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Kahlerness of moduli spaces of stable sheaves
over non-projective K3 surfaces

Arvid Perego

ABSTRACT

We show that a moduli space of slope-stable coherent sheaves over a K3 surface is
a compact hyperkéahler manifold if and only if its second Betti number is the sum of
its Hodge numbers h>?, h'! and h02.

1. Introduction

Compact hyperkéahler manifolds are compact, connected Kéhler manifolds which are simply
connected and holomorphically symplectic and have h>? = 1. Very few examples of them are
currently known, and all the known deformation classes arise from moduli spaces of semistable
coherent sheaves on a projective K3 surface or on an Abelian surface. In [PT17], we showed
that if S is any K3 surface, the moduli space M,(S,w) of u,-stable coherent sheaves on S of
Mukai vector v = (r,&,a) € H**(S,7Z) is a compact, connected complex manifold, it carries a
holomorphic symplectic form, and it is of K3[™-type (that is, it is deformation equivalent to a
Hilbert scheme of points on a projective K3 surface). This holds under some hypotheses on w
and v (namely, w is a v-generic Kédhler class, and r and £ have to be relatively prime: we refer
the reader to [PT17, Section 2.2] for the definition of v-genericity).

The main open question about these moduli spaces is if they carry a Kahler metric: if it is
s0, it follows that they are all compact hyperkéhler manifolds of K3[-type. The answer to this
question is affirmative in at least three cases: when S is projective, when M, (S,w) is a surface,
when M, (S,w) parametrizes only locally free coherent sheaves. This led us to the following.

CONJECTURE 1.1. The moduli spaces M, (S,w) are Kahler manifolds.

Evidence is provided by the previous examples, where the moduli spaces are indeed Kahler,
and by the fact that their geometry is somehow similar to that of a compact hyperkéhler manifold;
in [PT17], we show that on their second integral cohomology, there is a non-degenerate quadratic
form defined as the Beauville-Bogomolov form of compact hyperkahler manifolds. But still,
this analogy is not sufficient to guarantee that the moduli spaces are Kéahler: it is known since
[Gua94, Gua95a, Gua95b] that there are examples of compact, simply connected, holomorphically
symplectic manifolds having h>? = 1 which are not Kéhler, but whose second integral cohomology
carries a non-degenerate quadratic form, and for which the local Torelli theorem holds.
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A. PEREGO

The aim of this paper is to show that the previous conjecture holds true under some additional
hypothesis on the second Betti number of M, (S,w).

1.1 Main definitions and notation
In this section, we collect all the definitions and notation we will use in what follows.

DEFINITION 1.2. A holomorphically symplectic manifold is a complex manifold which carries an
everywhere non-degenerate holomorphic closed 2-form (called a holomorphic symplectic form).

We notice that a compact holomorphically symplectic manifold is always of even complex
dimension, and a holomorphic symplectic form ¢ defines an isomorphism o: Tx — Qx of
vector bundles, where T'x is the tangent bundle of X and Qx is the cotangent bundle of X (that
is, the dual bundle of Tx).

Let X be a compact, connected complex manifold of complex dimension d, and k € {0, ..., 2d}
and p,q € N.

DEFINITION 1.3. The kth Betti number of X is
br(X) = dime H*(X,C),
and the type (p,q) Hodge number of X is
p.q — 0 Psq
hP(X) = dime Hy"(X) .

Equivalently, one can define h?%(X) to be the complex dimension of the space HP(X,Q%).
The general relation between the Betti and the Hodge numbers of X is that

b(X) < ) hPIX)
p+q=k
for every 0 < k£ < 2d, and the equality holds for every k if and only if the Frolicher spectral
sequence of X degenerates at the Fy level.

DEFINITION 1.4. A compact, connected complex manifold X is a bo-manifold if
bo(X) = h29(X) + hMH(X) + 22 (X).

Remark 1.5. A compact, connected complex manifold X is a by-manifold if and only if there

is a weak Hodge decomposition on H?(X,C), that is, an isomorphism H?(X,C) ~ H%O(X) &)

H%’I(X)@Hg’2(X). In terms of forms, this means that if p+¢ =2 and a € Hg’q(X) is a Dolbeault
class, then there is a d-closed 2-form a = aP4 + P14t ...+ 420 (in the Hodge Frolicher
filtration on the total de Rham complex of X)) such that the Dolbeault class of o is a.

All compact, connected Kahler manifolds are bs-manifolds since on a compact Kéhler manifold
we have a (strong) Hodge decomposition. The converse is not true in general: every compact
complex surface is a by-manifold (since the Frolicher spectral sequence degenerates at the Ej
level), but there are several compact complex surfaces which are not Kahler.

Remark 1.6. If X is a bs-manifold, then all holomorphic 2-forms are d-closed. Indeed, if o is
a holomorphic 2-form on X, consider the spectral sequence morphism dj : Ef’o — Ei”o. Here
we have EY 0 = Hg’D(X ), and dy sends the J-cohomology class of o to the d-cohomology class

of do. As X is a bgp-manifold, the morphism d; is trivial; hence, do € Im(9). This implies that
0o = 0, and as ¢ is holomorphic, we finally get that do = 0.
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KAHLERNESS OF MODULI SPACES

DEFINITION 1.7. A compact, connected complex manifold X is in the Fujiki class C if it is
bimeromorphic to a compact Kéahler manifold.

Among all manifolds in the Fujiki class C, we clearly have compact K&hler manifolds, but
there are examples of manifolds in the Fujiki class C which are not Kéhler (see, for example,
[Poo86]).

DEFINITION 1.8. A compact, connected complex manifold X verifies the 00-lemma for 2-forms
if every 0-closed, 0-closed, d-exact 2-form is d0-exact.

In other terms, a compact, connected complex manifold X verifies the 99-lemma for 2-forms if
ker(9) Nker(9) NIm(d) = Im(93). Another equivalent way of expressing this is that the canonical
morphism HEL(X) — H?*(X,C) is injective for p + ¢ = 2 (here HEL(X) is the type (p,q)
Bott-Chern cohomology of X; that is, H%E(X) = ker(9) Nker 9/Im(99)).

If X is a compact Kéhler manifold, then X verifies the d9-lemma for 2-forms (more gen-
erally, for all forms; see, for example, [DGMS75, Lemma 5.11]). Moreover, if f: X — Y is
a bimeromorphic map between two compact complex manifolds and if the 90-lemma for 2-forms
holds for Y, then it holds for X (see, for example, [DGMS75, Theorem 5.22] and [Del68, Sec-
tions 4 and 5]). In particular, every compact complex manifold in the Fujiki class C verifies the
00-lemma for 2-forms. Moreover, if X verifies the 90-lemma for 2-forms, then we have a Hodge
decomposition on H?(X,C), so X is a by-manifold (see [DGMST75, Section 5.21]).

Remark 1.9. A compact, connected complex manifold X verifies the 99-lemma for 2-forms if
and only if there is a strong Hodge decomposition on H?(X,C). In terms of forms, this means
that if p4+¢g =2 and a € Hg’q(X ) is a Dolbeault class, then there is a d-closed 2-form of pure
type (p,q) whose Dolbeault class is a.

If f: X — B is a holomorphic fibration, then for every b € B, we let X}, := f~1(b). Let X
be a compact, connected complex manifold and B a connected complex manifold.

DEFINITION 1.10. A deformation of X along B is a smooth and proper holomorphic family
f: & — B for which there is a 0 € B such that X is biholomorphic to X.

Let now P be a property of complex manifolds. We recall that the analytic Zariski topology
on a complex manifold X is the topology whose open subsets are the complements of closed
analytic subvarieties of X.

DEFINITION 1.11. We say that the property P is open in the Euclidean topology (respectively,
in the analytic Zariski topology) if for every deformation X along a connected complex manifold
B, the set of those b € B such that X; verifies P is a Euclidean (respectively, analytic Zariski)
open subset of B.

Kéhlerness is an open property in the Euclidean topology (see [KKS60, Theorem 15]), but in
general it is not closed (as can be seen in an example due to Hironaka in [Hir62]). It is conjectured
in [DP04] that it is an open property in the analytic Zariski topology. Being in the Fujiki class
C is not an open property in general, as can be seen in an example of Campana in [Cam91],
but it is conjectured to be closed (see [Pop14]). Verifying the dd-lemma for 2-forms is an open
property in the Euclidean topology (see the Ph.D. thesis of C.-C. Wu, Harvard University, 2006,
or [AT13, Corollary 2.7]). Being a be-manifold is open in the analytic Zariski topology (as the
Hodge numbers are upper semi-continuous in the analytic Zariski topology; see [Dem95] and
references therein).
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The last definitions we need are the following.
DEFINITION 1.12. Let X be a compact, connected complex manifold.

(i) The manifold X is compact hyperkdhler if it is a K&dhler manifold which is simply connected
and holomorphically symplectic and h*?(X) = 1.

(ii) The manifold X is deformation equivalent to a compact hyperkéahler manifold if there exist
a connected complex manifold B and a deformation X — B of X along B for which there
is a b € B such that X} is a compact hyperkéahler manifold.

(iii) The manifold X is a limit of compact hyperkahler manifolds if there exist a smooth and
proper family X — B along a smooth connected base B and a sequence {b,} of points of
B converging to 0 such that Xj, is a compact hyperkahler manifold.

1.2 Main results and structure of the paper

In this section, we let S be a K3 surface. If r € H°(S,Z) ~ Z and ¢ € NS(S), we say that r
and & are relatively prime when the following property is verified: if s € Z is such that r = sr’
and ¢ = s¢’ for some ' € Z and £ € NS(S), then s = £1. A Kéhler class w on S will be called
a polarization, and we will usually choose it to be v-generic (for a definition of v-genericity, see
[PT17, Section 2.2]).

If v = (r,&a) € H*(S,Z), we let v? := £? — 2ra; this defines a non-degenerate quadratic
form on H?*(S,7Z), called a Mukai form, whose corresponding non-degenerate symmetric bilinear
pairing is called a Mukai pairing. For every v,w € H**(S,Z), we let (v, w)muk be the value of
the Mukai pairing on v and w: if v = (r,{,a) and w = (s,(, b), then

(v, WMk ==& - —ra — sb,
where & - { is the intersection product on S. This allows us to consider
vt = {w e H*(S,Z) | (v, w)muk = 0},
which is a submodule of H?*(S,Z) (and hence has a non-degenerate quadratic form obtained by
restricting the Mukai form to v*).
The main result of the paper is the following.

THEOREM 1.13. Let S be a K3 surface and w a Kéhler class on S. We let v = (r,£,a) € H**(S,Z)
be such that r > 0 and £ € NS(S). Suppose that r and { are relatively prime and that w is v-

generic. Then the moduli space M = M,(S,w) of p,-stable coherent sheaves on S with Mukai
vector v is Kahler if and only if it is a bo-manifold.

As already seen before, if M, (S,w) is Kéhler, then it is a bg-manifold. The proof of the
opposite implication is the content of the present paper. The hypothesis about M, (S,w) being
a be-manifold is the weakest one under which we are able to let the strategy of our proof work.
Theorem 1.13 proves Conjecture 1.1 under the additional hypothesis of the moduli spaces being
bo-manifolds. Hence, we could possibly modify Conjecture 1.1 as follows.

CONJECTURE 1.14. Under the hypotheses of Theorem 1.13, the moduli spaces M,(S,w) are
bo-manifolds.

Theorem 1.13 has the following immediate corollary.

COROLLARY 1.15. Let M — B be any smooth and proper family of moduli spaces of coherent
sheaves verifying the conditions of Theorem 1.13. The set of b € B such that My is Kahler is an
open subset of B with respect to the analytic Zariski topology.
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In view of [PT17, Theorems 1.1 and 1.2], another immediate corollary is the following.

COROLLARY 1.16. Let S be a K3 surface and w a Kéhler class on S, and let v = (r,€,a) €
H?*(S,7Z) be such that r > 0 and ¢ € NS(S). Suppose that r and & are relatively prime, that w
is v-generic and that M,(S,w) is a by-manifold.

(i) The moduli space M,(S,w) is a compact hyperkéiihler manifold of K3 -type, which is pro-
jective if and only if S is projective.

(ii) Ifv? > 2, there is a Hodge isometry \,: vt — H?(M,,Z).

The case v? = 0 was already treated in [PT17]; in this case, there is a Hodge isometry
Ao: v /2w — H*(M,,7Z),

and there is no need to suppose that M,(S,w) is a by-manifold. For as a consequence [PT17,
Theorem 1.1], we already know that M, (S,w) is a K3 surface.

The proof of Theorem 1.13 is an application of general results about compact, connected
complex be-manifolds which are holomorphically symplectic and a limit of compact hyperkahler
manifolds. The starting point is a result originally due to Guan (see Proposition 1.21) stating
that if X is a compact, connected holomorphically symplectic bo-manifold which is deformation
equivalent to a compact hyperkihler manifold, then on H?(X,Z), there is a non-degenerate
quadratic form ¢y of signature (3,b2(X) — 3), and the local Torelli theorem holds.

This result is a generalization of the well-known analogue for compact hyperkéhler manifolds
proved by Beauville in [Bea83]. By the local Torelli theorem, we mean that the period map is
locally a biholomorphism (as in the case of compact hyperkdhler manifolds) onto the period
domain. We will recall the definition of the Beauville-Bogomolov form and the local Torelli
theorem in Section 2.

Remark 1.17. In [PT17], we proved (see Theorem 1.1 there) that if M is a moduli space of slope-
stable coherent sheaves over a non-projective K3 surface (verifying all the hypotheses of Theo-
rem 1.13), then on H?(M,Z), there is a non-degenerate quadratic form of signature (3, bo(M)—3).
This is proved without assuming that M is a by-manifold. In [PT17], we did not prove the local
Torelli theorem, which we find here as a consequence of the assumption that M is a bo-manifold.

In Section 2, we consider compact, connected holomorphically symplectic by-manifolds which
are not only deformation equivalent to a compact hyperkahler manifold but moreover a limit of
compact hyperkahler manifolds. The main result of Section 2 is the following.

THEOREM 1.18. Let X be a compact, connected holomorphically symplectic manifold verify-
ing the 00-lemma for 2-forms. If X is a limit of compact hyperkihler manifolds, then X is
bimeromorphic to a compact hyperkahler manifold (hence, it is in the Fujiki class C).

Using Theorem 1.18, we will show that the same conclusion holds when X is a compact, con-
nected holomorphically symplectic bo-manifold which verifies conditions which are more general
than the dd-lemma for 2-forms (see Proposition 2.7 for the precise statement). As we will see,
if a moduli space M verifies the hypotheses of Theorem 1.13 and is a bs-manifold, then it is a
compact, connected holomorphically symplectic manifold which is a limit of compact hyperkéahler
manifolds and which verifies the conditions in Proposition 2.7. In particular, this will allow us
to conclude that such moduli spaces are all bimeromorphic to a compact hyperkahler manifold.
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The proof of Theorem 1.18 is based on a well-known strategy already used by Siu in [Siu83]
to show that all K3 surfaces are Kéahler, and by Huybrechts in [Huy99] to show that non-
separated, marked, compact hyperkéhler manifolds are in fact bimeromorphic. More precisely, if
A is a lattice, we say that a compact complex manifold X carries a A-marking if on H*(X,Z),
there is a non-degenerate quadratic form and there is an isometry ¢: H?(X,Z) — A. The pair
(X, ¢) is called a A-marked manifold.

The set of (equivalence classes of) A-marked manifolds is denoted by M. As a consequence
of the local Torelli theorem, it contains the subset M7} of A-marked manifolds (X, ¢) where X is
a compact holomorphically symplectic bo-manifold which is deformation equivalent to a compact
hyperkéhler manifold (and whose Beauville-Bogomolov lattice is isometric to A). By the local
Torelli theorem, we can give M# the structure of a complex space, in which we have a (non-

empty) open subset Mkk of compact hyperké&hler manifolds and a (non-empty) open subset M‘??
of manifolds verifying the 90-lemma for 2-forms. We let Mﬁk be the closure of MA¥ in M5.

Theorem 1.18 can be restated by saying that if (X, ¢) € ﬂﬁkﬁ/\/l?\a, then X is bimeromorphic
to a compact hyperkédhler manifold. This is the statement we prove; the idea of the proof is that
if (X,¢) € MIX’C, then (X, ¢) is non-separated from a point (Y,v) € M. A standard argument
shows that X and Y have to be bimeromorphic. Theorem 1.18 is just an intermediate result
on the way to the Kahlerness of the moduli spaces, and it is used in Section 3 to prove that
on a compact, connected holomorphically symplectic bo-manifold which is a limit of compact
hyperkéahler manifolds, we can define an analogue of the positive cone of a compact hyperkahler
manifold.

Recall that if X is compact hyperkéhler and Cx is the cone of real (1, 1)-classes over which the
Beauville-Bogomolov form is strictly positive, the positive cone C;g is the connected component
of Cx which contains the Kéhler cone of X. A result of Huybrechts shows that C}E is contained in
(the interior of) the pseudo-effective cone of X. Theorem 1.18 is used to prove that on a compact,
connected holomorphically symplectic by-manifold X which is a limit of compact hyperkahler
manifolds and which is in the Fujiki class C, the intersection of the pseudo-effective cone of X
and of Cx (which can be defined as for compact hyperkéhler manifolds by the local Torelli
theorem) consists of exactly one of the two connected components of Cx. This component is the
positive cone of X, still denoted by C;E. We then prove the following result.

THEOREM 1.19. Let X be a compact, connected holomorphically symplectic manifold in the
Fujiki class C which is a limit of compact hyperkidhler manifolds. If there is an « € C;g such that

(i) a-C > 0 for every rational curve C' on X and
(ii) for every non-zero B € HY1(X) N H%(X,Z), we have qx(a, ) # 0,

then X is compact hyperkahler and « is a Kahler class on X.

The proof of this result is based on Theorem 1.18, which gives a bimeromorphism f: Y --+ X
between X and a compact hyperkéhler manifold Y. Using twistor lines for real (1, 1)-classes on X
(which can be defined similarly to the hyperkahler case thanks to the local Torelli theorem) and
a strategy used by Huybrechts for compact hyperkéhler manifolds, we show that the conditions
on « imply that f*« is a Kéahler class on Y. An easy argument then shows that f is a biholo-
morphism and that « is a Kahler class on X.

The last part of the paper is devoted to showing that on M, a class « as in the statement of
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KAHLERNESS OF MODULI SPACES

Theorem 1.19 exists. This is obtained by using the (Hodge) isometry
Ao vt @ R — H?(M,R)

(whose existence was proved in [PT17, Section 5.2]) to produce classes in Cps. By deforming to
a moduli space of slope-stable coherent sheaves on a projective K3 surface, and by using a classical
construction of ample line bundles on M in this case (starting from an ample line bundle on ),
we will show that a class as in Theorem 1.19 exists, concluding the proof of Theorem 1.13.

1.3 The Beauville-Bogomolov form and the local Torelli theorem

The starting point of the proof of Theorem 1.13 is the local Torelli theorem, which is due to
Guan in this generality. We will not prove it here (the proof can be found in [Gua95b]), but we
recall the definition of ¢x and the local Torelli theorem.

1.3.1 The Beauville-Bogomolov form on H?*(X,C). Let X be a compact, connected holo-
morphically symplectic manifold of complex dimension 2n. The Beauville—Bogomolov form of
X is a quadratic form on H?(X,C) defined as follows. First, choose a holomorphic symplectic
form o on X, and assume for simplicity that f x o' ANo" =1. For every « € H 2(X,C), we let

n
qo () ::/ ag/\an_l/\a”_l—l—(l—n)/ a/\a"/\a”_l/ a Ao EATT.
2 Jx X X

Note that gs(0c +7) = ([ o™ A @")2 =1, so ¢, is non-trivial. The quadratic form g, a priori
depends on the choice of o.

1.3.2 The period map. Let X be a compact, connected holomorphically symplectic bo-
manifold of complex dimension 2n, and suppose h?%(X) = 1. We let f: X — B be its Kuranishi
family and 0 € B a point such that the fiber X is isomorphic to X. By [Gua95b, Theorem 1
and Remark 1 following it], the manifold B is smooth, and that up to shrinking it, we can even
suppose that all the fibers of the Kuranishi family are holomorphically symplectic.

Up to shrinking B, for every b € B, the fiber X, of f is a compact, connected holomorphically
symplectic be-manifold (since being a by-manifold is an open property). Moreover, again up to
shrinking B, by the Ehresmann fibration theorem, we can suppose that X is diffeomorphic to
X x B. In particular, this induces a diffeomorphism wuy: X — Xj for every b € B and hence an
isomorphism of complex vector spaces

uj: H*(X,C) — H*(X,C).
We now let P := P(H?(X,C)) and
p: B—P, p(b):= [uz(on)],

where oy, is the holomorphic symplectic form on X} such that [ X, oy Ny =1 (we notice that
such a oy, is unique as h*%(X) = 1, and hence h*°(X}) = 1). The map p is holomorphic and will
be called period map of X.

We let Q, be the quadric defined by the quadratic form ¢, in P, that is,
Qo ={a € Plgo(a) =0},
and 2, be the open subset of (), defined as
Qy :={a € Qs |go(a+ @) > 0}.
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We will need the following.

ProposiTiON 1.20. Let X be a compact, connected holomorphically symplectic by-manifold
which is deformation equivalent to a compact hyperkahler manifold Z. Then for every p,q > 0
such that p + q = 2, we have h?4(X) = hP4(Z). In particular, h*°(X) = 1.

Proof. We let f: X — B be a smooth and proper family such that there are 0,b € B where
Xo~ X and Xy ~ Z. Let U C B be the subset of those t € B such that X; is a by-manifold; then
U is an open subset of B with respect to the analytic Zariski topology, as the Hodge numbers are
upper semi-continuous with respect to the analytic Zariski topology (see [Dem95] and references
therein), and 0,b € U. The upper semi-continuity of the Hodge numbers then implies that for
every p,q = 0 such that p+ ¢ = 2, the Hodge numbers h?%(X;) are constant over U, and we are
done. O

The following, known as the local Torelli theorem, is due to Guan in this generality (and to
Beauville for hyperkéhler manifolds).

PropoSITION 1.21. Let X be a compact, connected holomorphically symplectic bs-manifold
which is deformation equivalent to a compact hyperkahler manifold.

(i) The quadratic form q, (and hence Q, and Q) is independent of o and will therefore be
denoted by qx (similarly, we write Qx and Qx).
(ii) Up to a positive rational multiple, the quadratic form qx is a non-degenerate quadratic
form on H?(X,7Z) of signature (3,by(X) — 3).
(iii) If B is the base of the Kuranishi family of X, we have p(B) C Qx, and p: B — Qx Is
a local biholomorphism.

Proof. As X is a holomorphically symplectic bs-manifold which is deformation equivalent to
a compact hyperkihler manifold Z, we know by Proposition 1.20 that h*°(X) = 1. Theorem 4
of [Gua95b] (and the ensuing Remark 1 therein) proves that ¢, is independent of ¢ and that
there is a positive rational number Fy € Q such that for every a € H?(X, Z), if 2n is the complex
dimension of X, we have

/ o®" = Fxqx(a)".
X

The rational number Fx will be called the Fujiki constant of X; then Fx and qx are shown to
be topological invariants of X (see the discussion preceding the proof of [Gua95b, Theorem 4]).
As X is a deformation of Z, which is compact hyperkahler, we have qx = ¢z, and hence ¢x
is non-degenerate and of signature (3,b2(X) — 3). The fact that the period map p is a local
biholomorphism follows as in [Bea83]. O

Using the non-generate quadratic form gx (of signature (3,b2(X) — 3)), we let
Oy = {a € HX(X,R) | gx(a) > 0},
which is an open cone in H?(X,R) having two connected components. Moreover, we let
Hy'(X) :=Im({a € HYY(X) |da =0} — H*(X,C)) N H*(X,R)

and notice that this consists exactly of the de Rham cohomology classes of real d-closed (1,1)-
forms on X. We let

Cx :=Cly N Hy'(X),

which is an open cone in flﬂlg’l(X ) having two connected components.

434



KAHLERNESS OF MODULI SPACES

2. Limits of compact hyperkédhler manifolds

This section is devoted to proving that every compact, connected holomorphically symplectic
bo-manifold X which is a limit of compact hyperkahler manifolds is bimeromorphic to a compact
hyperkahler manifold; in other words, we prove Theorem 1.18.

The proof is divided into several sections. First, we construct a moduli space Mz of marked
manifolds, and thanks to the local Torelli theorem, we may give it the structure of a (non-
separated) complex space. It will carry a period map to some period domain, which is locally
a biholomorphism. Then, we show that each point in the closure of the open subset of My
given by compact hyperkahler manifolds is non-separated from a compact hyperkéhler manifold.
Adapting an argument of Siu (for K3 surfaces) and Huybrechts (for higher-dimensional compact
hyperkéhler manifolds), we conclude the proof of Theorem 1.18.

2.1 The moduli space of A-marked manifolds

In this section, we let Z be a compact hyperkiihler manifold, and we write (A, q) := (H*(Z,7Z), qz)
for the Beauville-Bogomolov lattice of Z. We let Py := P(A ® C), and inside of it, we let

Qn = {a € Py [q(a) =0},
which is the quadric defined by ¢, and
Qp ={a e Qarlqla+a) > 0}.

If X is a compact, connected holomorphically symplectic bo-manifold which is deformation
equivalent to Z, by Propositions 1.20 and 1.21 we know that H?(X,Z) carries a non-degenerate
quadratic form ¢x and that there is an isometry ¢: H?(X,Z) — A. The isometry ¢ is called
a A-marking on X, and the pair (X, ¢) is a A-marked manifold. The set of A-marked manifolds
will be denoted by M",. Moreover, we let Mz := M,/ ~, where (X, ¢) ~ (X', ¢') if and only if
there is a biholomorphism f: X — X’ such that ¢o f* = ¢’. The set My will be referred to as
the moduli space of A-marked manifolds.

We let M%’“ be the subset of Mz of equivalence classes of pairs (X, ¢), where X is a compact
hyperkahler manifold; it will be called the moduli space of A-marked hyperkdhler manifolds.
Moreover, we let M‘%a be the subset of My of equivalence classes of pairs (X, ¢) where X
verifies the 00-lemma, for 2-forms.

We first show that Mz has the structure of a complex space (hence justifying the name space
we use for it). The following is a generalization of [Huyl12, Proposition 4.3], and requires the
same proof.

PROPOSITION 2.1. Let Z be a compact hyperkéhler manifold and (A, q) its Beauville-Bogomolov
lattice.

(i) For any (X,¢) € My, there is an inclusion ix: B — My, where B is the base of the
Kuranishi family of X.
(ii) The set Mz has the structure of a smooth complex space of dimension by(Z) — 2.
(iii) The subsets M% and M%g are FEuclidean open subsets of M.
Proof. Let X be a compact, connected holomorphically symplectic bo-manifold which is defor-
mation equivalent to Z, and let f: X — B be its Kuranishi family. Up to shrinking B, we

can suppose that it is a complex disk of dimension ba(X) — 2 = by(Z) — 2, and as we have
seen before, for every b € B, we can suppose that X is a compact, connected holomorphically

435



A. PEREGO

symplectic be-manifold (which is clearly deformation equivalent to Z). Moreover, we can suppose
that X' is diffeomorphic (over B) to the trivial family X x B and that we have a diffeomorphism
up: X — X, inducing an isometry u}: H*(X},Z) — H?*(X,Z). We let ¢, := ¢ o u}, which is
a A-marking on X, for every b € B. It follows that for every b € B, we have (Xy, ¢p) € Mz, so
that we have a map

ixiB—>Mz, Zx(b) = (Xb,qbb).

We show that ix is an inclusion. Let b,b' € B, and suppose ix (b) = ix(b'). This means that
(Xp, &p) ~ (X, ¢p); that is, there is a biholomorphism f: X, — X} such that

fr=¢, oy
By the definition of ¢, and ¢y, this means that

fr=(pou) o(pouy) = (uy) " oup.

Now, let oy, and oy be symplectic forms on X, and X/, respectively. As f is a biholomorphism, the
form f*oy is holomorphic symplectic on X, and hence [ujoy] = [u} f*oy]. But as f* = (uj) Louj,,
this implies that [ujo,] = [uj,op]. By the definition of the period map of X, this means that
p(b) = p(V'). But now recall that by point (iii) of Proposition 1.21, the period map p: B — Q
is a local biholomorphism: up to shrinking B, for b # b’ € B, we have p(b) # p(V/). It follows
that up to shrinking B, the condition iy (b) = ix (V') implies b = ¥, and iy is an inclusion of B
in M. This proves point (i) of the statement.

To give Mz the structure of a complex space, we just need to show that each point of My
has a neighborhood having the structure of a complex manifold and that whenever two neigh-
borhoods of this type intersect, the corresponding complex structures glue. If (X, ¢) € My, the
previous part of the proof suggests to view ix(B) as a neighborhood (X, ¢) in Mz. Now, let
(X,9),(X',¢') € My, and let B and B’ be the bases of the Kuranishi families of X and of X,
respectively. If ix(B) Nix(B’) # 0, then BN B’ is an open subset of B and B’, over which the
Kuranishi families coincide. This allows us to glue the Kuranishi families along BN B’, and hence
the complex structures of ix(B) and ix(B’) can be glued in Mz. This shows that My has the
structure of a complex space. We notice that as each base B of a Kuranishi family of a com-
pact, connected holomorphically symplectic by-manifold is smooth (see Section 2.2) of dimension
ba(Z) — 2, it follows that My is a smooth complex space, and its dimension is by(Z) — 2. This
proves point (ii) of the statement.

The fact that Mﬁk and M‘%a are Euclidean open subsets of M is a consequence of the fact
that the Kihlerness property and the property of verifying the d9-lemma for 2-forms are open
properties in the Euclidean topology (for Kéhlerness, this is [KS60, Theorem 15|, and for the
00-lemma for 2-forms, this is contained in the Ph.D. thesis of C.-C. Wu, Harvard University,
2006, or see [AT13, Corollary 2.7]). O

The complex space Mz has two connected components, and one can pass from one to the
other by mapping (X, ¢) to (X, —¢).

We now define the period map in this generality. First, if ¢: H?(X,Z) — A is an isometry,
we let ¢c: H?(X,C) — A ® C be the map induced by ¢ by tensoring with C. We then define
the map

T Mz — Pr, w(X,9) :=[pc(o)],
where o is a holomorphic symplectic form on X (this is well defined as h?°(X) = 1).
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Notice that the A-marking ¢ induces an isomorphism
¢:P—Pa, o(la]) = [pc(a)].

As ¢ is an isometry, restricting ¢ to Qx, we get ‘an isomorphism ¢: Qx — Q. If B is the base
of the Kuranishi family of X, we have m;, (g) = ¢op: if b € B and 0} is a symplectic form on Xy,
we have

o(p(b)) = dluyos] = [pc(uzon)] = [(dn)c(on)] = T(Xp, @) = ix (D).
The first two points of the following proposition are just a translation of Proposition 1.21
in this language. For the last point, the surjectivity is [Huy99, Theorem 8.1], and the general
injectivity is the global Torelli theorem of Verbistky.

PRrOPOSITION 2.2. We have the following properties:

(i) The image of 7 is contained in €.
(ii) The map 7 is a local biholomorphism.

(iii) If M%k’o is a connected component of M}ZLk, the map T pgl2k0 is surjective and generically
zZ

injective.

Now, we let MZ’“ be the closure of M}ZLk in M. Using this formalism, we can state Theo-
rem 1.18 in an equivalent way.

PROPOSITION 2.3. If (X, ¢) € M%k N M‘%g, then X is bimeromorphic to a compact hyperkahler
manifold (hence, it is in the Fujiki class C).

This is the statement we will prove in the next sections.

2.2 Non-separatedness in Mz
The first result we show is the following.

PROPOSITION 2.4. Let (X, ¢) € ﬂ,}k’o. Then there is a (Y,9) € M%k’o such that (X, ¢) and

(Y, 1) are non-separated in M.

Proof. The statement is clear if (X, ¢) € M%k’o. We then consider (X, ¢) € ﬂ'}’“’o \MZk’O. We

let p:=7(X, ¢) € Qa be the period of (X, ¢). As T Al is surjective, there is a (Y, ) € Mi%k,o
such that (Y, 1) = p. We show that (X, ¢) and (Y, 1) are non-separated in Mz. To do so, let Ux
and Uy be two open neighborhoods of (X, ¢) and (Y, ), respectively, in M. Up to shrinking
Ux and Uy, we can suppose 7(Ux) = w(Uy) =: V. Moreover, by point (iii) of Proposition 1.21,
up to shrinking Ux and Uy, we can suppose that my, : Uy — V and 7y, : Ux — V are
biholomorphisms. Finally, as Kéhlerness is an open property in the Euclidean topology, up to
shrinking Ux and Uy, we can suppose that Uy C M%k’o.

Now, as (X, ¢) € ﬂ;k’o, there exist a compact hyperkahler manifold X’ and a marking ¢’ on
X' such that (X', ¢') € Ux ﬂ/\/l%k’o. We can choose (X', ¢’) to be generic. Let p’ := 7n(X', ¢') € V;
as my, : Uy — V is surjective, there is a (Y',9)') € Uy such that 7(Y',%)') = p/, and as
Uy C M}}k’o, we have that Y’ is a compact hyperkéhler manifold. Hence, (X', ¢') and (Y’,¢)
are two generic points in MZk’O. By point (iii) of Proposition 2.2, we then have (X', ¢') = (Y, )
in Mz, so that Ux N Uy # (), and we are done. O

This result will be the starting point of the proof of Proposition 2.3.
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2.3 The proof of Theorem 1.18
We now prove a key result in the proof of Proposition 2.3.

LEMMA 2.5. Let B be a connected complex manifold, let s € B, and let X — B and Y — B
be two smooth, proper families. We suppose that

(i) for every b € B, the fiber Y}, is a compact hyperkahler manifold with a A-marking y;

(ii) for every b € B, the fiber X} is a compact, connected holomorphically symplectic by-manifold
deformation equivalent to a compact hyperkahler manifold which has a A-marking ¢y;

(iii) there is a d-closed real (1,1)-form as on Xg;

(iv) there is a sequence {by}nen of points of B converging to s such that the two following
properties are verified:

(a) For every n, there is a Kahler form «, on Xj, , and {an}nen is a sequence converging
to asy.
(b) There is a biholomorphism fy,,: Yy, — Xy, such that f; =1, Lo gy

n*

Then X and Yy are bimeromorphic.

Proof. The existence of the sequence {b,} implies that (X, ¢s) and (Y;,1s) are non-separated
points in Mz, where Z is a compact hyperkdhler manifold among all the Y;. We will let X, :=
Xb,, Yn =Yy, , On = b, , Yn =y, and f, := fp,. We let I'), be the graph of f,, in X,, x Y.

Let 5 be a Kéhler form on Y, and consider a continuous family {3, }icp, where 3; is a closed
(1,1)-form on Y;. As Kéhlerness is an open property in the Euclidean topology, there is a Eucli-
dean open neighborhood U of s in B such that for every t € U, the form f; is Kahler on Y;. In
particular, for n > 0, we have that 3, := [, is a Kahler form on Y,.

We now compute the volume of I'j, in X, x Y}, with respect to the Kahler form pja, + p308n,,
where p; and py are the projections of X,, x Y,, onto X,, and Y,,, respectively. We have

vol(Ty) = / (B + Fron)m = / (Bu] + Flon])®™

_ 2
= [ 1B+ vt oulion))*"
where 2m is the complex dimension of X and Y. Taking the limit for n going to infinity, we get
lim vol(T'y,) = / (18s] + 5 0 ds([as]))*™ < +00.

n—-+o0o

Hence, the volumes of the I'), are bounded, so that by the Bishop theorem the cycles I'), converge
to a cycle I' of X x Y, with the same cohomological properties as the I'j,. Namely, we have
I € H*"(X, x Ys,7), and if p; and py are the two projections from X, x Y; onto X, and Y,
respectively, we have p1.[I'] = [X;], p2«[T'] = [Y5] and

[Ty := p2u([T] - pi7) = 5 (6(7))
for every v € H*(Xs,Z).
Now, let us split I' into its irreducible components. By the previous properties, we then have
two possibilities:
(1) eitherI' = Z+) ", D;, where p1: Z — X, and pa: Z — Y, are both generically one-to-one;

(2) orT'=Z1+Zy+>, D;, where p1: Z; — X, and py: Zy — Y are generically one-to-one,
but neither p;: Zs — Y nor po: Z1 — X is generically finite.

438



KAHLERNESS OF MODULI SPACES

In both cases, we have p1.[D;] = p2.[D;] = 0. Following the proof of [Huy12, Theorem 4.3], one
can show that possibility (2) can be excluded. It follows that I' = Z+3 . D;, where p1: Z — X
and pg: Z — Y are generically one-to-one. In conclusion, X, and Y; are bimeromorphic. O

A consequence of the previous lemma is the following.

PROPOSITION 2.6. Let B be a connected complex manifold and X —> B and Y —> B be two
smooth, proper families verifying the following properties:

(i) For every b € B, the fiber Y} is a compact hyperkédhler manifold with a A-marking 1y,.

(ii) For every b € B, the fiber Xy is a compact, connected holomorphically symplectic mani-
fold verifying the 00-lemma for 2-forms, which is deformation equivalent to a compact
hyperkahler manifold, and which has a A-marking ¢y.

(iii) There is a b € B such that there is a biholomorphism fy,: Y, — X, with f = wb_l o ¢y.

Let V be the maximal open subset of B containing b and for which there is a V -biholomorphism
fv: Vv — Xy (where Yy and Xy denote the restrictions of the families to V') extending the
biholomorphism fy,. If for a generic b/ € V', we have NS(Xy ) = 0, then V is dense in B.

Proof. Welet 0 € B and X := Xy and Y := Y. For every b € B, we have identifications
H*(Xy,7) ~ H*(Y}, Z) ~ HX(X,Z) ~ H*(Y,Z) ~ A,
where A is the Beauville-Bogomolov lattice of Y. For every a € A, we let
Soe:={be B|laeNS(V)}.
Similarly, for every o € H™~2(Y, Z) (where 2m is the complex dimension of X and Y'), we let
Se:={b€ Blae H™ 2" 1(y,)}.

The subset S, C B is a smooth hypersurface of B (see [Huy99, Section 1.16]).

The fact that V is open in B is a consequence of the local Torelli theorem. Notice that if
b’ € V, then the biholomorphism fy induces (by restricting to the fibers over ') a biholomorphism
for: Yy — Xjy such that f;, = wb_,l o ¢y . Letting V be the closure of V in B and 9V :=V \ V,
we claim that

oV C U Se -

a€EAUH*=2(YZ)
In particular, this means that V is contained in a countable union of analytic subvarieties of B.
It has real codimension at least 2 in B; hence, it cannot separate the disjoint open subsets V' and
B\ V. AsV # () (since b € V), it follows that B = V, concluding the proof. In order to show
the claim, we show that if s € OV, then Y has either effective divisors or curves (hence, there is
an o € AU H*~2(Y,Z) such that s € S,). We proceed by contradiction: we let s € 9V, and we
suppose that Y has no effective divisors and no curves.

The first thing we prove is that X and Y, are bimeromorphic, by using Lemma 2.5. Points (i)
and (ii) of the statement of Lemma 2.5 are fulfilled (since if X} verifies the d9-lemma for 2-forms,
then it is a bp-manifold). Moreover, as X verifies the 9-lemma for 2-forms, we see that Hé’l(X )
injects into H2(X,R). As the signature of the Beauville-Bogomolov ¢y, form is (3, ba(Xs) —3) by
Proposition 1.21, and as gy, is strictly positive on H?9(X) and H%2(X), it follows that there is
a d-closed real (1,1)-form as on X such that gx, ([as]) > 0. This shows that point (iii) of Lemma
2.5 is fulfilled. Up to shrinking B, for every b € B, we then have a d-closed real (1, 1)-form ay,
which depends continuously on b, such that the a; converge to ag and such that gx, ([ap]) > 0.
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As s € 9V and as for the generic point of ¥ € V, we have NS(X,) = 0, there is a sequence
of points b, € V converging to s such that NS(X}, ) = 0. As X, is biholomorphic to Y3, , it is
a compact hyperkéhler manifold. By [Huy99, Corollary 5.7], this implies that either oy, or —ay,
is Kéhler. Up to changing the sign of ag, we can then suppose that «y,, is Kahler on X, , and
the sequence {ap, }nen converges to as. In conclusion, even point (iv) of Lemma 2.5 is fulfilled.

We are then in the position to apply Lemma 2.5, which gives us that X, and Ys are bimero-
morphic. More precisely, there is a cycle I' € H4™ (X, x Y;,7Z) of the form I' = Z + Y, D;, and
if p1 and po are the two projections of X x Y onto X and Yy, respectively, then py: 7 — X
and po: Z —> Y, are generically one-to-one. If we let D € H*™(X, x Y,,7Z) be any cycle, we
define

[D]: H*(Xs,Z) — H*(Y;,Z),  [D]uy := p2.([D] - p17) -

As seen in the proof of Lemma 2.5, we have [['], = ;! o ¢,. As Y is supposed to have neither
effective divisors nor curves, the bimeromorphism corresponding to Z is a biholomorphism. It
then follows that there is a biholomorphism f: Y; — X whose graph is Z, and X, is Kahler
(as Y; is). By [Huy99, Corollary 5.7], the Kéhler cone of Yj, and hence that of X, is one of the
components of Cy,. Moreover, as in [Huy99, Lemma 5.5], for all ¢, we have [D;]. = 0, so that
[ =12}« =T

We claim that I' = Z. Indeed, recall that a; is a Kéhler class on X, and let v, := f*a,, which
is Kéhler on Y; (as f is a biholomorphism). We calculate the volumes of T' and Z on X x Y
with respect to the Kéahler class pjas + p5vys. We have

vol(T) = vol(Z) + Z vol(D;) = /Z(pfas + phys) 2™ + Zvol(Di)
_ « 2m Vo ;) =
= [ (2102 + 3l /.
:/ (29)27 + Y vol(Dy),

where we have used that f* = [Z]..

(ffas + 'YS)Zm + ZVOI(DZ')

Now, consider the sequence {by, }ren of generic points in V' converging to s, and let X,, := X,
Yo =Y, fni=fo,, On = Ob,, ¥n := s, and ay, := oy, . For each n, the graph of f,, in X,, x Y,
is denoted by I',,. We let v, := fray,, which is a Kéahler class on Y,,. Calculating the volumes of
the I'j, with respect to pjay, + p57yn, we have

vol(T) = [ ([P " = [ (fran 70" = / (@

n

We then have
lim vol(T',) = / (275)*™ = vol(Z).

n——+oo Y,

But notice that
vol(T) = [ (a0 = [ (0 0nlen) +90) "

hence

Jim vl = [ (07 @s(0m) +90)™" = [ ([Tl 49027 = vol(r).
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We then conclude that vol(T') = vol(Z), so that vol(D;) = 0 for every i, and hence D; = 0 for
every i. It follows that I' = Z, and hence that s € V. As this contradicts the fact that s € OV, we
conclude that if s € 9V on Yy, there are either effective divisors or curves, and we are done. []

We are now able to prove Proposition 2.3.

Proof of Proposition 2.3. As (X, ¢) € ﬂ}}k, by Proposition 2.4 we know that there is a compact
hyperkéhler manifold Y, together with a marking 1, such that (X, ¢) is non-separated from
(Y,9) in Mz. Consider Def(X) and Def(Y'), the bases of the Kuranishi families of X and Y,
respectively. Up to shrinking them, as the points (X, ¢) and (Y, 1) are non-separated, the local
Torelli theorem allows us to identify them. Hence, the Kuranishi families of X and Y are over
the same base B, and we suppose that X and Y are over the same point 0 € B.

Notice that the fibers Y, of the Kuranishi family of Y are all compact hyperkéhler manifolds,
and they each come with a marking 1. As verifying the J0-lemma for 2-forms is an open
property, all the fibers X of the Kuranishi family of X are compact, connected holomorphically
symplectic manifolds verifying the 0-lemma for 2-form, and they are all deformation equivalent
to the compact hyperkahler manifold Z.

The non-separatedness implies that there is a b € B such that X3 and Y} are biholomorphic
under a biholomorphism f; such that f; = v, Lo ¢p. As B is open in My, the maximal open
subset V' of B in the statement of Proposition 2.6 is then open in My; the generic point &’ of V'
is then such that NS(Xy) = 0 (see [Huy99, Section 1.14]). By Proposition 2.6, we then conclude
that V = B. Now, notice that if 0 € V, then X and Y are isomorphic, and we are done. If 0 ¢ V,
we have 0 € JV. By Lemma 2.5, it follows that X and Y are bimeromorphic (see the proof of
Proposition 2.6). O

We conclude this section by proving that even if (X, ¢) is not in Mgg, the manifold X is
bimeromorphic to a compact hyperkéhler manifold if some further conditions are verified.

PROPOSITION 2.7. Let (X, ¢) € ﬂ,%k, and suppose that the two following conditions are verified:

(i) There is a d-closed real (1,1)-form o on X.

(ii) Letting Def(X) be the base of Kuranishi family of X and 0 € Def(X) the point over which
the fiber of the Kuranishi family is X, there is a sequence {b,}nen of points in Def(X)
converging to 0 such that the two following properties are verified:

(a) For every n € N, the fiber X,, of the Kuranishi family of X over b, is a compact
hyperkahler manifold.

(b) There is a sequence {ay, tnen converging to «, where oy, is a d-closed real (1,1)-form
on X, such that qx, ([ow]) > 0.

Then X is bimeromorphic to a compact hyperkéhler manifold (in particular, it is in the Fujiki
class C).

Proof. As (X,¢) € ﬂ}}k, by Proposition 2.4 there is a (Y,1)) € M such that (X,¢) and
(Y, %)) are non-separated in Mz. We let X — Def(X) and Y — Def(Y) be the two Kuranishi
families. As (X, ¢) and (Y, ) are non-separated, by the local Torelli theorem, we can identify
Def(X) = Def(Y') =: B. We let 0 € B be the point over which the fibers of the Kuranishi families
are X and Y, respectively.
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For every b € B, the fiber Y; over b of the Kuranishi family of Y is a compact hyperkéhler
manifold, equipped with a marking . The fiber X; of the Kuranishi family of X is a com-
pact, connected holomorphically symplectic bs-manifold which is deformation equivalent to Z,
equipped with a marking ¢,. Moreover, on X = X, we have a d-closed real (1, 1)-form «. Hence,
points (i), (ii) and (iii) of Lemma 2.5 are fulfilled (for s = 0). We claim that point (iv) is fulfilled
too; this implies that X = Xy and Y = Yj are bimeromorphic, concluding the proof.

To prove the claim, consider the sequence {b, },en of points of B given in the statement. For
every n € N, we let Y, :=Y;, , ¢ 1= ¢, and ¢, := 1y, . We notice that (X, ¢p) and (Yy,,¥y)
are two non-separated points in M%k Indeed, up to shrinking B, we can suppose that the period
map restricted to B is a biholomorphism. The periods of (X, ¢,) and (Y,,v,) are the same;
one can then proceed as in the proof of Proposition 2.4 to show that (X, ¢,) and (Y,,v,,) are
non-separated points in M%’“.

We let X, — Def(X,) and },, — Def(Y},,) be the Kuranishi families of X, and Y,
respectively. By the universality of the Kuranishi family, we can identify Def(X,,) and Def(Y,,)
with open neighborhoods of b, in B, and as the points (X, ¢,,) and (Y,,,1,) are non-separated,
by the local Torelli theorem we can identify Def(X,,) and Def(Y;,). Hence, we have Def(X,,) =
Def(Y,,) =: U, C B, where U, is an open neighborhood of b, in B. Moreover, X,, (respectively,
V) is the restriction of X' (respectively, V) to U,.

All the fibers of the Kuranishi families of Y,, and X,, are compact hyperkdhler and come
with a marking. In particular, all the fibers of the Kuranishi family of X, are compact, con-
nected holomorphically symplectic manifolds verifying the dd-lemma for 2-forms. As (X, ¢,)
and (Y, ;) are non-separated in M, there is a point b/, € U,, for which there is a biholomor-
phism fy : Yy — Xy such that fl;",n =ty o ¢y . We let V,, C Uy, be the maximal open subset
of U, containing b/, and for which there is a V,,-biholomorphism f,, : Vv, — Xy, extending Jor -
Then V,, is open in U, which is open in My; for the generic ¥/ € V,,, we then have NS(Xj) = 0,
so that by Proposition 2.6, we conclude that V;, is dense in U,,. There is then a sequence {c, », }pen
of generic points of V;, converging to b,. We let X, , :== X,  and Y, = Y., . Moreover, up
to restricting U, for every b € U, there is a d-closed real (1,1)-form «; on X, which depends
continuously on b, with a3, = . We let aypn 1= e, .; as gx,([an]) > 0, we can suppose
40X ([mn]) > 0 (for m > 0). As the ¢, are generic points, we have NS(X,,,) = 0. By
[Huy99, Corollary 5.7], we then have that either oy, , or —ouy, , is a Kéhler form. Up to changing
the sign of a (and hence of «,), we can then suppose that o, , is Kéhler on X, ,,.

As for every n € N, the sequence {c¢;,,} is contained in Vj, and converges to b,, and as the
sequence {b,} converges to 0, we then produce a sequence {b),} converging to 0, where b}, € V.
As {amn} is a sequence of Kéhler classes converging to a;, and as the sequence {a,, } converges
to a, we then get a sequence {a;,} of Kahler classes on X, converging to . We then see that
point (iv) of Lemma 2.5 is fulfilled, and we are done. O

3. Criterion for Kahlerness

We now want to prove a Kéhlerness criterion for a compact, connected holomorphic symplectic
manifold X in the Fujiki class C which is a limit of compact hyperkahler manifolds. Let us first
recall some notation: as X is in the Fujiki class C, the cohomology group H?(X,C) has a Hodge
decomposition. In particular, we have

Hy'(X) = H*(X,R) N HY(X) = HYY(X,R).
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3.1 Twistor lines

If X is a hyperkihler manifold, with any o € HU!'(X,R), one can associate a twistor line
(see [Huy99, Section 1.17]). The same can be done for a compact, connected holomorphically
symplectic manifold X in the Fujiki class C, which is deformation equivalent to a compact
hyperkéhler manifold Z (whose Beauville lattice will be denoted by (A, ¢)). To do so, let o be a
holomorphic symplectic form on X. The cohomology class of o allows us to define a real plane

P(X):=(C-0®C-7)NH*X,R)
in H?(X,R), which is independent of o (as h?9(X) =1). If « € H"'(X,R), we let
F(la):=P(X)®R-«,
which is a 3-dimensional real subspace of H?(X,R), and we let F(a)¢ := F(a) ® C.

If : H*(X,Z) — A is a A-marking on X (which exists by Proposition 1.21), consider the
point (X, ¢) € Mz. As X is a limit of compact hyperkéahler manifolds, we have (X, ¢) € M}Zm
Notice that F(a)c is a 3-dimensional linear subspace of H2(X,C); hence, ¢c(F(a)c) is a 3-
dimensional subspace of A ® C, and P(¢c(F(a)c) is a plane in Py (here ¢¢ is the isomor-
phism induced by ¢ by tensoring with C). Hence, P(¢c(F(a)c)) N Q4 is a curve in 2y passing
through 7(X, ¢).

If B is the base of the Kuranishi family of X, the inverse image

T(a) := 7 (P(pc(F(a)c)) NQy) N B

is a curve in B, which will be called the twistor line of «. The restriction of the Kuranishi family
of X to T'(«) will be denoted by

Kot X(a) — T(a).
For every t € T'(«), there is a real (1,1)-class a; on the fiber X; of the Kuranishi family of X

over t, and the sequence {ay} converges to . If a is Kiihler, then T'(a) ~ P!, and the class o is
Kéhler on X, for every t € T'(«).

3.2 Cones in HV1(X,R)

We define Cx = {& € H"(X,R) | gx(a) > 0}, which is an open cone in H'(X,R) having two
connected components. If X is Kahler (and hence compact hyperkéahler), the Kdhler cone Kx
of X (that is, the open convex cone of Kahler classes on X) is contained in one of them; such a
component is usually called positive cone of X and denoted by C;g. If NS(X) = 0, Corollary 5.7
of [Huy99] gives us that Kx = C;, a fact that has already been used in the previous sections.

Theorem 1.1 of [Bou01] tells us that if X is compact hyperkéhler, then o € C¥ is in the Kéhler
cone of X if and only if |, ¢ @ > 0 for every rational curve C of X. Our aim is to show a similar
result for a compact, connected holomorphic symplectic manifold X in the Fujiki class C which
is a limit of compact hyperkahler manifolds. As on such a manifold, the K&hler cone could be
empty, we cannot use it to define the positive cone of X. Instead, we can use the pseudo-effective
cone Ex of X, that is, the closed convex cone of classes of positive closed real (1,1)-currents
on X. If X is compact hyperkéhler, by [Bou04, Theorem 4.3 i)], we have C} Cé&x.

Popovici and Ugarte [PU18, Theorem 5.9] showed that if X — B is a smooth and proper
family of sGG manifolds [PU18, Definition 1.2] and {b,} is a sequence of points of B converging
to a point b € B, then the limit of the pseudo-effective cones of X, is contained in Ex,, that is,
the pseudo-effective cone varies upper-semicontinuously along B. As all manifolds in the Fujiki
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class C are sGG manifolds [PU18|, we conclude that the pseudo-effective cone varies upper-
semicontinuously in families of class C manifolds.

We now prove the following general fact about convex cones in a real finite dimensional vector
space.

LeEMMA 3.1. Let V' be a real vector space of finite dimension n and A,B C V two cones in V'
such that

(i) the cone A is strictly convex (that is, it does not contain any linear subspace of V') and
closed;

(ii) the cone B is open and has two connected components, each of which is convex;

(iii) for every a € B, we have either a € A or —a € A.

Then AN B is one of the connected components of B.

Proof. We first notice that if BT and B~ are the two connected components of B, then if
BT C A, we have BT = BN A. Indeed, if ¥ € B~ N A, then —b € BT C A. It follows that
b, —b € A, which is not possible as A is a strictly convex cone. We are left to prove that there
is a connected component of B which is contained in A. To do so, let by € BN A, and let B™ be
the connected component of B which contains bg. We show that if by € BT, then b; € A.
Consider the segment [bg, b1] := {b; := (1 —t)bg +tby |t € [0,1]}. Suppose b; ¢ A. We have to
find a contradiction. First, notice that as by ¢ A, there is a t € [0,1) such that b; ¢ A; indeed,
if for every ¢t € [0,1), we had b, € A, then as A is closed, we would have b; € A. As b; and b;
are not in A, for every s € [t,1] we have by ¢ A; indeed, as by, b1 ¢ A but by, by € B, we have
—bt, —b1 € A. As A is convex, the segment [—b;, —b1] (whose elements are the —bs for s € [t,1])
is contained in A. But this means that by ¢ A as A is a strictly convex cone. The set of those
t € [0,1] for which b; ¢ A has an infimum ¢y € [0, 1]. Hence, for every ¢t < to, we have b, € A, and
for every t > tg, we have by ¢ A. As by € B, this implies that —b; € A for every ¢t > tg. But as A
is closed, these conditions give by, € A (as by € A for every t < tp) and —by, € A (as —b; € A for
every t > tg). As A is a strictly convex cone, we get a contradiction. ]

Lemma 3.1 will be used in the proof of the following.

LEMMA 3.2. Let X be a compact, connected holomorphic symplectic manifold in the Fujiki
class C which is a limit of compact hyperkéihler manifolds. Then Cx N Ex consists of exactly one
connected component of Cx.

Proof. The pseudo-effective cone Ex is strictly convex and closed in H!(X,R). The cone Cy is
open and has two connected components, each of which is convex. We show that if a € Cx, then
either a € £x or —a € Ex (which, in particular, implies that Cx N Ex # (). Once this is done,
the statement follows from Lemma 3.1.

Fix a compact hyperkahler manifold Z which is deformation equivalent to X, and let (A, ¢) be
its Beauville-Bogomolov lattice. Moreover, let o € Cx, and consider a A-marking ¢ on X (whose
existence comes from Proposition 1.21). As X is a limit of compact hyperkdhler manifolds, we
have (X, ¢) € ﬂ’}k Let X — B be the Kuranishi family of X, and let 0 be the point of B over
which the fiber of X is X. As X is in the Fujiki class C, it is a sGG-manifold. This being an open
condition [PUI18], up to shrinking B, we can suppose that for every b € B, the manifold X, is
sGG. Moreover, as (X, ¢) € ﬂ%k, there is a sequence {b,} of points of B converging to 0 over
which the fiber X, is compact hyperkéhler, and we can even suppose that NS(X,) = 0 (that
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is, we suppose X, to be generic in M%k; hence, it has trivial Néron—Severi group; see [Huy99,
Section 1.14]).

Now, let a be a d-closed real (1,1)-form on X whose cohomology class is «. For every b
in a neighborhood of (X, ¢) in My, there is a d-closed real (1,1)-form o, on X, depending
continuously on b and converging to a (for b converging to 0). Letting «y be the cohomology
class of ay, as ¢x(a) > 0 (since a € Cx), up to restricting the neighborhood, we can suppose
gx, (o) > 0 for every b; that is, ay, € Cx,. In particular, for every n, we have o, € Cx,,, and
the limit of the ay, is a. As NS(X,,) = 0, by [Huy99, Corollary 5.7], either «a,, or —av, is Kéhler
(for all n > 0). But this means that either oy, € £x,, or —a, € Ex,, (for all n > 0). By [PU18,
Theorem 5.9], we then conclude that either o € Ex or —a € Ex. O

The connected component of Cx contained in £x will be denoted by C;g and called the positive
cone of X, in analogy with the hyperkéhler case.

3.3 Deformations and Kahler classes

The first result we prove is the following.

PRrOPOSITION 3.3. Let X be a compact, connected holomorphic symplectic manifold in the Fujiki
class C which is a limit of compact hyperkdhler manifolds. Let o € Cx.

(i) If for every non-zero 3 € H?(X,Z), we have qx(a,3) # 0, then there is a t € T(«) such
that X; is Kahler and either oy or —aoy is a Kahler class on X;.

(ii) If moreover a € C¥;, then oy is Kéhler.

Proof. Let Z be a compact hyperkdahler manifold which is deformation equivalent to X, and
let (A,q) be its Beauville-Bogomolov lattice. Fix a marking ¢ on X (which exists by Propo-
sition 1.21), and consider the point (X,¢) € Myz. As X is a limit of compact hyperkéhler

manifolds, we have (X, ¢) € ﬂ;k
We first show that for a generic ¢t € T'(«), the fiber X is in M’%k Let X — B be the Kuranishi

family of X, and let 0 be the point of B over which the fiber Xy is X. As (X, ¢) € MFZLk, as
seen in the proof of Lemma 3.2, there is a sequence {b,} of points of B verifying the following
properties:

(1) The sequence b, converges to 0 in B.

(2) For every n, the fiber X,, of X over b, is compact hyperkdhler and NS(X,,) = 0.

(3) For every n, there is a,, € Cx,, such that the sequence o, converges to a.
As NS(X,,) = 0, up to changing the sign of «, and hence of «,,, we can suppose a,, € Ky, for
every n. We let T,, be the twistor line of a,, which is a rational curve in B passing through the
point (Xy, ¢n). As (X, ¢n) converges to (X, ¢), and as «,, converges to «, we see that the twistor
lines T}, converge to T'(cv). This means that if t € T'(«v), there is a sequence {s;,} of points of B
such that

(1) the sequence {s;,} converges to t;

(2) for every n, we have s;, € T),.

As sy € T, and as T, is the twistor line of the Kéhler class o, we see that the fiber Xy, , of
the twistor family of o, over s;, is a compact hyperkéhler manifold. As s;, converges to ¢, we
then see that X; is a limit of compact hyperkédhler manifolds. This means that (X, ¢¢) € H}Zm.
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Now, recall that we have supposed X to be in the Fujiki class C; hence, in particular, X
verifies the dd-lemma for 2-forms. This property being open, we can suppose (X;,¢;) € M‘%a
for ¢ sufficiently near to 0. By Proposition 2.3, this implies that X; is bimeromorphic to a
compact hyperkdhler manifold Y;. Now, by hypothesis, we have ¢x(«, 8) # 0 for every non-zero
B € H?(X,Z). This implies that T'(a) does not intersect at 0 (and hence generically) any of the
hypersurfaces Sg; that is, for a generic ¢ € T'(«v), the period of (X, ¢;) is generic in Qp (recall
that Sg is the smooth hypersurface in Def(X) given by those b € Def(X) such that 5 € NS(Xy);
see the proof of Proposition 2.6).

As the periods of (Xy, ¢¢) and (Yi, ) are equal, it follows that for a generic ¢ € T'(«), the
compact hyperkéhler manifold Y; is such that NS(Y;) = 0, so that X; and Y; are biholomorphic.
It follows that X; is compact hyperkdhler and that Ky, is one of the components of Cx,. As
oy € Cx,, it follows that either oy or —ay is a Kahler class on X;. Let us now suppose, moreover,
that the class « is even pseudo-effective and that «; is not a Kéahler class. By what we just
proved, it follows that —a; is Kéhler for generic t € T'(a). As Kx, is contained in Ex,, we then
have a family —ay of pseudo-effective classes converging to —«. Now, by [PU18, Theorem 5.9]
(which we can apply as by the previous part of the proof, the family X' («a) — T'(«) is a family
of manifolds in the Fujiki class C, and hence of sGG manifolds), a limit of pseudo-effective classes
along the family X'(«) is a pseudo-effective class on X. This means that —« is a pseudo-effective
class on X. As by hypothesis, « is pseudo-effective too, it follows that o = 0, which is not possible
as ¢x(a) > 0, concluding the proof. O

Remark 3.4. The proof of Proposition 3.3 shows that the statement holds for a generic ¢ € T'(«)
sufficiently near to 0.

We now use Proposition 3.3 to show the following, which is an improved version of Proposi-
tion 2.3.

PRrOPOSITION 3.5. Let X be a compact holomorphic symplectic manifold in the Fujiki class C
which is a limit of compact hyperkihler manifolds, and let oo € C3; be such that qx (a, 3) # 0 for
every non-zero 3 € H*(X,Z). Then there exist a compact hyperkéihler manifold Y and a cycle
I'=72Z+)>,D; in X xY such that the following properties are verified:

(i) The cycle Z defines a bimeromorphic map between X and Y.

(ii) The projections D; — X and D; — Y have positive-dimensional fibers.
(iii) The cycle I' defines a Hodge isometry [['], between H*(X,Z) and H*(Y,Z).
(iv) The class [I']«« is Kédhler.

Proof. Consider the family k,: X' (o) — T'(«v). By Proposition 3.3, we know that for a generic
t € T(«), the fiber X; of Kk, over t is a compact hyperkéhler manifold and that «; is a Kéhler
class on it.

Let X' — T'(ay) be the twistor family of (X¢, o), and notice that m(7'(«)) is identified with
an open subset of 7(T(cy)) and that for every s € T'(ay), the fiber X, of X’ over s is Kéahler.
Restricting the twistor family X’ to such an open subset, we then find two families X (o) — C
and X’ — C over the same base curve, with isomorphic fibers over ¢ such that the fibers of X’
are all Kiahler. We let 0 € C' be the point over which the fiber of X is X, and we let X’ be the
fiber of X" over 0. Both families are endowed with natural markings ¢s and ¢/, for each s such
that (¢})~! o ¢; is induced by the biholomorphism X; ~ X/. The class o, := (¢%,) ™! 0 ¢4(cs) is a
Kihler class on X/ for every s € C. In particular, the class o/ := (¢}) ! o ¢p(«) is Kéhler on X,
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Now, we have (X, ¢g) € ﬂ;k and (X', ¢)) € MZE. Moreover, by hypothesis, X is in the
Fujiki class C; hence, it verifies the 00-lemma for 2-forms. This condition being open, we can
suppose that this is the case for all X, in the twistor family of X over C' (up to restricting C').
The proof of Proposition 2.6 then shows that there is a cycle I' = Z+ 35", Y; on X x X’ such that

(1) the cycle Z defines a bimeromorphic map between X and X';

(2) the projections ¥; — X and Y; — X’ have positive-dimensional fibers;
(3) the cycle I' defines a Hodge isometry [[']. between H?(X,Z) and H?(X',Z);
(4) we have [[], = (¢)) L o ¢y.

It follows that [I'].a = o, which is Kéhler, and we are done. O

3.4 The proof of Theorem 1.19

We are now ready to prove Theorem 1.19, namely that if X is a compact, connected holomorphi-
cally symplectic manifold in the Fujiki class C which is a limit of compact hyperkahler manifolds,
any very general class a € C¥ (that is , gx(a, 8) # 0 for every non-zero 8 € H?(X,Z)), such
that « - C > 0 for every rational curve C' on X is a Kéhler class on X, and in particular X is
Kahler.

Proof of Theorem 1.19. By Proposition 3.5, as a € Cy is such that gx(a,8) # 0 for every
B € H*(X,Z), there exist a compact hyperkéhler manifold Y and a cycle I' = Z + Y, D; in
X X Y such that the following properties are verified:

(1) The cycle Z defines a bimeromorphic map between X and Y.

(2) The projections D; — X and D; — Y have positive-dimensional fibers.
(3) The cycle I' defines a Hodge isometry [[']. between H?(X,Z) and H?(Y,Z).
(4) The class o/ := [[']«« is Kéhler on Y.

The argument used in the proof of [Huy03, Theorem 2.5] shows that since [['],« is a Kéhler
class on Y and o - C' > 0 for every rational curve C on X, all the irreducible components D;
of I" which are contracted by the projection px of X x Y to X are such that the codimen-
sion in X of px(D;) is at least 2. By [Huy99, Lemma 2.2], it then follows that the morphisms
[Dil«: H*(Y,Z) — H?(X,7) are all trivial. As a consequence, we have o = [['].a/ = [Z].¢/.

We let f: Y --» X be a bimeromorphism whose graph is Z. As o' is Kahler, for every
rational curve C’ in Y, we have [, o' > 0. Notice that o’ = f*a, so that we have [,a > 0
and fC, f*a > 0 for every rational curve C' in X and every rational curve C’ in Y. By [Huy03,
Proposition 2.1], it follows that f extends to a biholomorphism, and « is then a Kéhler class. [

4. Kahlerness of moduli spaces of sheaves

This last section is devoted to the proof of Theorem 1.13. Hence, we let S be a K3 surface and
v € H?*(S,7Z) be of the form v = (r,{,a), where 7 > 0 and ¢ € NS(S) are relatively prime.
Moreover, we let w be a Kéahler class on S, which we suppose to be v-generic.

We want to show that if the moduli space M := M, (S,w) is a be-manifold, then it is K&hler.
To do so, we apply Theorem 1.19 to M; we then need to prove that M is a compact, connected
holomorphically symplectic manifold in the Fujiki class C which is a limit of compact hyperkahler
manifolds, and we need to provide a very general class o € C]J\} such that a - C > 0 for every
rational curve C in M.
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We will always assume v? > 2, as the cases v> < 0 are already known: if v? < —2, we have
M = (; if v> = —2, then M is a point; if v2 = 0, then M is a K3 surface by [PT17, Corollary 5.3].

Step A: The moduli space M is a compact, connected holomorphically symplectic be-manifold
which is a limit of compact hyperkahler manifolds. The fact that M is a compact, holomor-
phically symplectic manifold is due to Toma (see [Tom01, Remark 4.5]). The connectedness is
given by[PT17, Proposition 4.24]. The fact that M is a bp-manifold is one of the hypotheses in
the statement of Theorem 1.13 (that we are proving).

We show the following.
LEMMA 4.1. The moduli space M is a limit of compact hyperkdhler manifolds.

Proof. Let S — B be the Kuranishi family of the K3 surface S, where B is a complex manifold
of dimension 20. Let B¢ C B be the subvariety of B given by those b € B such that { € NS(Sp).
Similarly, let B, C B be the subvariety of B given by those b € B such that the class w is in
H 1’I(Sb,]R). Moreover, let B¢, := B¢ N B,,. Recall that B¢ and B,, are smooth hypersurfaces
of B. Moreover, up to replacing w with another class in the same v-chamber where it lies, we
can suppose that  and w are linearly independent. Then B¢ and B, intersect transversally, so
that Be,, is a smooth analytic subset of B of positive dimension (see [Huy99, Section 1.16]). By
[Huy99, Theorem 3.5], the subset BZ » of Be o, given by those b such that Sy is projective is dense
in Be,.

We now consider the restriction &’ := S|B§’w, together with a morphism &' — Be,,. We
suppose 0 € Be, to be such that Sy ~ S. Consider the family &’ — Bg, (which is a smooth
and proper family of compact Kihler surfaces) and the Hodge bundle E%! (whose fiber over a
point b € B¢, is isomorphic to HY1(S)), together with a morphism p: Eb — B ,. Inside
B! we define the relative Kihler cone K as the subset of E1'! such that Kp := KNp~1(b) is the
complexified Kihler cone of Sy, (the open and convex cone in H!(S}) given by the complexified
Kéhler classes, that is, classes whose imaginary part is a Kéahler class).

As a consequence of [KS60, Theorem 15], the relative Kéhler cone K is open in the total space
of the vector bundle E'! with respect to the Euclidean topology (see [Mag12, Proposition 2.1]).
Now, recall that w is a Kéhler class on S; that is, w defines an element in iw € Ky. Consider
the constant section s,,: B¢ — Eb! sending b € Be ., to iw (which is in EY1 since w is a real
(1,1)-class on Sy, for every b € Be,,). As K is open in Eb1| the intersection of the image of s,
with K is open. It follows that there is a Euclidean open subset D’ C Bg ,, containing 0 and such
that for every b € D’, we have that iw is in the complexified Kahler cone of Sy, in other words,
that w is a K&hler class on Sp. We can then consider the relative moduli space M — D’, whose
fiber over b is the moduli space M, = M,,(Sy,w) of u,-stable coherent sheaves on S, whose Mukai
vector is v.

As the v-genericity is an open property in the Euclidean topology, there is an open subset
D of D' such that for every b € D, the class w is v-generic. We then consider the restriction
Sp of § to D, together with a morphism Sp — D. For every d € D, the K3 surface Sy comes
equipped with a Mukai vector v = (r, &, a) and a v-generic polarization w. As a consequence, the
restriction of M to D, denoted by M p, is such that for every d € D the fiber My is a compact,
connected complex manifold (see again [PT17, Proposition 4.24]). The morphism Mp — D
is submersive (see, for example, the proof of [PT17, Proposition 4.23]), and its fibers are all
compact, connected manifolds. By [Ehr95, Proposition 1], the family Mp — D is a smooth
and proper family whose fiber over 0 is M, (S,w).
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Now, as Bg . 18 dense in By ,, it follows that Bg LMD is dense in D. Hence, for the generic point
d € D, the fiber Sy is a projective K3 surface, and the fiber My is a compact hyperkéhler manifold
(see [PT17, Theorem 3.4]). Hence, M, (S,w) is a limit of compact hyperkéhler manifolds. O

Step B: The moduli space M is in the Fujiki class C. In order to show that M is in the Fujiki
class C, we make use of Proposition 2.7. To do so, recall that there is a morphism \,: v+ —»
H?(M,7Z), which is an isometry (since v? > 2) with respect to the Mukai pairing on v and the
Beauville-Bogomolov form of M (see [PT17, Proposition 5.2]). This remains true if we tensor
with R, and we get an isometry \,: vt ® R — H?(M,R). We will then construct the desired
class o by taking an appropriate element of v+ ® R.

The choice we make is the following: let m € N and
U i= (=7, —mrw,a +mw - §) € H*(S,R),

where w - £ is the (real extension of the) intersection product on S. First of all, we remark that
O € vt @ R; indeed, by the definition of the Mukai pairing (see Section 1.2), we have

(v, Omw)vuk = Mrw - § —r(a+mw-§) +ra=0,

and hence a,;, , € vt @ R. If we let AvR: vt ®R — H?(M,,R) be the real extension of \,, we
then define

o = M\(amw) € HA(M,R).
We now show that gps(a) > 0.

LEMMA 4.2. If m > 0, we have a € Cyy.

Proof. We have gpr(a) = gvr(Av(amw)) = (Qmws Omw)Muk = m2r2w? +2ra+2mrw-£. Asm > 0
and w? > 0 (since w is Kéhler on S), we then see that gy () > 0, that is, o € Cpy. O

We are finally ready to prove the following.

LEMMA 4.3. The moduli space M is in the Fujiki class C.

Proof. By Lemma 4.1, there is a marking ¢ on M such that (M, ¢) € ﬂ]%k, where Z = Hilb"(K3)
and 2n = v? + 2. Let m € N, and consider a d-closed real (1,1)-form @ on S whose cohomology
class is mrw and a real 4-form x on S whose cohomology class is a + mw - £ (under a chosen
isomorphism H*(S,R) ~ R). Let ps and py; be the two projections of S x M onto S and M,
respectively, and consider a quasi-universal family £ on S x M of similitude p. For every i, we
let 7; be a real d-closed (i,%)-form on S x M whose cohomology class is ch;(&).

By the definition of the morphism A, given in [PT17, Section 5.2], for every class o =
(Oéo, aig, 062) S UL & R, we have

Ao(a) = ;[pM* (P5(a” - V/td(9)) - ch(€))],

where oV = (ag, —a1, a2) and [-]5 is the component lying in H?(M,R). More explicitly, we have
pa = ag - chz(E) — piaq - cha(E) + psag - chy (€) .
We then notice that the real (1,1)-form

Q= —r- -3+ psw Y2 +Psx M
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is d-closed and its cohomology class is pa. If m > 0, by Lemma 4.2 we then conclude that on M,
there is a d-closed real (1,1)-form & such that gar([a]) > 0.

We now consider the family Mp — D introduced in the proof of Lemma 4.1. The fiber
over 0 € D is M, and the fiber over a point b € D is the moduli space M; := M,(Sp,w). The
morphism A, can be defined in families by using a relative quasi-universal family, and for every
b € D, we have a € H?(M,,R), and « is still the cohomology class of a d-closed real (1,1)-
form. As the Beauville-Bogomolov form is a topological invariant, if m > 0, we then again have
qn, (o) > 0.

Now, as we saw in the proof of Lemma 4.1, there is a sequence {by,},en of points in D
converging to 0 and such that S;, is projective. Hence, M, is a compact hyperkahler manifold.
We can then apply Proposition 2.7 to conclude that M is in the Fujiki class C. ]

Step C: The class « is very general, it lies in C;, and it is such that a - C > 0 for every
rational curve C' of M. We start by showing that « is very general in H2(M, R).

LEMMA 4.4. If w is sufficiently generic, then for every 8 € H*(M,Z) such that 3 # 0, we have
qm (o, B) # 0.

Proof. As 8 € H>(M,Z), and as \,: v — H?(M,Z) is an isometry by [PT17, Proposition 5.2],
there is a v € v+ such that 8 = A\, (7). If we write v = (s, D, b), the condition v € v*, that is,
(7, v)Mmuk = 0, reads D - & = sa + rb. Again, as A, is an isometry, it follows that

QM(aa 6) = QM()\v(am,w)u Av('}’)) = (am7wa ’Y)Muk =mw - (TD - 55) +7rb—sa.
Suppose g (a, ) = 0; this is then equivalent to

o Dy = D2EZ2D

which means that w is on some hyperplane in H?(S,R) associated with D. As the family of these
hyperplanes is countable (since the family of D € H?(S,Z) is countable), and as w is sufficiently
generic, we see that gas(«, 8) # 0 for every non-zero 8 € NS(M). O

Remark 4.5. Recall that a v-generic polarization w lies in a v-chamber, which is an open convex
cone of the Kéahler cone of S (see [PT17, Section 2.2] for the definition of v-chambers). By [PT17,
Proposition 3.2], if w and ' are two v-generic polarizations lying in the same v-chamber, then
M, (S,w) = M,(S,w’); we can then always suppose that w is sufficiently generic. By Lemma 4.4,
we can then always suppose that « is very general.

Next, we show that « is pseudo-effective.
LEMMA 4.6. If m > 0, then a € Cj.

Proof. By Lemma 4.2, we know that o € Cps. By Lemmas 4.1 and 4.3, we know that M is a limit
of compact hyperkahler manifolds and in the Fujiki class C. By Lemma 3.2, in order to show
that o € CJ\JZI, we then just need to show that a € &y;. To show this, consider the deformation
Mp — D we introduced in the proof of Lemma 4.1. We let 0 € D be the point over which the
fiber is M, (S,w). For a generic b € D, the fiber is M} = M, (Sp,w), where Sy is a projective K3
surface; hence, M, is a projective hyperkahler manifold. Notice that w is still a v-generic Kahler
class on Sy, and the class « is still in Cpy,, and this for every b € D. We write ag := «.

Now, as shown in [PT17, Remark 3.5], in the same v-chamber where w lies there is a class of
the form w’ = ¢ (H) for some ample line bundle H on S;. We let a1 := A\y(yp ). Moreover, for
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every t € [0,1], we let wy := (1 — t)w + tw’, which is a segment contained in the v-chamber where
w and W’ are, and we let a; := Ay (i w, ). By the linearity of \,, we have oy = (1 —t)ag + tovy,
and the image of the map a: [0,1] — HY'(Mj,,R) defined by letting a(t) := a; is a segment
in CMb'

Our aim is to show that o € &y. As the family Mp — D is a family of manifolds in
the Fujiki class C by the previous paragraph, by [PU18, Theorem 5.9], it is sufficient to show
that op € &, for a generic b around 0. As for the generic b around 0, we have that M, is
compact hyperkéhler, this is equivalent to showing that ag € C}&b. As C]'\t[b is a convex cone and
the segment [ap, aq] is contained in Cpy,, to show that o € CLb, it is sufficient to show that

a1 € C]'\Zb. But now, as Sj is projective, we can use a general construction presented in [HLI7]:
if H is a v-generic ample line bundle on Sy, we can construct an ample line bundle L(H) on
My(Sp, H), and we have c1(L(H)) = Ay(Qp c, (7r))- We know that w and ci(H) are in the same
v-chamber, hence M, (Sy,w) = M,(Sp, H) (see Remark 4.5); it follows that A,(ay, ) is an ample
class on M, (Sp,w). It then lies in the Kéhler cone of M, and hence in C}&b. O

In conclusion, we have shown that up to choosing m > 0 and w sufficiently generic, the class «
is a very general class in C]'\t[. We are left to show that o- C' > 0 for every rational curve C' in M.

LEMMA 4.7. If m > 0 and w is sufficiently generic, we have a- C > 0 for every rational curve C
on M.

Proof. Let [C] € H?>"12"=1(M,7Z), and let B¢ € NS(M) be the dual of [C], so that a - C =
g (e, Be). We then just need to prove that gar(a, Bc) > 0 for every rational curve C' on M.

Let S — B be the Kuranishi family of S, and let 0 € B be such that Sy = S. We let B¢
be the subset of B of those b € B such that Sc € NS(S); that is, C' is a rational curve on Sy.
Consider the intersection D¢ := D N B, which is an analytic subset of D, whose generic point
d is such that Sy is a projective K3 surface. We let M be the restriction of the relative moduli
space Mp — D to D¢ (see Lemma 4.1 for the definition of the family Mp) and consider the
family Mo — D¢, whose fiber over a point d € D¢ is denoted by M. Notice that for every
d € D¢, we have the class a € Cys, and the rational curve C' on My. As the intersection product
of o with C' is constant along D¢, it is sufficient to show that g, («, Sc) > 0 for some d € D¢.

As Bc € NS(My), and as the morphism \,: v* — H?(Mg,Z) is an isometry by [PT17,
Proposition 5.2], there is a class v € v* such that Bc = A\, (7). We write v = (s, (, b), where s,b €
Z and ¢ € H?(S,Z). Moreover, as My is a manifold in the Fujiki class C, on H?(M,Z) we have
a Hodge decomposition, and the morphism A, is a Hodge isometry (see [PT17, Corollary 5.3]).
As Bc € HYL(M), we then need v € (vh)1!; that is, we have ¢ € NS(S,).

Now, as A, is an isometry, we have

qmy (Oz, /BC) = QMd()\v(am,w)u )‘U (’Y)) = (am,wa V)Muk .

It is then sufficient to show that (. w, ¥)Muk > 0. By [PT17, Lemma 3.3], there is an ample class
w' on Sy which is in the same v-chamber of w and is such that for every n € NS(Sy), we have
w-n =w -n Then we have ay, ./ € vt and (Qmws Y)Muk = (Qm s Y)Muk- It is then sufficient
to show that (., ¥)Muk > 0. To do so, consider a rational w” in a neighborhood of w’ in the
ample cone of Sy. Let p € N, and let H be an ample line bundle on Sy such that pw” = ¢;(H). As
we can choose m > 0, we can suppose that m = m’p for some very big m’ € N. As H is v-generic,
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v (@ ey (rr)) 18 the first Chern class of an ample line bundle, so that Ay (@ ¢, (7)) - C > 0. Since

/\U<am’,c1(H)) O = QMd()‘v(am’,q(H))v /60)
= qu()‘v(am’,q(H))? )‘0(7)) = (am’,cl(H)v V)Muk )
it follows that (s ¢, (), 7)Muk > 0. But now, notice that
Q! c1 (H) =:(—T7—4n971(f1)7a-FTnQH(f{)‘f)
= (=r,—m'prei(H)/p,a + m/pé - e1(H)/p) = (—r, —mrw”, a + mw” - §) = e ;

hence, (v wrs V)Muk = (Qms e (1), V)Muk > 0. As this is true for all rational classes w” in a
neighborhood of ', this implies that (o, ¥)Muk = 0. As we saw before, this implies that
a - C = 0 for every rational curve C' in M. But as 8o € NS(M) and « - C = qu(a, Bo), and as
we know that a is very general by Lemma 4.4, it follows that « - C' # 0. In conclusion, we have
a-C >0, and we are done. O

Step D: The previous steps allow us to complete the proof of Theorem 1.13.

Proof of Theorem 1.13. We consider a K3 surface S, a Mukai vector v = (r, £, a) such that r and £
are relatively prime and v? > 2 and a v-generic polarization w. The moduli space M := M,(S,w)
is then a compact, connected holomorphically symplectic manifold of dimension v? + 2, which
is deformation equivalent to a Hilbert scheme of points on a projective K3 surface (see [PT17,
Theorem 1.1]).

If M is Kéhler, then we clearly have bo(M) = h%2%(M) + hYY (M) + h%2(M). We are left
with the proof of the opposite direction, so we suppose that M is such that by (M) = h2(M) +
hYY(M) + h%2(M), and we show that M is Kihler. By Lemma 4.1, we know that M is limit of
hyperkahler manifolds, and by Lemma 4.3 we know that M is in the Fujiki class C. Moreover, by
Lemmas 4.4, 4.6 and 4.7 (and by Remark 4.5), we know that on M there is a real (1, 1)-class «
which lies in the positive cone of M, is very general and intersects positively all rational curves
on M. By Theorem 1.19, it then follows that M is Kéhler. O
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