves around improving the estimation of the
covariance matrix and its inverse for asset allocation and risk management purposes under a
portfolio framework. This is achieved by analysing and improving existing approaches as well
as by introducing novel techniques from other research fields. Furthermore, a huge variety
of asset classes and datasets has been employed along the thesis to verify the empirical
soundness of the proposed solutions. The next subsections offer a detailed description of
each contributions for the next three chapters.

1.1.1 Chapter 2

Chapter 2 deals with two alternative approaches to hedge a portfolio of crude oil commodities.
The addressed research question is whether it is preferable combining the hedge ratio of each
portfolio component to derive the portfolio hedge position – Block Approach – rather than
directly hedging the portfolio position – Objective–Driven Approach – thus incorporating into
the hedge the investor’s objectives and preferences in terms of risk and return. We compare
the approaches within a multivariate GARCH framework, hence considering the underlying
multivariate volatility process driven by heteroskedasticity. Using several multivariate
GARCH models for the covariance matrix (namely: Dynamic Conditional Correlation (DCC),
Diagonal–BEKK, Diagonal Rotated BEKK and Diagonal Rotated DCC) and under two
alternative hedging strategies (fixed and dynamically rebalanced), we devise an empirical case
study to practically hedge a long spot position in both WTI and Brent with related futures
contracts. Our research concludes that feeding the hedging procedure with the investor’s
risk-return preference lowers the hedge sensitivity to shifts in the portfolio composition.
The Objective–Driven approach makes then possible to get better risk–return performances,
especially out–of–sample, whose outcomes become more stable and less prone to negative
downfalls. Conclusions are robust with respect to changes in both the variance estimator
and in the hedging strategy.

Despite of the relevance of the issue, it has been scarcely examined in the existing literature:
[Roberts et al., 2018] analysed the problem for currencies portfolios, without taking into
account our multivariate volatility framework; while [Chang et al., 2011] discussed the
effectiveness of several multivariate GARCH models for hedging one commodity per time.
Therefore, there is enough room to claim that, to the best of the authors’ knowledge,
this work is a primer in introducing and discussing the issue of comparing the Block and
Objective–Driven approaches in the MGARCH framework.
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1.1.2 Chapter 3

Chapter 3 contributes to the existing literature by introducing a novel estimator for the
covariance matrix and its inverse – the Minimum Regularised Covariance Determinant
estimator (MRCD) – already applied in chemistry and criminology. In particular, we add
value towards two main directions, since we implement the MRCD in two different financial
econometrics’ areas: asset allocation and interest rate risk management. First, we use the
MRCD to limit portfolio weights misspecification within the Global Minimum Variance
Portfolio (GMVP) framework. Estimating the inverse covariance matrix (precision matrix),
in fact, is a key task that can generate estimation errors directly affecting the GMVP
out–of–sample performance. The MRCD, on the other hand, is a direct estimator of the
precision matrix, designed to deal with high–dimensional, non–Normal datasets likewise the
financial ones. These features make of particular appeal using the MRCD instead of the
sample estimator to build the covariance matrix in the portfolio optimisation problem. Our
study includes an extensive Monte Carlo simulation analysis to check the effectiveness of the
proposed approach in comparison to the sample estimator. Furthermore, the Monte Carlo
analysis shows that applying the MRCD technique lowers the GMVP weights misspecification.
Moreover, we take on an empirical case study featuring five real investment universes with
different stylised facts and dimensions. Both the simulated and empirical applications clearly
demonstrate that the out–of–sample performance of the GMVP benefits from the use of the
MRCD estimator: results suggest a reduction in the portfolio turnover at no cost for the
portfolio variance, and an increase in portfolio expected returns. Second, we compare various
methodologies to estimate the covariance matrix in a fixed income portfolio. Adopting a
statistical approach for the robust estimation of the covariance matrix, we compared the
Shrinkage, the Nonlinear Shrinkage, the Minimum Covariance Determinant and the MRCD
estimators against the sample covariance matrix, here employed as a benchmark. The
comparison was run in an application aimed at individuating the principal components of
the US term structure curve. The contribution of the work mainly resides in the fact that we
give a freshly new application of the MRCD and the NS robust covariance estimators within
the fixed income framework. Results confirm that, likewise financial portfolios, also fixed
income portfolios can benefit of using robust statistical methodologies for the estimation of
the covariance matrix.

1.1.3 Chapter 4

In Chapter 4, we tackle on the issue of minimising the misspecification from volatility and
correlation in the estimation of risk–based portfolios. Even thought portfolio weights solely
based on risk avoid estimation errors from the sample mean, they are still affected from
the misspecification in the sample covariance matrix. To solve this problem, we shrink
the covariance matrix towards the Identity, the Variance Identity, the Single-index model,
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the Common Covariance, the Constant Correlation, and the Exponential Weighted Moving
Average target matrices. Therefore, our contribution resides in improving the shrinkage
estimator specifically for the Minimum Variance, Inverse Volatility, Equal-Risk-Contribution,
and Maximum Diversification portfolios. Using an extensive Monte Carlo simulation, we offer
a comparative study of shrinkage target estimators, testing their ability in reproducing the
true portfolio weights. We control for the dataset dimensionality and the shrinkage intensity
in aforementioned portfolios. We find out that the Identity and Variance Identity have
very good statistical properties, also being well conditioned in high-dimensional datasets.
In addition, these two models are the best target towards which to shrink: they minimise
the misspecification in risk–based portfolio weights, generating estimates very close to
the population values. Overall, shrinking the sample covariance matrix helps to reduce
weight misspecification, especially in the Minimum Variance and the Maximum Diversification
portfolios. The Inverse Volatility and the Equal-Risk-Contribution portfolios are less sensitive
to covariance misspecification and so benefit less from shrinkage.

1.2 Datasets, Programming Codes and Published Research

In order to ensure the full reproducibility of the obtained results, this section provides a
summary, chapter by chapter, of the employed datasets as well as of the programming codes
developed for this thesis. Both these elements are available in the GitHub page of the
author at the following web address: https://github.com/marconeffelli/PhDThesis. In
addition, this section offers a complete description of the published research linked with this
manuscript.

In Chapter 2, we analysed WTI and Brent energy commodities. In particular, we used
WTI and Brent spot prices freely available from the US Energy Information Administration
(EIA1), while we used WTI and Brent futures prices obtained from Bloomberg database.
Each series has a total of 1505 daily observations in the period 03 January 2012 – 02 January
2018.

A programming code written in MATLAB with related instructions to replicate the Block
and the Objective–Driven approach is made available for download. In order to estimate
multivariate GARCH models, the code is based upon Kevin Sheppard MFE toolbox 2. The
research papers Commodities hedging with Multivariate GARCH models: an application to
the energy market and Hedging crude oil portfolios: better using a block or an objective-
driven approach?, both co–authored with my PhD main supervisor, Marina Resta, are
based on the results in this chapter and have been submitted for publication. The papers

1www.eia.gov.
2Available at https://www.kevinsheppard.com/MFE_Toolbox.
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have been respectively presented at the 2018 International Conference on Energy Finance
(ICEF – Beijing, April 03–04 2018) and at the 42nd annual meeting of the AMASES (Naples,
September 13–15 2018).

In Chapter 3, with respect to the first contribution on the Global Minimum Variance
portfolio, we analysed five investment universes. The first four are taken from Kenneth
French’s website 3. They have a monthly frequency in the period 01 July 1926 – 01 August
2018. The fifth investment universe has been taken from Bloomberg database. It is composed
by the prices of 300 stocks belonging to the S&P500 in the period 01 January 1996 – 01
June 2018.

Programming code written in R to simulate financial time series, calculate the Global
Minimum Variance portfolio and all the investment strategies described along this chapter is
made available at the aforementioned GitHub page of the author. The code for the MRCD
estimator has been taken from the University of KU Leuven website 4.

The research paper Portfolio Selection with Minimum Regularised Covariance Determinant,
co–authored with my PhD supervisors, Marina Resta and Maria Elena De Giuli, is based
on the results in the first part of this chapter and has been submitted for publication. The
paper has been presented at the XIX Quantitative Finance Workshop (University of Roma
Tre, January 24–26 2018), at the 29th European Conference on Operational Research (EURO
– Valencia, July 08–11 2018) and at the 42nd annual meeting of the AMASES (Naples,
September 13–15 2018).

With respect to the second contribution on fixed income modelling, we analysed the US term
structure of interest rates. Daily observations in the period 02 January 2014 – 08 September
2017 have been taken from Bloomberg database.

Programming code written in MATLAB for running the PCA analysis is made available.
The MCD has been calculated using the MATLAB toolbox LIBRA 5; the MRCD code shares
the previously mentioned source, while the Nonlinear Shrinkage code has been taken from
the CRAN R package nlshrink 6.

The Research paper A comparison of Estimation Techniques for the Covariance Matrix in a
Fixed–Income Framework, co–authored with Marina Resta, is based on the results in the
second part of this chapter and it has been published in New Methods in Fixed Income
Modelling, pp. 99–115, Springer, Cham.

In Chapter 4, we used a simulated dataset. Programming code written in MATLAB to

3http://mba.tuck.darthmouth.edu/pages/faculty/ken.french/data_library.html

4https://wis.kuleuven.be/stat/robust/Programs/MRCD.
5https://wis.kuleuven.be/stat/robust/LIBRA/LIBRA-home.
6https://cran.r-project.org/web/packages/nlshrink/nlshrink.pdf.
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calculate the four risk–based portfolios is made available at the GitHub page of the author.

The research paper Target matrix estimators in Risk–based portfolios is based on the results
in this chapter and it has been published in Risks, 6(4), 1–20, Special Issue Computational
Methods for Risk Management in Economics and Finance.



Chapter 2
Energy Portfolio Hedging in the MGARCH
framework 1

2.1 Introduction

This chapter provides an in–deep comparison and discussion of alternative hedging approaches
for an energy commodities portfolio. The research question we are trying to address concerns
the hedging procedure to restrain or reduce the risk of an investing position in energy
commodities. Consider for instance an investor willing to allocate her wealth into two
crude oil spot commodities, WTI and Brent, and to hedge the exposure by short–selling
respective futures contracts. Under the Block Approach (BA), the investor calculates the
Hedge Ratio (HR therein after) for each couple of spot and futures contracts (say: HRWTI

and HRBRENT ), at first, and in a second step she builds the hedged portfolio covering her
position by a counterpart investment of −HRWTI and −HRBRENT in futures. This means
that the overall hedging position of the portfolio (say: HRπ) is merely the aggregation of the
HR of any component. Under the Objective–Driven Approach (ODA), on the other hand,
the process described in previous rows is somewhat reverted: the HR is directly calculated
on the spot portfolio so that the quote of WTI and BRENT to hedge depends on the weights
given to the commodities in the portfolio optimisation procedure. The difference is not
merely a matter of how aggregating the HRs, the ODA adds something further, because it
makes possible to incorporate the investor risk–return preferences into the computation of
the HR. This might potentially exercise a strong impact on the overall hedging decision.

Despite of the relevance of the issue, so far it has been examined only in a few cases: [Roberts
et al., 2018] analyses the problem for currencies portfolios, while [Chang et al., 2011] discusses
the effectiveness of the BA comparing several multivariate models for the portfolio variance;

1The research papers Commodities hedging with Multivariate GARCH models: an application to the
energy market and Hedging crude oil portfolios: better using a block or an object–driven approach?, both
co–authored with my PhD main supervisor, Marina Resta, are based on the results in this chapter and
have been submitted for publication. The papers have been respectively presented at the 2018 International
Conference on Energy Finance (ICEF - Beijing, April 03-04 2018) and at the 42nd annual meeting of the
AMASES (Naples, September 13-15 2018)

8



Chapter 2. Energy Portfolio Hedging in the MGARCH framework 9

however, to the best of the authors’ knowledge the comparison between the BA and ODA
has not been examined, at least for energy commodities. This clearly opens space enough
for introducing and discussing the issue.

The experimental design carried on throughout the chapter is based on the following
assumptions: (i) the investor hedges by shorting with futures contracts; (ii) she calculates
the HR to reduce the variance of the hedged portfolio; (iii) to hedge the portfolio by risk,
the investor can run either the BA or the ODA. With respect to the assumption labelled by
(iii), in both cases it is necessary using a proper estimator for the portfolio variance. Stylized
facts affecting crude oil time series, widely described in the specialised literature [Kang
and Yoon, 2013] and later addressed in Section 5 of this chapter, too, suggest that the HR
should be conditional and time–varying; this supports the use of an underlying conditional
heteroskedastic process for the portfolio variance. We therefore selected four multivariate
GARCH models, namely: the Dynamic Conditional Correlation (DCC) [Engle and Sheppard,
2001], the diagonal Baba, Engle, Kraft and Kroner (DBEKK) [Engle and Kroner, 1995], the
diagonal rotated BEKK (RBEKK) and the diagonal rotated DCC (DRDCC) [Noureldin
et al., 2014]. Finally, we tested the hedges derived from both the BA and ODA under
two strategies: Fixed Hedging (FH) and Dynamically Rebalanced Hedging (DRH). The
approaches were compared using WTI and BRENT daily data in the period: June 2012–June
2018, using earlier 1000 observations (June 2012–December 2015) as in–sample dataset, and
the remaining 501 observations as out–of–sample, to test the hedging effectiveness.

Our results clearly highlight the superior performance of the ODA on the BA, supported by
a number of evidences. First, the returns of the hedged portfolio are more stable and less
prone to negative downfalls. This assertion is also supported by the behaviour of the Overall
Returns Index (ORI), which computing the difference between the returns of the unhedged
and hedged position provides by construction the same information as in the case of holding a
long/short portfolio. Second, applying the ODA shrinks the variance of the hedged position,
as resulting from the performance of two indicators which are generally employed to assess
the goodness of the hedging: the Hedging Efficiency (HE) and the Expected Shortfall (ES).
While the former assesses the goodness of the hedge in terms of variance reduction, the latter
evaluates how much the risk is lowered; clearly, a desirable feature for the hedging is to get
the highest HE and the closest to zero ES as possible. Throughout the chapter we are going
to show that within our simulation framework the ODA makes possible to obtain higher
HE and closer to zero ES values than in the BA, underpinning the lower risk associated
to the former. Moreover, we highlight that results are stable and robust with respect to
changes in the multivariate estimators of the portfolio variance and in the hedging strategies
included in the chapter. Nevertheless, empirical results suggest that the DRBEKK is the
best hedging model.

The chapter is organised as follows. Section 2.2 examines the literature on hedging, and
offers a complete overview upon the room left to improve existing research. Section 2.3
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introduces the notations used across this chapter, the derivation of the Minimum Variance
Hedge Ratio and a detailed discussion on Multivariate GARCH models. Section 2.4 analyses
the HR specifications for both the Block and the Objective–Driven approaches. Section 2.5
offers a numerical illustration to gauge the impact of volatility and covariance upon the
two hedging approaches. Section 2.6 illustrates an empirical application to hedge Crude
Oil portfolios. After a comprehensive data analysis, it establishes the general settings for
our study, describing the implementation of the hedging approaches and related hedging
strategies, to move then at how evaluating the hedge results. Section 2.7 concludes.

2.2 Literature Review

As described in [Chen et al., 2013], there is a large body of literature dealing with the
Hedge Ratio (HR), variously focusing on its building components: the objective function,
the assumption of static or dynamic basis risk, and the model for estimating the returns and
the volatility of the financial exposure.

For what is concerning the objective functions, they can be mainly divided into two categories:
risk–minimising and utility–maximising [Chen et al., 2013]. Within the former, the most
common HR, as well as the first being described in the academic literature, is the Minimum
Variance Hedge Ratio (MVHR) [Johnson, 1960]. The MVHR works by reducing the volatility
of the hedged portfolio: the lower, the better. Risk-minimising HRs can be also estimated
with risk proxies other than the variance: [Cheung et al., 1990] uses the Mean Extended–Gini
coefficient (MEG), while [Chen et al., 2001] and [Turvey and Nayak, 2003] employ the
Generalised Semi–Variance (GSV). On the other hand, the utility–maximising HRs maximise
the investor’s Risk to Reward Position (RtRP): an example is provided by the so–called
Optimal Hedge Ratios (OHR) [Chen et al., 2013], a family of HRs that assumes various
proxies for the RtRP: the Sharpe Ratio in [Howard and D’Antonio, 1984]; the expected utility
in [Kroner and Sultan, 1993], the mean–MEG and the mean–GSV in [Shalit, 1995] and [Chen
et al., 2001], respectively. Nevertheless, the MVHR is often preferred to the OHR: [Chen
et al., 2001], for instance, points out that when futures prices behave as a pure–martingale
process, the MVHR is consistent with the mean–variance approach; moreover, if spot and
futures returns are jointly normally distributed, the MVHR would be also consistent with
the expected utility maximisation principle.

Understanding the basis risk, i.e. the risk associated with imperfect hedging, is important,
too, given its practical implications for investors. Assuming constant volatility through time
(static basis risk), the naïve method [Johnson, 1960] short futures with the (1:1) ratio between
spot and futures; moreover, by regressing spot on futures price changes [Benninga et al.,
1984] demonstrated the empirical relevance of the OLS regression for hedging, and described
the procedure as general and easy to apply. Indeed, [Yang and Allen, 2005] used an Error
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Correction Model (ECM) for hedging the Australian futures market thus considering the
eventuality of order one integration between spot and futures prices time series. Nevertheless,
when the basis risk is time–varying (dynamic basis risk), the HR is easily estimated within
the ARCH/GARCH framework. In this case, the HR itself becomes a time–varying object
[Lence et al., 1993]: this implies that spot and futures prices are assumed being generated by
different stochastic processes, as their behaviour differs through time, so that the unrealistic
assumption that spot and futures prices move together is relaxed. Earlier applications of
ARCH and GARCH models for building the HR have been discussed in [Cecchetti et al.,
1988] and [Kroner and Sultan, 1993]. In particular, [Cecchetti et al., 1988] built an ARCH
process to replicate the dynamics of the variance, trying to hedge a position in a 20–year
Treasury Bond, while [Kroner and Sultan, 1993] hedged several currencies (namely: the
British Pound, the Canadian Dollar and the German Mark) using a GARCH model and
demonstrated the hedge ability of the so–obtained dynamic HR. The dynamic HR was tested
on commodity markets by [Baillie and Myers, 1991] and [Moschini and Myers, 2002]: the
former hedged six different non–energy commodities with a bivariate GARCH model, and
found that the static HR is unsuitable, since the movements of the basis cannot be neglected
over time; the latter derived similar conclusions with a BEKK (Baba-Engle-Kraft-Kroner)
multivariate GARCH model [Engle and Kroner, 1995] to hedge a long position in corn. The
appropriateness of univariate and multivariate GARCH models in hedging commodities was
also shown in [Chan and Young, 2006], who successfully hedged an exposure in copper with
a regime–switching GARCH model well working in the case of both bear and bull markets.

The superior capability of the GARCH and its extensions with respect to other hedging
alternatives has been deeply investigated, too: [Laws and Thompson, 2005] found that the
Exponentially Weighted Moving Average (EWMA) model [RiskMetrics, 1996] performs better
than OLS and standard GARCH methodologies in a hedging application on stock indexes;
an opposite conclusion, however, is drawn by [Choudhry, 2009], who compared the hedging
effectiveness of three models (naïve, OLS and GARCH) for six stock indexes. Besides, [Floros
and Vougas, 2004], hedging the Greek stock market, argued that GARCH performs better
than OLS and Vector Error Correction Models (VECM). Actually, Multivariate GARCH
(MGARCH) models represent the last frontier for hedging strategies involving the GARCH;
[Bauwens et al., 2006] identified three approaches for constructing MGARCHs: (i) as direct
generalisation of univariate GARCH models, likewise in VEC, BEKK and EWMA models;
(ii) as linear combination of univariate GARCH, like in the orthogonal models; (iii) as
nonlinear combination of univariate GARCH models, like in the case of Dynamic Conditional
Correlation models (DCC). These models, in fact, are characterised by a low–parameterised
structure, due to a two–steps approach for the estimation of univariate volatility components
separately from the covariances [Bollerslev, 1990], [Engle and Sheppard, 2001].

MGARCH models have been widely used to replicate commodities and their relations
[Silvennoinen and Teräsvirta, 2009]. There is a growing amount of literature that deals
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with their practical applications, at present oriented towards two main streams. In detail,
[Park and Switzer, 1995] used a bivariate GARCH model to hedge stock indexes; the same
model was employed by [Baillie and Myers, 1991] for hedging in six commodities markets,
finding out evidence of non–stationarity in the HR; [Chang et al., 2010] computed the
in–sample MVHR with several estimation techniques, and evaluated the hedge of a portfolio
composed by oil and gasoline spot commodities together with the related futures contracts;
[Lien et al., 2002] compared the hedging ability of OLS, Vector Auto–Regression (VAR),
VECM and diagonal-VECM (DVECM) for the Australian equity market, and validates the
assumption of a time–varying HR. A fruitful research vein concerns also the comparison
among various MGARCH models and the OLS regression: [Yang and Allen, 2005] focused
on the constant–correlation Vector GARCH and examined the out–of–sample forecast for
ten financial instruments covering different asset classes such as currencies, commodities and
equities; [Moon et al., 2009] analysed the in–sample and out–of–sample hedging performance
in the Korean equity index and the respective futures for several MGARCH models, including
BEKK, principal components GARCH, DVECM and CCC: as major finding, they highlight
the greater suitability of those model for dynamic hedging. Besides, [Chang et al., 2011]
tested the effectiveness of BEKK, CCC, DCC and Vector ARMA-GARCH models to hedge
long positions in crude oil, pinpointing the notable efficiency of the DCC. Similarly, [Chang
et al., 2013] applied MGARCHs to currencies, to define hedging strategies for the exchange
rate of the US dollar against Euro, British Pound and Japanese Yen: four MVHRs calculated
with diagonal BEKK, CCC, DCC and VARMA-Asymmetric GARCH (VARMA–AGARCH)
models are compared for a two–assets portfolio including spot and correspondent futures
contracts. Findings suggest the highest hedging efficiency of CCC and VARMA–AGARCH.

Within the above described framework, our work is supported by various instances. First,
so far it has not still presented in the energy commodities market a systematic discussion
about the issue under examination: whether it is better to hedge separately the components
of the portfolio or the portfolio as whole at first, separating the contribution of each asset
later, based on the weights of the optimisation procedure. Second, we merge the discussion
within a multivariate portfolio variance framework. Third, we offer an extensive comparison
based on various performance and risk indicators as well as on various hedging strategies.

2.3 Methodology

2.3.1 Nomenclature

In order to ensure a streamlined and easier understanding of this section, we preliminary
summarise the nomenclatures in Table 2.1, recalling them when necessary. We then derive
the analytic formulas for the MVHR to be applied both in the BA and ODA. Finally, we
present and discuss the multivariate GARCH models selected for estimating the portfolio
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Table 2.1: Variables in use throughout this chapter and their description

Row nr. Variable Description

1 k number of spot assets

2 n = 2k total number of assets, including spot and hedging instruments

3 σ2
hedged

(
σ2
t,hedged

)
unconditional (conditional) hedged portfolio variance

4 σ2
unhedged

(
σ2
t,unhedged

)
unconditional (conditional) unhedged portfolio variance

5 qt k × 1 vector of hedging instruments cond. weights

6 ct k × 1 vector of cond.cov. between hedging instruments and the

unhedged portfolio

7 Gt k × k conditional Variance–Covariance matrix among hedging instruments

8 It−1 sigma field generated by the past information until time t− 1

9 σ2
hedging unconditional hedging portfolio variance

10 σunhedged,hedging unconditional covariance between unhedged and hedging instruments

11 Ht n× n conditional Variance–Covariance matrix for the hedged portfolio

12 Dt n× n diagonal matrix in DCC and RDCC models for the standard deviation

13 Yt conditional correlation matrix among the univariate returns

in DCC and RDCC model

14 Qt matrix driving the correlation dynamics in DCC and RDCC models

15 C upper triangular matrix of intercept equations in DBEKK and DRBEKK models

16 A diagonal matrix of coefficients in in DBEKK and DRBEKK models

17 B diagonal matrix of coefficients in in DBEKK and DRBEKK models

18 M unconditional correlation eigenvectors matrix for the D-RDCC model

19 Λ unconditional correlation eigenvalues matrix for the RCC model

variance.

2.3.2 Deriving the Minimum Variance Hedge Ratio

We derive the MVHR for portfolio whose Variance–Covariance (VC) matrix is conditional
and time–varying. The derived formula can be used for hedging both in the BA and ODA
cases.

Following [Johnson, 1960], consider an unhedged portfolio of k spot assets; we want to hedge
its exposure by shorting an equal number k of related futures contracts. The resulting hedged
portfolio is then formed by n = 2k assets and the vector collecting the realisations of the
returns for both the spot and futures contracts is:

πt,hedged|It−1 ∼ N(µt|It−1, Ht|It−1), (2.1)

where Ht|It−1 is the portfolio VC conditional matrix of dimension n, as in row 11 of Table
2.1, and µt|It−1 is the n× 1 conditional mean vector. For sake of conciseness, since now on,
all the quantities with the subscript t are meant being conditional to the sigma filter It−1

that thereinafter will be omitted by the notations.

We assume to build the hedged portfolio by adding the hedging instruments (in our case:
future contracts) to the unhedged portfolio, so that the hedged portfolio variance can be
described as follows:
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σ2
t,hedged = σ2

t,unhedged + q′tGtqt + 2q′tct, (2.2)

where qt, ct and Gt are as resulting from rows 5, 6 and 7 of Table 2.1. In this setting, q′tGtqt
is the VC matrix of the hedging instruments with weights determined by the HR and q′tct is
the covariance between the portfolio and the hedging instruments. By construction Gt is a
block of Ht, as Ht is the VC matrix among all the assets, including futures contracts.

In order to get the MVHR, the variance of the hedged portfolio must be minimised with
respect to qt; the First Order Conditions (FOC) from (2.2) is:

2Gtqt − 2ct = 0k,

so that, as Gt must be positive definite, the Hedge Ratio is given by the optimal vector q∗t :

q∗t = −G−1
t ct. (2.3)

and the i–th component of q∗t is:

q∗t (i) =
σuh(i)

σ2
hedging(i)

, (2.4)

where σuh(i) is the covariance between the unhedged portfolio and the i–th hedging instrument
and σ2

hedging(i) is the corresponding variance.

2.3.3 Multivariate GARCH: Technical Specifications

Within the above depicted framework, the matrix Ht plays an important role, as once it has
been specified, since Gt is a block of it, the HR is fully determined too. For this reason,
the conditional VC matrix Ht is our object of interest, and following [Engle and Sheppard,
2001], we modelled it by way of four multivariate GARCH models: the Dynamic Conditional
Correlation (DCC), the diagonal Baba, Engle, Kraft and Kroner (DBEKK), the diagonal
rotated BEKK (DRBEKK) and the diagonal rotated DCC (DRDCC).

The rationale in choosing the DCC and the Diagonal–BEKK models is that they have been
already applied in [Chang et al., 2011], but limiting to the BA. Moreover, we consider the
DRBEKK and the DRDCC because they are relatively new and promising tool and they can
be easily implemented, as directly drawn from DCC and BEKK models with few additional
computational efforts. [Noureldin et al., 2014].

In the next rows we provide a short description of above citepd MGARCH specifications
of the matrix Ht: the rationale is providing the reader with a basic understanding of the
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efforts behind its estimation; references serve to address towards more in–depth analysis of
any MGARCH model.

The BEKK [Engle and Kroner, 1995] is an extension of the VEC model [Bollerslev, 1988].
Formally, the BEKK equation for Ht is:

Ht = C ′C +A′εt−1ε
′
t−1A+B′Ht−1B, (2.5)

where C, A and B are the matrices as specified at rows 15–17 in Table 2.1.

An alternative parametrisation of Ht is provided by the Dynamic Conditional Correlation
(DCC) model [Engle and Sheppard, 2001]:

Ht = DtYtDt, (2.6)

where Dt and Yt are as in rows 12–13 of Table 2.1. The formulation of Ht given in (2.6)
is particularly suitable for modelling purposes, as it allows to represent the univariate
conditional variances in Dt in various ways, thus generating very different representations of
the portfolio variance. In our case, for instance, the hii,t elements of Dt are drawn from an
univariate GJR(1,1) (Glosten, Jagannathan, and Runkle) process [Glosten et al., 1993] to
include the evidence of greater volatility increases after negative shocks (leverage effect):

hii,t = ωi + χiε
2
i,t−1 + γi1ε2i,t−1<0 + δihii,t−1 (2.7)

where ωi is the constant term associated to each element in the main diagonal of Dt, εi,t−1

is the error term at time t− 1, 1ε2i,t−1<0 is the indicator function which takes value 1 when
εi,t−1 < 0 and 0 otherwise, χi weights the error terms at time t− 1, γi is the leverage effect
parameter and δi weights the variance at time t− 1. This in turn makes possible to express
Yt in (2.6) through the following factorisation:

Yt = ΨhQ
DCC
t Ψh, (2.8)

where Ψh is the diagonal matrix with elements 1/
√
ii, t, i = 1, . . . , n and the matrix Qt given

by:
Qt = (1− χ− γ − δ)Ω + θ1ν̂

′
t−1ν̂t−1 + θ2Qt−1. (2.9)

Here χ, δ and γ are as defined in the previous rows, ν̂t−1 is the vector of standardised
residuals at time t− 1, Ω is the constant correlation matrix of the residuals and a and b are
the scalars driving the correlation estimation process. In order to estimate it, we adopted the
standard Quasi Maximum Likelihood technique with a three–stages procedure as in [Engle,
2002] that estimates the univariate variance components, the correlation intercepts and the
dynamic parameters at three different steps.
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The Diagonal–RBEKK and the Diagonal–RDCC models belong to the class of rotated ARCH
(RARCH) models; as the names suggest, they are extensions of the BEKK and DCC models,
respectively. The underlying idea is to apply a transformation (rotation) on raw returns that
facilitates the adoption of covariance targeting technique [Noureldin et al., 2014], ending up
in a less–parametrised estimation process.

Starting from the DRBEKK, the rotated returns are defined as:

et = MΛ−1/2M ′rt = H̄−1/2rt, (2.10)

where M , Λ are as in rows 18–19 of Table 2.1. Moreover:

Ht = H̄1/2RtH̄
1/2. (2.11)

with:

Rt = (In −AA′ −BB′) +Aet−1e
′
t−1A

′ +BRt−1B
′. (2.12)

Here R0 = In, where In is the identity matrix of dimension n, A,B are diagonal matrices
as at rows 16–17 in Table 2.1 and et are as previously specified. Clearly, estimating Rt is
less demanding than estimating Ht, so that it is possible to build a simpler model, as this
diagonal factorisation requires the estimation of only n elements.

As highlighted in [Noureldin et al., 2014], the RBEKK can be improved by applying the
rotation to the returns after standardising them by the fitted conditional variances, thus
obtaining the s.c. rotated DCC (RDCC). In this case, the general equation for Ht is the
same as in (2.15) but: Yt is now given by:

Yt = (Qt � In)−
1
2Qt(Qt � In)−

1
2 .

Here the symbol � indicates the Hadamard product and Qt is obtained though the returns
rotation procedure [Noureldin et al., 2014]:

Qt = MΛ1/2M ′Q∗tM
′Λ1/2M, (2.13)

where M and Λ are as described in Table 2.1, rows 18 and 19, and Q∗t−1 is the variance of
the standardised errors at time t− 1. The expression in (2.13) is similar to (2.12) for the
DRBEKK model, with the only difference that here we are modelling Qt instead than Rt.
Likewise in the case of Rt, this specification allows estimating a smaller number of parameters
compared to the standard case because A and B are diagonal matrices by construction.
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The DRDCC exploits the DCC parametrisation, proposing a robust alternative to the DCC
itself, since it does not imply any bias in the estimation of the unconditional covariance, as
the DCC does [Noureldin et al., 2014].

2.4 Better using a Block or an Objective–Driven Approach?

The difference between the Block and the Objective–Driven approaches originates when a
portfolio manager faces the decision to hedge a portfolio of spot securities. In this chapter,
we assume to have an initial investment universe composed by two spot securities, say S1 and
S2. Each of those disposes of a related futures contract (F1 and F2) of whose it represents
the underlying. The spot unhedged portfolio is given by:

πunhedged = w1S1 + w2S2, (2.14)

with w1 and w1 being the spot-1 and spot-2 weights. Spot weights always add up to 1.
With hedging, a long-short portfolio featuring k = 2 spot securities and corresponding k = 2

futures contracts is built. Our question is: should the portfolio manager calculate the hedge
ratios for both spot securities separately and then create a hedged portfolio (Block approach)
merging the two hedged positions, or the first step should consist in hedging the two spot
positions as a unique unhedged portfolio (ODA approach)? In the next rows we demonstrate
how this decision leads to different hedge ratios. The main difference in choosing one of the
proposed approach is the characterisation of the variance-covariance matrix among spot and
futures securities, which is the main object of interest when hedging. In fact, in the case of
the BA one just needs the covariances between spot and futures to work, while the ODA
requires a richer set of information since it models the portfolio against the futures. We will
highlight this along the section.

2.4.1 Block Approach

When hedging with the Block Approach, each asset is considered as a stand-alone block.
This allows to calculate the hedge ratio separately for the i–th asset using (2.4):

HRBAi =
cov(Si, Fi)

var(Fi)
;

here i = 1, 2. To hedge the i–th spot position one must short a quantity of hedging instrument
as described in HRBAi . With Si describing a long position in the spot security i, we denote
the outcome of the hedge for the i–th spot security as:
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πhedged,i = wiSi + (−wi)HRBAi Fi,

where the futures position is weighted by the corresponding spot weight. Finally, the two
hedged positions are merged to create the final hedged portfolio.

πhedged = πunhedged + (−w1)HRBA1 F1 + (−w2)HRBA2 F2. (2.15)

More precisely, in an algorithmic fashion, the Block approach can be summarised in a few
steps provided in the following rows.

Algorithm 2.1: Block Approach.

1 Allocate the initial wealth for spot assets as prescribed by a certain portfolio

building rule.

2 Considering each spot/futures couple as stand-alone blocks, compute the hedge

ratios.

3 Short futures contracts as prescribed by the HRs obtained in step 2.

4 Create the final hedged portfolio by merging the two hedged positions.

2.4.2 Objective–Driven Approach

Under the Objective–Driven approach, the portfolio manager builds the hedge directly on
the spot portfolio. The hedge ratios are calculated using (2.3):

HRODA = [cov(πunhedged, F1), cov(πunhedged, F2)]G−1.

HRODA is a vector composed by 2 elements. The hedged portfolio is easily built with the
following:

πhedged = πunhedged + (−)HRODA1 F1 + (−)HRODA2 F2.

More precisely, in an algorithmic fashion, the Objective–Driven approach can be summarised
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in a few steps provided in the following rows.

Algorithm 2.2: Objective–Driven Approach.

1 Allocate the initial wealth for spot assets as prescribed by a certain portfolio

building rule.

2 Compute the hedge ratios between the unhedged portfolio and the two futures

instruments.

3 Short futures contracts as prescribed by the ODA HR obtained in the previous step

to obtain the final hedged portfolio.

Remarks

The main takeaways of this section is to highlight the differences in the two hedging
approaches. The point is that, under the above–described framework, the way in which the
covariance among spot and futures is modelled changes dramatically. For example, in the
case of the BA, the portfolio manager just needs the correlation among each spot/futures
couple (ρ(Si, Fi)) and the futures variances var(Fi). On the contrary, hedging with the ODA
approach means to calculate a richer set of information, since besides the correlations between
the unhedged portfolio and the futures (ρ(πunhedged, F1)), the portfolio manager needs G,
the variance–covariance matrix of futures. Assuming that the portfolio manager models
the variances and covariances as multivariate GARCH processes, she needs to estimate two
bivariate GARCH models under the BA, and one tri–variate GARCH model under the ODA.
In conclusion, if the BA seems more practical to be implemented involving less parameterised
models, on the other hand the ODA allows for a richer characterisation of variances and
covariances, producing hedge ratios that contain more information.

2.5 A Numerical Illustration

To provide the reader with additional insights about the relevance of the addressed issue, we
discuss a numerical example. Consider for instance a portfolio made by two assets, say S1

and S2, hedged by shorting with futures positions, F1 and F2. The covariance matrix of the
hedged portfolio is therefore given by:

V C =


σS1

0 0 0

0 σS2
0 0

0 0 σF1
0

0 0 0 σF2




1 ρ(S1,S2) ρ(S1,F1) ρ(S1,F2)

ρ(S1,S2) 1 ρ(S2,F1) ρ(S2,F2)

ρ(S1,F1) ρ(S2,F1) 1 ρ(F1,F2)

ρ(S1,F2) ρ(S2,F2) ρ(F1,F2) 1



σS1

0 0 0

0 σS2
0 0

0 0 σF1
0

0 0 0 σF2


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with V C ′ = V C, i.e, the matrix has simmetric entries with respect the main diagonal. This co-
variance matrix has entries that resemble the behaviour of WTI and BRENT spot and futures
contracts during the period 2012–2018; therefore, (σS1 , σS2 , σF1 , σF2) = (0.02, 0.02, 0.02, 0.02)

and (ρ(S1,S2), ρ(S1,F1), ρ(S1,F2), ρ(S2,F1), ρ(S2,F2), ρ(F1,F2)) = (0.6, 0.9, 0.8, 0.6, 0.7, 0.9).

We assume to monitor the behaviour of the HR when, varying the weights in the range [0,1],
all is maintained unchanged except for the volatility (shifted in the range [0.01,0.05]) or the
correlation (shifted in the range [0.5,1]), which are shifted one per time as shown in Table
2.2.

[Table 2.2 about here.]

The organisation of Table 2.2 mimics that of Figure 2.1 collecting the the results, organised
into a 4× 11 matrix of plots. The Table, in fact, reports the volatility and correlation whose
value is change, the represented security, and the position (row and column) in which reading
the BA/ODA cases. In a similar way, in Figure 2.1 from top to bottom, rows 1–2 pertain
the BA, while rows 3–4 deal with the ODA. Plots are intended to be examined ad discussed
by pairs: red–painted graphs always represent the evolution of the HR for the first security
of the pair; green–coloured plots do the same but for the HR of the second security. Finally,
columns 2 to 11 illustrate the cases of the above Table, while the first column shows the
initial HRs, i.e. those derived by assuming the structure provided by (2.5) for the covariance
matrix.

[Figure 2.1 about here.]

Starting from Column 1 in Figure 2.1, the starting HR depends on the weights assigned to
the security in a proportional fashion: the greater the weight given to the first security, the
highest the HR is (see the red lined in rows 1 and 3 of Col. 1); obviously the HR of the second
security behaves exactly on the opposite way. At the first glance, the starting situation
appears being the same for both the BA and the ODA; however, a deepest investigation of
the plots suggests the existence of a small difference, as for small weights value the HR of
the first security in the ODA lies below the zero line (blue–dashed), while for the BA it does
not. Moving to the second column, we observe the effect of varying the covariance between
S1 and F1: in this case, likewise in the other ones we assumed changes in the range [0.5, 1]:
with the dashed–blu line we indicate the zero line, while the original position of the HR, as
already discussed in Column 1, is highlighted by a dotted black line. We observe that the
overall effect of changing σS1,F1 is missed both by the BA and the ODA: as the weight of
the first security increases, the related HR does the same, but the original behaviour of the
HR (black–dotted line) works now as an upper bound for the HR values. Moreover, the
increase is with a lower emphasis than before (i.e. as observed in Column 1, using the initial
VC matrix): this is well represented by the red cone that now shows how the HR evolves
(Column 2, rows 1 and 3). The effect is slightly enhanced in the ODA where it is evident
not only for the first security (as in the BA), but also for the second one. Similar remarks,
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in a specular fashion, can be spent for the plots in Column 3, replacing S1 by S2 and F1 by
F2. Turning to Column 4 to examine the effects in changing the covariance between S1 and
S2, we observe that, as reasonably expected, this variation does not influence the HR that,
in fact, maintains at the same levels as discussed in the original situation in Column 1. The
situation is sensitively different when moving to the results in Column 5: while varying the
covariance between F1 and F2 does not affect the HR in the BA, the same does not apply in
the ODA where the HR values seem rolling up around the original levels represented by the
black–dotted line. A similar trend is repeated when the changes operate between S1 and F2

(and specularly between S2 and F1).

Overall, we can then conclude that the BA is much less sensitive than the ODA to fluctuations
in the values of the VC matrix.

2.6 Case Study – Hedging Crude Oil Portfolios

Consider an investor aimed at hedging a portfolio composed by more than one spot energy
commodity. The problem can be taken on with two alternative approaches: (i) each
commodity is considered as a stand–alone asset, and hence the hedge is calculated according
to the BA, by weighting the hedge ratio of each portfolio component; (ii) the investor directly
hedges the overall portfolio position (ODA), managing the hedge for each asset in a second
time, depending on the portfolio weights calculated during the optimisation procedure.

This case study is focused on understanding which approach works at best, since there is a
trade–off between hedging with these approaches. The main advantage of adopting the ODA,
in fact, is in the embedding of more information: all the covariances among different futures
contracts are considered, at the cost of estimating a richer and then more parametrised
multivariate GARCH model. On the other hand, the BA uses less information, but is less
demanding in the estimation of the parameters for the multivariate model.

We consider an investor who wants to equally allocate her wealth between WTI and Brent
spot commodities and to hedge the exposure with related futures.

In order to provide a comprehensive discussion of the problem, we start with some exploratory
data analysis, at first, including both the formal description of the involved securities, and
the statistical characterisation of the dataset; second, we describe the hedging procedure,
and finally we discuss the results.

2.6.1 Data Analysis

Table 2.3 illustrates basic features of observed spot and futures contracts, including also the
abbreviations employed thorough the chapter. Selected securities are all listed in American
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US Dollar; WTI is negotiated on the Intercontinental Exchange (ICE), while Brent is traded
on the New York Mercantile Exchange (NYMEX).

[Table 2.3 about here.]

We extracted daily closing prices from the US Energy Information Administration (EIA) 2

for spot instruments, and from Bloomberg3 for futures thus creating a sample of 1505 daily
observations per time series, in the period: 03 January 2012 - 02 January 2018. The starting
date of the investment (and hence of the associated hedge) is: 31 December 2015. The
period January 2012 - December 2015 (almost four years, for an overall number of 1004 daily
observations) was employed for estimating the multivariate GARCH models parameters.
The period: January 2016 - January 2018 (501 daily observations) served as out-of-sample
set for testing the HRs.

[Figure 2.2 about here.]

The selected time frame is characterised by a sharp decrease in prices during the 2014–2015
biennium due to a combination of severe over–capacity and weak demand, which forced oil
prices to their lowest levels since the financial crisis. Moreover, at the end of 2016 the joint
action of "Trumplflation" and the decision of non–Opec producers to cut supply generated
a period of boom and bursts in the price levels. These effects are clearly observable in
both spot and futures prices and returns time series as illustrated in Figure 2.2, displaying
frequent shifts in prices and volatility clusters in returns.

[Table 2.4 about here.]

Table 2.4 gives a comprehensive overview about the statistical properties of spot and futures
prices and returns. In detail, we provide basic statistics, as well as results for the Jarque–Bera
(JB thereinafter) Normality test, the unconditional correlation between spot and futures
(Unc. Corr. in the spot column only), the Ljung–Box (LB) test for serial correlation and
the Augmented Dickey–Fuller test for stationarity. Test statistics and p–values (in rounded
brackets) are provided: significance levels are labeled by ∗ ∗ ∗, ∗∗ and ∗ for 99%, 95% and
90% confidence interval, respectively. Table 2.4 Panel A displays main descriptive statistics
for the data over the whole period. We observe the presence of high standard deviation;
excess kurtosis and positive skewness, while the negative returns averages are the signal of
the downtrend features of the period. The unconditional correlation is close to one, between
WTI spot and futures (0.9668), while Brent is less correlated although correlation maintains
higher (0.7168). The right asymmetry and the positive kurtosis pinpoint the departures from
Normality of the empirical distributions, as stated by the JB test, which always rejects the
null hypothesis of Normality at 99% significance level. Moreover, the LB test, performed
on the demeaned returns, highlights the presence of serial correlation and ARCH effects in

2www.eia.gov
3www.bloomberg.com
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all the time series both at 5 and 15 lags. Lastly, Table 2.4 Panel B always highlights the
non–stationary of prices, while returns are always stationary at 99% significance level.

2.6.2 Implementing the hedge

Hedging Strategies

We considered two strategies: Fixed Hedging (FH) and Dynamically Rebalanced Hedging
(DRH).

In a formal way, assume that [0, T1] is the in–sample interval, where T1 is the date at which
the investor begins to hedge; denote by [T1 + 1, T2] the time frame representing the out–of–
sample until the end of the hedging period (T2). The FH is the strategy that estimates the
HR (HR0) just once, using data observed in [0, T1] and then maintains unchanged long/short
position until reaching T2. On the other hand, with the DRH strategy the hedged portfolio
is dynamically rebalanced at each instant t, T1 < t ≤ T2. The HR is estimated at every
instant t: we apply a rolling window that spans over the data discarding at each time the
oldest observation and adding a new one, thus computing and overall number of (T2-T1+1)
HR estimations.

Evaluating the Hedge

We selected three indicators to assess the hedge performance: the Overall Returns (OR), the
Hedging Efficiency (HE) and the Expected Shortfall (ES). The motivation is that they offer
a full coverage for in–sample and out–of–sample performances of the hedge, focusing on the
returns of the hedged portfolio (the OR), its risk (the ES) and the total variance reduction
observed by switching from the unhedged to the hedged position (the HE). Moreover, they
can be calculated in the same way for both the BA and the ODA, making easier their
comparison. Finally, as these indicators are calculated for each t (t = T1 + 1, . . . , T2), we
are able to report some descriptive statistics (minimum, maximum, mean) for a clearer and
more readable description.

Formally, the OR is the difference between the returns of the unhedged position and those
of the hedging position, thus representing the returns of a long–short portfolio:

OR(t) = Πunhedged(t)−Πhedging(t). (2.16)

where T1 < t ≤ T2, Πunhedged(t) and Πhedged(t) are the unhedged and hedging portfolio
returns, respectively. For the OR indicator only, we provided information about the standard
deviation and the percentage of negative returns: when computing the OR from a hedged
portfolio, investors are evaluating how much of the portfolio value the hedge is preserved. In
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this light, the OR standard deviation and the percentage of negative returns are proxies for
the hedge stability in the out–of–sample.

For what it concerns the remaining indicators, the HE and the ES are both based on the
variance of the hedged portfolio. To make them comparable across different (BA and ODA)
working frameworks, they have been calculated using the unconditional hedged portfolio
variance, σ2

hedged
4.

A formal definition of the HE is given by [Ederington, 1979], who evaluates the hedging
performance by measuring the variance reduction of the hedged portfolio in percentage
terms:

HE =
σ2
hedged − σ2

unhedged

σ2
unhedged

(2.17)

where σ2
hedged and σ2

unhedged are as defined at rows 9 and 10 in Table 2.1. Higher HE values
correspond to better hedging performances. The HE is a good indicator for the MVHR,
since the less the variance of the hedged portfolio, the better the performance of the hedging
strategy.

The Expected Shortfall is given by:

ESP&L
α = Π(t)

Φ(z1−α)

1− α

√
σ2
hedgedT . (2.18)

Here Π(t), α, Φ(z1−α) are as in rows 13, 10 and 14 of Table 2.1; finally, T is the time frame
length. This indicator gives information about the stability of the hedge to unexpected
downfalls.

2.6.3 Volatility Estimation

We are now ready to apply both static and dynamic hedging strategies for the BA and ODA
multivariate approach. Possible combinations are illustrated in Table 2.4; labels in the table
are those employed for referring to each strategy.

[Table 2.5 about here.]

For each combinations, HRs are calculated with all the proposed MGARCH models, for an
overall number of sixteen trials for each energy commodity.

Provided both the large econometric literature dealing with crude oil commodities and
the results of the statistical analysis in Table 2.5, we decided to filter the data with an

4This is supported as our approach focuses on the outcome of hedged portfolio only, mimicking the interest
of an investor.
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ARMA(1,1)–GARCH(1,1); this is inline with [Chang et al., 2011] that built bivariate HRs
on the same commodities adopted in our chapter. Filtering results are reported in Appendix
2.7.

[Table 2.6 about here.]

[Table 2.7 about here.]

Tables 2.6 and 2.7 display the estimates of the four MGARCH models in the case of both
the BA and ODA, respectively. To ease the readability of the results, we do not include in
the body of the chapter MGARCH estimates under the dynamically rebalanced hedging
strategy. However, the results are available in the 2.7.

The MGARCH models have been always estimated in their (1,1) specification. As explained
in the previous sections, the core of the chapter relies in discussing the results, because the
estimates sensitively vary when moving from the BA to the ODA. A possible explanation
is that the BA forces the investor to estimate as many GARCH models as the number of
spot/futures couples involved in building the hedged portfolio. In our case, since we have two
spot commodities and two related futures contracts, this means estimating two bi–variate
GARCH models per pairs, as highlighted in Table 2.6. On the other hand, the ODA leads
to estimate only a multivariate GARCH model: in the examined case, for instance, we
must estimate a tri–variate GARCH, since the VC matrix Ht includes two futures and the
unhedged portfolio considered as a financial asset. In general, with a portfolio made by k
securities the BA requires restimating k bi–variate MGARCHs whereas the ODA demands
only the estimation of a k + 1–parameter GARCH.

2.6.4 Results

We start discussing the results in Table 2.8, displaying the HRs obtained for the BA and
he ODA in both the FH and DRH cases. We preliminary highlight that while the FH
strategy returns only one value estimated on the in–sample data, on the other hand, the
HRs derived under the DRH strategy are an average over the T2− T1 + 1 HRs estimates
with the walk–forward approach described in Section 2.6.2. Clearly, in the BA the HRs are
not affected by portfolio selection process, as on the other hand, it happens in the ODA. To
make possible the comparison of the results derived from different approaches we rescaled
the HRs computed in the ODA by the weights of the unhedged portfolio.

[Table 2.8 about here.]

In general, the HRs obtained in the BA are smaller than those in the ODA, i.e. the investor
choosing to hedge with the BA should short a lower amount of futures.

With respect to the FH strategy, WTI hedges are close to one in the BA, and greater than
one in the ODA. With the exception of DBEKK, all the MGARCHs show similar behavioural
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patterns, as moving from the BA towards the ODA the HRs tend to increase. Similar
considerations applies to the Brent. This behaviour is replicated also in the case of the DRH
strategies.

[Table 2.9 about here.]

Table 2.9 illustrates the hedging results in all examined cases 5, evaluated by way of the
indicators introduced in SubSec. 2.6.2. Starting from overall returns (OR) for the FH
strategy, we examine the standard deviation ("std" in Table 2.8) and the percentage of
time being negative ("down" in Table 2.9). For both the statistics, the general rule is: the
lower, the better. With respect to the standard deviation, results of BA and ODA are
almost similar: while the DCC and the DRDCC estimates increase moving from the BA
towards the ODA, the BEKK models do the opposite. In detail, the DBEKK has the lowest
standard deviation. On the other hand, the percentage of time being negative is always
smaller for ODA HRs. Moreover, models in the ODA gets always the lowest minima, and the
mean maintains closer to zero for the soft approach and slightly negative in other cases. To
summarise, the OR highlights that the ODA performs better than the BA, at least during
the examined period.

Moving to the remaining indicators (HE and ES), the ODA seems enhancing the hedge in all
the cases: the variance is by far lower than in the BA. In detail, the average HE is roughly
0.6 in the BA, and 0.85 for the ODA. This tendency is even more evident for the ES: the
average HE is close to −0.7 and −0.3 for the BA and ODA, respectively. Best results are
associated to DCC GARCH model for the HE and to the DRBEKK for the ES.

The conclusions drawn for the FH strategy also apply to the DRH case.

Overall, our results pinpoint that HRs generated under the ODA perform better out–of–
sample. With respect to the MGARCH models employed to estimate the VC matrix, the
results highlight the robustness of the methodology under different HR specifications and
alternative hedging strategies. The DBEKK works at the very best for the BA, while
DRBEKK obtains best performances at all in the ODA.

2.7 Conclusion

This chapter investigates the hedging performance of two alternative hedging approaches,
namely block and object–driven hedge ratio (HR). The research question is whether it
is preferable combining the HR of each portfolio component to derive the portfolio hedge
position (Block Approach – BA) rather than incorporating investor objectives and preferences
in terms of risk and return (Objective–Driven Approach – ODA), i.e. by directly hedging the

5For both the BA and the ODA, for the four volatility estimators and for the two hedging strategies (fixed
and dynamically rebalances).
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portfolio position. To such aim, we evaluated the Minimum Variance Hedge Ratio, assume
to hedge spot commodities by shorting related futures contracts. Moreover, we assumed
that the hedged portfolio was driven by conditional and time–varying multivariate volatility;
this allowed us to employ multivariate GARCH models. To assure the robustness of our
analysis with respect to changes in the volatility estimator for the HR and to the hedging
strategy, we employed four multivariate GARCH models, namely: DCC, diagonal BEKK,
diagonal RBEKK and diagonal RDCC and two hedging strategies, fixed hedging (FH) and
dynamically rebalanced hedging (DRH). The performance of the two hedging approaches was
assessed through an empirical case study, in which the investor faces the problem of equally
allocating her wealth between spot WTI and Brent crude oil commodities and hedging the
spot exposure by shorting with futures. The hedge was then evaluated considering the
returns and risk dimension of the hedged portfolio, both in–sample and out–of–sample. To
this extent, we examined the hedge with three indicators: the overall returns, the hedging
efficiency and the expected shortfall. Our findings highlight the superior hedging ability
of the ODA on the BA, at least when dealing with energy commodities. This is not only
confirmed by the overall returns, which are more stable and less prone to negative downfalls,
and but also considering the risk of the hedged positions. The hedged portfolio variance, in
fact, is lower for the ODA HR, getting an higher hedging efficiency and a lower expected
shortfall. Results are stable with respect to alternative multivariate GARCH models and to
various hedging strategies.
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Table 2.2: Changes in the volatilities and correlations between the securities in our toy
example.

Element ID Security Row Column Type

σS1 First/Second First/Second Second BA

σS1 First/Second Third/Fourth Second ODA

σS2 First/Second First/Second Third BA

σS2 First/Second Third/Fourth Third ODA

σF1 First/Second First/Second Fourth BA

σF1 First/Second Third/Fourth Fourth ODA

σF2 First/Second First/Second Fifth BA

σF2 First/Second Third/Fourth Fifth ODA

ρS1,F1 First/Second First/Second Sixth BA

ρS1,F1 First/Second Third/Fourth Sixth ODA

ρS2,F2 First/Second First/Second Seventh BA

ρS2,F2 First/Second Third/Fourth Seventh ODA

ρS1,S2 First/Second First/Second Eighth BA

ρS1,S2 First/Second Third/Fourth Eighth ODA

ρF1,F2 First/Second First/Second Ninth BA

ρF1,F2 First/Second Third/Fourth Ninth ODA

ρS1,F2 First/Second First/Second Tenth BA

ρS1,F2 First/Second Third/Fourth Tenth ODA

ρS2,F1 First/Second First/Second Eleventh BA

ρS2,F1 First/Second Third/Fourth Eleventh ODA
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Table 2.3: Spot and futures contracts employed in our study. For each asset we provide
the abbreviation, the reference ticker and the contract type (spot or derivative).

Variable Abbreviation Ticker Type

WTI crude oil WTI RWTC Spot Price FOB

Brent crude BR RBRTE Spot Price FOB

FU - WTI crude oil FU–WTI CL1:COM Futures

FU - Brent crude FU–BR CO1:COM Futures
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Table 2.4: Descriptive statistics and Dickey–Fuller test for both spot and futures.

WTI Brent

Spot Futures Spot Futures

Panel A: Descriptive statistics

mean -0.0003 -0.0003 -0.0003 -0.0003

std 0.0211 0.0207 0.0192 0.0195

skewness 0.233 0.1891 0.3463 0.1776

kurtosys 6.37 6.2499 6.4226 6.4645

Unc.Corr. 0.9668 0.7169

(0.0000)*** (0.0000)***

JB 725.3249 670.8727 764.2037 760.1193

(0.0010)*** (0.0010)*** (0.0010)*** (0.0010)***

LB(5) 10.5377 17.1355 8.7225 20.3191

(0.0613)* (0.0042)** (0.1206)* (0.0010)***

LB(15) 21.9612 23.8273 26.9207 32.9208

(0.1088) (0.0680)* (0.0293)** (0.0048)***

Panel B: Dickey–Fuller test

Prices -1.2716 -1.2848 -1.2862 -1.2874

(0.1881) (0.184) (0.1836) (0.1832)

Returns -41.3009 -42.167 -36.646 -42.1311

(0.001)*** (0.001)*** (0.001)*** (0.001)***
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Table 2.5: Hedging Implementation: summary.

Static Dynamically

Hedging Rebalanced

Hedging

BA FH DRH

ODA FH DRH
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Table 2.6: MGARCH estimation results for the Block Approach under the FH strategy;
p–values are reported in round brackets.

DCCW DCCB DBEKKW DBEKKB DRBEKKW DRBEKKB DRDCCW DRDCCB

θ1 0.1223 0.0211

(0.0606) (0.0235)

θ2 0.8494 0.7835

(0.1327) (0.3270)

C 0.5258 0.1776

(0.0644) (0.0439)

0.5030 0.1610

(0.0703) (0.0246)

0.0593 0.0975

(0.0154) (0.0234)

A 0.4791 -0.0676

(0.0787) (0.0367)

0.4638 0.0435

(0.0794) (0.0306)

B 0.7859 0.9820

(0.0484) (0.0094)

0.8022 0.9814

(0.0501) (0.0055)

α11 0.3158 0.0747 0.3752 -0.1310

(0.0728) (0.0585) (0.0426) (0.0684)

α22 0.2896 0.0524 0.3139 -0.1638

(0.0646) (0.1379) (0.0216) (0.2390)

β11 0.9298 0.9851 0.9269 0.8495

(0.0328) (0.0142) (0.2180) (0.1342)

β22 0.9397 0.9830 0.9158 0.9314

(0.0323) (0.0081) (0.1213) (0.0141)



Chapter 2. Energy Portfolio Hedging in the MGARCH framework 33

Table 2.7: MGARCH estimation results for the Objective–Driven Approach under the FH
strategy; p–values are reported in round brackets.

DCC DBEKK DRBEKK DRDCC

θ1 0.0089

(0.0199)

θ2 0.9695

(0.0318)

C 0.1986

(0.0456)

0.1796

(0.0430)

0.2048

(0.0498)

0.0842

(0.0198)

0.0704

(0.0211)

0.0449

(0.0335)

A 0.0832

(0.0313)

0.0729

(0.0272)

0.1237

(0.0396)

B 0.9755

(0.0107)

0.9764

(0.0106)

0.9662

(0.0150)

maxαii 0.2917 0.3509

(0.0865) (0.0624)

minαii 0.0063 0.0353

(0.1074) (0.1560)

maxβii 0.9795 0.9672

(0.0106) (0.0732)

minβii 0.9103 0.7795

(0.0544) (0.1465)

maxαii + βii 0.9166 0.8149

minαii + βii 1.2712 1.3181
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Table 2.9: Hedging results in the BA and ODA cases, varying the hedging strategies and
the MGARCH models

Hedge Type Fixed Hedging Dynamically Rebalanced Hedging

MGARCH DCC DBEKK DRBEKK DRDCC DCC DBEKK DRBEKK DRDCC

OR–BA

min -0.0467 -0.0457 -0.0463 -0.0466 -0.0462 -0.0459 -0.0460 -0.0462

max 0.0590 0.0561 0.0578 0.0589 0.0604 0.0576 0.0583 0.0601

mean 0.0000 -0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

std 0.0122 0.0122 0.0122 0.0122 0.0122 0.0121 0.0121 0.0122

down 0.5110 0.5030 0.5110 0.5110 0.5070 0.5130 0.5130 0.5090

OR–ODA

min -0.0477 -0.0452 -0.0447 -0.0449 -0.0573 -0.0558 -0.0513 -0.0527

max 0.0583 0.0576 0.0586 0.0578 0.0605 0.0597 0.0585 0.0598

mean -0.0001 -0.0001 -0.0002 -0.0001 -0.0002 -0.0001 -0.0001 -0.0002

std 0.0124 0.0113 0.0116 0.0120 0.0122 0.0122 0.0126 0.0123

down 0.4950 0.5050 0.5010 0.4950 0.5030 0.4990 0.4950 0.4950

HE–BA

min 0.5638 0.5514 0.5583 0.5633 0.5596 0.5605 0.5628 0.5612

max 0.6493 0.6413 0.6455 0.6489 0.6566 0.6518 0.6515 0.6569

mean 0.6110 0.6010 0.6065 0.6105 0.6111 0.6117 0.6124 0.6112

HE–ODA

min 0.8437 0.8412 0.8423 0.8432 0.8079 0.8306 0.8408 0.8023

max 0.8602 0.8557 0.8582 0.8590 0.8598 0.8605 0.8604 0.8611

mean 0.8540 0.8504 0.8523 0.8531 0.8495 0.8512 0.8534 0.8517

ES–BA

min -0.8433 -0.6866 -0.7784 -0.8374 -1.0566 -1.0449 -1.0364 -1.0760

max -0.7667 -0.6070 -0.7007 -0.7607 -0.6254 -0.5417 -0.5441 -0.6251

mean -0.8039 -0.6470 -0.7391 -0.7980 -0.7599 -0.7439 -0.7705 -0.7537

ES–ODA

min -0.4266 -0.4077 -0.3510 -0.4389 -0.5569 -0.5584 -0.5426 -0.6819

max -0.3570 -0.3352 -0.2770 -0.3688 -0.2760 -0.2054 -0.1199 -0.1902

mean -0.3896 -0.3690 -0.3117 -0.4012 -0.3950 -0.3865 -0.3659 -0.3774
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Figure 2.2: From left to right: spot and Futures prices and returns for the WTI (first row –
red colour) and Brent (second row – green colour).



Appendix 2.A Filtering results

Table A2.1: Parameters of the ARMA(1,1)–GARCH(1,1) filtering for the BA.

WTI Brent

Spot Futures Spot Futures

ARMA(1,1) Intercept -0.0003 -0.0003 -0.0003 -0.0003

std 0.0005 0.0005 0.0005 0.0004

AR -0.4405 -0.4517 0.2601 -0.5910

std 0.2335 0.1666 0.3075 0.1320

MA 0.3808 0.3685 -0.2046 0.5090

std 0.2402 0.1734 0.3070 0.1418

GARCH(1,1) Constant 2.55E-06 2.36E-06 8.22E-07 1.44E-06

std 1.09E-06 1.40E-06 0.0065 7.89E-07

GARCH 0.9363 0.9307 0.9498 0.9474

std 0.0077 0.0091 0.0065 0.0059

ARCH 0.0589 0.0651 0.0492 0.0497

std 0.0076 0.0081 0.0067 0.0058
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Table A2.2: Parameters of the ARMA(1,1)–GARCH(1,1) filtering for the ODA

Portfolio WTI Futures BRENT Futures

ARMA(1,1) Intercept -0.0003 -0.0003 -0.0003

std 0.0005 0.0005 0.0004

AR 0.2420 -0.45175 -0.59108

std 0.2685 0.1666 0.1320

MA -0.17838 0.3685 0.5090

std 0.2708 0.1734 0.1418

GARCH(1,1) Constant 1.37E-06 2.36E-06 1.44E-06

std 7.99E-07 1.40E-06 7.89E-07

GARCH 0.9389 0.9307 0.9474

std 0.0077 0.0091 0.0059

ARCH 0.0584 0.0651 0.0497

std 0.0078 0.0081 0.0058



Appendix 2.B MGARCH estimates for both
Approaches under Dynamically Rebalanced
Hedging strategies

Table B2.1: Parameters for the BA under the Dynamically Rebalanced Hedging framework.

DCCw DCCb DBEKKw DBEKKb DRBEKKw DRBEKKb DRDCCw DRDCCb

Θ1 0.0502 0.0531

std 0.0202 0.0303

Θ2 0.9416 0.7058

std 0.0197 0.2376

C 0.1777 0.1673

std 0.0464 0.0889

C 0.1847 0.1222

std 0.0474 0.0280

C 0.0298 0.1131

std 0.0085 0.0231

A 0.2484 0.0838

std 0.0459 0.0703

A 0.2433 0.0763

std 0.0471 0.0454

B 0.9589 0.9825

std 0.0137 0.0200

B 0.9581 0.9832

std 0.0145 0.0055

α11 0.2466 -0.0774 0.2760 0.2185

std 0.0423 0.0358 0.0563 0.0546

α22 0.2262 -0.0783 0.1871 0.2527

std 0.0301 0.0306 0.0174 0.0163

β11 0.9590 0.9829 0.9575 0.7356

std 0.0144 0.0157 0.0816 0.0632

β22 0.9664 0.9821 0.9803 0.9469

std 0.0103 0.0073 0.0624 0.0462
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Table B2.2: Parameters for the ODA under the Dynamically Rebalanced Hedging frame-
works.

DCC DBEKK DRBEKK DRDCC

Θ1 0.0164

0.0050

Θ2 0.9799

0.0084

C 0.0948

0.0256

0.0743

0.0191

0.0834

1.97E-02

0.0284

0.0106

0.0214

0.0087

0.0321

0.0098

A 0.1008

0.0180

0.1086

0.0163

0.1141

0.0169

B 0.9909

0.0036

0.9914

0.0028

0.9899

0.0033

maxαii 0.1493 0.3295

0.0597 0.0647

minαii 0.1114 0.1135

0.0231 0.0265

maxβii 0.9891 0.9899

0.0034 0.0035

minβii 0.8255 0.8290

0.1084 0.0926

maxαii + βii 1.1384 1.3194

minαii + βii 0.9369 0.9425



Chapter 3
Minimum Regularised Covariance Determinant
Estimator: a novel application to Portfolio and
Interest Rates modelling 1

3.1 Introduction

In this chapter we introduce the Minimum Regularised Covariance Determinant estimator
(MRCD), a robust estimator for the covariance matrix and its inverse (precision matrix),
into the financial literature. We do this with a twofold aim: first, we look at portfolio
selection, in particular at the Global Minimum Variance portfolio [Black and Litterman,
1992]. Here, we can make use of the MRCD closed form solution for estimating the precision
matrix, which is the only input of the model. Existing research has not focused much on
direct estimations for the covariance matrix inverse to enhance asset allocation. To the best
of the author’s knowledge, only [Senneret et al., 2016] and [Torri and Giacometti, 2017]
discussed the direct estimation of the precision matrix within the GMV portfolio framework,
proposing the use of the Graphical LASSO technique. Second, we introduce the MRCD
into the analysis of interest rates variance and covariance. We run a comparison among
other statistical estimators for the covariance to finally propose a case study to detect the
main volatility drivers of the US term structure. This analysis is particularly useful for both
portfolio construction and risk management in the fixed income space.

The chapter is organised as follows. Section 3.2 describes the application of MRCD to the
Global Minimum Variance portfolio. After some introductory remarks and an extensive
literature review, we perform two case studies. The first consists in a Monte Carlo experiment,

1The research paper Portfolio Selection with Minimum Regularised Covariance Determinant, co–authored
with my PhD supervisors, Marina Resta and Maria Elena De Giuli, is based on the results in the first part of
this chapter and has been submitted for publication. The paper has been presented at the XIX Quantitative
Finance Workshop (University of Roma Tre, January 24-26 2018); at the 29th European Conference on
Operational Research (EURO - Valencia, July 08-11 2018) and at the 42nd annual meeting of the AMASES
(Naples, September 13-15 2018). The Research paper A comparison of Estimation Techniques for the
Covariance Matrix in a Fixed Income Framework, co–authored with Marina Resta, is based on the results in
the second part of this chapter and it has been published in New Methods in Fixed Income Modelling, pp.
99–115, Springer, Cham.
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where we compare the out–of–sample performance and stability of two GMVP allocations,
one under the MRCD and the other one under the sample covariance matrix. The second is
an empirical illustration featuring five real data investment universes, where we run the same
comparison to assess the benefits of MRCD even with real data. Section 3.2.7 traits the
conclusion for this first MRCD application. Section 3.3 contains the application of MRCD
to interest rates modelling. The main goal is to compare the MRCD against four alternative
estimators for the covariance matrix for portfolio optimisation and risk management purposes
in the fixed income space. Therefore, Section 3.3.1 explores this comparison, while Section
3.3.2 provides an empirical case study where we disentangle the US yield curve risk factors.
Section 3.3.4 concludes the MRCD application to interest rates. Finally, Section 3.4 concludes
the chapter.

3.2 Minimum Regularised Covariance Determinant for Port-
folio Selection

Since its inception, the [Markowitz, 1952] mean-variance optimisation model suffered criti-
cisms towards many directions, originating relevant research strands that have directly or
indirectly contributed to build the Modern Portfolio Theory apparatus, see e.g. [Fabozzi
et al., 2002, Kolm et al., 2014].

In this chapter we are interested in the issue concerning the estimation error: determining
optimal mean-variance portfolio weights, in fact, requires the knowledge, for each security,
of expected returns, variances and covariances. However, in practice those variables are
unknowns and need to be estimated using historical information; the estimation error arises
from this process, and directly affects resulting portfolio weights [Ledoit and Wolf, 2004b].
The Markowitz suggestion of calculating portfolio allocations with sample estimators has
received severe objections: evidence outlines that weights may be biased, exhibiting too
extreme values either positive or negative, with large fluctuations over time [DeMiguel et al.,
2007].

Our work nests in a specific strand of the described literature, since we focus on the Global
Minimum Variance Portfolio (GMVP) problem. The GMV portfolio is appealing for various
reasons: first, it holds a closed form solution when short-selling is allowed; second, as it relies
on the use of the covariance matrix only, it makes possible excluding the mean, i.e. the largest
source of estimation error [Merton, 1980]; third, it carries on good and stable out–of–sample
performances [Maillet et al., 2015]. We give at least two contributions to the debate: (i) we
are aimed at reducing the effect of parameter uncertainty in the GMVP; (ii) we discuss the
use of an explicit estimator for the inverse of the covariance matrix (i.e. precision matrix),
which is well-fitted for dealing with high–dimensional and non-Normal issues. With respect to
parameter uncertainty in the GMVP framework, the investigation vein has been particularly
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vivid, offering several alternatives to tackle on the problem: [Jagannathan and Ma, 2003]
suggested to directly constrain portfolio weights, while [DeMiguel et al., 2009] constrained the
portfolio norm. Another option consisted in shrinking the sample covariance matrix towards a
more structure covariance estimator [Ledoit and Wolf, 2003] or double shrinking it [Candelon
et al., 2012] applying the ridge regression methodology on shrunk weights. Under a similar
spirit, [Maillet et al., 2015] proposed to use the robust regression framework, which resides
between the worst-case GMVP solution (when the input is the sample covariance matrix)
and the equally weighted portfolio. In addition, [Frahm and Memmel, 2010] suggested two
shrinkage estimators for the Minimum Variance portfolio, finding that both dominate the
sample one; [Kourtis et al., 2012] proposed two non-parametric shrinking methodologies
and demonstrated that in this way it is possible to enhance the out–of–sample portfolio
performance; [DeMiguel et al., 2013] shrunk the inverse of the sample covariance matrix
with a novel calibration procedure for the shrinkage intensity; [Bodnar et al., 2018] used
the random matrix theory to derive a feasible and simple estimator that works for both
small and large sample sizes; [Sun et al., 2018] carried on the Cholesky decomposition of the
covariance matrix deriving a Stein-type shrinkage strategy.

However, deriving the GMVP weights poses an additional challenge in comparison to other
risk-based portfolios2, since here the covariance matrix must be not only well-conditioned,
but also invertible. The inverse covariance matrix (e.g. precision matrix), in fact, assumes
a non-singular covariance matrix. Nevertheless, this condition depends on the dataset
structure: a typical case of singularity involves the presence of intrinsic multicollinearity in
the dataset that makes the covariance matrix not invertible3. Another case occurs when
the number of observations is too small compared to the number of variables; [Bodnar
et al., 2018] illustrated how the GMVP reacts in presence of low and high–dimensional
datasets, controlling the concentration ratio c, i.e. the ratio between the number of assets
and observations. With regards to the precision matrix estimation (see point (ii) of the
listings given in previous rows), so far this issue has been examined and discussed only in a
few number of contributions. A bespoke characterisation of the precision matrix for portfolio
optimisation problem can be found in [Stevens, 1998]. However, only [Senneret et al., 2016]
and [Torri and Giacometti, 2017] discussed the direct estimation of the precision matrix
within the GMV portfolio framework, proposing the use of the Graphical LASSO technique.
To such aim, our contribution resides in introducing the Minimum Regularised Covariance
Determinant (MRCD) estimator of [Boudt et al., 2018] to determine the GMVP weights.
The MRCD is an explicit estimator of the precision matrix; its added value relies in that
it seems capable to cover both the high–dimensional and the non-Normality issues, hence

2The Inverse Volatility [Leote et al., 2012], the Equal-Risk-Contribution [Maillard et al., 2010] and the
Maximum Diversification [Choueifaty and Coignard, 2008] portfolios just need the covariance matrix to derive
weights.

3To avoid this, [Pantaleo et al., 2011] suggested using the Moore-Penrose inverse to assure the existence of
the precision matrix.
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allowing an overall improvement of weights misspecification. To the best of our knowledge,
this is a first time application as the MRCD has been not yet applied to solve portfolio
problems.

Overall, this chapter investigates the benefits for the GMVP out–of–sample performance when
the MRCD is used against the sample estimator. To such aim, we work towards two directions.
First, we included an extensive Monte Carlo simulation to check the effectiveness of the
proposed approach, covering several cases for the concentration ratios c (c < 1; c ≈ 1; c > 1)

and different levels of departure from returns Normality. Second, we take on an empirical
case study featuring five real investment universes with different stylised facts and dimensions.
Both the simulated and empirical applications clearly demonstrate that the GMVP out–of–
sample performance improves from the use of the MRCD estimator: results are a reduction
in the portfolio turnover at no cost for the portfolio variance, and an increase in portfolio
expected returns. Furthermore, the Monte Carlo analysis shows that applying the MRCD
lowers the GMVP weights misspecification.

The remain of Section 3.2 is organised as follows. In Section 3.2.1, we start by providing
an overview of the GMVP selection problem under parameter uncertainty, presenting the
sample and the MRCD estimators. Section 3.2.2 analyses the properties of the MRCD via
simulations. An empirical application is presented and discussed in Section 3.2.5. Section
3.2.7 concludes.

3.2.1 Global Minimum Variance Portfolio

Let us denote by X = (x1,x2, ...,xn)′, xi ∈ Rn with (i = 1, ..., p) the n× p matrix defining
the investment universe of n returns for p assets. According to the Black–Litterman model
[Black and Litterman, 1992], the optimal portfolio weights ω∗ solve the optimisation problem:

ω = argmin
ω

ω′Σω, (3.1)

s.t. ω′.1 = 1,

where ω is the portfolio weights vector of length p; 1 is the vector whose p components are
all equal to one and Σ is the square covariance matrix of asset returns; the dot operator (.)
indicates the scalar product. The constraint ω′.1 = 1 simply means that all the available
wealth is allocated, and therefore it must be interpreted as a budget constraint. In the
absence of positivity constraints on portfolio weights, (3.1) admits a closed form solution:

ω =
Σ−11

1′Σ−11
. (3.2)

Since by construction the covariance population matrix is not observable, then (3.2) should
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not be feasible unless using a proper estimator for Σ. It is generally accepted the use of the
Maximum Likelihood estimator Σ̂s for the covariance matrix (sample covariance matrix):

Σ̂s =
1

n− 1
X ′
(
I − 1

n
11′
)
X, (3.3)

where I denotes the identity matrix of dimension p. The estimator in (3.3) is very sensitive
to the underlying data structure and to its statistical properties.

When the precision matrix is needed, the use of the Maximum Likelihood estimator has
been criticised under various aspects. First, using Σ̂s can pose severe problems when solving
for the optimal portfolio weights, depending on the relation between p and n. In fact, when
p� n, i.e. when the number of assets in the investment universe is sensitively greater than
the number of observations, the sample covariance matrix is singular and hence not invertible.
This issue can be overcome by replacing Σ̂s with the Moore-Penrose inverse:

Σ̂+
s =

(
Σ̂∗sΣ̂s

)−1
Σ̂∗s,

with Σ̂∗s being the conjugate transpose of Σ̂s. This is line with [Pantaleo et al., 2011] [Bodnar
et al., 2018], who replaced the sample covariance matrix Σ̂s with its generalised inverse when
the former it is not invertible.

Second, even when p ≈ n, the sample covariance matrix carries on a large estimation error
and its inverse is a poor estimator for true precision matrix.

Third, it has been objected that the sample covariance matrix requires the estimation of
1
2p(p + 1) parameters, so that it carries on strong estimation error when the number of
assets is very large. In addition, assuming the Normality of asset returns, the precision
matrix is a biased estimator for its population counterpart, even if the sample covariance
matrix is unbiased [Senneret et al., 2016]. This means that the solution of (3.1) might be
not trustworthy.

Minimum Regularised Covariance Determinant estimator

The Minimum Regularised Covariance Determinant (MRCD) estimator [Boudt et al., 2018]
assumes that data are mostly drawn from an elliptical distribution; the data not covered by
this distribution are assumed coming from a deviation distribution and therefore they can
reasonably considered as outliers. This working assumption seems perfectly aligned to the
features of financial data, characterised by stylised facts such as non-Normality and presence
of outliers [Cont, 2001].

The MRCD can be viewed as an extension of the Minimum Covariance Determinant (MCD)
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estimator [Rousseeuw, 1984] to model high–dimensional datasets. While the MCD returns the
sample covariance matrix on the subset of the data, that is the covariance matrix minimising
the dispersion among the observations, the MRCD differs in the selection principle of the
subset which is now a convex combination between a target matrix T and the sample
covariance itself. In this way, by construction, it is possible to let the MRCD working with
high–dimension datasets, also when the ratio between the number of assets p and the number
of observations n, i.e. the concentration ratio c is greater than one. The MRCD preserves
the good properties of the MCD and it is always well-conditioned by construction.

The procedure leading to the MRCD estimator can be summarised in a few steps, and it is
briefly explained in the next rows, where we use the same notations as at the beginning of
this Section. We start by standardising each xi ∈ X with:

ui = D−1
X (xi − νi),

where ui is the vector of standardised observations for the generic asset i collected in the
n× p matrix U ; xi is the initial observation vector for the i-th asset; D−1

X is the diagonal
matrix of dimension p of estimated mean values and νX is the p× 1 vector of medians.

The MRCD works on subsets of size h ≤ n of the standardised data universe U, where we
can identify a submatrix of U , say Uh, of dimension h × p. Finally, replicating this task
for each h, [n2 + 1] ≤ h ≤ n, where [.] denotes the integer part, we get the collection of all
possible Uh. For each subset h, the corresponding covariance matrix is a regularised matrix
K :

K(h) = ρT + (1− ρ)cαSU (h), (3.4)

where ρ is the shrinkage weight or regularisation parameter, determining how much the
sample covariance matrix is shrunk towards the target matrix T 4. To ensure that K(h)

is positive definite and hence invertible, it must be 0 ≤ ρ ≤ 1. In addition, SU (h) is the
sample covariance matrix calculated in the subset h on U and zα is the consistency factor as
defined in [Croux and Haesbroeck, 1999], with α = (n− h)/n being the so-called trimming
percentage. Before moving on, a remark on the target matrix T is required. [Boudt et al.,
2018] proposed to use the identity matrix for general cases, or a regularised version of the
identity itself. The latter is based on the average robust correlation among observations,
and should be employed when an equal correlation structure is suspected. Both alternatives
are conceived in such a way to ensure the positive definitiveness of the target.

Following [Boudt et al., 2018], we rewrite (3.4) with a factorisation that takes advantage of

4To ensure that the subsample is well–conditioned, [Boudt et al., 2018] select ρ following a data-driven
procedure implying that the resulting matrix has condition number equals to 1000 at maximum.
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the Singular Value Decomposition (SVD) of the target matrix: T = QΛQ′, with Q being the
orthogonal matrix of eigenvectors from the target matrix and Λ the related diagonal matrix
of the eigenvalues of T :

K(hMRCD) = QΛ
1
2
[
ρIp + (1− ρ)zαSW (h)

]
Λ

1
2Q′, (3.5)

where:

SW (h∗MRCD) = Λ
1
2Q′SU (h)QΛ

1
2 ,

with wi = Λ
1
2Q′ui, (i = 1, ..., p). Note that setting ρ = 0, (3.5) returns the same estimator

as the MCD, which is a particular case of the MRCD. Determining the MRCD covariance
matrix means finding the subset of the original dataset that minimises the determinant of
the regularised matrix K(h):

h∗MRCD = argmin
h

(
det(K(h))

1
p

)
,

so that final estimator is given by:

KMRCD = K(h∗MRCD) = DXQΛ
1
2
[
ρIp + (1− ρ)cαSW (h)

]
Λ

1
2Q′DX . (3.6)

The fact that the MRCD allows deriving K as a matrices factorisation makes possible to
have at hand the inversion procedure which is required to solve the GMVP. The inverse of
the covariance matrix (i.e. the precision matrix) is in fact given by:

K−1
MRCD = D−1

X QΛ
1
2
[
ρIp + (1− ρ)cαSW (h)

]−1
Λ

1
2Q′D−1

X .

3.2.2 A Monte Carlo Experiment

In this Section, we employ simulated data to evaluate the effectiveness of the MRCD5 to
address the high–dimension and non–Normality issues in the estimation of GMVP weights
and the related out–of–sample performance. Results are always compared to those of the
sample covariance estimator, replaced by the Moore-Penrose inverse when c ≥ 1. To such aim,
following the framework defined in [Candelon et al., 2012], we simulate an initial investment
universe composed by 100 assets and a total of 12000 monthly observations (corresponding
to 1000 years); we assume that the returns are generated from the distribution G :

5To calculate the MRCD, we used the R code available at url: https://wis.kuleuven.be/stat/robust.

https://wis.kuleuven.be/stat/robust
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G = (1− ξ)N + ξA, (3.7)

where N is a multivariate Normal distribution whose features will be discussed in the next
rows; A is an alternative deviation distribution and ξ = [0, 0.1] is the intensity controlling
the deviation from Normality. By construction, G is an elliptical distribution. Setting ξ = 0,
data are multivariate Normal. Normal returns are simulated using a one-factor model as
data generating process:

rt = βft + εt, (3.8)

rt is the monthly return vector; ft is the p × 1 vector of returns on the factor; β is the
scalar representing the factor loadings and εt is the p × 1 vector of residuals. The asset
factor loadings are drawn from a Uniform distribution in the range [0.50, 1.50], while returns
on the single factor are generated from a Normal distribution with monthly mean 0.05/12

and variance 0.16/126. In addition, residuals are drawn from a Uniform distribution in the
range [0.15, 0.25] so that the related covariance matrix is diagonal with an average monthly
volatility of 0.2/12, as in [DeMiguel and Nogales, 2009]. On the other hand, the deviation
alternative distribution A is generated via substitutive contamination [Perret-Gentil and
Victoria-Feser, 2005]: for each asset of the investing universe a percentage ξ of observations
is replaced by adding to the original values the asset mean plus five times the standard
deviation.

To incorporate the dataset non–Normality, we use four different values for ξ, ξ = {0%, 2.5%, 5%,

10%}, to randomly replace the corresponding percentage of every asset time series. This
design allows us investigate both the case of Normal returns (ξ = 0) and the cases of low,
moderate and severe returns contaminations (ξ = 2.5%, ξ = 5%, ξ = 10%, respectively).
Regarding the dimension of the dataset, we consider five different in–sample lengths upon
which calculating the asset returns covariance matrix, as illustrated in Table 3.1. Keeping
constant the number of assets (p = 100), we are able to assess the goodness of MRCD for
very different concentration ratios, monitoring the behaviour of the estimator for the low
dimension case, i.e. when c < 1; in the case of c ≈ 1, when p and n are approximately of the
same size; and finally the high–dimension case, when c > 1.

[Table 3.1 about here.]

Our simulated study is organised on a few steps:

1. Step 1, we simulate returns according to the scheme defined in the previous rows, see
(3.7) and (3.8);

6Parameters for the Normal distribution of the single factor are set following [DeMiguel and Nogales, 2009,
Maillet et al., 2015]
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2. Step 2, we estimate the asset returns covariance matrix on the initial m observations,
where m is as described in Table 3.1;

3. Step 3, we derive the GMVP weights according to (3.2) and we correspondingly allocate
the available wealth.

4. Step 4, we calculate the out–of–sample portfolio returns in the next period m + 1,
which is part of the n−m out–of–sample observations.

Steps 1-3 are repeated n−m times using a rolling window to move across data: at each run,
the m in–sample observations moves on by one observation, discarding the oldest that is
replaced by them+1 newest one, which is part of the n−m out–of–sample observations. This
procedure allows us to compute n−m portfolio weights and to evaluate the out–of–sample
performance upon n−m Monte Carlo trials.

With respect to the performance, we monitor an overall number of four evaluation metrics:
the turnover, the Global Portfolio standard deviation, the portfolio Sharpe ratio, and the L1
distance.

Recalling that rt+1 is the p–length vector of asset returns at time t+1, we define the portfolio
mean and the portfolio variance as:

µ̂ =
1

n−m

n−1∑
t=m

ω̂
′
t.rt+1;

(σ̂)2 =
1

n−m− 1

n−1∑
t=m

(
ω̂
′
t.rt+1 − µ̂

)2
;

respectively. The turnover and the portfolio Sharpe ratio are then given by:

Turnover =
1

n−m− 1

n−1∑
t=m

p∑
j=1

(∣∣∣ω̂(i)
j,t+1 − ω̂

(i)
j,t

∣∣∣) ;

ŜR =
µ̂

σ̂

where m is the in–sample length. These measures evaluate the overall performance of the
MRCD, while the L1 distance assesses how much the misspecification in the covariance
matrix affects the estimated portfolio weights ω̂:

‖ω − ω̂‖1 =

p∑
i=1

|ωi − ω̂i|
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At this point, using the L1 norm makes sense because, being this a simulation study, we
know the true covariance matrix and hence the true GMVP weights ω.

3.2.3 MRCD estimation: a note

As discussed in Section 3.2, the MRCD assumes working on subsamples of length h. Under
the spirit of giving a comprehensive discussion of this estimator, we run all the simulation
for h = {0.5, 0.75, 0.9}, those values, in our opinion, well accomplish to the assumptions in
[Boudt et al., 2018] who although suggesting a data–driven procedure to select h, recommend
using h = 0.75 to represent datasets with outliers. Moreover, we selected to use the scaled
version of the Identity as target matrix T to account for equicorrelation in asset returns.

We preliminary observe that the parameter ρ, which drives the regularisation towards the
target matrix T changes varying the dimension of the dataset and the contamination level.
Figure 3.1 show the behaviour of ρ for the selected values of h, varying the concentration
ratio, at different levels of contamination. The data on which the graphs were built are given
in Appendix 3.4.

[Figure 3.1 about here.]

When the dataset is low dimensional (c < 1), the MRCD results essentially agree with those
of the MCD, with the exception of the case h = 0.5, ξ = 10%, when ρ̂ is greater than 0.01.
On the other hand, when the numbers of observations and assets are closer one to each other
(c ≈ 1) the regularisation increases, although the final results are similar to those of the
MCD. In addition, when h = 0.5 the strength of regularisation towards the target matrix
increases for higher levels of contamination. Finally, when the dataset is high–dimensional
(c > 1), the MRCD comes into play with a larger regularisation, which increases for larger
data contamination. Again, the MRCD is more stable for h ≥ 0.75. Overall, the MRCD
converges to the MCD when data are low dimensional (c < 1); in this case, the estimates
are stable and non-Normal, especially when h ≥ 0.75. For higher concentration ratios, the
MRCD needs a greater regularisation intensity. Again, when h ≥ 0.75, ρ̂ is more stable with
respect to different levels of contamination.

3.2.4 Simulation Results

In accordance to what stated at the beginning of Section 3.2.2, we start discussing the
performance of the MRCD with the aid of both financial and statistical indicators. Table
3.2 reports out–of–sample portfolio turnovers with simulated data for the five subsamples
described in Table 3.1. In detail, the out–of–sample turnovers calculated with the sample
covariance matrix are given in Panel A, while the results for the MRCD are shown in Panel
B, for h = 0.5; in Panel C for h = 0.75; in Panel D for h = 0.9. The level of contamination
is also reported for each Panel.
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[Table 3.2 about here.]

Overall, the results in Table 3.2 suggest that in terms of misspecification of the portfolio
turnovers the dimension of the dataset matters more than the non–Normality: in fact, the
turnovers show the greater discrepancy if compared across different sizes, while it is lower for
different contamination levels, ceteris paribus. For low levels of c (c < 1) the sample and the
MRCD estimators perform similarly. However, the more the concentration ratio grows, the
more convenient is using the MRCD. For example, when c ≈ 1, the MRCD with h = 0.75

performs at the best, displaying a turnover which is half the one provided by the sample
estimator. This consideration holds for all the contaminated samples. Moreover, this trend
is confirmed when c > 1, with the MRCD showing similar turnovers for different values of h.
Interestingly, the highest turnover is attained by both the estimators when c ≈ 1, confirming
that this case is particularly difficult to handle as noted in [Bodnar et al., 2018].

Next indicator is the out–of–sample portfolio variance which is useful to assess the stability
of the MRCD. Results are given in Table 3.3 following the same organisation in panels as
discussed for Table 3.2.

[Table 3.3 about here.]

For low–dimensional datasets, the similarity between the MRCD and the sample estimator
is evident in the S1 and S2 subsamples, where the two competing estimators attain similar
results. Switching to the case c ≈ 1, the sample estimator generates the lowest portfolio
out–of–sample variances at any levels of h: the MRCD shows closer estimates only for h = 0.9.
These considerations hold also for all the considered contaminated samples. However, when
c > 1, the MRCD stems for its good performance. For example, in the subsample S4 the
lowest global variance is generated by the MRCD with h = 0.75 and h = 0.9; in the case of
S5 the MRCD always beats the sample estimator. Overall, with high–dimension datasets,
the MRCD shows to be stable with respect to various dataset contaminations, with only
small discrepancies between the Normal and the most contaminated case (ξ = 10%).

Lastly, Table 3.4 displays the Sharpe ratios for the various simulated datasets, using the
conventions already adopted and discussed for Tables 3.2 and 3.3.

[Table 3.4 about here.]

The trend already highlighted for the turnover and the variance is therein confirmed: for
low-dimensional datasets (S1 and S2), the sample and the MRCD perform in a similar
fashion, and for h = 0.9 the MRCD gets the best results. On the other hand, when c ≈ 1 or
higher, the MRCD performs at the best, doubling the Sharpe ratio of the sample estimator.
For example, for h = 0.5 and h = 0.75, the MRCD works at best in S3, while in both S4 and
S5 the MRCD exhibits very good performances for every values of h. In general, the Sharpe
ratio seems increasing with the level of contamination: this is probably due to the presence
of positive outliers.
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Lastly, we discuss the misspecification effect on the GMVP weights. As remarked in previous
rows, this is possible because working with simulated data we know the true covariance
matrix, and hence the true portfolio weights. Figure 3.2 displays the results for the L1 norm
using the boxplot formalism: distance values lie on the vertical axis, while the concentration
ratio is on the horizontal axis. Each boxplot illustrates the departure from the mean for the
contamination levels examined.

[Figure 3.2 about here.]

The main point is that the sample covariance matrix performs the best for low dimensional
datasets, by minimising the distance from the true weights and also being the more stable
across contaminated samples. The MRCD at h = 0.75 and h = 0.90 follows. However, as
the concentration ratio approaches 1, the sample covariance matrix is still quite stable to
departures from the Normality, but it shows the greatest distance from the true portfolio
weights. On the contrary, the MRCD performs in line with the results of low-dimension
datasets, with the MRCD for h = 0.5 showing a very stable performance, robust to misspeci-
fication in the covariance matrix. Moreover, the MRCD is again the best estimator in the
case of high–dimension datasets, without any notable differences varying h.

3.2.5 Empirical Illustration: Five Investment Universes

In this section, we explore the effectiveness of the MRCD estimator in a case study involving
real data7, focusing on five investment universes, as described in Table 3.58. For replication
purposes, we refer to data freely available on the Kenneth French’s website for what it
concerns datasets 1 to 49 (the site also contains a comprehensive description of the datasets),
and to data provided by Bloomberg10. For the dataset 5; the complete listings of asset
tickers is given in Appendix 3.4. As a general remark, the MRCD estimation settings are the
same employed with in Section 3.2.2, while the inverse of the sample estimator is replaced
with the Moore–Penrose inverse when c ≥ 1.

[Table 3.5 about here.]

The selected datasets, all at monthly frequency, have different features: those from K.
French’s website represent a set of portfolios selected using different factors, such as the

7As noted in [DeMiguel and Nogales, 2009] earlier and in [Candelon et al., 2012] later, empirical analyses
involving real data are prone to generate spurious results. However, we believe that insights on real data can
be beneficial especially for those practitioners aimed at using the MRCD in practical applications.

8As described in [Ardia et al., 2017, Bertrand and Lapointe, 2018], an empirical analysis involving different
investment universe should be run upon different investment universes, since the composition and the level of
correlation of each universe matter in estimating risk-based portfolios weights.

9http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
10http://www.bloomberg.com.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
http://www.bloomberg.com


Chapter 3. Minimum Regularised Covariance Determinant Estimator:
Two Novel Applications 54

Operating Profitability and Investment or the Size and Momentum. These datasets include
30 components at maximum. On the other hand, dataset 5 is made by 300 assets, allowing
to work with a high–dimension dataset. Universes’ statistical properties are shown in Table
3.6.

[Table 3.6 about here.]

To manage the curse of dimensionality, we selected five in–sample lengths, m = {360, 180, 90,

60, 36} for the datasets 1-4; the corresponding concentration ratios c show a minimum value
of 0.0694 (m = 360) and a maximum of 0.6944 (m = 36) in the case of the 25OPI, the
25SBM and the 25SM. In the case of the 30I, the minimum c is equal to 0.0833 (m = 360)
while the maximum corresponds to 0.8333 (m = 36). In the case of dataset 5 the in–sample
lengths are four, because m = 360 was not feasible, as the overall length of the sample was
lower. Moreover, dataset 5 is the only case in which we have c > 1: its lowest value is 0.8333
(m = 180) while the highest is 8.333 (m = 36).

In this case study, we apply the same working strategy as already used with simulated
data: we estimate the covariance matrix with the sample and the MRCD methodologies to
assess the out–of–sample performances of GMV portfolios. Since with real data we have no
knowledge about the true covariance matrix, we only check the behaviour of three indicators,
i.e. the portfolio turnover, the variance and the Sharpe ratio.

MRCD estimation: technical details

Replicating the same steps as in Section 3.2.2, the MRCD has been estimated again consid-
ering three values of the subsamples: h = {0.5, 0.75, 0.9}.

[Figure 3.3 about here.]

Figure 3.3 shows the evolution of the parameter ρ on the different investment universes and
dimensionality.

Likewise in Section 3.2.2, the data from which the graphs were obtained are given in Appendix
3.4. As noted with simulated data, increasing the concentration ratio of the dataset, the
MRCD tends to stronger shrink the sample covariance matrix of the subsample h. This
evidence is supported also by comparing all the investment universes with the 300SPX: it
is clear that when the concentration ratio is higher than 1, the MRCD regularises more
towards the target matrix T. On the contrary, the level of h seems not to influence the
MRCD regularisation towards the target matrix.
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3.2.6 Empirical Results

We are now able to discuss the results on observable data obtained by monitoring, the
out–of–sample turnovers, the portfolios variance and the Sharpe ratio.

Table 3.7 shows the out–of–sample turnovers: columns represent the five asset universes,
ordered according to the number of assets, from the smallest to the largest. Unlike in the
cases discussed in Section 3.2.2, the high–dimension issue is treated in five distinct Panels:
for each of them, we list the turnover for the sample and for the MRCD estimators, varying
h. As previously remarked, the results for the 300SPX are in four Panels only, because the
overall number of observations is too small to perform the analysis when m = 360.

[Table 3.7 about here.]

In general, the MRCD attains the lowest turnover for high–dimensional datasets. When the
concentration ratio is higher than 1, as in the SPX300 case, the MRCD works better than
the sample estimator for all the examined in–sample lengths. Interestingly, the higher the
subsample parameter h, the better the out–of–sample performance. On the other hand, the
sample estimator performs better than the MRCD when the concentration ratio is lower than
1. This is clear looking at the turnovers for the investment universes where p = 25: here, the
GMVP weights computed with the sample estimator outperform the MRCD. Similarly to
Section 3.2.2, the non–Normality of the dataset does not carry on a level of misspecification as
great as the one due to the dataset dimension. To conclude, the turnover for the investment
universe 30I supports previous findings at maximum level: at greater concentration ratio
values correspond better performance of the MRCD. We now turn to the out–of–sample
portfolio variance whose results are listed in Table 3.8.

[Table 3.8 about here.]

The results go towards the same direction as the turnover. In fact, the MRCD minimises
the variance when c > 1 and h > 0.9. On the contrary, the sample estimator performs at the
best for low-dimension datasets. Finally, Table 3.9 shows the out–of–sample Sharpe ratios
for the observable datasets.

[Table 3.9 about here.]

Overall the MRCD estimator performs better than the sample estimator, indicating that
the expected returns of MRCD based portfolios are higher than those based on the sample
estimator.

3.2.7 Conclusion

This chapter focuses on the estimation of the precision matrix for deriving the Global
Minimum Variance Portfolio (GMVP) weights when the asset universe is characterised by
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high–dimension and non–Normality. In this scenario, the main issue concerns the fact that
resulting GMVP weights can be misspecified because of the large estimation error associated
to the estimation of the precision matrix, i.e. the inverse of the covariance matrix.

Our contribution mainly resides in introducing the Minimum Regularised Covariance Deter-
minant (MRCD) estimator to determine the GMVP weights. To the best of our knowledge,
this is a first time application as the MRCD has been not yet applied to solve portfolio
problems. The MRCD, in fact, seems particularly suitable to manage the aforementioned
issues: it is based on a direct characterisation of the precision matrix, so that it makes
possible to consider both the high–dimension and non–Normality of the investing universe.
To give evidence of those facts, we carried on a comparison between the sample estimator
(replaced by the Moore–Penrose inverse when the number of assets is greater than the one of
observations) and the MRCD, using artificial data generated via Monte Carlo simulations at
first, and with various observable investment universes, later.

We demonstrated that the MRCD lets improving the out–of–sample performance of GMV
portfolios. In the case of Monte Carlo simulations we examined four performance metrics:
turnover, portfolio variance, Sharpe ratio and L1 norm. In this case the MRCD got better
results than the sample estimator especially in case of investment universes characterised by
a concentration ratio higher than one and non–Normality. Moreover, the comparison between
estimated and true portfolio weights made via the L1 norm, suggested that the MRCD limits
the misspecification in portfolio weights. When testing the MRCD with observable datasets,
we were able to use only three of the aforementioned performance portfolio metrics (turnover,
variance, and Sharpe ratio), because the comparison with the true weights values was no
more possible. However, the results clearly highlight the superior results the MRCD on the
sample estimator.

We can therefore conclude that our findings are appealing for a wide audience: on the one
hand, in fact, academics can find room enough to refine the use of MRCD in managing
portfolio selection problems; on the other hand, MRCD seems a relatively easy–to–use
technique for practitioners aiming to improve current GMVP allocations in a quite stable
way with mathematical soundness.

3.3 Minimum Regularised Covariance Determinant for Inter-
est Rates Modelling

The estimation of the covariance matrix plays an important role in many financial applications,
including risk management, option pricing and portfolio selection. In fact, the it conveys
all the information related to the co–movements among a bunch of financial securities, and
hence allows the investors to allocate resources following the principle of diversification. Such
universal “consensus” around the role of the covariance matrix holds also when focusing
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on fixed income instruments. Here, it is key for at least three reasons. First, in the term
structure analysis, the covariance matrix helps to estimate co–movements across different
maturities. Second, it can assess the main factors driving fixed income securities prices for
risk metrics calculation and stress testing [Litterman and Scheinkman, 1991]. Third, inside
the portfolio allocation framework, covariance analysis allows to determine how fixed income
instruments react in combination to other financial products, helping investors in assessing
the risk profile of interest rates securities [Martellini et al., 2003].

The covariance matrix is generally calculated by an inference procedure: being the dataset in
use just a mere sample of the real population, which it is not known, the covariance matrix
estimates the true relationships among population components. However, far from being an
easy task, inferring the covariance is affected by a trade–off between the estimation error and
the model error. On the one hand, model–free approaches guarantee the unbiasedness of the
estimator without controlling for estimation error; on the other hand, parametric approaches
impose some structure (model) for the covariance, lowering the estimation error at the cost
of enlarging the one from the model [Briner and Connor, 2008].

The more commonly applied estimation technique relies on the so-called Sample Covari-
ance matrix (SCVm): the work of [Markowitz, 1952] is a key example of the use of the
sample estimator for portfolio selection. The most appealing feature of this technique is
that it does not require specifying any structure for the covariance, that is: it implies
a model-free approach [Anderson, 1963]. Moreover, when the data sample is Normally
distributed, the SCVm is an unbiased estimator for the population moments [Briner and
Connor, 2008]. However, estimating the SCVm has also pernicious drawbacks, especially
in portfolio optimisation [Ledoit and Wolf, 2004b]. To make an example, when the sample
size is smaller than the number of considered variables, the sample covariance matrix is
ill–conditioned by construction [Ledoit and Wolf, 2004a]. This issue has been variously
addressed, by proposing alternative methodologies to estimate the covariance matrix. In
the case of portfolio selection, the attempts of enhancing the covariance matrix include
the contribution of [Jorion, 1986] who used a Stein–type estimator. Moreover, [Michaud,
1989] demonstrated that Bayes–Stein estimators can positively impact on portfolio selection
procedure in presence of outliers in the assets time series; [Black and Litterman, 1992] tackled
the Michaud’s issue by proposing a global equilibrium extension of the Markowitz’s model;
[Jagannathan and Ma, 2003] demonstrated that constraints on portfolio optimisation based
on the SCVm generates the same positive outcome as applying shrinkage on the SCVm. On
the other hand, problems arise also when, on the opposite, the sample size is too wide. The
main point is that when the sample dimension is n × p, where p is the number of assets
and n is the number of observations for each asset, the covariance matrix is of dimensions
n. However, as the maximum rank of the sample covariance matrix should not exceed n-1
[Briner and Connor, 2008], when p is greater than n (and hence, a fortiori greater than n-1 )
the covariance cannot be inverted [Schäfer and Strimmer, 2005]. This represents a serious
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issue in financial applications, especially within the fixed income framework, where large
bond portfolios are the rule more than the exception, then dealing with high–dimensional
portfolios. Finally, as demonstrated in [Ledoit and Wolf, 2004b] the SCVm is particularly
sensitive to outliers in the dataset: sample eigenvalues are systematically spiked upward or
downward, depending on the observations are either too much large or small, respectively.
As pointed out by [Fan et al., 2005], we therefore can not trust on the sample covariance
matrix, since it is hazardous to estimate it without imposing any structure.

Over the years these problems have been variously faced in the financial literature. [Pantaleo
et al., 2011] presented a review of the solutions that deal with this model–free curse, and
classified the resulting estimators into three research strands, relying on: (i) spectral
properties of the covariance, (ii) the hierarchical clustering approach, and (iii) statistical
models. The spectral properties of the covariance matrix inspire a research strand in
connection to factor modelling which is based, in turn, on the Arbitrage Pricing Theory
[Ross, 1976] and the Capital Asset Price Model [Sharpe, 1964], [Lintner, 1975]. In this
class we can also include the estimators based on Random Matrix Theory – RMT – [Mehta,
2004], which operate a mathematical transformation directly on each sample eigenvalue by
adding or subtracting value whether the eigenvalue is above or below a selected threshold.
Main contributions include the work of [Briner and Connor, 2008], who used the RMT to
identify the leading factors for his factor model for portfolio applications; moreover, [Pafka
et al., 2004] used an exponential moving average model together to the RMT to improve
the portfolio optimisation methodology, while [Frahm and Jaekel, 2005] applied the concept
of RMT to minimise the risk of a portfolio based on the S&P500. Finally, [Wolf, 2007],
highlighted that the resampled efficiency [Michaud and Michaud, 2008] is a very similar tool
to RMT, since the portfolio optimisation input are calculated via a Monte Carlo resampling.
The second research strand is linked to the hierarchical clustering approach [Anderberg,
1973]. This assumes that data can be clustered in groups according to a convenient similarity
measure. By changing this similarity measure, data can be grouped in several different ways,
thus enhancing the results of the portfolio optimisation procedure. The approach has been
widely discussed by [Tola et al., 2008], in comparison to the RMT for optimising a portfolio
composed by highly capitalised stocks from NYSE, as well as in [Pantaleo et al., 2011] who
used the hierarchical clustering in a comparative study among nine covariance estimators.
Finally, the class of statistical estimators is perhaps the most representative one: it includes
the Shrinkage (SH) technique [Ledoit and Wolf, 2004b], as well as other robust estimators
like the Minimum Covariance Determinant – MCD – due to [Rousseeuw et al., 2004]. The
MCD estimator is commonly employed to identify robust estimates for the parameters of
multivariate distributions and it has applications in many scientific areas. To cite some
examples, the MCD is of common use in multivariate data analysis, and it is frequently used
as input for other procedures likewise multivariate linear regression [Rousseeuw et al., 2004];
discriminant analysis [Hawkins and McLachlan, 1997] and factorial analysis [Pison et al.,
2003]. More recently, the MCD has been extended to high–dimensional problems by [Boudt
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et al., 2018], with the Minimum Regularised Covariance Determinant (MRCD). The MRCD
is suitable for outlier detection, observations ranking and clustering analysis [Boudt et al.,
2018]. However, while the MCD has been mainly used outside finance, the shrinkage (SH)
has played a crucial role in fostering the Markowitz portfolio optimisation framework. In
particular, the SH procedure [Ledoit and Wolf, 2003], [Ledoit and Wolf, 2004a] revisits the
concept of Stein estimators [Stein, 1956], proposing a series of alternatives for the target
matrix, including: the covariance matrix as derived from the Single Index model [Sharpe,
1964], likewise in [Jorion, 1986], and the constant correlation matrix, i.e. a matrix where the
pairwise correlation is treated as a constant, as in [Ledoit and Wolf, 2004b] who used a five
factors model for comparison purposes against the shrinkage methodology for the covariance
among equities in portfolios of different size. Furthermore, [Schäfer and Strimmer, 2005]
extended the approach of [Jorion, 1986] to small size samples, and considered additional types
of target matrix for the shrinkage. Finally, [Ledoit and Wolf, 2012] introduced the Nonlinear
Shrinkage (NSH) technique and opened a new way for enhancing the shrinkage covariance
estimator. This Section benefits from the previous rows review to focus on the following
research question: which statistical estimator works at best to estimate the covariance matrix
among interest rates? In detail, the chapter is structured as follows. Section 3.3.1 gives
some brief remarks and basic analytics for the methodologies we employed to calculate
the covariance matrix, and namely: Sample, Shrinkage, Nonlinear Shrinkage, MCD and
MRCD estimators. A case study is presented in Section 3.3.2: following the seminal work of
[Litterman and Scheinkman, 1991], in light of the robust PCA introduced in [Hubert et al.,
2005], we analyse the US term structure curve through a robust PCA based on Sampling,
SH, NS, MCD and MRCD approaches. To the best of our knowledge, the extension of MCD
and MRCD estimators to this branch of finance is quite new, as well as the case study under
discussion. Section 3.3.3 shows the empirical results while 3.3.4 concludes.

3.3.1 A Comparison of Covariance Estimation Techniques

Notations

From now on, we denote by Σ the true covariance matrix, by S the sample covariance matrix
and by: SShrink, SNLShrink, SMCD and SMRCD the covariance matrices obtained with the
Shrinkage, Nonlinear Shrinkage, MCD and MRCD methodologies, respectively. We also
denote by MSE(·) the Mean Squared Error of behind introduced matrices: to make an
example, the MSE for the true covariance matrix is:

MSE(Σ) = V ar(Σ) +Bias(Σ)2

where Bias(Σ) represents the bias induced by the estimation error and V ar(Σ) is the
variance of the CVm. The covariance matrix, by definition, is a squared, symmetric, positive
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(semi–)definite matrix, with the variances on the main diagonal and the covariances elsewhere.
Thus, it should be invertible and well-conditioned [Fisher and Sun, 2011].

Sample estimator

Let us denote by R a p× n matrix containing securities observations, where p is the number
of securities and n the number of observations. Following [Briner and Connor, 2008], the
sample covariance matrix S is given by:

S =
1

n− 1
R(I − 1

n
11′)R′, (3.9)

where I is the identity matrix of dimensions p, 1 is the p× 1 unitary vector, and ′ indicates
the transposition operator. The maximum rank of S is n − 1. As said in Section 1, the
sample estimator is unbiased and easy to estimate but contains a huge amount of estimation
errors, because residing on a model-free approach, it does not require any structure for R,
and therefore it is very sensitive to outliers in the dataset.

Shrinkage and Nonlinear Shrinkage Estimators

The rationale behind the introduction of the shrinkage procedure within the portfolio
framework relates to the low accuracy of traditional estimators when describing the very
underlying features of stocks, since their efficiency decreases more and more, as the sample
size decreases [Briner and Connor, 2008]. Using the Shrinkage estimator makes possible to
limit the potential error on estimates by reducing the Mean Squared Error of the SCVm.
Furthermore, even if the SCVm is an unbiased estimator, it does not minimise the MSE,
since MSE(S) is formed only by the variance, and Bias(S) = 0. However, [Stein, 1956]
demonstrated how shrinkage estimators can reduce the MSE, and [Ledoit and Wolf, 2003],
[Ledoit and Wolf, 2004b] improved this assertion as they highlighted that reducing the MSE
can be reached by imposing some structure to the sample covariance matrix via a proper
target matrix, T . In other words, instead of using a model-free approach, their covariance
estimator is based on a convex linear combination between the sample covariance matrix S
and a target matrix T :

SShrink = δT + (1− δ)S, (3.10)

where δ ∈ [0, 1] is the shrinkage intensity. For δ = 1, SShrink equals the target matrix, while
for δ = 0, we have: SShrink = S, i.e. the SCVm. In order to calculate the optimal shrinkage
intensity [Ledoit and Wolf, 2004b] derived an optimal value δ∗ based on minimising the
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expected value of the loss function given by the Frobenius norm of the quadratic distance
between the true and the shrinkage covariance matrix:

L(δ) = ‖(δT + (1− δ)S − Σ)2‖, (3.11)

When p is fixed and n tends to infinity, the optimal value δ∗ asymptotically behaves like a
constant [Ledoit and Wolf, 2004b]. The estimate of the covariance matrix obtained with
the shrinkage technique is always positive definite and well-conditioned, making it a good
candidate for computational implementations. Moreover, shrinking the SCVm towards a
more structured matrix makes the covariance matrix less sensitive to estimation errors;
however, it can be extremely biased if the assumptions of the underlying model diverge
from those of the true covariance. This trade-off is carefully described in [Jagannathan and
Ma, 2003], asserting that the SH estimator looks like a compromise between the bias of the
target matrix and the variability of the traditional SCVm. As seen in Section 1, we can find
various characterisations of the target matrix T. In this work, we followed the approach of
[Ledoit and Wolf, 2004b], assuming the target matrix being equal to the constant correlation
matrix. This choice can be easily motivated in the following way: let us consider a set of
N perspective interest rates with different maturity and same tenor, daily observed along
a time horizon of length n. Since variations among interest rates are quite slow, we can
assume that the relationships among different maturities do not change daily. Then, the
covariance and correlation between the securities i and j are given by:

Cov(i, j) = Si,j =
1

n− 1

p∑
h=1

(ih − ī)(jh − j̄),

Cor(i, j) = ρi,j =
si,j
si, sj

, (3.12)

where ī, j̄ are the mean value for assets i and j, respectively. The average of the sample
correlation is then given by:

ρ̄ =
2

(n− 1)n

n−1∑
i=1

n∑
j=i+1

ρi,j (3.13)

Putting together the last equations, by assuming the target F being the constant correlation
matrix, we have:

fii = sii = s2
i and fij = ρijsisj , (3.14)

where fii is the variance of every asset, lying on the main diagonal of F , and fij is the
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average of correlations between each couple of assets, elsewhere. This procedure generates
a CVm with a more imposed structure and a lower estimation error. Combining F with S
in the shrinkage procedure gives then an improved estimator of the true covariance matrix.
However, the linear Shrinkage is just a first order approximation to the nonlinear problem of
calculating sample eigenvalues [Ledoit and Wolf, 2012], so that each sample eigenvalue is
shifted towards the grand mean of all sample eigenvalues with the same intensity. On the
contrary, the rationale behind Nonlinear Shrinkage (NSH) is that different sample eigenvalues
should be differently moved. [Ledoit and Péché, 2011] expanded the shrinkage concept to
the nonlinear case, yet. However, they improved the linear estimator by constructing a
target matrix based on the distribution of the sample eigenvalues, only: in this way, the
target matrix is independent from the structure of the true covariance matrix, but generates
an oracle estimator, which is reliable only in a very limited number of cases. Conversely,
the bona–fide estimator in [Ledoit and Wolf, 2004b] is basically an oracle estimator, but
consistently estimated: Monte Carlo stress tests highlighted that this estimator is at least as
good as the 2004 Shrinkage procedure of [Ledoit and Wolf, 2004b] or even better, making it
an improved candidate for portfolio optimisation. From the analytic viewpoint, the NSH
procedure aims at calculating:

SNLShrink = Y DY ′

where Y is the matrix formed by the eigenvectors y(i,p) of the sample matrix S, and D is
a diagonal matrix whose elements capture the link between the eigenvectors and the true
covariance matrix. The procedure consists in two steps that are below summarised.

Algorithm 3.1: Nonlinear Shrinkage.

1 Find the matrix A that is closest to the true covariance matrix Σ according to the

Frobenius norm.

2 Solve the minimisation problem:

min
D
‖Y DY ′ −A‖,

to find D∗ = Diag(d∗1, d
∗
2, ..., d

∗
p), with d∗i = y′iΣyi, i = 1, ..., p.

Minimum Covariance Determinant and Minimum Regularised Covariance De-
terminant

The Minimum Covariance Determinant is a robust covariance estimator that allows detect-
ing outliers in multivariate data by calculating the Mahalanobis distances between every
observation and the central value of the data [Rousseeuw and Yohai, 1984]. More precisely,
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the aim of the estimation process is to find a subset of the data with the lowest value of the
determinant and containing h observations, with: (p+ n+ 1)/2 < h < n where p and n are
as defined in previous rows. The choice of h depends only on the covariance between the
data, thus the MCD covariance matrix is given by the SCVm of the subset of the original
data that minimises the dispersion of the observations. Being R the p × n matrix with p
components ri ∈ <n, i = 1, ..., p, each vector ri(i = 1, . . . , p) can be viewed as the random
variable whose realisations are the n observations of the i–th asset. The procedure to obtain
SMCD can be summarised into five steps, as in Algorithm 3.2.

However, applying the MCD estimator has remained difficult for many years, because
too computationally expensive. Branch and bounds algorithms [Candela, 1996], heuristics
[Woodruff and Rocke, 1994] and relaxation techniques of the exact solution [Schyns, 2008]
have been suggested. The FAST–MCD algorithm developed by [Rousseeuw and Driessen,
1999] tackled down the problem, making the MCD computation more efficient. FAST–MCD
is a deterministic procedure which produces a good approximation of the MCD for both
small and large datasets. The main idea consists in considering a small random subset
of dimension N+1, instead of looking for the subset of h. The procedure replicates the
steps already highlighted in the MCD algorithm, working on the new reduced dimensions
subset. The resulting subset HFAST–MCD is then locally improved thanks to sequential
concentration steps (C–steps) in which the mechanism of computation of the Mahalanobis
distances and outlier elimination is repeated until any further reduction of the determinant
of the covariance matrix becomes unfeasible.

In 2017, [Boudt et al., 2018] proposed an alternative estimator called Minimum Regu-
larised Covariance Determinant estimator (MRCD). The MRCD is still based on subsets of
the covariance matrix, this time selected through a convex combination between a target
matrix and the SCVm. The main steps leading to the MRCD are illustrated in Algorithm 3.3.
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Algorithm 3.2: Minimum Covariance Determinant.

1 Identify an initial subset H0 of h observations, with (p+ n+ 1)/2 < h < n:

H0 = argmin(det(cov(ri|i ∈ H0))), (3.15)

From H0 we can evaluate the sample mean vector µ0 and the sample covariance

matrix S0 than can be then employed as indicators of location and scatter.

2 Compute the Mahalanobis distances between each component of R and µ0:

di = DistS0(ri, µ0) =

√
(ri − µi)′S−1

0 (ri − µi)

where S−1
0 is the inverse of S0, and di ∈ <.

3 The assets whose distance is behind the acceptance region are assigned a weight

equal to zero and henceforth excluded, while those whose distance falls inside the

acceptance region are kept and receive a weight equal to one. Weights are assigned

with the following:

wi =


0, di >

√
χ2
N,0.975

1, di ≤
√
χ2
N,0.975

(3.16)

where
√
χ2
N,0.975 represents the cut-off value for detecting outliers, and

√
χ2
N,0.975

is the 0.975 quantile of the χ2
N distribution. Thus, a new subset H1 is derived with

centre µ1 and scatter S0.

4 Using the weights derived by 2.15, the estimators of position and scatter µMCD and

SMCD are computed:

µMCD =

∑n
i=1wiri∑n
i=1wi

,

SMCD =
c1(
∑n

i=1wi(ri − µMCD)(ri − µMCD)′)∑n
i=1wi

,

Here c1 is a constant that ensures the asymptotic consistency towards a normal

distribution (Croux and Haesbroeck, 1999), so that the robust Mahalanobis

distances for each asset become:

Rdi = DistSMCD
(ri, µMCD) =

√
(ri − µMCD)′S−1

MCD(ri − µMCD).

5 The final step consists then in marking as outliers and excluding the observations

outside the acceptance region, i.e. those for which we have:

w(Rdi) = {ri|Rdi ≥
√
χ2
p,0.975}.
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Algorithm 3.3: Minimum Regularised Covariance Determinant.

1 The dataset is standardised according to the:

ui = P−1
R (ri − νR), (i = 1, . . . , p),

where P (
R − 1) is the p× p diagonal matrix containing the scatter estimations, ri

are the components of R, and νR is the p× 1 median vector.

2 Compute:

K(H) = kF + (1− k)cαSU (H)

where k is the shrinkage weight or regularisation parameter, F the target matrix,

SU (H) the sample covariance matrix calculated on U = {ui} in the subset H, and

cα a consistency factor as defined in [Croux and Haesbroeck, 1999], with

α = (n− h)/n being the so-called trimming percentage.

3 Find the subset of the original dataset minimising the determinant of the regularised

matrix K(H).

HMRCD = argmin
H

(det(K(H)1/p)),

4 Compute the MRCD covariance matrix:

KMRCD = PrQΛ1/2[kI + (1− k)S∗(HMRCD)]Λ1/2QPr,

where S∗ is diagonal matrix ad–hoc computed a that rescales the diagonal elements

of the final covariance matrix KMRCD, k is the regularisation parameter, Q is the

orthogonal matrix of eigenvectors from the target matrix and Λ1/2 is the square

root eigenvalues matrix.

aAs explained in [Boudt et al., 2018], S∗ is a transformation of the sample covariance matrix SU (H) which
undergoes first a multiplication for its eigenvectors and squared eigenvalues, then the resulting matrix is
rescaled by its own diagonal elements.

3.3.2 Empirical Case Study: PCA of the US Yield Curve

It is generally acknowledged that bond prices are sensitive not only to parallel shifts in the
yield curve, but also to non-parallel shifts; in particular, [Litterman and Scheinkman, 1991]
found out that bond prices are mainly sensitive to three factors, which can explain almost
the 99% of the total variance: level, steepness, and curvature. Evaluating the exposure to
these three factors is the leading feature of Litterman and Scheinkman’s (LS, thereinafter)
approach to hedging, and it is generally ruled out by applying the Principal Component
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Analysis (PCA) on the covariance matrix of changes in interest rates, usually estimated via
the sample estimator.

Principal Component Analysis [Hotelling, 1933] is a dimension reduction technique that
works on a covariance (or correlation) matrix identifying the volatility factors that drive
the time series under investigation. The PCA relies on the spectral decomposition of the
covariance matrix Σ:

Σ = GΩG′,

where G is the square matrix of the eigenvalues of Σ, and Ω is a diagonal matrix filled with the
eigenvalues of the covariance matrix. The principal components are given by the normalised
eigenvectors, ranked in descendant order according to the size of related eigenvalues. This
because the total variance is equal to the sum of all the eigenvalues, so that the size of a
single eigenvalues is the percentage of total variance explained. As a limited number of
eigenvalues is usually enough to explain at least the 99% of total variation, the reduction
of the covariance matrix can be performed by retaining only the eigenvalues that explain a
certain threshold of the variance, eliminating the others.

With PCA, the LS approach can be characterised as follows: the first Principal Component
(PC) should equally affect all the maturities in the term structure, and should be regarded
as the response in shifts of the term structure. The second PC response should look like
an upward sloping curve: it should affect closer maturity with the same intensity, but with
different sign. This should be regarded as the response in changes of the slope of term
structure. The third PC should affect in the same way the extremes of the term structure,
with a change of sign in the middle maturities. This should be regarded as the response
in changes of the curvature of the term structure. Robust methodologies in estimating the
covariance matrix might improve PCA results, hence fostering the reliability of LS hedging
approach. To such aim, we checked the LS assertion considering the US term structure with
3–months tenor composed by the instruments highlighted in Table 3.10.

[Table 3.10 about here.]

The dataset consists of 24 time series composed by daily data for the period: 02/01/2014 –
08/09/2017, for an overall number of 962 observations. The behaviour of the 24 time series
is depicted in Figure 3.4.

[Figure 3.4 about here.]

In order to find relationships among the term structure components, we estimated the
covariance matrix of daily changes in the spot prices of the 24 curves under examination,
testing five different covariance estimators: Sample, Shrinkage, Nonlinear Shrinkage, MCD
and MRCD.
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3.3.3 Empirical Results

The estimates highlighted how the quality of the sample covariance matrix tends to deteriorate
increasing the number of interest rate curves from 1 to 24, as testified by looking at the
condition number, i.e. the ratio between the largest and the smallest eigenvalue, as depicted
in Figure 3.5.

[Figure 3.5 about here.]

Looking at the plots in Figure 3.5, we can highlight that the sample covariance method
appears being very sensitive to the matrix size, when the number of examined interest rates
is greater than eight; while the Shrinkage, MCD and MRCD adapt well in estimating the
covariance for high–dimensional arrays. The Nonlinear Shrinkage tends to deteriorate the
performance behind the same “magic” threshold as the sample approach, but it stabilises
after the 15th interest rate to converge to zero. As a preliminary conclusion, we can then
argue that estimating the covariance matrix with a statistical estimator likewise SH, MCD
and MRCD should lead to more robust results than in the case of both the sample covariance
estimator and NS. We then run the PCA on the five covariance matrices, obtained with
the above-mentioned estimators, and we monitored the percentage of explained variance by
different and uncorrelated risk factors. According to the LS approach, this should lead to
find 3 factors explaining the 99% of the overall variance; for this reason, we set the value
three as a threshold for our analysis. Results are displayed in Table 3.11, where we list earlier
five factors sorted by percentage of explained variance. Values represents the cumulative
variance in percentage.

[Table 3.11 about here.]

Looking at the results, the sample and MCD estimators are the fastest to reach the 99%
threshold of explained variance, with just 2 factors. Nonlinear Shrinkage is also very fast,
with 3 factors, confirming the LS view. On the other hand, MRCD and Shrinkage are very
slow, taking 7 and 15 factors to explain the threshold, respectively. The relation between the
change in spot rates and different maturities should be captured by the number of the above
listed factors for each methodology. However, there is no economic or financial motivation
for explaining the total variation of the US term structure with more than three factors.
Thus, in order to have a common ground of comparison with the LS model, in Figure 3.6 we
plot the sensitivity of changes in interest rate to increasing maturity, as explained by earlier
three PCs for all the covariance methodologies in use.

[Figure 3.6 about here.]

The slowest methodologies in explaining the total variation of the US term structure (SH
and MRCD) clearly fail in delivering good insights about the risk factors afflicting the US
term structure. On the other hand, the sample, NSH and MCD present results in line with
the LS model.
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A risk manager should find these results useful, because all those three methodologies (sample,
Nonlinear Shrinkage and MCD) characterise in the same way the response to earlier two
risk factors: the first PC (in blue), in fact, expresses the sensitivity to parallel shifts, while
the second (orange) the change in the slope; moreover, the magnitude is the same across all
the maturities but the sign changes. However, both sample and Nonlinear Shrinkage fail to
deliver a good representation of the third component, which is well represented only by the
MCD methodology. The US term structure, in fact, when the estimation is performed with
either sample or Nonlinear Shrinkage estimator, shows a strange peak between 10 to 12 years
maturity: this seems to be originated from some outliers in the term structure. The MCD
methodology, on the other hand, confirms the LS assertion also for the third component: it
has same sign for both closer and long-term maturities, while in the medium term the sign
is different. This should be regarded as the response in changes of the curvature of the term
structure.

In conclusion, we found that three out of five covariance methodologies, namely sample,
Nonlinear Shrinkage and MCD, are able to represent the US term structure response with
respect to the three factors introduced by the LS model. In particular, the MCD is the
methodology that achieves more aligned results to the conclusions stated by the LS model.
Looking in conjunction at the results of Table 3.11 and Figure 3.5 we can then argue that
the MCD arise as the best estimation method among those examined, as it maintains
well-conditioned the covariance matrix, and offers results well-fitting to the LS assertion.

3.3.4 Conclusion

In this work we compared various statistical methodologies aimed at providing a robust
estimate of the covariance matrix, namely: Shrinkage, Nonlinear Shrinkage, Minimum Co-
variance Determinant (MCD) and Minimum Covariance Regularised Determinant (MRCD)
estimators. Results were evaluated using the sample covariance matrix estimator as bench-
mark. These techniques were tested within the fixed income framework. To this extent, we
analysed the performances of the examined estimators in evaluating the US term structure
with the PCA technique, according to what stated by [Litterman and Scheinkman, 1991].
Strong evidences highlight the benefit of switching from the sample covariance matrix to
robust variants. First, by looking at the condition numbers, we highlighted that while the
sample covariance estimator is very sensitive to the matrix size, on the other hand, the
Shrinkage, MCD and MRCD well adapt in estimating the covariance for high–dimensional
arrays, which in our example are composed by 24 interest rates. Second, the PCA approach
seems to give more precise results when applied on the robust estimates: MCD and Nonlinear
Shrinkage explain the 99% of total variance in a slower way than the sample methodology,
thus highlighting that the second and the third factor represent a not negligible percentage of
the overall variation. In particular, the MCD is the only methodology that well characterised
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the third factor too: this is crucial especially for risk management applications, as it expresses
the response in changes of the curvature of the term structure. To conclude, we can state
that statistical covariance estimators can help in modelling the factors that drive the term
structure curve, as they make possible to highlight relationships among different maturities
in a fashion which is less likely to be biased by outlier observations. In detail, the PCA
approach is enhanced, and this in turn should signify a better hedging power for financial
products relying on fixed income instruments. Future works are planned to assess the impact
of such robust estimators on a wider range of fixed income instruments applications including
risk and portfolio management.

3.4 Conclusions

In this chapter we introduced the Minimum Regularised Covariance estimator in the financial
literature. First, we employed its closed form solution for the precision matrix to enhancing
the out–of–sample performances and weights stability in the Global Minimum Variance
portfolio. This was accomplished trough an extensive Monte Carlo experiment, where we
evaluated the benefits of employing the MRCD against the sample covariance matrix under
the Global Minimum Variance portfolio. Moreover, we tested the empirical soundness of the
MRCD even with real data, comparing its out–of–sample performance with an empirical
illustration featuring five investment universes. Both the simulated and empirical applications
clearly demonstrated that the out–of–sample performance of the GMVP benefited from the
use of the MRCD estimator: results suggested a reduction in the portfolio turnover at no
cost for the portfolio variance, whilst portfolio expected returns increased.
Second, we introduced the MRCD into the fixed income space. We compared various
methodologies to estimate the interest rates covariance matrix. Adopting a statistical
approach for the robust estimation of this object, we compared the sample covariance matrix,
the Shrinkage, the Nonlinear Shrinkage, the Minimum Covariance Determinant against the
MRCD methodology. The comparison revolved around a practical application aimed at
individuating the principal risk factors of the US term structure curve. Results confirmed
fixed income portfolio construction and risk management can benefit from the use of robust
statistical methodologies for the estimation of the covariance matrix.
In conclusion, the Minimum Regularised Covariance estimator showed a great applicability
for financial applications. Results in this chapter can be extended towards many directions
for future research.
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Table 3.1: Sample sizes considering p = 100 assets. Frequency is monthly. Total observations
are n = 12000 everywhere.

Id. In-sample Out-of sample Concentration

length length (n−m) ratio (c = p/n)

S1 360 11640 0.27

S2 180 11820 0.55

S3 90 11910 1.11

S4 60 11940 1.66

S5 36 11964 2.77
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Table 3.2: Out-of-sample portfolio turnovers with simulated data. Values are averages
across the n−m out-of-sample observations, as described in Table 3.1.

S1 S2 S3 S4 S5

Panel A: Sample

ξ = 0 0.0356 0.1263 1.5314 0.6047 0.5879

ξ = 2.5% 0.0356 0.1248 1.5414 0.5936 0.6003

ξ = 5% 0.0350 0.1248 1.5223 0.6213 0.5731

ξ = 10% 0.036 0.1237 1.6005 0.6055 0.5728

Panel B: MRCD with h = 0.5

ξ = 0 0.2858 1.4296 0.7526 0.4027 0.3028

ξ = 2.5% 0.2085 1.0710 0.6311 0.3714 0.2375

ξ = 5% 0.1927 0.9086 0.6112 0.3934 0.2272

ξ = 10% 0.1515 0.8954 0.6734 0.3517 0.2428

Panel C: MRCD with h = 0.75

ξ = 0 0.1382 0.7611 0.6233 0.5653 0.3844

ξ = 2.5% 0.075 0.5042 0.4755 0.4237 0.3483

ξ = 5% 0.0743 0.4776 0.4811 0.4072 0.3578

ξ = 10% 0.1046 0.4672 0.5109 0.4606 0.3547

Panel D: MRCD with h = 0.9

ξ = 0 0.0811 0.3695 0.7725 0.3708 0.3269

ξ = 2.5% 0.0697 0.2528 0.6947 0.278 0.2899

ξ = 5% 0.0643 0.2624 0.6802 0.3166 0.3076

ξ = 10% 0.0776 0.2674 0.6929 0.344 0.3033
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Table 3.3: Out-of-sample portfolio variances with simulated data. Values are averages
across the n−m out-of-sample observations, as described in Table 3.1.

S1 S2 S3 S4 S5

Panel A: Sample

ξ = 0 0.0105 0.0086 0.0049 0.014 0.0307

ξ = 2.5% 0.0131 0.0111 0.006 0.0171 0.0386

ξ = 5% 0.0156 0.0126 0.0072 0.0205 0.0429

ξ = 10% 0.0199 0.015 0.0089 0.0248 0.0513

Panel B: MRCD with h = 0.5

ξ = 0 0.0157 0.0239 0.0126 0.0105 0.0097

ξ = 2.5% 0.0185 0.0307 0.0166 0.0129 0.0119

ξ = 5% 0.0218 0.0344 0.0197 0.0159 0.0143

ξ = 10% 0.026 0.0375 0.0232 0.0188 0.0177

Panel C: MRCD with h = 0.75

ξ = 0 0.0118 0.0155 0.0121 0.0088 0.0074

ξ = 2.5% 0.0154 0.0203 0.0162 0.0122 0.0084

ξ = 5% 0.0184 0.023 0.0197 0.0155 0.0096

ξ = 10% 0.0231 0.0275 0.0231 0.0174 0.0115

Panel D: MRCD with h = 0.9

ξ = 0 0.011 0.011 0.0099 0.0063 0.005

ξ = 2.5% 0.0145 0.0148 0.0144 0.0102 0.0063

ξ = 5% 0.0173 0.0169 0.0176 0.0127 0.0075

ξ = 10% 0.0218 0.0204 0.0208 0.0145 0.0088
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Table 3.4: Out-of-sample Sharpe ratios with simulated data. Values are averages across
the n−m out-of-sample observations, as described in Table 3.1.

S1 S2 S3 S4 S5

Panel A: Sample

ξ = 0 0.4031 0.3528 0.2015 0.284 0.2365

ξ = 2.5% 1.1214 0.9374 0.3918 0.6986 0.5888

ξ = 5% 1.7172 1.3408 0.6654 0.9128 0.9521

ξ = 10% 2.3889 1.99 0.9225 1.5307 1.4587

Panel B: MRCD with h = 0.5

ξ = 0 0.3627 0.2219 0.3989 0.4353 0.4593

ξ = 2.5% 0.9818 0.5991 1.0184 1.2319 1.3275

ξ = 5% 1.5148 0.8897 1.5549 1.7298 1.9068

ξ = 10% 2.2241 1.4545 2.2825 2.6832 2.7272

Panel C: MRCD with h = 0.75

ξ = 0 0.4307 0.2487 0.3415 0.3884 0.4482

ξ = 2.5% 1.1497 0.7289 0.8035 1.1193 1.2578

ξ = 5% 1.6564 1.0742 1.2447 1.5689 1.7118

ξ = 10% 2.3838 1.6301 1.9011 2.3542 2.5007

Panel D: MRCD with h = 0.9

ξ = 0 0.4265 0.3226 0.2812 0.3767 0.4344

ξ = 2.5% 1.1345 0.8773 0.6428 1.0566 1.2023

ξ = 5% 1.6996 1.3007 0.9235 1.4349 1.6568

ξ = 10% 2.4473 1.9429 1.465 2.1547 2.457
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Table 3.5: List of observable datasets, monthly frequency. For each dataset we provided
a short Description, the Id, the number of assets (p), the number of observations (n) the
range (Time Interval) and the Source.

No. Description Id. p n Time Period Source

1 25 Operating Profitability 25OPI 25 661 01/07/1963 – K.French

and Investment portfolios 01/08/2018

2 25 Size and Book 25SBM 25 1106 01/07/1926 – K.French

to Market portfolios 01/08/2018

3 25 Size and 25SM 25 1106 01/11/1926 – K.French

Momentum portfolios 01/08/2018

4 30 Industry portfolios 30I 30 1106 01/07/1926 – K.French

portfolios 01/08/2018

5 300 stocks from S&P500 300SPX 300 269 01/01/1996 – Bloomberg

01/06/2018
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Table 3.6: Investment universes statistical properties.

Universe Min. Max. Mean Median St.Dev. Skew. Kurt.

25OPI -0.0878 0.0840 0.1349 0.1100 1.0444 -0.1024 9.1507

25SBM -0.3000 0.3750 0.2127 0.2000 1.3813 0.4033 21.7706

25SM -0.1664 0.2173 0.2231 0.2000 1.2918 0.8627 22.8392

30I -0.2925 0.6108 0.1600 0.1300 1.3315 0.5294 25.9098

300SPX -0.0186 0.0152 0.0071 0.0104 0.0947 -0.5710 7.6663
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Table 3.7: Out-of-sample portfolio turnovers with empirical data.

25OPI 25SBM 25SM 30I 300SPX

Panel A: m= 360

Sample 0.1356 0.1648 0.1784 0.1063 -

MRCD h = 0.5 0.6144 0.6899 0.6976 0.4093 -

MRCD h = 0.75 0.4265 0.5084 0.4996 0.2883 -

MRCD h = 0.9 0.4526 0.5317 0.5005 0.2351 -

Panel B: m= 180

Sample 0.2852 0.3193 0.3344 0.2046 1.6568

MRCD h = 0.5 1.1843 1.3381 1.3296 0.7453 1.2869

MRCD h = 0.75 0.8391 0.9609 0.9952 0.5386 1.2869

MRCD h = 0.9 0.7904 0.8135 0.8483 0.4392 0.7445

Panel C: m= 90

Sample 0.6578 0.6845 0.729 0.4578 0.7703

MRCD h = 0.5 3.1556 2.9723 2.9167 2.4086 0.8086

MRCD h = 0.75 1.6775 1.6995 1.7406 1.2163 0.8086

MRCD h = 0.9 1.4163 1.2995 1.4451 0.8533 0.5716

Panel D: m= 60

Sample 1.2195 1.2288 1.2911 0.9396 0.6756

MRCD h = 0.5 5.0113 4.1764 4.4666 3.4872 0.7003

MRCD h = 0.75 2.8484 2.5903 2.7128 2.2013 0.7003

MRCD h = 0.9 2.0792 1.9105 1.9506 1.3966 0.5205

Panel E: m= 36

Sample 3.4767 3.6021 3.7485 4.381 0.599

MRCD h = 0.5 4.6199 4.2094 4.2259 2.2994 0.6373

MRCD h = 0.75 4.1951 3.6796 3.9437 2.8756 0.6373

MRCD h = 0.9 3.1234 2.6077 2.8495 2.1413 0.5381
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Table 3.8: Out-of-sample portfolio variance with empirical data.

25OPI 25SBM 25SM 30I 300SPX

Panel A: m= 360

Sample 0.7212 0.557 0.5685 0.4975 -

MRCD h = 0.5 0.7948 0.638 0.6702 0.5958 -

MRCD h = 0.75 0.7858 0.627 0.6432 0.5741 -

MRCD h = 0.9 0.7771 0.6169 0.6321 0.5706 -

Panel B: m= 180

Sample 0.6577 0.5241 0.5561 0.4507 0.013

MRCD h = 0.5 0.8159 0.6682 0.7304 0.6095 0.0088

MRCD h = 0.75 0.7748 0.6432 0.6928 0.5764 0

MRCD h = 0.9 0.7449 0.6217 0.6837 0.5617 0.0096

Panel C: m= 90

Sample 0.5518 0.4563 0.5065 0.3865 0.0195

MRCD h = 0.5 0.9219 0.7576 0.8717 0.8184 0.0087

MRCD h = 0.75 0.7939 0.6692 0.7429 0.6626 0.0087

MRCD h = 0.9 0.728 0.6364 0.7026 0.6154 0.0046

Panel D: m= 60

Sample 0.469 0.3918 0.4428 0.3262 0.0239

MRCD h = 0.5n 0.9853 0.8313 0.9287 0.8616 0.0076

MRCD h = 0.75n 0.8052 0.6824 0.7663 0.7058 0.0076

MRCD h = 0.9n 0.7167 0.6223 0.6972 0.6016 0.0038

Panel E: m= 36

Sample 0.311 0.2623 0.2905 0.1682 0.0306

MRCD h = 0.5 0.8571 0.7706 0.8679 0.7055 0.0071

MRCD h = 0.75 0.7472 0.6908 0.7416 0.6912 0.0071

MRCD h = 0.9 0.6634 0.6055 0.6581 0.5877 0.0036
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Table 3.9: Out-of-sample portfolio turnovers with empirical data.

25OPI 25SBM 25SM 30I 300SPX

Panel A: m= 360

Sample 0.0313 0.2126 0.1507 0.2006 -

MRCD h = 0.5 0.0508 0.2334 0.2082 0.2309 -

MRCD h = 0.75 0.0749 0.2362 0.2168 0.2341 -

MRCD h = 0.9 0.0643 0.2432 0.2189 0.2368 -

Panel B: m= 180

Sample 0.0913 0.2508 0.1765 0.1963 0.1811

MRCD h = 0.5 0.1364 0.2224 0.2438 0.2278 0.2567

MRCD h = 0.75 0.1366 0.2593 0.2315 0.2418 0.2567

MRCD h = 0.9 0.1184 0.2618 0.2189 0.2265 0.2786

Panel C: m= 90

Sample 0.0855 0.2411 0.1952 0.1968 0.1701

MRCD h = 0.5 0.1163 0.2042 0.2128 0.1601 0.1734

MRCD h = 0.75 0.119 0.2494 0.1851 0.1953 0.1734

MRCD h = 0.9 0.095 0.2634 0.2098 0.1757 0.1746

Panel D: m= 60

Sample 0.0809 0.1697 0.1181 0.1788 0.1548

MRCD h = 0.5 0.1522 0.1489 0.1204 0.107 0.2169

MRCD h = 0.75 0.0936 0.1688 0.1311 0.135 0.2169

MRCD h = 0.9 0.1086 0.1923 0.1208 0.1676 0.1907

Panel E: m= 36

Sample 0.0512 0.126 0.0831 0.0881 0.1489

MRCD h = 0.5 0.0954 0.1729 0.1666 0.1461 0.1583

MRCD h = 0.75 0.0639 0.1737 0.1098 0.1547 0.1583

MRCD h = 0.9 0.0588 0.1776 0.1121 0.1733 0.1412
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Table 3.10: US term structure composition for the examined instruments.

Instrument Maturity Total

USD Libor Overnight, 1 week, 1, 2, 3, 6, 7

12–months

USD Swap 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 17

13, 14, 15, 20, 25 and 30–years
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Table 3.11: Earlier five factors explaining the overall variance, for various estimation
methodologies of the covariance matrix.

Factor SCV SH NSH MCD MRCD

Panel A

F1 97.50 75.41 97.18 98.84 81.49

F2 A 99.28 78.03 98.95 99.07 95.88

F3 A 99.52 80.57 99.22 99.37 97.09

F4 A 99.68 82.96 99.37 99.60 97.97

F5 A 99.76 85.20 99.48 99.72 98.54

Panel B

Factors 2 15 3 2 7
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Figure 3.1: The behaviour of ρ̂ (vertical axis) varying the concentration ratios (horizontal
axis) with simulated data. Colours and shapes correspond to different levels of dataset
contamination: blue circle (ξ = 0%), green square (ξ = 2.5%), red cross (ξ = 5%) and black
pentagram (ξ = 10%). Values are averages along the n−m out-of-sample observations, as
described in Table 3.1. From the top to the bottom each panel corresponds to a different
level of h in ascendant order

.
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Figure 3.2: Weights distance with simulated data. Results are averages across the n−m
out-of-sample observations, as described in Table 3.1.
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Figure 3.3: The behaviour of ρ̂ (vertical axis) varying the concentration ratios (horizontal
axis) with empirical data. Colours and shapes correspond to different asset universes: 25OPI
is represented with the blue circle, 25SBM by the green square, 25SM with the red cross,
30I with the black pentagram and 300SPX by the magenta star. Each panel corresponds to
a different level of h in ascendant order from the top to the bottom. Note that values at
m = 360 are omitted for the 300SPX universe dataset as not applicable.
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Figure 3.4: Daily spot interest rates for the period 02/01/2014 – 08/09/2017. From bottom
to top, the plot depicts the behaviour of: USD LIBOR with maturity overnight, 1 week, 1, 2,
3, 6, 12 months, and USD Swap with maturity 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 ,15, 20,
25 and 30-year.
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Figure 3.5: Condition Number (CN) varying the size of the covariance matrix. From left
to right: CN behaviour for the Sample covariance matrix (SCV - top-left), Shrinkage (SH -
top-right), Nonlinear Shrinkage (NSH - middle-left), MCD (middle-right) and for MRCD
(bottom-left). On the x-axis we reported the matrix size, while the y-axis reports the value
of the condition number.
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Figure 3.6: Impact on the US term structure of earlier three Principal Components (PC),
varying the estimation procedure of the covariance matrix. Curves represent the sensitivity of
changes (returns) in interest rate against increasing maturity. The sensitivity to the first PC
is blue, the one to the second PC is orange and the last to the third PC is yellow. From left
to right: PC for the Sample covariance matrix (SCV - top-left), Shrinkage (SH - top-right),
Nonlinear Shrinkage (NSH - middle-left), MCD (middle-right) and for MRCD (bottom-left).



Appendix 3.A MRCD regularisation parameters
with simulated data

Table A3.1: MRCD regularisation parameters in the case of simulated data.

25OPI 25SBM 25SM 30I 300SPX

Panel A: MRCD with h = 0.5

ξ = 0 0.0000 0.0043 0.0067 0.0092 0.0128

ξ = 2.5% 0.0000 0.0055 0.0088 0.014 0.0198

ξ = 5% 0.0000 0.0066 0.0108 0.0169 0.0238

ξ = 10% 0.0000 0.0085 0.014 0.0206 0.0288

Panel B: MRCD with h = 0.75

ξ = 0 0.0000 0.0000 0.0048 0.0062 0.0088

ξ = 2.5% 0.0000 0.0000 0.0064 0.0086 0.0132

ξ = 5% 0.0000 0.0000 0.0079 0.0105 0.016

ξ = 10% 0.0000 0.0000 0.0101 0.0134 0.0195

Panel C: MRCD with h = 0.9

ξ = 0 0.0000 0.0000 0.0043 0.0053 0.0075

ξ = 2.5% 0.0000 0.0000 0.006 0.0076 0.0111

ξ = 5% 0.0000 0.0000 0.0074 0.0092 0.0134

ξ = 10% 0.0000 0.0000 0.0093 0.0116 0.0165
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Appendix 3.B Dataset 5 composition

On following the complete listings of the assets composing the investment universe 5, taken
from Bloomberg.

AAPL, ABMD, ABT, ADBE, ADM, ADSK, AEP, AFL, AIG, AIV, AJG, ALB, ALK, ALL,
AMAT, AMGN, ANDV, AON, AOS, APA, APC, APD, ATVI, AVB, AVY, AXP, AZO, BA,
BAC, BAX, BBT, BBY, BDX, BEN, BF/B, BHGE, BIIB, BK, BLL, BMY, BSX, BWA, C,
CAG, CAH, CAT, CB, CCL, CELG, CERN, CHD, CI, CINF, CL, CLX, CMA, CMCSA,
CMI, CMS, CNP, COF, COG, COO, COP, COST, CPB, CPRT, CSCO, CTAS, CTL, CTXS,
CVS, CVX, D, DE, DHI, DHR, DIS, DISH, DLTR, DOV, DRE, DRI, DTE, DUK, DVA,
DWDP, EA, ECL, ED, EFX, EIX, EL, EMN, EMR, EOG, EQR, EQT, ES, ESRX, ESS,
ETN, ETR, EVRG, EXC, EXPD, F, FAST, FCX, FDX, FISV, FITB, FL, FLIR, FMC, FRT,
GD, GE, GGP, GILD, GIS, GLW, GPC, GPS, GWW, HAL, HBAN, HCP, HD, HES, HIG,
HOG, HOLX, HON, HP, HPQ, HRB, HRL, HRS, HSIC, HST, HSY, HUM, IBM, IDXX,
IFF, INCY, INTC, INTU, IP, IPG, IR, ITW, IVZ, JBHT, JCI, JEC, JEF, JNJ, JPM, K,
KEY, KIM, KLAC, KMB, KO, KR, KSS, KSU, L, LB, LEG, LEN, LH, LLY, LMT, LNC,
LNT, LOW, LRCX, LUV, M, MAA, MAC, MAS, MCD, MCHP, MCK, MDT, MGM, MLM,
MMC, MMM, MNST, MO, MRK, MRO, MS, MSFT, MSI, NBL, NEE, NEM, NFX, NI,
NKE, NKTR, NOC, NSC, NTAP, NTRS, NUE, NWL, O, OKE, OMC, ORLY, OXY, PAYX,
PBCT, PCAR, PCG, PEG, PFE, PG, PGR, PH, PHM, PKI, PNC, PNW, PPG, PPL, PSA,
PSX, PVH, PX, QCOM, RCL, RE, REG, REGN, RHI, RJF, ROST, RTN, SBUX, SCG,
SCHW, SHW, SIVB, SJM, SLB, SNA, SNPS, SO, SPG, SPGI, STI, STT, SWK, SWKS,
SYMC, SYY, T, TGT, TIF, TJX, TMK, TMO, TROW, TRV, TSCO, TSS, TXT, UDR,
UHS, UNH, UNM, UNP, USB, UTX, VAR, VFC, VMC, VNO, VRTX, VZ, WAT, WEC,
WELL, WFC, WHR, WM, WMB, WY, XL, XLNX.
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Appendix 3.C MRCD regularisation parameters
with empirical data

Table C3.1: MRCD regularisation parameters in the case of empirical data.

S1 S2 S3 S4 S5

Panel A: m = 360

MRCD h = 0.5 0.0000 0.0000 0.0000 0.0000 -

MRCD h = 0.75 0.0000 0.0000 0.0000 0.0000 -

MRCD h = 0.9 0.0000 0.0000 0.0000 0.0000 -

Panel B: m = 180

MRCD h = 0.5 0.0000 0.0000 0.0004 0.0001 0.0409

MRCD h = 0.75 0.0000 0.0000 0.0001 0.0001 0.0000

MRCD h = 0.9 0.0000 0.0000 0.0002 0.0002 0.0678

Panel C: m = 120

MRCD h = 0.5 0.0016 0.0017 0.0024 0.0023 0.0339

MRCD h = 0.75 0.0000 0.0000 0.0013 0.0012 0.0000

MRCD h = 0.9 0.0000 0.0004 0.0016 0.0017 0.0671

Panel D: m = 60

MRCD h = 0.5 0.0095 0.0092 0.0092 0.0079 0.0369

MRCD h = 0.75 0.0033 0.0036 0.0048 0.0045 0.0000

MRCD h = 0.9 0.002 0.0024 0.0046 0.0045 0.0618

Panel E: m = 36

MRCD h = 0.5 0.0095 0.0105 0.0105 0.0094 0.0419

MRCD h = 0.75 0.0126 0.0123 0.0125 0.0119 0.0000

MRCD h = 0.9 0.0159 0.0125 0.0137 0.0131 0.0619

89



Chapter 4
Shrinkage estimator in Risk–Based Portfolios 1

4.1 Introduction

The seminal contributions of [Markowitz, 1952, 1956] laid the foundations for his well–known
portfolio building technique. Albeit elegant in its formulation and easy to be implemented in
real-world applications, the Markowitz model relies on securities returns sample mean and
sample covariance as inputs to estimate the optimal allocation. However, there is a large
consensus on the fact that sample estimators perpetuate large estimation errors; this directly
affects portfolio weights that often exhibit extreme values, fluctuating over time with very
poor performance out-of-sample [DeMiguel and Uppal, 2009].

This problem has been tackled from different perspectives: [Jorion, 1986] and [Michaud,
1989] suggested Bayesian alternatives to the sample estimators; [Jagannathan and Ma,
2003] added constraints to the Markowitz model limiting the estimation error; [Black and
Litterman, 1992] derived an alternative portfolio construction technique exclusively based
on the covariance matrix among asset returns, avoiding estimating the mean value for each
security and converging to the Markowitz Minimum Variance portfolio with no short-sales.
This latter technique is supported by results in [Merton, 1980] and [Chopra and Ziemba,
1993], who clearly demonstrated how the mean estimation process can lead to more severe
distortions than those in the case of the covariance matrix.

Following this perspective, estimation error can be reduced by considering risk-based port-
folios: findings suggest they have good out-of-sample performance without much turnover
[DeMiguel and Uppal, 2009]. There is a recent research strand focused on deriving risk-based
portfolios other than the Minimum Variance one. In this context, [Qian, 2006] designed a way
to select assets by assigning to each of them the same contribution to the overall portfolio
risk; [Choueifaty and Coignard, 2008] proposed a portfolio where diversification is the key
criterion in asset selection; [Maillard et al., 2010] offered a novel portfolio construction tech-
nique where weights perpetuate an equal risk contribution while maximising diversification.

1The research paper Target matrix estimators in Risk-based portfolios is based on the results in this chapter
and it has been published in Risks, 6(4), 1–20, Special Issue Computational Methods for Risk Management in
Economics and Finance.
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These portfolios are largely popular among practitioners1: they highlight the importance
of diversification, risk budgeting; moreover, they put risk management in a central role,
offering a low computational burden to estimate weights. They are perceived as “robust”
models since they do not require the explicit estimation of the mean. Unfortunately, limiting
the estimation error in this way poses additional problems related to the ill-conditioning
of the covariance matrix that occurs when the number of securities becomes sensitively
greater than the number of observations. In this case, the sample eigenvalues become more
dispersed than the population ones [Marčenko and Pastur, 1967], and the sample covariance
matrix directly affects weight estimation. This means that for a high-dimensional dataset,
the sample covariance matrix is not a reliable estimator.

To reduce misspecification effects on portfolio weights, more sophisticated estimators than
the sample covariance have been proposed, for example the Bayes-Stein shrinkage technique
[James and Stein, 1961], henceforth shrinkage stems for its practical implementation and
related portfolio performance. This technique reduces the misspecification in the sample
covariance matrix by shrinking it towards an alternative estimator. Here, the problem is
to select a convenient target estimator as well as to find the optimal intensity at which to
shrink towards the sample covariance matrix. The latter is usually derived by minimising a
predefined loss function to obtain the minimum distance between the true and the shrunk
covariance matrices [Ledoit and Wolf, 2003]. A comprehensive overview on shrinkage intensity
parameters can be found in [DeMiguel and Nogales, 2013], where the authors proposed an
alternative way of deriving the optimal intensity based on the smoothed bootstrap approach.
On the other hand, the target matrix is often selected among the class of structured covariance
estimators [Briner and Connor, 2008], especially because the matrix which shrinks is the
sample one. As noted in [Candelon et al., 2012], the sample covariance matrix is the
Maximum Likelihood Estimator (MLE) under the Normality of asset returns, hence it lets
the data speak without imposing any structure. This naturally suggests it might be pulled
towards a more structured alternative. Dealing with financial data, the shrinkage literature
proposes six different models for the target matrix: the Single-Index market model [Ledoit
and Wolf, 2003]; [Briner and Connor, 2008]; [Candelon et al., 2012]; [Ardia et al., 2017]);
the Identity matrix [Ledoit and Wolf, 2004a]; [Candelon et al., 2012]; the Variance Identity
matrix [Ledoit and Wolf, 2004a]; the Scaled Identity matrix [DeMiguel and Nogales, 2013];
the Constant Correlation model [Ledoit and Wolf, 2004b] and [Pantaleo et al., 2011]; the
Common Covariance [Pantaleo et al., 2011]. All these targets belong to the class of more
structured covariance estimators than the sample one, thus implying the latter is the matrix
to shrink.

Despite the great improvements in portfolio weight estimation under the Markowitz portfolio
building framework, the shrinkage technique has only been applied in one work involving

1The majority of papers on risk-based portfolios are published in journal aimed at practitioners, as the
Journal of Portfolio Management.
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risk-based portfolios: that of [Ardia et al., 2017], who comprehensively described the impacts
of variance and covariance misspecifications in risk-portfolio weights. [Ardia et al., 2017]
tested four alternative covariance estimators to reduce weight misspecification; among those,
only one refers to shrinkage as in [Ledoit and Wolf, 2003], leaving room open for further
research. In our work, we contribute to the existing literature, filling this gap and offering a
comprehensive overview of shrinkage in risk-based portfolios. In particular, we study the
effect of six target matrix estimators on the weights of four risk-based portfolios. To achieve
this goal, we provide an extensive Monte Carlo simulation aimed at (1) assessing estimators’
statistical properties and similarity with the true target matrix; (2) addressing the problem
of how the selection of a specific target estimator affects the portfolio weights. We find
out that the Identity and Variance Identity hold the best statistical properties, being well
conditioned even in a high-dimensional dataset. These two estimators also represent the
more efficient target matrices towards which to shrink the sample one. In fact, portfolio
weight derived shrinking towards the Identity and Variance Identity minimise the distance
from their true counterparts, especially in the case of Minimum Variance and Maximum
Diversification portfolios.

The rest of the chapter is organised as follows. Section 4.2 introduces the risk-based portfolios
employed in the study. Section 4.3 illustrates the shrinkage estimator, the moves to the six
target matrix estimators and provides useful insights into misspecification when shrinkage is
applied to risk-based portfolios. In Section 4.4, we run an extensive Monte Carlo analysis
for describing how changes in the target matrix affect risk-based portfolio weights. Section
4.5 concludes.

4.2 Risk–Based Portfolios

Risk-based portfolios are particularly appealing since they rely only on the estimation of
a proper measure of risk, i.e., the covariance matrix between asset returns. Assume an
investment universe made by p assets:

X = (x1, . . . ,xp
)

(1)

is a n× p containing a history of n log-returns for the i-th asset, where i = 1, . . . , p. The
covariance matrix among asset log-returns is the symmetric square matrix Σ2 of dimension
p× p, and the unknown optimal weights form the vector ω of dimension p× 1. Our working
framework assumes to consider four risk-based portfolios: the Minimum Variance (MV), the

2With this we refer to the population covariance matrix, which by definition is not observable and then
unfeasible. Hence, Σ is estimated taking into account the observations stored in X : we will deeply treat this
in the next section.



Chapter 4. Shrinkage estimator in Risk–Based Portfolios 93

Inverse Volatility (IV), the Equal-Risk-Contribution (ERC), and the Maximum Diversification
(MD) upon two constraints; no short-selling (ω ∈ <p+) and full allocation of the available
wealth (ω′1p = 1, where 1p is the vector of ones of length p).

The Minimum Variance portfolio [Markowitz, 1952] derives the optimal portfolio weights by
solving this minimisation problem with respect to ω:

ωMV ≡ argmin
ω

{
ω′Σω

∣∣ ω ∈ <p+,ω′1p = 1
}

(2)

where ω′Σω is the portfolio variance.

In the Inverse Volatility portfolio, also known as the equal-risk-budget portfolio [Leote et al.,
2012], a closed form solution is available. Each element of the vector ω is given by the inverse
of the i–th asset variance (denoted by Σ−1

i,i ) divided by the inverse of the sum of all asset
variances:

ωIV ≡

 ∑−1
1,1∑p

i=1

∑−1
i,i

, . . . ,

∑−1
p,p∑p

i=1

∑−1
i,i

′ (3)

In the Equal-Risk-Contribution portfolio, as the name suggests, the optimal weights are
calculated by assigning to each asset the same contribution to the whole portfolio volatility,
thus originating a minimisation procedure to be solved with respect to ω:

ωERC ≡ argmin
ω


p∑
i=1

(
%RCi −

1

p

)2

|ω ∈ <p+,ω′1p = 1

 (4)

Here, %RCi ≡ ωicovi,π√
ω′Σω

is the percentage risk contribution for the i -th asset,
√
ω′Σω is the

portfolio volatility as earlier defined, and ωicovi,π provides a measure of the covariance of
the i -th exposure to the total portfolio π, weighted by the corresponding ωi.

Turning to the Maximum Diversification, as in [Choueifaty and Coignard, 2008] we preliminary
define DR (ω) as the portfolio’s diversification ratio:

DR (ω) ≡
ω′
√
diag (Σ)√
ω′Σω

where diag (Σ) is a p × 1 vector which takes all the asset variances Σi,i and ω′
√
diag (Σ)

is the weighted average volatility. By construction, it is DR (ω) ≥ 1, since the portfolio
volatility is sub-additive [Ardia et al., 2017]. Hence, the optimal allocation is the one with
the highest DR:
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ωMD ≡ argmax
ω

{
DR (ω)

∣∣ ω ∈ <p+,ω′1p = 1
}
. (5)

4.3 Shrinkage Estimator

The shrinkage technique relies upon three ingredients: the starting covariance matrix to
shrink, the target matrix towards which the former is shrunk, and the shrinkage intensity, or
roughly speaking the strength at which the starting matrix must be shrunk.

In financial applications, the starting matrix which is to shrink is always the sample covariance
matrix. This is a very convenient choice that helps in the selection of a proper shrinkage
target: being the sample covariance a model-free estimator that completely reflects the
relationships among data3, it becomes natural to select a target in the class of more structured
covariance estimators [Briner and Connor, 2008]. In addition, this strategy allows direct
control over the trade-off between estimation error and model error in the resulting shrinkage
estimates. In fact, the sample covariance matrix is usually affected by a large amount of
estimation error. This is reduced when shrinking towards a structured target which minimises
the sampling error at the cost of adding some misspecification by imposing a specific model.
At this point, the shrinkage intensity is crucial because it must be set in such a way to
minimise both errors.

To define the shrinkage estimator, we start from the definition of sample covariance matrix
S. Recalling Equation (1), S is given by:

S =
1

n− 1
X ′(In −

1

n
1n1′n)X, (6)

where In denotes the n× n identity matrix and 1n is the ones column vector of length n.
The shrinkage methodology enhances the sample covariance matrix estimation by shrinking
S towards a specific target matrix T :

Σs = δT + (1− δ)S (7)

where Σs is the shrinkage estimator; δ the shrinkage parameter and T the target matrix. In
this work, we focus on the problem of selecting the target matrix. After a review of the
literature on target matrices, in the following rows we present the target estimators considered
in this study and we assess through a numerical illustration the impact of misspecification in
the target matrix for the considered risk-based portfolios.

3The sample covariance matrix is the Maximum Likelihood Estimator (MLE) under Normality, therefore
it lets data speaks without imposing any structure.
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4.3.1 Literature Review

The target matrix should fit a desirable number of requirements: First, it should be structured
much enough to lower the estimation error of the sample covariance matrix while not bringing
too much error from model selection. Second, it should reflect the important features of the
true covariance matrix [Ledoit and Wolf, 2004b]. The crucial question is: how much structure
should we impose to fill in the requirements? Table 4.1 shows the target matrices employed so
far in the literature, summarising information about the formula for the shrinkage intensity,
the wealth allocation rule, and the addressed research question. Not surprisingly, all the
papers shrink the sample covariance matrix. What surprises is that only six target matrices
have been examined: the one relying on the Single-Index market model, the Identity matrix,
the Scaled Identity, and the Variance Identity, the Constant Correlation model and the
Common Covariance model. Previously, four were proposed by Ledoit and Wolf in separate
works [Ledoit and Wolf, 2003, 2004a,b] and were again proposed in subsequent works, while
the Common Covariance appears only in [Pantaleo et al., 2011] and the Scaled Identity only
in [DeMiguel and Nogales, 2013].

[Table 4.1 about here.]

In Table 4.1, papers have been listed taking into account their contribution to the literature
as regards the adoption of a novel target matrix estimator, the re-examination of a previously
proposed target, and the comparison among different estimators. Ledoit and Wolf popularised
the shrinkage methodology in portfolio selection: in [Ledoit and Wolf, 2003], they were also
the first to compare the effects of shrinking towards different targets in portfolio performance.
Shrinking towards the Variance Identity and shrinking towards the Market Model are
two out of the eight estimators for the covariance matrix compared with respect to the
reduction of estimation error in portfolio weights. They found significant improvements
in portfolio performance when shrinking towards the Market Model. [Briner and Connor,
2008] well described the importance of selecting the target matrix among the class of
structured covariance estimators, hence proposing to shrink the asset covariance matrix
of demeaned returns towards the Market model as in [Ledoit and Wolf, 2003]. [Candelon
et al., 2012] compared the effect of double shrinking the sample covariance either towards the
Market Model and the Identity, finding that both estimators carry on similar out-of-sample
performances. [DeMiguel and Nogales, 2013] compared the effects of different shrinkage
estimators on portfolio performance, highlighting the importance of the shrinkage intensity
parameter and proposing a scaled version of the Identity Matrix as a target. Another
important comparison among target matrices is that of [Pantaleo et al., 2011], who compared
the Market and Constant Correlation models as in [Ledoit and Wolf, 2003, 2004b] with
the Common Covariance of [Schäfer and Strimmer, 2005] implemented as target matrix for
the first time in finance. The authors assessed the effects on portfolio performances while
controlling for the dimensionality of the dataset, finding that the Common Covariance should
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not be used when the number of observations is less than the number of assets. Lastly,
[Ardia et al., 2017] is the only work to implement shrinkage in risk-based portfolios. They
shrunk the sample covariance matrix as in [Ledoit and Wolf, 2003], finding that the Minimum
Variance and the Maximum Diversification portfolios are the most affected from covariance
misspecification, hence they benefit the most from the shrinkage technique.

4.3.2 Estimators for the Target Matrix

We consider six estimators for the target matrix: the Identity and the Variance Identity matrix,
the Single-index, the Common Covariance, the Constant Correlation and the Exponential
Weighted Moving Average (EWMA) models. They are all structured estimators, in the sense
that the number of parameters to be estimated is far less the 1

2p (p+ 1) required in the
sample covariance case. Compared with the literature, we take into account all the previous
target estimators,4 adding to the analysis the EWMA: this estimator well addresses the
problem of serial correlation and heteroskedasticity in asset returns.

The identity is a matrix with ones on the diagonal and zeros elsewhere. Choosing the Identity
as the target is justified by the fact that is shows good statistical properties: it is always
well conditioned and hence invertible [Ledoit and Wolf, 2003]. Besides the identity, we also
consider a multiple of the identity, named the Identity Variance. This is given by:

TV Id ≡ Ipdiag (S) Ip, (8)

where diag (S) is the main diagonal of the sample covariance matrix (hence the assets
variances) and Ip the identity matrix of dimension p.

The Single Index Model [Sharpe, 1963] assumes that the returns rt can be described by a
one-factor model, resembling the impact of the whole market:

rt = α+ βrmkt + εt, with t = 1, . . . , n,

where rmkt is the overall market returns; β is the vector of factor estimates for each asset; α
is the market mispricing, and εt the model error. The Single-Index market model represents
a practical way of reducing the dimension of the problem, measuring how much each asset
is affected by the market factor. The model implies the covariance structure among asset
returns is given by:

4In reality, we exclude the Scaled Identity of [DeMiguel and Nogales, 2013] because of its great similarity
with the Identity and Variance Identity implemented in our study.
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Tsi ≡ s2
mktββ

′ + Ω, (9)

where s2
mkt is the sample variance of asset returns; β is the vector of beta estimates and Ω

contains the residual variance estimates.

The Common Covariance model is aimed at minimising the heterogeneity of assets variances
and covariances by averaging both of them [Pantaleo et al., 2011]. Let varij,i=j and covarij, i6=j
being the variances and covariances of the sample covariance matrix, respectively, their
averages are given by:

var =
1

p

p∑
k=1

vark,i=j ;

covar =
1

p (p− 1) /2

p(p−1)/2∑
k=1

covark, i6=j ;

where p is the number of securities. The resulting target matrix Tcv has its diagonal elements
all equal to the average of the sample variance, while non-diagonal elements are all equal to
the average of sample covariances.

In the Constant Correlation model the main diagonal is filled with sample variances, and
elsewhere a constant covariance parameter which is equal for all assets. The matrix can be
written according to the following decomposition:

Tcc ≡ P diag (S)P, (10)

where P is the lower triangular matrix filled with the constant correlation parameter

ρ = 1
p(p−1)/2

p∑
i=1

ρij for i < j and ones in the main diagonal. Here, diag (S) represents the

main diagonal of the sample covariance matrix.

The EWMA model [RiskMetrics, 1996] was introduced by JP Morgan’s research team to
provide an easy but consistent way to assess portfolio covariance. RiskMetrics EWMA
considers the variances and covariance driven by an Integrated GARCH process:

TEWMA,t ≡ X ′X + λTEWMA,t−1, (11)

with TEWMA,0 = Ip TEWMA,t−1 is the target matrix at time t− 1 and λ is the smoothing
parameter: the higher λ, the higher the persistence in the variance.
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4.3.3 The Impact of Misspecification in the Target Matrix

We are now going to show to which extent risk-based portfolios can be affected by misspeci-
fication in the target matrix. To do so, we provide a numerical illustration, merely inspired
by the one in [Ardia et al., 2017]. Assume an investment universe made by three securities:
a sovereign bond (Asset-1), a corporate bond (Asset-2), and equity (Asset-3), we are able to
impose an arbitrary structure to the related 3 × 3 true covariance matrix5. We preliminary
recall that Σ can be written according to the following decomposition:

Σ ≡
(
diag (Σ)

)1/2
PΣ

(
diag (Σ)

)1/2
where

(
diag (Σ)

)1/2 is a diagonal matrix with volatilities on the diagonal and zeros else-
where and PΣ is the related correlation matrix, with ones on the diagonal and correlations
symmetrically displaced elsewhere. We impose

(Σ
1/2
1,1 , Σ

1/2
2,2 , Σ

1/2
3,3 ) = (0.1, 0.1, 0.2)

and

(PΣ;1,2, PΣ;1,3, PΣ;2,3) = (0.1, 0.2, 0.7)

hence, the true covariance matrix is:

Σ ≡


0.010 0.001 0.004

0.001 0.010 0.014

0.004 0.014 0.040


Now assume that the true covariance matrix Σ is equal to its shrunk counterpart when

δ =
1

2
:

Σ ≡ Σs =
1

2
S +

1

2
T

5[Ardia et al., 2017] imposes Asset-1 and Asset-2 to have 10% annual volatility; Asset-3 to have 20%
annual volatility; correlations between Asset-1/Asset-2 and Asset-1/Asset-3 are set as negative and correlation
between corporate bonds and equities (Asset-2/Asset-3) is set as positive. However, to better resemble real
data, specifically the S&P500, the US corporate index and the US Treasury Index total returns, we assume
all three correlation parameters to be positive.



Chapter 4. Shrinkage estimator in Risk–Based Portfolios 99

that is both the sample covariance matrix S and the target matrix T must be equal to
1

2
Σ

and the true target matrix is:

S ≡ T ≡


0.005 0.0005 0.002

0.0005 0.005 0.007

0.002 0.007 0.020


with few algebraic computations, we can obtain the volatilities and correlations simply by
applying the covariance decomposition, ending up with

(
T

1/2
1,1 , T

1/2
2,2 , T

1/2
3,3

)
= (0.0707, 0.0707, 0.1414) ;

(
PT ;1,2 , PT ;1,3, PT ;2,3) = (0.1, 0.2, 0.7) .

In this case, we can conclude that the target matrix T is undervaluing all the covariance
and correlation values.

At this point, some remarks are needed. First, as summarised in Table 4.2, we work out the
true risk-based portfolio weights. Weights are differently spread out: the Minimum Variance
equally allocates wealth to the first two assets, excluding equities. This because it mainly
relies upon the asset variance, limiting the diversification of the resulting portfolio. The
remaining portfolios allocate wealth without excluding any asset; however, the Maximum
Diversification overvalues Asset-1 assigning to it more than 50% of the total wealth. The
Inverse Volatility and Equal-Risk-Contribution seem to maximise diversification under a
risk-parity concept, similarly allocating wealth among the investment universe.

[Table 4.2 about here.]

Second, assuming Σ as the true covariance matrix allows us to simulate misspecification
both in the volatility and in the correlation components of the target matrix T by simply
increasing or decreasing the imposed true values. Since we are interested in investigating
misspecification impact on the true risk-based portfolio weights, we measure its effects after
each shift with the Frobenius norm between the true weights and the misspecified ones:

‖ω̃‖2F =

p∑
i=1

ω̃2
i

where ω̃ = ω − ω̂.
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Third, turning the discussion onto the working aspects of this toy example, we will separately
shift the volatility and the correlation of Asset-3, as done in [Ardia et al., 2017]. The
difference with them is that we modify the values in the true target matrix T . Moreover,
in order to also gauge how shrinkage intensity affects the portfolio weights, we perform
this analysis for 11 values of δ, spanning from 0 to 1 (with step 0.1). This allows us to
understand both extreme cases, i.e., when the true covariance matrix is only estimated with
the sample estimator (δ = 0) and only with the target matrix (δ = 1). Remember that the

true shrinkage intensity is set at δ =
1

2
.

Moving to the core of this numerical illustration, we proceed as follows. First, for what
is concerning the volatility, we let T 1/2

3,3 vary between 0 and 0.5, ceteris paribus. Results
are summarised in Figure 4.1, row 1. As expected, there is no misspecification in all the
risk-based portfolio at the initial state T 1/2

3,3 = 0.1414, i.e., the true value. All the portfolio
weights are misspecified in the range [0; 0.1414), with the Minimum Variance portfolio
showing the greatest departure from the true portfolio weights when the Asset-3 volatility
is undervalued below 0.12. The absence of misspecification effects in its weights is due to
the initial high-risk attributed to Asset-3; in fact, it is already excluded from the optimal
allocation at the initial non–perturbed state. Regarding the other portfolios, their weights
show a similar behaviour to the one just described: the Maximum Diversification weights
depart from the non–misspecified state to reach the maximum distance from the true weights
of 0.4; however, this effect dissipates as soon as the shrinkage intensity grows. The same
applies for the Inverse Volatility and the Equal-Risk-Contribution. On the contrary, when
volatility is overvalued in the range (0.1414; 0.5], the Minimum Variance is not misspecified,
since Asset-3 is always excluded from the allocation. This fact helps to maintain the stability
of its weights: this portfolio is not affected by shifts in the shrinkage intensity when there is
over–misspecification. All the remaining portfolios show low levels of misspecification due
to diversification purposes. In particular, they react in the same way to shrinkage intensity
misspecification, showing an increase in the Frobenius norm especially for low values of
Asset-3 variance. A common trait shared by all the considered portfolios is that when
weights are estimated with the sample covariance, only the distance from true portfolios is
at the maximum.

[Figure 4.1 about here.]

Second, we assess the correlation misspecification impact. We let the correlation between
Asset-3 and Asset-2 (PT;2,3) vary from 0 to 1, ceteris paribus. In this case, the greatest signs
of perturbation are in the Minimum Variance and in the Maximum Diversification portfolios,
while the Equal-Risk-Contribution shows far less distortions, as presented in Figure 4.1, row 2.
The Minimum Variance portfolio is again misspecified in one direction: when the correlation
parameter is undervalued and the sample covariance matrix dominates the target matrix in
the shrinkage. On the other hand, the Maximum Diversification shows the highest departure
from no-misspecification levels in both senses. However, as the Maximum Diversification it
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seems to benefit from high values of shrinkage intensity. The Equal-Risk-Contribution reacts
similarly to the Maximum Diversification, but with a far lower level of misspecification, the
Inverse Volatility is not affected at all by misspecification in the correlation structure of the
target matrix T. This is due to the specific characteristics of Asset-3 and the way in which
the Inverse Volatility selects to allocate weights under a risk-parity scheme.

In conclusion, with this numerical illustration, we assess the effects of target matrix mis-
specification in risk-based portfolios: the four risk-based portfolios react similarly to what
previously found in [Ardia et al., 2017], even if in our case, shifts originated in the target
matrix. The Minimum Variance and the Maximum Diversification portfolios are the most
impacted: the weights of the former are severely affected by volatility and covariance shifts
undervaluing the true values; the latter shows perturbations in weights when shifts are more
extreme. Both portfolios benefit from a higher level of shrinkage intensity. On the other
hand, the Inverse Volatility and the Equal-Risk-Contribution weights suffer less from both
sources of misspecification. Overall, weights are affected by shifts in the shrinkage intensity:
when sample covariance is the estimator (δ = 0), the distance from the true weights stands
at the maximum level in all the considered portfolios.

4.4 Case Study – Monte Carlo Simulation

This section offers a comprehensive comparison of the six target matrix estimators by means
of an extensive Monte Carlo study. The aim of this analysis is twofold: (1) assessing
estimators’ statistical properties and similarity with the true target matrix; (2) addressing
the problem of how selecting a specific target estimator impacts on the portfolio weights. This
investigation is aimed at giving a very broad overview about (1) and (2) since we monitor
both the p/n ratio and the whole spectrum of shrinkage intensity. We run simulations for 15
combinations of p and n, and for 11 different shrinkage intensities spanning in the interval
[0 ; 1], for an overall number of 165 scenarios.

The Monte Carlo study is designed as follows. Returns are simulated assuming a factor
model is the data generating process, as in [MacKinlay and Pastor, 2000]. In detail, we
impose a one-factor structure for the returns generating process:

rt = ξft + εt;

with t = 1, . . . , n,

where ft is the k × 1 vector of returns on the factor, ξ is the p× k vector of factor loadings,
and εt the vector of residuals of p length. Under this framework, returns are simulated
implying multivariate normality and absence of serial correlation. The asset factor loadings
are drawn from a uniform distribution and equally spread, while returns on the single factor
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are generated from a Normal distribution. The bounds for the uniform distribution and the
mean and the variance for the Normal one are calibrated on real market data, specifically
on the empirical dataset “49-Industry portfolios” with monthly frequency, available on the
Kennet French website6. Residuals are drawn from a uniform distribution in the range
[0.10; 0.30] so that the related covariance matrix is diagonal with an average annual volatility
of 20%.

For each of the 165 scenarios, we apply the same strategy. First, we simulate the n×p matrix
of asset log-returns, then we estimate the six target matrices and their corresponding shrunk
matrices Σ̂s. Finally, we estimate the weights of the four risk-based portfolios. Some remarks
are needed. First, we consider the number of assets as p = {10, 50, 100} and number of
observations as n = {60, 120, 180, 3000, 6000} months, which correspond to 5, 10, 15, 250
and 500 years. Moreover, the shrinkage intensity is allowed to vary between their lower and
upper bounds as δ = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} . For each of the 165

scenarios we run 100 Monte Carlo trials7, giving robustness to the results.

We stress again the importance of Monte Carlo simulations, which allow us to impose the
true covariance Σ and hence the true portfolio weights ω. This is crucial because we can
compare the true quantities with their estimated counterparts.

With respect to the point (1), we use two criteria to assess and compare the statistical
properties of target matrices: the reciprocal 1-norm condition number and the Frobenius
Norm. Being the 1-norm condition number defined as:

CN (A) = κ (A) = ‖A−1‖

for a given A. It measures the matrix sensitivity to changes in the data: when it is large, it
indicates that a small shift causes important changes, offering a measure of the ill-conditioning
of A. Since CN (A) takes value in the interval [0 ; +∞) , it is more convenient to use its
scaled version, the RCN (A):

RCN (A) = 1/ κ (A) (12)

It is defined in the range [0 ; 1]: the matrix is well-conditioned if the reciprocal condition
number is close to 1 and ill-conditioned vice–versa. Under the Monte Carlo framework, we
will study its Monte Carlo estimator:

6http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.
7Simulations were done in MATLAB setting the random seed generator at its default value, thus ensuring

the full reproducibility of the analysis. Related code available at the GitHub page of the author: https:
//github.com/marconeffelli/Risk-Based-Portfolios.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
https://github.com/marconeffelli/Risk-Based-Portfolios
https://github.com/marconeffelli/Risk-Based-Portfolios
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E
[
CN (Am)

]
=

1

M

M∑
m=1

CN (Am) (13)

where M is the number of Monte Carlo simulations. On the other hand, the Frobenius norm
is employed to gauge the similarity between the estimated target matrix and the true one.
We define it for the p× p symmetric matrix Z as:

FN (Z) = ‖Z‖2F =

p∑
i=1

p∑
j=1

z2
ij

In our case, Z = Σ̂s − Σ. Its Monte Carlo estimator is given by the following:

E
[
FN (Am)

]
=

1

M

M∑
m=1

FN (Am) (14)

Regarding (2), we assess the discrepancy between true and estimated weights again with the
Frobenius norm. In addition, we report the values at which the Frobenius norm attains its
best results, i.e., when the shrinkage intensity is optimal.

4.4.1 Main Results

Figure 4.2 summarises the statistical properties of the various target matrices.

[Figure 4.2 about here.]

Figure 4.2 illustrates the reciprocal 1–norm condition number: the matrix is well–conditioned
when the value is closer to 1, vice–versa is ill–conditioned the more it tends to zero. Overall,
the Identity and the Variance Identity stem for being always well-conditioned: across all
the combinations of p and n their reciprocal condition number is always one. Therefore, we
focus our analysis on the remaining target matrices. In the case where p = 10, the Common
Covariance dominates the other three alternatives, who perform poorly. As the number of
assets increases, the reciprocal condition number deteriorates, especially for the EWMA,
which now performs worse than the others, and for the Common Covariance, which is now
aligned to the Single-Index and the Constant Correlation model. In conclusion, excluding the
Identity and the Variance Identity, the considered targets show poor statistical properties.

Then, we turn to the study of similarity among true and estimated target matrices. Figure 4.3
represents the Monte Carlo Frobenius norm between the true and the estimated target
matrices. The surfaces give a clear overview about the relation among the Frobenius norm
itself, the p/n ratio and the shrinkage intensity. Overall, the Frobenius norm is minimised
by the Single-Index and the Common Covariance: in these cases, the target matrices are
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not particularly affected by the shrinkage intensity, while their reactions to increases in
the p/n ratio are controversial. In fact, quite surprisingly the distance between true and
estimated weights diminishes as both p and n increases. For p = 50 and p = 100, there is a
hump for small p/n values; however, the Frobenius norm increases when p

n ≥ 1. Despite the
low condition number, the EWMA shows a similar behaviour to the Single-Index and the
Constant Correlation target matrices, especially with respect to p/n values. On the other
hand, it is more affected by shifts in the shrinkage parameters; the distance from the true
weights increases moving towards the target matrix. Lastly, the Identity and the Variance
Identity show a similar behaviour: their distances from the true target matrix increase for
higher values of δ and p/n. Lastly, the Common Covariance is the most far away from the
true target matrix, being very sensitive both to high shrinkage intensity and p/n values.

[Figure 4.3 about here.]

To conclude, the Identity and the Variance Identity are the most well-conditioned matrices,
being stable across all the examined p/n combinations. Nevertheless, the Single-Index and
the Common Covariance target matrices show the greatest similarity with the true target
matrix minimising Frobenius norm, while both the Identity and the Variance Identity seem
less similar to the true target.

Results on Portfolio Weights

Tables 4.3 and 4.4 present the main results of the Monte Carlo study: for each combination
of p and n, we report the Monte Carlo estimator of the Frobenius norm between the true and
estimated weights. In particular, Table 4.3 reports averaged Frobenius norm along with the
shrinkage intensity (excluding the case δ = 0, which corresponds to the sample covariance
matrix), while Table 4.4 lists the minimum values for the optimal shrinkage intensity.

In both tables, we compare the six target matrices by examining one risk-based portfolio at a
time and the effect of increasing p for fixed n. Special attention is devoted to the cases when
p > n: the high-dimensional sample. We have this scenario only when p = 100 and n = 60.
Here, the sample covariance matrix becomes ill-conditioned [Marčenko and Pastur, 1967],
thus it is interesting to evaluate gains obtained with shrinkage. The averaged Frobenius
norm values in Table 4.3 give us a general overview about how target matrices perform across
the whole shrinkage intensity spectrum in one goal. We aim to understand if, in average
terms, shrinking the covariance matrix benefits risk-portfolio weights. On the other hand,
the minimum Frobenius norm values help us understanding to what extent the various target
matrices can help reproducing the true portfolio weights: the more intensity we need, the
better the target is. In both tables, sample values are listed in the first row of each Panel.

[Table 4.3 about here.]

Starting from Table 4.3, Panel A, the Minimum Variance allocation seems better described by
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the Identity and the Variance Identity regardless of the number of assets p. In particular, we
look at the difference between the weights calculated entirely on the sample covariance matrix
and those of the targets: the Identity and the Variance Identity are the only estimator to
perform better. In fact, shrinking towards the sample is not as bad as shrinking towards the
Common Covariance. By increasing n and moving to Panel B, similar results are obtained.
This trend is confirmed in Panel C, while in the cases of n = 3000 and n = 6000, all
the estimators perform similarly. Hence, for the Minimum Variance portfolio the Identity
matrix works best at reproducing portfolio weights very similar to the true ones. The same
conclusions apply for the Maximum Diversification portfolio: when p and n are small, the
Identity and the Variance Identity outperform other alternatives. On the other hand, we get
very different results for the Inverse Volatility and Equal-Risk-Contribution. Both portfolios
seem not gaining benefits from the shrinkage procedure, as the Frobenius norm is very similar
to that of the sample covariance matrix for all the target matrices under consideration.
This is true for all pairs of p and n. In the high-dimensional case (p = 100; n = 60), the
Identity matrix works best in reducing the distance between true and estimated portfolio
weights, both for the Minimum Variance and Maximum Diversification portfolios. On average,
shrinkage does not help too much when alternative target matrices are used; only in the
case of Common Covariance is shrinking worse than using the sample covariance matrix.
All these effects vanish when we look at the Inverse Volatility and Equal-Risk-Contribution
portfolios: here, shrinkage does not help too much, whatever the target is.

[Table 4.4 about here.]

Overall, results are in line with the conclusions of the numerical illustrations in Section 4.3.
Indeed, the Minimum Variance portfolio shows the highest distance between true and
estimated weights, similar to the Maximum Diversification. Both portfolios are affected by
the dimensionality of the sample: shrinkage always help in reducing weights misspecification;
it improves in high-dimensional cases. On contrary, estimated weights for the remaining
portfolios are close to the true ones by construction, hence, shrinkage does not help too much.

Switching to Table 4.4, the results illustrate again that the Identity and the Variance
Identity attain the best reduction of the Frobenius norm for the Minimum Variance and
Maximum Diversification portfolios. If results are similar to those of Table 4.3 for the
former, results for the latter show an improvement in using the shrinkage estimators. The
Identity, Variance Identity, Common Covariance, and Constant Correlation target matrices
outperform all the alternatives, including the sample estimator, minimising the Frobenius
norm in a similar fashion. This is true also for the high-dimensional case. On the contrary,
the other two portfolios do not benefit from shrinking the sample covariance matrix, even in
high-dimensional samples, confirming the insights from Table 4.3. Lastly, we look at the
shrinkage intensity at which target matrices attain the highest Frobenius norm reduction.
Those values are displayed in Figure 4.4. The intensity is composed of the interval [0; 1]:
the more it is close to 1, the more the target matrix helps in reducing the estimation
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error of the sample covariance matrix. Interestingly, the Identity and the Variance Identity
show shrinkage intensities always close to 1, meaning that shrinking towards them is highly
beneficial, as they are fairly better than the sample covariance matrix. This is verified
either for the high-dimensional case and for those risk portfolios (Inverse Volatility and
Equal-Risk-Contribution), who do not show great improvements when shrinkage is adopted.

[Figure 4.4 about here.]

Sensitivity to Shrinkage Intensity

To have a view on the whole shrinkage intensity spectrum (i.e., the interval (0; 1)) we refer to
Figure 4.5, where we report the Frobenius Norms for the weights (y-axis) with regard to the
shrinkage intensity (x-axis). Each column corresponds to a specific risk-based portfolio: from
left to right, the Minimum Variance, the Inverse Volatility, the Equal-Risk-Contribution,
and the Maximum Diversification, respectively. Each row corresponds to the p/n ratio
in n ascending order. For each subfigure, the Identity is blue circle-shaped, the Variance
Identity is green square-shaped, the Single-Index is red hexagram-shaped, the Common
Covariance is black star-shaped, the Constant Correlation is cyan plus-shaped, and the
EWMA is magenta diamond-shaped.

[Figure 4.5 about here.]

Figure 4.5 illustrates the case p = 100, as to include the high-dimensional scenario. Starting
from the latter (first row, n = 60), the Variance Identity is the only target matrix to
always reduce weight misspecification for all the considered portfolios, for all shrinkage
levels. The Identity do the same, excluding the ERC case where it performs worse than the
sample covariance matrix. The remaining targets behave very differently across the four
risk-based portfolios: the Common Covariance is the worst in both the Minimum Variance
and Maximum Diversification and the EWMA is the worst in both remaining portfolios.
The Market Model and the Constant Correlation do not improve much from the sample
estimator across all portfolios.

Looking at the second row (n = 120), the Identity is the most efficient target, reducing the
distance between estimated and true portfolio weights in all the considered portfolios. The
Variance Identity is also very efficient in Minimum Variance and Maximum Diversification
portfolios, while the remaining targets show similar results as in the previous case. The same
conclusions apply for the case n = 180.

When the number of observations is equal to or higher than n = 3000, results do not change
much. The Identity, the Variance Identity, the Market model, and the Constant Correlation
are the most efficient target matrices towards which to shrink, while the EWMA is the
worst for both Inverse Volatility and Equal-Risk-Contribution portfolios and the Common
Covariance is the worst for the Minimum Variance and Maximum Diversification ones.
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In conclusion, for the Minimum Variance portfolio, the Common Covariance should not be
used, since it always produces weights very unstable and distant from the true ones. At the
same time, the EWMA should not be used to shrink the covariance matrix in the Inverse
Volatility and Equal-Risk-Contribution portfolios. The most convenient matrices towards
which to shrink are the Identity and the Variance Identity. Overall, the Minimum Variance
and the Maximum Diversification portfolio weights gain more from shrinkage than those of
the Inverse Volatility and Equal-Risk-Contribution allocations.

4.5 Conclusion

In this article, we provide a comprehensive overview of shrinkage in risk-based portfolios.
Portfolios solely based on the asset returns covariance matrix are usually perceived as “robust”
since they avoid estimating the asset returns mean. However, they still suffer from estimation
error when the sample estimator is used, causing misspecification in the portfolio weights.
Shrinkage estimators have been proved to reduce the estimation error by pulling the sample
covariance towards a more structured target.

By means of an extensive Monte Carlo study, we compare six different target matrices:
the Identity, the Variance Identity, the Single-index model, the Common Covariance, the
Constant Correlation, and the Exponential Weighted Moving Average, respectively. We
do so considering their effects on weights for the Minimum Variance, Inverse Volatility,
Equal-risk-contribution, and Maximum diversification portfolios. Moreover, we control for
the whole shrinkage intensity spectrum and for dataset size, changing observation length and
number of assets. Therefore, we are able to (1) assess estimators’ statistical properties and
similarity with the true target matrix; (2) address the problem of how selecting a specific
target estimator affects the portfolio weights.

Regarding point (1), the findings suggest the Identity and the Variance Identity matrices
hold the best statistical properties, being well conditioned across all the combinations of
observations/assets, especially for high-dimensional datasets. Nevertheless, these targets
are both not very similar to the true target matrix. The Single-Index and the Constant
Correlation target matrices show the greater similarity with the true target matrix, minimising
the Frobenius norm, albeit being poorly conditioned when observations and assets share
similar sizes. Turning to point (2), the Identity attains the best results in terms of distance
reduction between the true and estimated portfolio weights for both the Minimum Variance
and Maximum Diversification portfolio construction techniques. The Variance Identity shows
a similar performance. Both estimators are also stable against shifts in the shrinkage intensity.

Overall, selecting the target matrix is very important, since we verified that there are large
shifts in the distance between true and estimated portfolio weights when shrinking towards
different targets. In risk-based portfolio allocations the Identity and the Variance Identity
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matrices represent the best target among the six considered in this study, especially in the
case of Minimum Variance and Maximum Diversification portfolios. In fact, they are always
well conditioned and outperform their competitor in deriving the most similar weights to the
true ones.

Lastly, the findings confirm that the Minimum Variance and Maximum Diversification
portfolios are more sensitive to misspecification in the covariance matrix, therefore, they
benefit the most when the sample covariance matrix is shrunk. These findings are in line
with what was previously found in [Ardia et al., 2017]: the Inverse Volatility and the Equal-
Risk-Contribution are more robust to covariance misspecification; hence, allocations do not
improve significantly when shrinkage is used.
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Table 4.1: Literature review of target matrices. “SCVm” = sample covariance matrix.
“N.A.” = not available. “GMVP” = Global Minimum Variance Portfolio.

Reference Matrix
to
Shrink

Target Matrix Shrinkage Intensity Portfolio Selection
Rule

Research Question

[Ledoit and Wolf,
2003]

SCVm Market Model and
Variance Identity

Risk-function minimi-
sation

Classical Markowitz
problem

Portfolio Performance
comparison

[Ledoit and Wolf,
2004a]

SCVm Identity Risk-function minimi-
sation

N.A. Theoretical paper to
gauge the shrinkage
asymptotic properties

[Ledoit and Wolf,
2004b]

SCVm Constant Correlation
Model

Optimal shrinkage
constant

Classical Markowitz
problem

Portfolio Performance
comparison

[Briner and Con-
nor, 2008]

Demeaned
SCVm

Market Model Same as [Ledoit and
Wolf, 2004b]

N.A. Analysis of the trade-
off estimation error
and model specifica-
tion error

[Pantaleo et al.,
2011]

SCVm Market Model, Com-
mon Covariance and
Constant Correlation
Model

Unbiased estimator of
[Schäfer and Strim-
mer, 2005]

Classical Markowitz
problem

Portfolio Performance
comparison

[Candelon et al.,
2012]

SCVm Market Model and
Identity

Same as [Ledoit and
Wolf, 2003]

Black-Litterman
GMVP

Portfolio Performance
comparison

[DeMiguel and
Nogales, 2013]

SCVm Scaled Identity Expected quadratic
loss and bootstrap-
ping approach

Classical Markowitz
problem

Comprehensive inves-
tigation of shrinkage
estimators

[Ardia et al.,
2017]

SCVm Market Model Same as [Ledoit and
Wolf, 2003]

Risk-based portfolios Theoretical paper to
assess effect on risk-
based weights
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Table 4.2: True weights of the four risk-based portfolios.

Asset Minimum Inverse Equal–Risk– Maximum

Variance Volatility Contribution Diversification

(MV) (IV) (ERC) (MD)

Asset-1 0.500 0.400 0.448 0.506

Asset-2 0.500 0.400 0.374 0.385

Asset-3 0.000 0.200 0.177 0.108
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Table 4.3: Frobenius norm for the portfolio weights. Values are averaged along with
the shrinkage intensity (excluding the case δ = 0 ). For each n, the first line reports the
Frobenius norm for the sample covariance matrix. Abbreviations in use are: S for sample
covariance; Id for identity matrix; VId for Variance Identity; SI for Single-Index; CV for
Common Covariance; CC for Constant Correlation and EWMA for Exponentially Weighted
Moving Average.

P = 10 P = 50 P = 100

MV IV ERC MD MV IV ERC MD MV IV ERC MD

Panel A: n = 60

S 0.834 0.1585 0.1736 0.5842 0.7721 0.0573 0.0637 0.4933 0.7555 0.0409 0.0447 0.4565

Id 0.6863 0.1425 0.1528 0.5045 0.6215 0.0559 0.0631 0.3873 0.4967 0.0404 0.0451 0.3652

VId 0.6935 0.1583 0.1732 0.5176 0.5999 0.0567 0.0634 0.4092 0.5901 0.0404 0.0445 0.3686

SI 0.838 0.1585 0.1736 0.5678 0.7685 0.0573 0.0637 0.4709 0.75 0.0409 0.0447 0.4288

CV 1.2438 0.1583 0.1731 1.011 1.1484 0.0567 0.0628 0.9381 1.1386 0.0404 0.0438 0.9185

CC 0.8353 0.1585 0.1733 0.5361 0.7808 0.0573 0.0635 0.4328 0.7663 0.0409 0.0445 0.3922

EWMA 0.8473 0.1593 0.1745 0.595 0.7811 0.0575 0.064 0.5142 0.7325 0.0411 0.045 0.4431

Panel B: n = 120

S 0.9064 0.0877 0.0989 0.4649 0.7814 0.059 0.0656 0.5065 0.6519 0.0424 0.0472 0.4332

Id 0.8157 0.087 0.0983 0.4256 0.6259 0.0613 0.0688 0.4354 0.6307 0.0389 0.0431 0.328

VId 0.8235 0.0871 0.0985 0.4284 0.6259 0.0613 0.0688 0.4354 0.489 0.0421 0.0471 0.3712

SI 0.9097 0.0877 0.0989 0.4563 0.7777 0.059 0.0656 0.4925 0.6458 0.0424 0.0472 0.419

CV 1.3269 0.0871 0.0982 0.9667 1.1806 0.0587 0.0651 1.0138 1.0974 0.0421 0.0467 0.8951

CC 0.905 0.0877 0.0988 0.4357 0.7822 0.059 0.0655 0.4636 0.6566 0.0424 0.0471 0.3856

EWMA 0.9281 0.0883 0.0996 0.4859 0.7994 0.0592 0.0658 0.5246 0.6788 0.0427 0.0475 0.4601

Panel C: n = 180

S 0.7989 0.1311 0.1423 0.5007 0.7932 0.0564 0.0627 0.4631 0.6905 0.0404 0.044 0.4065

Id 0.7206 0.1308 0.142 0.4736 0.6705 0.0562 0.0625 0.405 0.5477 0.0375 0.0399 0.3748

VId 0.7273 0.1308 0.1421 0.4757 0.6838 0.0562 0.0626 0.4127 0.5754 0.0402 0.044 0.3556

SI 0.8001 0.1311 0.1423 0.4954 0.7904 0.0564 0.0627 0.4545 0.6873 0.0404 0.044 0.3982

CV 1.2715 0.1308 0.1419 0.9961 1.2073 0.0562 0.0624 0.9988 1.1422 0.0402 0.0437 0.8705

CC 0.7957 0.1311 0.1423 0.4803 0.792 0.0564 0.0626 0.4259 0.692 0.0404 0.044 0.3672

EWMA 0.8415 0.1322 0.1435 0.526 0.8284 0.0567 0.0631 0.5005 0.7206 0.0408 0.0445 0.4429

Panel D: n = 3000

S 0.7504 0.1476 0.1596 0.3957 0.734 0.049 0.0539 0.3988 0.513 0.0384 0.0428 0.3259

Id 0.7441 0.1477 0.1597 0.3946 0.7009 0.049 0.0539 0.3872 0.4615 0.0384 0.0428 0.3096

VId 0.7437 0.1477 0.1596 0.3945 0.7043 0.049 0.0539 0.3886 0.4673 0.0384 0.0428 0.312

SI 0.7516 0.1476 0.1596 0.3955 0.7339 0.049 0.0539 0.3984 0.5123 0.0384 0.0428 0.3252

CV 1.2864 0.1477 0.1597 0.963 1.2281 0.049 0.0538 0.9954 1.1041 0.0384 0.0428 0.6822

CC 0.7488 0.1476 0.1596 0.3949 0.7316 0.049 0.0539 0.3904 0.5096 0.0384 0.0428 0.3143

EWMA 0.8563 0.1489 0.1611 0.4452 0.8161 0.0497 0.0547 0.4652 0.6244 0.0389 0.0435 0.4076

Panel E: n = 6000

S 0.9672 0.1302 0.1409 0.4821 0.5737 0.0539 0.0589 0.3481 0.5772 0.0402 0.0437 0.3436

Id 0.9496 0.1301 0.1408 0.4813 0.6095 0.0575 0.0639 0.4076 0.5449 0.0402 0.0437 0.3342

VId 0.951 0.1301 0.1409 0.4815 0.5419 0.054 0.0589 0.3401 0.5483 0.0402 0.0437 0.3354

SI 0.9688 0.1302 0.1409 0.482 0.574 0.0539 0.0589 0.3479 0.5772 0.0402 0.0437 0.3434

CV 1.4142 0.1301 0.1408 1.0034 1.1436 0.054 0.0589 0.9706 1.1422 0.0402 0.0437 0.7031

CC 0.9656 0.1302 0.1409 0.4814 0.5709 0.0539 0.0589 0.3415 0.575 0.0402 0.0437 0.3368

EWMA 1.0432 0.1312 0.1422 0.5232 0.6946 0.0547 0.0599 0.4319 0.681 0.0407 0.0444 0.4229
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Table 4.4: Frobenius norm for the portfolio weights. Values corresponds to the optimal
shrinkage intensity, listed after the Frobenius norm for each portfolio. We report values for
the sample covariance matrix (δ = 0) separately in the first row of each panel. For each n,
the first line reports the Frobenius norm for the sample covariance matrix. Abbreviations
used are: S for sample covariance; Id for identity matrix; VId for Variance Identity; SI for
Single-Index; CV for Common Covariance; CC for Constant Correlation and EWMA for
Exponentially Weighted Moving Average.

P = 10 P = 50 P = 100

MV IV ERC MD MV IV ERC MD MV IV ERC MD

Panel A: n = 60

S 0.8340 0.1585 0.1736 0.5842 0.7721 0.0573 0.0637 0.4933 0.7555 0.0409 0.0447 0.4565

Id 0.6778 0.1424 0.1525 0.501 0.5997 0.0558 0.0624 0.3704 0.471 0.0403 0.0446 0.3462

VId 0.6689 0.1581 0.173 0.5084 0.5539 0.0565 0.0627 0.3795 0.5428 0.0402 0.0437 0.3331

SI 0.8345 0.1585 0.1735 0.558 0.7666 0.0573 0.0637 0.4633 0.7479 0.0409 0.0447 0.4195

CV 1.2392 0.1581 0.1729 0.509 1.117 0.0565 0.0627 0.3795 1.1068 0.0402 0.0437 0.3331

CC 0.8335 0.1585 0.1731 0.5081 0.7733 0.0573 0.0634 0.3795 0.757 0.0409 0.0444 0.3332

EWMA 0.8331 0.1586 0.1737 0.5852 0.7706 0.0573 0.0637 0.4953 0.7213 0.0409 0.0447 0.4395

Panel B: n = 120

S 0.9064 0.0877 0.0989 0.4649 0.7814 0.059 0.0656 0.5065 0.6519 0.0424 0.0472 0.4332

Id 0.8121 0.087 0.0981 0.4241 0.6119 0.0613 0.0685 0.4255 0.613 0.0388 0.0428 0.3111

VId 0.8121 0.087 0.0982 0.4242 0.6119 0.0613 0.0685 0.4255 0.4425 0.042 0.0467 0.3445

SI 0.907 0.0877 0.0989 0.4526 0.776 0.059 0.0656 0.4872 0.6431 0.0424 0.0472 0.414

CV 1.3269 0.087 0.0981 0.4245 1.1756 0.0586 0.0651 0.4302 1.0916 0.042 0.0467 0.3445

CC 0.9043 0.0877 0.0987 0.4241 0.781 0.059 0.0654 0.4302 0.6527 0.0424 0.0471 0.3446

EWMA 0.9052 0.0876 0.0988 0.4651 0.7797 0.0589 0.0655 0.5056 0.6554 0.0424 0.0472 0.4331

Panel C: n = 180

S 0.7989 0.1311 0.1423 0.5007 0.7932 0.0564 0.0627 0.4631 0.6905 0.0404 0.044 0.4065

Id 0.7177 0.1307 0.1419 0.4724 0.6613 0.0562 0.0624 0.3977 0.534 0.0375 0.0398 0.3645

VId 0.718 0.1307 0.1419 0.4724 0.6614 0.0562 0.0624 0.3979 0.5428 0.0402 0.0437 0.3331

SI 0.799 0.1311 0.1423 0.4929 0.7897 0.0564 0.0627 0.4515 0.6863 0.0404 0.044 0.3955

CV 1.2715 0.1307 0.1418 0.4724 1.2073 0.0562 0.0624 0.3979 1.1422 0.0402 0.0437 0.3331

CC 0.7942 0.1311 0.1422 0.4725 0.7912 0.0564 0.0626 0.3977 0.6904 0.0404 0.0439 0.3331

EWMA 0.8035 0.1312 0.1424 0.5008 0.7951 0.0564 0.0626 0.4653 0.6938 0.0404 0.044 0.4074

Panel D: n = 3000

S 0.7504 0.1476 0.1596 0.3957 0.734 0.049 0.0539 0.3988 0.513 0.0384 0.0428 0.3259

Id 0.7425 0.1477 0.1596 0.3941 0.6988 0.049 0.0538 0.3859 0.4573 0.0384 0.0428 0.3072

VId 0.7426 0.1476 0.1596 0.3941 0.6988 0.049 0.0538 0.3859 0.4573 0.0384 0.0428 0.3072

SI 0.7506 0.1476 0.1596 0.3953 0.7339 0.049 0.0539 0.3983 0.512 0.0384 0.0428 0.325

CV 1.2864 0.1476 0.1596 0.3951 1.2281 0.049 0.0538 0.3859 1.1041 0.0384 0.0428 0.3072

CC 0.7477 0.1476 0.1596 0.3946 0.7299 0.049 0.0539 0.386 0.5073 0.0384 0.0428 0.3072

EWMA 0.7615 0.1477 0.1597 0.3981 0.7439 0.0491 0.0539 0.4043 0.5263 0.0384 0.0429 0.3346

Panel E: n = 6000

S 0.9672 0.1302 0.1409 0.4821 0.5737 0.0539 0.0589 0.3481 0.5772 0.0402 0.0437 0.3436

Id 0.9486 0.13 0.1408 0.4811 0.6085 0.0575 0.0639 0.4072 0.5428 0.0402 0.0437 0.3331

VId 0.9486 0.13 0.1408 0.4811 0.5365 0.054 0.0589 0.3381 0.5428 0.0402 0.0437 0.3331

SI 0.9675 0.1302 0.1409 0.482 0.5738 0.0539 0.0589 0.3478 0.5772 0.0402 0.0437 0.3433

CV 1.4142 0.13 0.1408 0.4811 1.1436 0.054 0.0589 0.3381 1.1422 0.0402 0.0437 0.3331

CC 0.9644 0.1302 0.1409 0.4812 0.5687 0.0539 0.0589 0.3381 0.5733 0.0402 0.0437 0.3331

EWMA 0.9765 0.1302 0.1409 0.4832 0.5901 0.054 0.059 0.3561 0.59 0.0402 0.0438 0.3524
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Chapter 5
Conclusions and Future Research

The main motivation of this research was to improve the estimation of the covariance matrix
for portfolio applications. To such aim, we built on existing econometric methodologies
and proposed the adoption of new (in our field) ones, but there is still enough space left to
consider this as an ongoing research for future times. In fact, the reviewed literature clearly
highlighted that misspecification effects in the covariance matrix cannot be neglected. We
reckon this as the need of improving existing solutions.

In details, our contributions to the literature can be summarised as follows. In Chapter
2, we developed and compared two novel methodologies for hedging in the multivariate
GARCH framework. This filled a lack in the literature about hedging energy commodity
portfolios, where hedging when the covariance matrix is conditional and heteroskedastic
was limited to singular spot positions. The numerical illustration gave a comprehensive
overview about how volatility and covariance misspecification impacts on the hedged portfolio,
disentangling how these effects work under both approaches. Through the empirical case
study, we were able to compare the two approaches, while observing interesting insights
even for investors willing to hedge energy commodities. The empirical case study still leaves
room to further investigation: a more comprehensive analysis covering different periods,
commodities or even simulated datasets could help in generalising the results. In Chapter
3, we introduced the Minimum Regularised Covariance Determinant estimator in our field.
Given the versatility of this estimator, it served a twofold aim: first, we have enriched the
literature about estimation error in the precision matrix, improving asset allocation under
the Global Minimum Variance portfolio. In this case, we offered a comparison against the
sample covariance matrix estimator which is very comprehensive. In fact, we either tested the
two with an extensive Monte Carlo study, and then we used five real investment universes to
show how the out–of–sample performance and general stability of Global Minimum Variance
portfolio weights are improved. Second, we have contributed to the interest rates literature
by analysing five alternative estimators for the covariance matrix with the aim of giving
insights about risk management and portfolio building for fixed income instruments. To
this extent, a practical case study analysing the main factors that drive the volatility of the
US yield curve has been proposed. Several directions for future research can be identified
from each application of the MRCD. First, it would be then particularly interesting to
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test the MRCD against alternative estimators for the covariance matrix inverse. Recently
proposed estimators as the shrinkage and the LASSO have performed well in enhancing the
out–of–sample performance of the Global Minimum Variance portfolio. Second, interest rate
modelling should be enhanced providing a wider array of applications and datasets – both
real and simulated – where to test the benefits of MRCD covariance matrix. In Chapter 4,
we focused our attention on misspecification errors in risk-based portfolios. To such aim, we
improved the shrinkage technique by focusing on the target matrix. Through a numerical
illustration, we assessed the impacts of a misspecificated shrinkage target matrix in the
resulting risk–based portfolio weights. We were able to disentangling the impact produced
by a shift in the volatility or in the covariance, finding that the Minimum Variance and
the Maximum Diversification portfolios are more sensitive to these kinds of errors than the
Inverse Volatility and the Equal–Risk–Contribution portfolios. Moreover, we compared six
alternative estimators for the target matrix in a comprehensive Monte Carlo study. Evidence
suggested that the Identity and the Variance Identity target matrix yield superior statistical
properties than their competitors, allowing estimated risk-based portfolio weights to be more
close to their population counterparts. We found room to improve this chapter at least in
two directions. One by employing the same investigation approach to other portfolios rather
than risk–based ones. Additionally, it would be interesting to assess their effect on several
real investment universe. We leave these developments to future research.
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