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Kählerness of moduli spaces of stable sheaves

over non-projective K3 surfaces

Arvid Perego

Abstract

We show that a moduli space of slope-stable coherent sheaves over a K3 surface is
a compact hyperkähler manifold if and only if its second Betti number is the sum of
its Hodge numbers h2,0, h1,1 and h0,2.

1. Introduction

Compact hyperkähler manifolds are compact, connected Kähler manifolds which are simply
connected and holomorphically symplectic and have h2,0 = 1. Very few examples of them are
currently known, and all the known deformation classes arise from moduli spaces of semistable
coherent sheaves on a projective K3 surface or on an Abelian surface. In [PT17], we showed
that if S is any K3 surface, the moduli space Mv(S, ω) of µω-stable coherent sheaves on S of
Mukai vector v = (r, ξ, a) ∈ H2∗(S,Z) is a compact, connected complex manifold, it carries a
holomorphic symplectic form, and it is of K3[n]-type (that is, it is deformation equivalent to a
Hilbert scheme of points on a projective K3 surface). This holds under some hypotheses on ω
and v (namely, ω is a v-generic Kähler class, and r and ξ have to be relatively prime: we refer
the reader to [PT17, Section 2.2] for the definition of v-genericity).

The main open question about these moduli spaces is if they carry a Kähler metric: if it is
so, it follows that they are all compact hyperkähler manifolds of K3[n]-type. The answer to this
question is affirmative in at least three cases: when S is projective, when Mv(S, ω) is a surface,
when Mv(S, ω) parametrizes only locally free coherent sheaves. This led us to the following.

Conjecture 1.1. The moduli spaces Mv(S, ω) are Kähler manifolds.

Evidence is provided by the previous examples, where the moduli spaces are indeed Kähler,
and by the fact that their geometry is somehow similar to that of a compact hyperkähler manifold;
in [PT17], we show that on their second integral cohomology, there is a non-degenerate quadratic
form defined as the Beauville–Bogomolov form of compact hyperkähler manifolds. But still,
this analogy is not sufficient to guarantee that the moduli spaces are Kähler: it is known since
[Gua94, Gua95a, Gua95b] that there are examples of compact, simply connected, holomorphically
symplectic manifolds having h2,0 = 1 which are not Kähler, but whose second integral cohomology
carries a non-degenerate quadratic form, and for which the local Torelli theorem holds.
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A. Perego

The aim of this paper is to show that the previous conjecture holds true under some additional
hypothesis on the second Betti number of Mv(S, ω).

1.1 Main definitions and notation

In this section, we collect all the definitions and notation we will use in what follows.

Definition 1.2. A holomorphically symplectic manifold is a complex manifold which carries an
everywhere non-degenerate holomorphic closed 2-form (called a holomorphic symplectic form).

We notice that a compact holomorphically symplectic manifold is always of even complex
dimension, and a holomorphic symplectic form σ defines an isomorphism σ : TX −→ ΩX of
vector bundles, where TX is the tangent bundle of X and ΩX is the cotangent bundle of X (that
is, the dual bundle of TX).

Let X be a compact, connected complex manifold of complex dimension d, and k ∈ {0, . . . , 2d}
and p, q ∈ N.

Definition 1.3. The kth Betti number of X is

bk(X) = dimCH
k(X,C) ,

and the type (p, q) Hodge number of X is

hp,q(X) = dimCH
p,q

∂
(X) .

Equivalently, one can define hp,q(X) to be the complex dimension of the space Hp(X,Ωq
X).

The general relation between the Betti and the Hodge numbers of X is that

bk(X) 6
∑
p+q=k

hp,q(X)

for every 0 6 k 6 2d, and the equality holds for every k if and only if the Frölicher spectral
sequence of X degenerates at the E1 level.

Definition 1.4. A compact, connected complex manifold X is a b2-manifold if

b2(X) = h2,0(X) + h1,1(X) + h0,2(X) .

Remark 1.5. A compact, connected complex manifold X is a b2-manifold if and only if there
is a weak Hodge decomposition on H2(X,C), that is, an isomorphism H2(X,C) ' H2,0

∂
(X) ⊕

H1,1

∂
(X)⊕H0,2

∂
(X). In terms of forms, this means that if p+q = 2 and a ∈ Hp,q

∂
(X) is a Dolbeault

class, then there is a d-closed 2-form α = αp,q + αp+1,q−1 + · · · + α2,0 (in the Hodge–Frölicher
filtration on the total de Rham complex of X) such that the Dolbeault class of αp,q is a.

All compact, connected Kähler manifolds are b2-manifolds since on a compact Kähler manifold
we have a (strong) Hodge decomposition. The converse is not true in general: every compact
complex surface is a b2-manifold (since the Frölicher spectral sequence degenerates at the E1

level), but there are several compact complex surfaces which are not Kähler.

Remark 1.6. If X is a b2-manifold, then all holomorphic 2-forms are d-closed. Indeed, if σ is
a holomorphic 2-form on X, consider the spectral sequence morphism d1 : E2,0

1 −→ E3,0
1 . Here

we have Ep,01 = Hp,0

∂
(X), and d1 sends the ∂-cohomology class of σ to the ∂-cohomology class

of ∂σ. As X is a b2-manifold, the morphism d1 is trivial; hence, ∂σ ∈ Im(∂). This implies that
∂σ = 0, and as σ is holomorphic, we finally get that dσ = 0.
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Kählerness of moduli spaces

Definition 1.7. A compact, connected complex manifold X is in the Fujiki class C if it is
bimeromorphic to a compact Kähler manifold.

Among all manifolds in the Fujiki class C, we clearly have compact Kähler manifolds, but
there are examples of manifolds in the Fujiki class C which are not Kähler (see, for example,
[Poo86]).

Definition 1.8. A compact, connected complex manifold X verifies the ∂∂-lemma for 2-forms
if every ∂-closed, ∂-closed, d-exact 2-form is ∂∂-exact.

In other terms, a compact, connected complex manifold X verifies the ∂∂-lemma for 2-forms if
ker(∂)∩ker(∂)∩ Im(d) = Im(∂∂). Another equivalent way of expressing this is that the canonical
morphism Hp,q

BC(X) −→ H2(X,C) is injective for p + q = 2 (here Hp,q
BC(X) is the type (p, q)

Bott–Chern cohomology of X; that is, Hp,q
BC(X) = ker(∂) ∩ ker ∂/Im(∂∂)).

If X is a compact Kähler manifold, then X verifies the ∂∂-lemma for 2-forms (more gen-
erally, for all forms; see, for example, [DGMS75, Lemma 5.11]). Moreover, if f : X −→ Y is
a bimeromorphic map between two compact complex manifolds and if the ∂∂-lemma for 2-forms
holds for Y , then it holds for X (see, for example, [DGMS75, Theorem 5.22] and [Del68, Sec-
tions 4 and 5]). In particular, every compact complex manifold in the Fujiki class C verifies the
∂∂-lemma for 2-forms. Moreover, if X verifies the ∂∂-lemma for 2-forms, then we have a Hodge
decomposition on H2(X,C), so X is a b2-manifold (see [DGMS75, Section 5.21]).

Remark 1.9. A compact, connected complex manifold X verifies the ∂∂-lemma for 2-forms if
and only if there is a strong Hodge decomposition on H2(X,C). In terms of forms, this means
that if p + q = 2 and a ∈ Hp,q

∂
(X) is a Dolbeault class, then there is a d-closed 2-form of pure

type (p, q) whose Dolbeault class is a.

If f : X −→ B is a holomorphic fibration, then for every b ∈ B, we let Xb := f−1(b). Let X
be a compact, connected complex manifold and B a connected complex manifold.

Definition 1.10. A deformation of X along B is a smooth and proper holomorphic family
f : X −→ B for which there is a 0 ∈ B such that X0 is biholomorphic to X.

Let now P be a property of complex manifolds. We recall that the analytic Zariski topology
on a complex manifold X is the topology whose open subsets are the complements of closed
analytic subvarieties of X.

Definition 1.11. We say that the property P is open in the Euclidean topology (respectively,
in the analytic Zariski topology) if for every deformation X along a connected complex manifold
B, the set of those b ∈ B such that Xb verifies P is a Euclidean (respectively, analytic Zariski)
open subset of B.

Kählerness is an open property in the Euclidean topology (see [KS60, Theorem 15]), but in
general it is not closed (as can be seen in an example due to Hironaka in [Hir62]). It is conjectured
in [DP04] that it is an open property in the analytic Zariski topology. Being in the Fujiki class
C is not an open property in general, as can be seen in an example of Campana in [Cam91],
but it is conjectured to be closed (see [Pop14]). Verifying the ∂∂-lemma for 2-forms is an open
property in the Euclidean topology (see the Ph.D. thesis of C.-C. Wu, Harvard University, 2006,
or [AT13, Corollary 2.7]). Being a b2-manifold is open in the analytic Zariski topology (as the
Hodge numbers are upper semi-continuous in the analytic Zariski topology; see [Dem95] and
references therein).
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A. Perego

The last definitions we need are the following.

Definition 1.12. Let X be a compact, connected complex manifold.

(i) The manifold X is compact hyperkähler if it is a Kähler manifold which is simply connected
and holomorphically symplectic and h2,0(X) = 1.

(ii) The manifold X is deformation equivalent to a compact hyperkähler manifold if there exist
a connected complex manifold B and a deformation X −→ B of X along B for which there
is a b ∈ B such that Xb is a compact hyperkähler manifold.

(iii) The manifold X is a limit of compact hyperkähler manifolds if there exist a smooth and
proper family X −→ B along a smooth connected base B and a sequence {bn} of points of
B converging to 0 such that Xbn is a compact hyperkähler manifold.

1.2 Main results and structure of the paper

In this section, we let S be a K3 surface. If r ∈ H0(S,Z) ' Z and ξ ∈ NS(S), we say that r
and ξ are relatively prime when the following property is verified: if s ∈ Z is such that r = sr′

and ξ = sξ′ for some r′ ∈ Z and ξ′ ∈ NS(S), then s = ±1. A Kähler class ω on S will be called
a polarization, and we will usually choose it to be v-generic (for a definition of v-genericity, see
[PT17, Section 2.2]).

If v = (r, ξ, a) ∈ H2∗(S,Z), we let v2 := ξ2 − 2ra; this defines a non-degenerate quadratic
form on H2∗(S,Z), called a Mukai form, whose corresponding non-degenerate symmetric bilinear
pairing is called a Mukai pairing. For every v, w ∈ H2∗(S,Z), we let (v, w)Muk be the value of
the Mukai pairing on v and w: if v = (r, ξ, a) and w = (s, ζ, b), then

(v, w)Muk := ξ · ζ − ra− sb ,

where ξ · ζ is the intersection product on S. This allows us to consider

v⊥ :=
{
w ∈ H2∗(S,Z) | (v, w)Muk = 0

}
,

which is a submodule of H2∗(S,Z) (and hence has a non-degenerate quadratic form obtained by
restricting the Mukai form to v⊥).

The main result of the paper is the following.

Theorem 1.13. Let S be a K3 surface and ω a Kähler class on S. We let v = (r, ξ, a) ∈ H2∗(S,Z)
be such that r > 0 and ξ ∈ NS(S). Suppose that r and ξ are relatively prime and that ω is v-
generic. Then the moduli space M = Mv(S, ω) of µω-stable coherent sheaves on S with Mukai
vector v is Kähler if and only if it is a b2-manifold.

As already seen before, if Mv(S, ω) is Kähler, then it is a b2-manifold. The proof of the
opposite implication is the content of the present paper. The hypothesis about Mv(S, ω) being
a b2-manifold is the weakest one under which we are able to let the strategy of our proof work.
Theorem 1.13 proves Conjecture 1.1 under the additional hypothesis of the moduli spaces being
b2-manifolds. Hence, we could possibly modify Conjecture 1.1 as follows.

Conjecture 1.14. Under the hypotheses of Theorem 1.13, the moduli spaces Mv(S, ω) are
b2-manifolds.

Theorem 1.13 has the following immediate corollary.

Corollary 1.15. LetM−→ B be any smooth and proper family of moduli spaces of coherent
sheaves verifying the conditions of Theorem 1.13. The set of b ∈ B such that Mb is Kähler is an
open subset of B with respect to the analytic Zariski topology.
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Kählerness of moduli spaces

In view of [PT17, Theorems 1.1 and 1.2], another immediate corollary is the following.

Corollary 1.16. Let S be a K3 surface and ω a Kähler class on S, and let v = (r, ξ, a) ∈
H2∗(S,Z) be such that r > 0 and ξ ∈ NS(S). Suppose that r and ξ are relatively prime, that ω
is v-generic and that Mv(S, ω) is a b2-manifold.

(i) The moduli space Mv(S, ω) is a compact hyperkähler manifold of K3[n]-type, which is pro-
jective if and only if S is projective.

(ii) If v2 > 2, there is a Hodge isometry λv : v⊥ −→ H2(Mv,Z).

The case v2 = 0 was already treated in [PT17]; in this case, there is a Hodge isometry

λv : v⊥/Zv −→ H2(Mv,Z) ,

and there is no need to suppose that Mv(S, ω) is a b2-manifold. For as a consequence [PT17,
Theorem 1.1], we already know that Mv(S, ω) is a K3 surface.

The proof of Theorem 1.13 is an application of general results about compact, connected
complex b2-manifolds which are holomorphically symplectic and a limit of compact hyperkähler
manifolds. The starting point is a result originally due to Guan (see Proposition 1.21) stating
that if X is a compact, connected holomorphically symplectic b2-manifold which is deformation
equivalent to a compact hyperkähler manifold, then on H2(X,Z), there is a non-degenerate
quadratic form qX of signature (3, b2(X)− 3), and the local Torelli theorem holds.

This result is a generalization of the well-known analogue for compact hyperkähler manifolds
proved by Beauville in [Bea83]. By the local Torelli theorem, we mean that the period map is
locally a biholomorphism (as in the case of compact hyperkähler manifolds) onto the period
domain. We will recall the definition of the Beauville–Bogomolov form and the local Torelli
theorem in Section 2.

Remark 1.17. In [PT17], we proved (see Theorem 1.1 there) that if M is a moduli space of slope-
stable coherent sheaves over a non-projective K3 surface (verifying all the hypotheses of Theo-
rem 1.13), then on H2(M,Z), there is a non-degenerate quadratic form of signature (3, b2(M)−3).
This is proved without assuming that M is a b2-manifold. In [PT17], we did not prove the local
Torelli theorem, which we find here as a consequence of the assumption that M is a b2-manifold.

In Section 2, we consider compact, connected holomorphically symplectic b2-manifolds which
are not only deformation equivalent to a compact hyperkähler manifold but moreover a limit of
compact hyperkähler manifolds. The main result of Section 2 is the following.

Theorem 1.18. Let X be a compact, connected holomorphically symplectic manifold verify-
ing the ∂∂-lemma for 2-forms. If X is a limit of compact hyperkähler manifolds, then X is
bimeromorphic to a compact hyperkähler manifold (hence, it is in the Fujiki class C).

Using Theorem 1.18, we will show that the same conclusion holds when X is a compact, con-
nected holomorphically symplectic b2-manifold which verifies conditions which are more general
than the ∂∂-lemma for 2-forms (see Proposition 2.7 for the precise statement). As we will see,
if a moduli space M verifies the hypotheses of Theorem 1.13 and is a b2-manifold, then it is a
compact, connected holomorphically symplectic manifold which is a limit of compact hyperkähler
manifolds and which verifies the conditions in Proposition 2.7. In particular, this will allow us
to conclude that such moduli spaces are all bimeromorphic to a compact hyperkähler manifold.
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A. Perego

The proof of Theorem 1.18 is based on a well-known strategy already used by Siu in [Siu83]
to show that all K3 surfaces are Kähler, and by Huybrechts in [Huy99] to show that non-
separated, marked, compact hyperkähler manifolds are in fact bimeromorphic. More precisely, if
Λ is a lattice, we say that a compact complex manifold X carries a Λ-marking if on H2(X,Z),
there is a non-degenerate quadratic form and there is an isometry φ : H2(X,Z) −→ Λ. The pair
(X,φ) is called a Λ-marked manifold.

The set of (equivalence classes of) Λ-marked manifolds is denoted byMΛ. As a consequence
of the local Torelli theorem, it contains the subsetMs

Λ of Λ-marked manifolds (X,φ) where X is
a compact holomorphically symplectic b2-manifold which is deformation equivalent to a compact
hyperkähler manifold (and whose Beauville–Bogomolov lattice is isometric to Λ). By the local
Torelli theorem, we can give Ms

Λ the structure of a complex space, in which we have a (non-

empty) open subsetMhk
Λ of compact hyperkähler manifolds and a (non-empty) open subsetM∂∂

Λ

of manifolds verifying the ∂∂-lemma for 2-forms. We let Mhk
Λ be the closure of Mhk

Λ in Ms
Λ.

Theorem 1.18 can be restated by saying that if (X,φ) ∈Mhk
Λ ∩M∂∂

Λ , then X is bimeromorphic
to a compact hyperkähler manifold. This is the statement we prove; the idea of the proof is that

if (X,φ) ∈Mhk
Λ , then (X,φ) is non-separated from a point (Y, ψ) ∈Mhk

Λ . A standard argument
shows that X and Y have to be bimeromorphic. Theorem 1.18 is just an intermediate result
on the way to the Kählerness of the moduli spaces, and it is used in Section 3 to prove that
on a compact, connected holomorphically symplectic b2-manifold which is a limit of compact
hyperkähler manifolds, we can define an analogue of the positive cone of a compact hyperkähler
manifold.

Recall that if X is compact hyperkähler and CX is the cone of real (1, 1)-classes over which the
Beauville–Bogomolov form is strictly positive, the positive cone C+

X is the connected component
of CX which contains the Kähler cone of X. A result of Huybrechts shows that C+

X is contained in
(the interior of) the pseudo-effective cone of X. Theorem 1.18 is used to prove that on a compact,
connected holomorphically symplectic b2-manifold X which is a limit of compact hyperkähler
manifolds and which is in the Fujiki class C, the intersection of the pseudo-effective cone of X
and of CX (which can be defined as for compact hyperkähler manifolds by the local Torelli
theorem) consists of exactly one of the two connected components of CX . This component is the
positive cone of X, still denoted by C+

X . We then prove the following result.

Theorem 1.19. Let X be a compact, connected holomorphically symplectic manifold in the
Fujiki class C which is a limit of compact hyperkähler manifolds. If there is an α ∈ C+

X such that

(i) α · C > 0 for every rational curve C on X and

(ii) for every non-zero β ∈ H1,1(X) ∩H2(X,Z), we have qX(α, β) 6= 0,

then X is compact hyperkähler and α is a Kähler class on X.

The proof of this result is based on Theorem 1.18, which gives a bimeromorphism f : Y 99K X
between X and a compact hyperkähler manifold Y . Using twistor lines for real (1, 1)-classes on X
(which can be defined similarly to the hyperkähler case thanks to the local Torelli theorem) and
a strategy used by Huybrechts for compact hyperkähler manifolds, we show that the conditions
on α imply that f∗α is a Kähler class on Y . An easy argument then shows that f is a biholo-
morphism and that α is a Kähler class on X.

The last part of the paper is devoted to showing that on M , a class α as in the statement of
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Kählerness of moduli spaces

Theorem 1.19 exists. This is obtained by using the (Hodge) isometry

λv : v⊥ ⊗ R −→ H2(M,R)

(whose existence was proved in [PT17, Section 5.2]) to produce classes in CM . By deforming to
a moduli space of slope-stable coherent sheaves on a projective K3 surface, and by using a classical
construction of ample line bundles on M in this case (starting from an ample line bundle on S),
we will show that a class as in Theorem 1.19 exists, concluding the proof of Theorem 1.13.

1.3 The Beauville–Bogomolov form and the local Torelli theorem

The starting point of the proof of Theorem 1.13 is the local Torelli theorem, which is due to
Guan in this generality. We will not prove it here (the proof can be found in [Gua95b]), but we
recall the definition of qX and the local Torelli theorem.

1.3.1 The Beauville–Bogomolov form on H2(X,C). Let X be a compact, connected holo-
morphically symplectic manifold of complex dimension 2n. The Beauville–Bogomolov form of
X is a quadratic form on H2(X,C) defined as follows. First, choose a holomorphic symplectic
form σ on X, and assume for simplicity that

∫
X σ

n ∧ σn = 1. For every α ∈ H2(X,C), we let

qσ(α) :=
n

2

∫
X
α2 ∧ σn−1 ∧ σn−1 + (1− n)

∫
X
α ∧ σn ∧ σn−1

∫
X
α ∧ σn−1 ∧ σn .

Note that qσ(σ + σ) = (
∫
X σ

n ∧ σn)2 = 1, so qσ is non-trivial. The quadratic form qσ a priori
depends on the choice of σ.

1.3.2 The period map. Let X be a compact, connected holomorphically symplectic b2-
manifold of complex dimension 2n, and suppose h2,0(X) = 1. We let f : X −→ B be its Kuranishi
family and 0 ∈ B a point such that the fiber X0 is isomorphic to X. By [Gua95b, Theorem 1
and Remark 1 following it], the manifold B is smooth, and that up to shrinking it, we can even
suppose that all the fibers of the Kuranishi family are holomorphically symplectic.

Up to shrinking B, for every b ∈ B, the fiber Xb of f is a compact, connected holomorphically
symplectic b2-manifold (since being a b2-manifold is an open property). Moreover, again up to
shrinking B, by the Ehresmann fibration theorem, we can suppose that X is diffeomorphic to
X ×B. In particular, this induces a diffeomorphism ub : X −→ Xb for every b ∈ B and hence an
isomorphism of complex vector spaces

u∗b : H2(Xb,C) −→ H2(X,C) .

We now let P := P(H2(X,C)) and

p : B −→ P , p(b) := [u∗b(σb)] ,

where σb is the holomorphic symplectic form on Xb such that
∫
Xb
σnb ∧ σnb = 1 (we notice that

such a σb is unique as h2,0(X) = 1, and hence h2,0(Xb) = 1). The map p is holomorphic and will
be called period map of X.

We let Qσ be the quadric defined by the quadratic form qσ in P, that is,

Qσ = {α ∈ P | qσ(α) = 0} ,

and Ωσ be the open subset of Qσ defined as

Ωσ := {α ∈ Qσ | qσ(α+ α) > 0} .
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We will need the following.

Proposition 1.20. Let X be a compact, connected holomorphically symplectic b2-manifold
which is deformation equivalent to a compact hyperkähler manifold Z. Then for every p, q > 0
such that p+ q = 2, we have hp,q(X) = hp,q(Z). In particular, h2,0(X) = 1.

Proof. We let f : X −→ B be a smooth and proper family such that there are 0, b ∈ B where
X0 ' X and Xb ' Z. Let U ⊆ B be the subset of those t ∈ B such that Xt is a b2-manifold; then
U is an open subset of B with respect to the analytic Zariski topology, as the Hodge numbers are
upper semi-continuous with respect to the analytic Zariski topology (see [Dem95] and references
therein), and 0, b ∈ U . The upper semi-continuity of the Hodge numbers then implies that for
every p, q > 0 such that p+ q = 2, the Hodge numbers hp,q(Xt) are constant over U , and we are
done.

The following, known as the local Torelli theorem, is due to Guan in this generality (and to
Beauville for hyperkähler manifolds).

Proposition 1.21. Let X be a compact, connected holomorphically symplectic b2-manifold
which is deformation equivalent to a compact hyperkähler manifold.

(i) The quadratic form qσ (and hence Qσ and Ωσ) is independent of σ and will therefore be
denoted by qX (similarly, we write QX and ΩX).

(ii) Up to a positive rational multiple, the quadratic form qX is a non-degenerate quadratic
form on H2(X,Z) of signature (3, b2(X)− 3).

(iii) If B is the base of the Kuranishi family of X, we have p(B) ⊆ ΩX , and p : B −→ ΩX is
a local biholomorphism.

Proof. As X is a holomorphically symplectic b2-manifold which is deformation equivalent to
a compact hyperkähler manifold Z, we know by Proposition 1.20 that h2,0(X) = 1. Theorem 4
of [Gua95b] (and the ensuing Remark 1 therein) proves that qσ is independent of σ and that
there is a positive rational number FX ∈ Q such that for every α ∈ H2(X,Z), if 2n is the complex
dimension of X, we have ∫

X
α2n = FXqX(α)n .

The rational number FX will be called the Fujiki constant of X; then FX and qX are shown to
be topological invariants of X (see the discussion preceding the proof of [Gua95b, Theorem 4]).
As X is a deformation of Z, which is compact hyperkähler, we have qX = qZ , and hence qX
is non-degenerate and of signature (3, b2(X) − 3). The fact that the period map p is a local
biholomorphism follows as in [Bea83].

Using the non-generate quadratic form qX (of signature (3, b2(X)− 3)), we let

C′X :=
{
α ∈ H2(X,R) | qX(α) > 0

}
,

which is an open cone in H2(X,R) having two connected components. Moreover, we let

H̃1,1
R (X) := Im

({
α ∈ H1,1(X) | dα = 0

}
−→ H2(X,C)

)
∩H2(X,R)

and notice that this consists exactly of the de Rham cohomology classes of real d-closed (1, 1)-
forms on X. We let

CX := C′X ∩ H̃
1,1
R (X) ,

which is an open cone in H̃1,1
R (X) having two connected components.
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2. Limits of compact hyperkähler manifolds

This section is devoted to proving that every compact, connected holomorphically symplectic
b2-manifold X which is a limit of compact hyperkähler manifolds is bimeromorphic to a compact
hyperkähler manifold; in other words, we prove Theorem 1.18.

The proof is divided into several sections. First, we construct a moduli space MZ of marked
manifolds, and thanks to the local Torelli theorem, we may give it the structure of a (non-
separated) complex space. It will carry a period map to some period domain, which is locally
a biholomorphism. Then, we show that each point in the closure of the open subset of MZ

given by compact hyperkähler manifolds is non-separated from a compact hyperkähler manifold.
Adapting an argument of Siu (for K3 surfaces) and Huybrechts (for higher-dimensional compact
hyperkähler manifolds), we conclude the proof of Theorem 1.18.

2.1 The moduli space of Λ-marked manifolds

In this section, we let Z be a compact hyperkähler manifold, and we write (Λ, q) := (H2(Z,Z), qZ)
for the Beauville–Bogomolov lattice of Z. We let PΛ := P(Λ⊗ C), and inside of it, we let

QΛ := {α ∈ PΛ | q(α) = 0} ,

which is the quadric defined by q, and

ΩΛ := {α ∈ QΛ | q(α+ α) > 0} .

If X is a compact, connected holomorphically symplectic b2-manifold which is deformation
equivalent to Z, by Propositions 1.20 and 1.21 we know that H2(X,Z) carries a non-degenerate
quadratic form qX and that there is an isometry φ : H2(X,Z) −→ Λ. The isometry φ is called
a Λ-marking on X, and the pair (X,φ) is a Λ-marked manifold. The set of Λ-marked manifolds
will be denoted by M′Z . Moreover, we let MZ :=M′Z/ ∼, where (X,φ) ∼ (X ′, φ′) if and only if
there is a biholomorphism f : X −→ X ′ such that φ ◦ f∗ = φ′. The setMZ will be referred to as
the moduli space of Λ-marked manifolds.

We letMhk
Z be the subset ofMZ of equivalence classes of pairs (X,φ), where X is a compact

hyperkähler manifold; it will be called the moduli space of Λ-marked hyperkähler manifolds.
Moreover, we let M∂∂

Z be the subset of MZ of equivalence classes of pairs (X,φ) where X
verifies the ∂∂-lemma for 2-forms.

We first show thatMZ has the structure of a complex space (hence justifying the name space
we use for it). The following is a generalization of [Huy12, Proposition 4.3], and requires the
same proof.

Proposition 2.1. Let Z be a compact hyperkähler manifold and (Λ, q) its Beauville–Bogomolov
lattice.

(i) For any (X,φ) ∈ MZ , there is an inclusion iX : B −→ MZ , where B is the base of the
Kuranishi family of X.

(ii) The set MZ has the structure of a smooth complex space of dimension b2(Z)− 2.

(iii) The subsets Mhk
Z and M∂∂

Z are Euclidean open subsets of MZ .

Proof. Let X be a compact, connected holomorphically symplectic b2-manifold which is defor-
mation equivalent to Z, and let f : X −→ B be its Kuranishi family. Up to shrinking B, we
can suppose that it is a complex disk of dimension b2(X) − 2 = b2(Z) − 2, and as we have
seen before, for every b ∈ B, we can suppose that Xb is a compact, connected holomorphically

435



A. Perego

symplectic b2-manifold (which is clearly deformation equivalent to Z). Moreover, we can suppose
that X is diffeomorphic (over B) to the trivial family X ×B and that we have a diffeomorphism
ub : X −→ Xb inducing an isometry u∗b : H2(Xb,Z) −→ H2(X,Z). We let φb := φ ◦ u∗b , which is
a Λ-marking on Xb, for every b ∈ B. It follows that for every b ∈ B, we have (Xb, φb) ∈ MZ , so
that we have a map

iX : B −→MZ , iX(b) := (Xb, φb) .

We show that iX is an inclusion. Let b, b′ ∈ B, and suppose iX(b) = iX(b′). This means that
(Xb, φb) ∼ (Xb′ , φb′); that is, there is a biholomorphism f : Xb −→ Xb′ such that

f∗ = φ−1
b ◦ φb′ .

By the definition of φb and φb′ , this means that

f∗ = (φ ◦ u∗b)−1 ◦ (φ ◦ u∗b′) = (u∗b)
−1 ◦ u∗b′ .

Now, let σb and σb′ be symplectic forms onXb andXb′ , respectively. As f is a biholomorphism, the
form f∗σb′ is holomorphic symplectic onXb, and hence [u∗bσb] = [u∗bf

∗σb′ ]. But as f∗ = (u∗b)
−1◦u∗b′ ,

this implies that [u∗bσb] = [u∗b′σb′ ]. By the definition of the period map of X, this means that
p(b) = p(b′). But now recall that by point (iii) of Proposition 1.21, the period map p : B −→ Ω
is a local biholomorphism: up to shrinking B, for b 6= b′ ∈ B, we have p(b) 6= p(b′). It follows
that up to shrinking B, the condition iX(b) = iX(b′) implies b = b′, and iX is an inclusion of B
in MZ . This proves point (i) of the statement.

To give MZ the structure of a complex space, we just need to show that each point of MZ

has a neighborhood having the structure of a complex manifold and that whenever two neigh-
borhoods of this type intersect, the corresponding complex structures glue. If (X,φ) ∈MZ , the
previous part of the proof suggests to view iX(B) as a neighborhood (X,φ) in MZ . Now, let
(X,φ), (X ′, φ′) ∈ MZ , and let B and B′ be the bases of the Kuranishi families of X and of X ′,
respectively. If iX(B) ∩ iX(B′) 6= ∅, then B ∩ B′ is an open subset of B and B′, over which the
Kuranishi families coincide. This allows us to glue the Kuranishi families along B∩B′, and hence
the complex structures of iX(B) and iX(B′) can be glued in MZ . This shows that MZ has the
structure of a complex space. We notice that as each base B of a Kuranishi family of a com-
pact, connected holomorphically symplectic b2-manifold is smooth (see Section 2.2) of dimension
b2(Z) − 2, it follows that MZ is a smooth complex space, and its dimension is b2(Z) − 2. This
proves point (ii) of the statement.

The fact that Mhk
Λ and M∂∂

Z are Euclidean open subsets of MZ is a consequence of the fact
that the Kählerness property and the property of verifying the ∂∂-lemma for 2-forms are open
properties in the Euclidean topology (for Kählerness, this is [KS60, Theorem 15], and for the
∂∂-lemma for 2-forms, this is contained in the Ph.D. thesis of C.-C. Wu, Harvard University,
2006, or see [AT13, Corollary 2.7]).

The complex space MZ has two connected components, and one can pass from one to the
other by mapping (X,φ) to (X,−φ).

We now define the period map in this generality. First, if φ : H2(X,Z) −→ Λ is an isometry,
we let φC : H2(X,C) −→ Λ ⊗ C be the map induced by φ by tensoring with C. We then define
the map

π : MZ −→ PΛ , π(X,φ) := [φC(σ)] ,

where σ is a holomorphic symplectic form on X (this is well defined as h2,0(X) = 1).
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Notice that the Λ-marking φ induces an isomorphism

φ : P −→ PΛ , φ([α]) := [φC(α)] .

As φ is an isometry, restricting φ to ΩX , we get an isomorphism φ : ΩX −→ ΩΛ. If B is the base
of the Kuranishi family of X, we have π|iX(B) = φ◦p: if b ∈ B and σb is a symplectic form on Xb,
we have

φ(p(b)) = φ[u∗bσb] = [φC(u∗bσb)] = [(φb)C(σb)] = π(Xb, φb) = iX(b) .

The first two points of the following proposition are just a translation of Proposition 1.21
in this language. For the last point, the surjectivity is [Huy99, Theorem 8.1], and the general
injectivity is the global Torelli theorem of Verbistky.

Proposition 2.2. We have the following properties:

(i) The image of π is contained in ΩΛ.

(ii) The map π is a local biholomorphism.

(iii) If Mhk,0
Z is a connected component of Mhk

Z , the map π|Mhk,0
Z

is surjective and generically

injective.

Now, we let Mhk
Z be the closure of Mhk

Z in MZ . Using this formalism, we can state Theo-
rem 1.18 in an equivalent way.

Proposition 2.3. If (X,φ) ∈Mhk
Z ∩M∂∂

Z , then X is bimeromorphic to a compact hyperkähler
manifold (hence, it is in the Fujiki class C).

This is the statement we will prove in the next sections.

2.2 Non-separatedness in MZ

The first result we show is the following.

Proposition 2.4. Let (X,φ) ∈ Mhk,0
Z . Then there is a (Y, ψ) ∈ Mhk,0

Z such that (X,φ) and
(Y, ψ) are non-separated in MZ .

Proof. The statement is clear if (X,φ) ∈ Mhk,0
Z . We then consider (X,φ) ∈ Mhk,0

Z \Mhk,0
Z . We

let p := π(X,φ) ∈ ΩΛ be the period of (X,φ). As π|Mhk,0
Z

is surjective, there is a (Y, ψ) ∈Mhk,0
Z

such that π(Y, ψ) = p. We show that (X,φ) and (Y, ψ) are non-separated inMZ . To do so, let UX
and UY be two open neighborhoods of (X,φ) and (Y, ψ), respectively, in MZ . Up to shrinking
UX and UY , we can suppose π(UX) = π(UY ) =: V . Moreover, by point (iii) of Proposition 1.21,
up to shrinking UX and UY , we can suppose that π|UY : UY −→ V and π|UX : UX −→ V are
biholomorphisms. Finally, as Kählerness is an open property in the Euclidean topology, up to
shrinking UX and UY , we can suppose that UY ⊆Mhk,0

Z .

Now, as (X,φ) ∈Mhk,0
Z , there exist a compact hyperkähler manifold X ′ and a marking φ′ on

X ′ such that (X ′, φ′) ∈ UX∩Mhk,0
Z . We can choose (X ′, φ′) to be generic. Let p′ := π(X ′, φ′) ∈ V ;

as π|UY : UY −→ V is surjective, there is a (Y ′, ψ′) ∈ UY such that π(Y ′, ψ′) = p′, and as

UY ⊆ Mhk,0
Z , we have that Y ′ is a compact hyperkähler manifold. Hence, (X ′, φ′) and (Y ′, ψ′)

are two generic points inMhk,0
Z . By point (iii) of Proposition 2.2, we then have (X ′, φ′) = (Y ′, ψ′)

in MZ , so that UX ∩ UY 6= ∅, and we are done.

This result will be the starting point of the proof of Proposition 2.3.
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2.3 The proof of Theorem 1.18

We now prove a key result in the proof of Proposition 2.3.

Lemma 2.5. Let B be a connected complex manifold, let s ∈ B, and let X −→ B and Y −→ B
be two smooth, proper families. We suppose that

(i) for every b ∈ B, the fiber Yb is a compact hyperkähler manifold with a Λ-marking ψb;

(ii) for every b ∈ B, the fiber Xb is a compact, connected holomorphically symplectic b2-manifold
deformation equivalent to a compact hyperkähler manifold which has a Λ-marking φb;

(iii) there is a d-closed real (1, 1)-form αs on Xs;

(iv) there is a sequence {bn}n∈N of points of B converging to s such that the two following
properties are verified:

(a) For every n, there is a Kähler form αn on Xbn , and {αn}n∈N is a sequence converging
to αs.

(b) There is a biholomorphism fbn : Ybn −→ Xbn such that f∗bn = ψ−1
bn
◦ φbn .

Then Xs and Ys are bimeromorphic.

Proof. The existence of the sequence {bn} implies that (Xs, φs) and (Ys, ψs) are non-separated
points in MZ , where Z is a compact hyperkähler manifold among all the Yb. We will let Xn :=
Xbn , Yn := Ybn , φn := φbn , ψn := ψbn and fn := fbn . We let Γn be the graph of fn in Xn × Yn.

Let βs be a Kähler form on Ys, and consider a continuous family {βt}t∈B, where βt is a closed
(1, 1)-form on Yt. As Kählerness is an open property in the Euclidean topology, there is a Eucli-
dean open neighborhood U of s in B such that for every t ∈ U , the form βt is Kähler on Yt. In
particular, for n� 0, we have that βn := βbn is a Kähler form on Yn.

We now compute the volume of Γn in Xn× Yn with respect to the Kähler form p∗1αn + p∗2βn,
where p1 and p2 are the projections of Xn × Yn onto Xn and Yn, respectively. We have

vol(Γn) =

∫
Yn

(βn + f∗nαn)2m =

∫
Yn

([βn] + f∗n[αn])2m

=

∫
Yn

(
[βn] + ψ−1

n ◦ φn([αn])
)2m

,

where 2m is the complex dimension of X and Y . Taking the limit for n going to infinity, we get

lim
n→+∞

vol(Γn) =

∫
Ys

(
[βs] + ψ−1

s ◦ φs([αs])
)2m

< +∞ .

Hence, the volumes of the Γn are bounded, so that by the Bishop theorem the cycles Γn converge
to a cycle Γ of Xs × Ys with the same cohomological properties as the Γn. Namely, we have
[Γ] ∈ H4m(Xs × Ys,Z), and if p1 and p2 are the two projections from Xs × Ys onto Xs and Ys,
respectively, we have p1∗[Γ] = [Xs], p2∗[Γ] = [Ys] and

[Γ]∗γ := p2∗([Γ] · p∗1γ) = ψ−1
s (φs(γ))

for every γ ∈ H2(Xs,Z).

Now, let us split Γ into its irreducible components. By the previous properties, we then have
two possibilities:

(1) either Γ = Z+
∑

iDi, where p1 : Z −→ Xs and p2 : Z −→ Ys are both generically one-to-one;

(2) or Γ = Z1 +Z2 +
∑

iDi, where p1 : Z1 −→ Xs and p2 : Z2 −→ Ys are generically one-to-one,
but neither p1 : Z2 −→ Ys nor p2 : Z1 −→ Xs is generically finite.
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In both cases, we have p1∗[Di] = p2∗[Di] = 0. Following the proof of [Huy12, Theorem 4.3], one
can show that possibility (2) can be excluded. It follows that Γ = Z+

∑
iDi, where p1 : Z −→ Xs

and p2 : Z −→ Ys are generically one-to-one. In conclusion, Xs and Ys are bimeromorphic.

A consequence of the previous lemma is the following.

Proposition 2.6. Let B be a connected complex manifold and X −→ B and Y −→ B be two
smooth, proper families verifying the following properties:

(i) For every b ∈ B, the fiber Yb is a compact hyperkähler manifold with a Λ-marking ψb.

(ii) For every b ∈ B, the fiber Xb is a compact, connected holomorphically symplectic mani-
fold verifying the ∂∂-lemma for 2-forms, which is deformation equivalent to a compact
hyperkähler manifold, and which has a Λ-marking φb.

(iii) There is a b ∈ B such that there is a biholomorphism fb : Yb −→ Xb with f∗b = ψ−1
b ◦ φb.

Let V be the maximal open subset of B containing b and for which there is a V -biholomorphism
fV : YV −→ XV (where YV and XV denote the restrictions of the families to V ) extending the
biholomorphism fb. If for a generic b′ ∈ V , we have NS(Xb′) = 0, then V is dense in B.

Proof. We let 0 ∈ B and X := X0 and Y := Y0. For every b ∈ B, we have identifications

H2(Xb,Z) ' H2(Yb,Z) ' H2(X,Z) ' H2(Y,Z) ' Λ ,

where Λ is the Beauville–Bogomolov lattice of Y . For every α ∈ Λ, we let

Sα := {b ∈ B |α ∈ NS(Yb)} .

Similarly, for every α ∈ H4m−2(Y,Z) (where 2m is the complex dimension of X and Y ), we let

Sα :=
{
b ∈ B |α ∈ H2m−1,2m−1(Yb)

}
.

The subset Sα ⊆ B is a smooth hypersurface of B (see [Huy99, Section 1.16]).

The fact that V is open in B is a consequence of the local Torelli theorem. Notice that if
b′ ∈ V , then the biholomorphism fV induces (by restricting to the fibers over b′) a biholomorphism
fb′ : Yb′ −→ Xb′ such that f∗b′ = ψ−1

b′ ◦ φb′ . Letting V be the closure of V in B and ∂V := V \ V ,
we claim that

∂V ⊆
⋃

α∈Λ∪H4m−2(Y,Z)

Sα .

In particular, this means that ∂V is contained in a countable union of analytic subvarieties of B.
It has real codimension at least 2 in B; hence, it cannot separate the disjoint open subsets V and
B \ V . As V 6= ∅ (since b ∈ V ), it follows that B = V , concluding the proof. In order to show
the claim, we show that if s ∈ ∂V , then Ys has either effective divisors or curves (hence, there is
an α ∈ Λ∪H4m−2(Y,Z) such that s ∈ Sα). We proceed by contradiction: we let s ∈ ∂V , and we
suppose that Ys has no effective divisors and no curves.

The first thing we prove is that Xs and Ys are bimeromorphic, by using Lemma 2.5. Points (i)
and (ii) of the statement of Lemma 2.5 are fulfilled (since if Xb verifies the ∂∂-lemma for 2-forms,
then it is a b2-manifold). Moreover, as Xs verifies the ∂∂-lemma for 2-forms, we see that H1,1

R (X)
injects into H2(X,R). As the signature of the Beauville–Bogomolov qXs form is (3, b2(Xs)−3) by
Proposition 1.21, and as qXs is strictly positive on H2,0(X) and H0,2(X), it follows that there is
a d-closed real (1, 1)-form αs on Xs such that qXs([αs]) > 0. This shows that point (iii) of Lemma
2.5 is fulfilled. Up to shrinking B, for every b ∈ B, we then have a d-closed real (1, 1)-form αb,
which depends continuously on b, such that the αb converge to αs and such that qXb([αb]) > 0.
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As s ∈ ∂V and as for the generic point of b′ ∈ V , we have NS(Xb′) = 0, there is a sequence
of points bn ∈ V converging to s such that NS(Xbn) = 0. As Xbn is biholomorphic to Ybn , it is
a compact hyperkähler manifold. By [Huy99, Corollary 5.7], this implies that either αbn or −αbn
is Kähler. Up to changing the sign of αs, we can then suppose that αbn is Kähler on Xbn , and
the sequence {αbn}n∈N converges to αs. In conclusion, even point (iv) of Lemma 2.5 is fulfilled.

We are then in the position to apply Lemma 2.5, which gives us that Xs and Ys are bimero-
morphic. More precisely, there is a cycle Γ ∈ H4m(Xs × Ys,Z) of the form Γ = Z +

∑
iDi, and

if p1 and p2 are the two projections of Xs × Ys onto Xs and Ys, respectively, then p1 : Z −→ Xs

and p2 : Z −→ Ys are generically one-to-one. If we let D ∈ H4m(Xs × Ys,Z) be any cycle, we
define

[D]∗ : H2(Xs,Z) −→ H2(Ys,Z) , [D]∗γ := p2∗([D] · p∗1γ) .

As seen in the proof of Lemma 2.5, we have [Γ]∗ = ψ−1
s ◦ φs. As Ys is supposed to have neither

effective divisors nor curves, the bimeromorphism corresponding to Z is a biholomorphism. It
then follows that there is a biholomorphism f : Ys −→ Xs whose graph is Z, and Xs is Kähler
(as Ys is). By [Huy99, Corollary 5.7], the Kähler cone of Ys, and hence that of Xs, is one of the
components of CYs . Moreover, as in [Huy99, Lemma 5.5], for all i, we have [Di]∗ = 0, so that
f∗ = [Z]∗ = [Γ]∗.

We claim that Γ = Z. Indeed, recall that αs is a Kähler class on Xs, and let γs := f∗αs, which
is Kähler on Ys (as f is a biholomorphism). We calculate the volumes of Γ and Z on Xs × Ys
with respect to the Kähler class p∗1αs + p∗2γs. We have

vol(Γ) = vol(Z) +
∑
i

vol(Di) =

∫
Z

(p∗1αs + p∗2γs)
2m +

∑
i

vol(Di)

=

∫
Ys

([Z]∗αs + γs)
2m +

∑
i

vol(Di) =

∫
Ys

(f∗αs + γs)
2m +

∑
i

vol(Di)

=

∫
Ys

(2γs)
2m +

∑
i

vol(Di) ,

where we have used that f∗ = [Z]∗.

Now, consider the sequence {bn}b∈N of generic points in V converging to s, and let Xn := Xbn ,
Yn := Ybn , fn := fbn , φn := φbn , ψn := ψbn and αn := αbn . For each n, the graph of fn in Xn×Yn
is denoted by Γn. We let γn := f∗nαn, which is a Kähler class on Yn. Calculating the volumes of
the Γn with respect to p∗1αn + p∗2γn, we have

vol(Γn) =

∫
Yn

([Γn]∗αn + γn)2m =

∫
Yn

(f∗nαn + γn)2m =

∫
Yn

(2γn)2m .

We then have

lim
n→+∞

vol(Γn) =

∫
Ys

(2γs)
2m = vol(Z) .

But notice that

vol(Γn) =

∫
Yn

(f∗nαn + γn)2m =

∫
Yn

(
ψ−1
n (φn(αn)) + γn

)2m
,

hence

lim
n→+∞

vol(Γn) =

∫
Ys

(
ψ−1
s (φs(αs)) + γs

)2m
=

∫
Ys

([Γ]∗αs + γs)
2m = vol(Γ) .
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We then conclude that vol(Γ) = vol(Z), so that vol(Di) = 0 for every i, and hence Di = 0 for
every i. It follows that Γ = Z, and hence that s ∈ V . As this contradicts the fact that s ∈ ∂V , we
conclude that if s ∈ ∂V on Ys, there are either effective divisors or curves, and we are done.

We are now able to prove Proposition 2.3.

Proof of Proposition 2.3. As (X,φ) ∈Mhk
Z , by Proposition 2.4 we know that there is a compact

hyperkähler manifold Y , together with a marking ψ, such that (X,φ) is non-separated from
(Y, ψ) in MZ . Consider Def(X) and Def(Y ), the bases of the Kuranishi families of X and Y ,
respectively. Up to shrinking them, as the points (X,φ) and (Y, ψ) are non-separated, the local
Torelli theorem allows us to identify them. Hence, the Kuranishi families of X and Y are over
the same base B, and we suppose that X and Y are over the same point 0 ∈ B.

Notice that the fibers Yb of the Kuranishi family of Y are all compact hyperkähler manifolds,
and they each come with a marking ψb. As verifying the ∂∂-lemma for 2-forms is an open
property, all the fibers Xb of the Kuranishi family of X are compact, connected holomorphically
symplectic manifolds verifying the ∂∂-lemma for 2-form, and they are all deformation equivalent
to the compact hyperkähler manifold Z.

The non-separatedness implies that there is a b ∈ B such that Xb and Yb are biholomorphic
under a biholomorphism fb such that f∗b = ψ−1

b ◦ φb. As B is open in MZ , the maximal open
subset V of B in the statement of Proposition 2.6 is then open inMZ ; the generic point b′ of V
is then such that NS(Xb′) = 0 (see [Huy99, Section 1.14]). By Proposition 2.6, we then conclude
that V = B. Now, notice that if 0 ∈ V , then X and Y are isomorphic, and we are done. If 0 /∈ V ,
we have 0 ∈ ∂V . By Lemma 2.5, it follows that X and Y are bimeromorphic (see the proof of
Proposition 2.6).

We conclude this section by proving that even if (X,φ) is not in M∂∂
Z , the manifold X is

bimeromorphic to a compact hyperkähler manifold if some further conditions are verified.

Proposition 2.7. Let (X,φ) ∈Mhk
Z , and suppose that the two following conditions are verified:

(i) There is a d-closed real (1, 1)-form α on X.

(ii) Letting Def(X) be the base of Kuranishi family of X and 0 ∈ Def(X) the point over which
the fiber of the Kuranishi family is X, there is a sequence {bn}n∈N of points in Def(X)
converging to 0 such that the two following properties are verified:

(a) For every n ∈ N, the fiber Xn of the Kuranishi family of X over bn is a compact
hyperkähler manifold.

(b) There is a sequence {αn}n∈N converging to α, where αn is a d-closed real (1, 1)-form
on Xn such that qXn([αn]) > 0.

Then X is bimeromorphic to a compact hyperkähler manifold (in particular, it is in the Fujiki
class C).

Proof. As (X,φ) ∈ Mhk
Z , by Proposition 2.4 there is a (Y, ψ) ∈ Mhk

Z such that (X,φ) and
(Y, ψ) are non-separated inMZ . We let X −→ Def(X) and Y −→ Def(Y ) be the two Kuranishi
families. As (X,φ) and (Y, ψ) are non-separated, by the local Torelli theorem, we can identify
Def(X) = Def(Y ) =: B. We let 0 ∈ B be the point over which the fibers of the Kuranishi families
are X and Y , respectively.
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For every b ∈ B, the fiber Yb over b of the Kuranishi family of Y is a compact hyperkähler
manifold, equipped with a marking ψb. The fiber Xb of the Kuranishi family of X is a com-
pact, connected holomorphically symplectic b2-manifold which is deformation equivalent to Z,
equipped with a marking φb. Moreover, on X = X0 we have a d-closed real (1, 1)-form α. Hence,
points (i), (ii) and (iii) of Lemma 2.5 are fulfilled (for s = 0). We claim that point (iv) is fulfilled
too; this implies that X = X0 and Y = Y0 are bimeromorphic, concluding the proof.

To prove the claim, consider the sequence {bn}n∈N of points of B given in the statement. For
every n ∈ N, we let Yn := Ybn , φn := φbn and ψn := ψbn . We notice that (Xn, φn) and (Yn, ψn)
are two non-separated points inMhk

Z . Indeed, up to shrinking B, we can suppose that the period
map restricted to B is a biholomorphism. The periods of (Xn, φn) and (Yn, ψn) are the same;
one can then proceed as in the proof of Proposition 2.4 to show that (Xn, φn) and (Yn, ψn) are
non-separated points in Mhk

Z .

We let Xn −→ Def(Xn) and Yn −→ Def(Yn) be the Kuranishi families of Xn and Yn,
respectively. By the universality of the Kuranishi family, we can identify Def(Xn) and Def(Yn)
with open neighborhoods of bn in B, and as the points (Xn, φn) and (Yn, ψn) are non-separated,
by the local Torelli theorem we can identify Def(Xn) and Def(Yn). Hence, we have Def(Xn) =
Def(Yn) =: Un ⊆ B, where Un is an open neighborhood of bn in B. Moreover, Xn (respectively,
Yn) is the restriction of X (respectively, Y) to Un.

All the fibers of the Kuranishi families of Yn and Xn are compact hyperkähler and come
with a marking. In particular, all the fibers of the Kuranishi family of Xn are compact, con-
nected holomorphically symplectic manifolds verifying the ∂∂-lemma for 2-forms. As (Xn, φn)
and (Yn, ψn) are non-separated in MZ , there is a point b′n ∈ Un for which there is a biholomor-
phism fb′n : Yb′n −→ Xb′n such that f∗b′n = ψb′n ◦ φb′n . We let Vn ⊆ Un be the maximal open subset

of Un containing b′n and for which there is a Vn-biholomorphism fvn : YVn −→ XVn extending fb′n .
Then Vn is open in Un, which is open inMZ ; for the generic b′ ∈ Vn, we then have NS(Xb′) = 0,
so that by Proposition 2.6, we conclude that Vn is dense in Un. There is then a sequence {cp,n}p∈N
of generic points of Vn converging to bn. We let Xp,n := Xcp,n and Yp,n := Ycp,n . Moreover, up
to restricting Un, for every b ∈ Un, there is a d-closed real (1, 1)-form αb on Xb which depends
continuously on b, with αbn = αn. We let αm,n := αcm,n ; as qXn([αn]) > 0, we can suppose
qXm,n([αm,n]) > 0 (for m � 0). As the cm,n are generic points, we have NS(Xm,n) = 0. By
[Huy99, Corollary 5.7], we then have that either αm,n or −αm,n is a Kähler form. Up to changing
the sign of α (and hence of αn), we can then suppose that αm,n is Kähler on Xm,n.

As for every n ∈ N, the sequence {cm,n} is contained in Vn and converges to bn, and as the
sequence {bn} converges to 0, we then produce a sequence {b′n} converging to 0, where b′n ∈ Vn.
As {αm,n} is a sequence of Kähler classes converging to αn, and as the sequence {αn} converges
to α, we then get a sequence {α′n} of Kähler classes on Xb′n converging to α. We then see that
point (iv) of Lemma 2.5 is fulfilled, and we are done.

3. Criterion for Kählerness

We now want to prove a Kählerness criterion for a compact, connected holomorphic symplectic
manifold X in the Fujiki class C which is a limit of compact hyperkähler manifolds. Let us first
recall some notation: as X is in the Fujiki class C, the cohomology group H2(X,C) has a Hodge
decomposition. In particular, we have

H̃1,1
R (X) = H2(X,R) ∩H1,1(X) =: H1,1(X,R) .
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3.1 Twistor lines

If X is a hyperkähler manifold, with any α ∈ H1,1(X,R), one can associate a twistor line
(see [Huy99, Section 1.17]). The same can be done for a compact, connected holomorphically
symplectic manifold X in the Fujiki class C, which is deformation equivalent to a compact
hyperkähler manifold Z (whose Beauville lattice will be denoted by (Λ, q)). To do so, let σ be a
holomorphic symplectic form on X. The cohomology class of σ allows us to define a real plane

P (X) := (C · σ ⊕ C · σ) ∩H2(X,R)

in H2(X,R), which is independent of σ (as h2,0(X) = 1). If α ∈ H1,1(X,R), we let

F (α) := P (X)⊕ R · α ,

which is a 3-dimensional real subspace of H2(X,R), and we let F (α)C := F (α)⊗ C.

If φ : H2(X,Z) −→ Λ is a Λ-marking on X (which exists by Proposition 1.21), consider the

point (X,φ) ∈ MZ . As X is a limit of compact hyperkähler manifolds, we have (X,φ) ∈ Mhk
Z .

Notice that F (α)C is a 3-dimensional linear subspace of H2(X,C); hence, φC(F (α)C) is a 3-
dimensional subspace of Λ ⊗ C, and P(φC(F (α)C) is a plane in PΛ (here φC is the isomor-
phism induced by φ by tensoring with C). Hence, P(φC(F (α)C)) ∩ ΩΛ is a curve in ΩΛ passing
through π(X,φ).

If B is the base of the Kuranishi family of X, the inverse image

T (α) := π−1(P(φC(F (α)C)) ∩ ΩΛ) ∩B

is a curve in B, which will be called the twistor line of α. The restriction of the Kuranishi family
of X to T (α) will be denoted by

κα : X (α) −→ T (α) .

For every t ∈ T (α), there is a real (1, 1)-class αt on the fiber Xt of the Kuranishi family of X
over t, and the sequence {αt} converges to α. If α is Kähler, then T (α) ' P1, and the class αt is
Kähler on Xt for every t ∈ T (α).

3.2 Cones in H1,1(X,R)

We define CX =
{
α ∈ H1,1(X,R) | qX(α) > 0

}
, which is an open cone in H1,1(X,R) having two

connected components. If X is Kähler (and hence compact hyperkähler), the Kähler cone KX
of X (that is, the open convex cone of Kähler classes on X) is contained in one of them; such a
component is usually called positive cone of X and denoted by C+

X . If NS(X) = 0, Corollary 5.7
of [Huy99] gives us that KX = C+

X , a fact that has already been used in the previous sections.

Theorem 1.1 of [Bou01] tells us that if X is compact hyperkähler, then α ∈ C+
X is in the Kähler

cone of X if and only if
∫
C α > 0 for every rational curve C of X. Our aim is to show a similar

result for a compact, connected holomorphic symplectic manifold X in the Fujiki class C which
is a limit of compact hyperkähler manifolds. As on such a manifold, the Kähler cone could be
empty, we cannot use it to define the positive cone of X. Instead, we can use the pseudo-effective
cone EX of X, that is, the closed convex cone of classes of positive closed real (1, 1)-currents
on X. If X is compact hyperkähler, by [Bou04, Theorem 4.3 i)], we have C+

X ⊆ EX .

Popovici and Ugarte [PU18, Theorem 5.9] showed that if X −→ B is a smooth and proper
family of sGG manifolds [PU18, Definition 1.2] and {bn} is a sequence of points of B converging
to a point b ∈ B, then the limit of the pseudo-effective cones of Xbn is contained in EXb , that is,
the pseudo-effective cone varies upper-semicontinuously along B. As all manifolds in the Fujiki
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class C are sGG manifolds [PU18], we conclude that the pseudo-effective cone varies upper-
semicontinuously in families of class C manifolds.

We now prove the following general fact about convex cones in a real finite dimensional vector
space.

Lemma 3.1. Let V be a real vector space of finite dimension n and A,B ⊆ V two cones in V
such that

(i) the cone A is strictly convex (that is, it does not contain any linear subspace of V ) and
closed;

(ii) the cone B is open and has two connected components, each of which is convex;

(iii) for every a ∈ B, we have either a ∈ A or −a ∈ A.

Then A ∩B is one of the connected components of B.

Proof. We first notice that if B+ and B− are the two connected components of B, then if
B+ ⊆ A, we have B+ = B ∩ A. Indeed, if b′ ∈ B− ∩ A, then −b′ ∈ B+ ⊆ A. It follows that
b′,−b′ ∈ A, which is not possible as A is a strictly convex cone. We are left to prove that there
is a connected component of B which is contained in A. To do so, let b0 ∈ B ∩A, and let B+ be
the connected component of B which contains b0. We show that if b1 ∈ B+, then b1 ∈ A.

Consider the segment [b0, b1] := {bt := (1− t)b0 + tb1 | t ∈ [0, 1]}. Suppose b1 /∈ A. We have to
find a contradiction. First, notice that as b1 /∈ A, there is a t ∈ [0, 1) such that bt /∈ A; indeed,
if for every t ∈ [0, 1), we had bt ∈ A, then as A is closed, we would have b1 ∈ A. As bt and b1
are not in A, for every s ∈ [t, 1] we have bs /∈ A; indeed, as bt, b1 /∈ A but bt, b1 ∈ B, we have
−bt,−b1 ∈ A. As A is convex, the segment [−bt,−b1] (whose elements are the −bs for s ∈ [t, 1])
is contained in A. But this means that bs /∈ A as A is a strictly convex cone. The set of those
t ∈ [0, 1] for which bt /∈ A has an infimum t0 ∈ [0, 1]. Hence, for every t < t0, we have bt ∈ A, and
for every t > t0, we have bt /∈ A. As bt ∈ B, this implies that −bt ∈ A for every t > t0. But as A
is closed, these conditions give bt0 ∈ A (as bt ∈ A for every t < t0) and −bt0 ∈ A (as −bt ∈ A for
every t > t0). As A is a strictly convex cone, we get a contradiction.

Lemma 3.1 will be used in the proof of the following.

Lemma 3.2. Let X be a compact, connected holomorphic symplectic manifold in the Fujiki
class C which is a limit of compact hyperkähler manifolds. Then CX ∩ EX consists of exactly one
connected component of CX .

Proof. The pseudo-effective cone EX is strictly convex and closed in H1,1(X,R). The cone CX is
open and has two connected components, each of which is convex. We show that if α ∈ CX , then
either α ∈ EX or −α ∈ EX (which, in particular, implies that CX ∩ EX 6= ∅). Once this is done,
the statement follows from Lemma 3.1.

Fix a compact hyperkähler manifold Z which is deformation equivalent to X, and let (Λ, q) be
its Beauville–Bogomolov lattice. Moreover, let α ∈ CX , and consider a Λ-marking φ on X (whose
existence comes from Proposition 1.21). As X is a limit of compact hyperkähler manifolds, we

have (X,φ) ∈Mhk
Z . Let X −→ B be the Kuranishi family of X, and let 0 be the point of B over

which the fiber of X is X. As X is in the Fujiki class C, it is a sGG-manifold. This being an open
condition [PU18], up to shrinking B, we can suppose that for every b ∈ B, the manifold Xb is

sGG. Moreover, as (X,φ) ∈ Mhk
Z , there is a sequence {bn} of points of B converging to 0 over

which the fiber Xn is compact hyperkähler, and we can even suppose that NS(Xn) = 0 (that
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is, we suppose Xn to be generic in Mhk
Z ; hence, it has trivial Néron–Severi group; see [Huy99,

Section 1.14]).

Now, let α̃ be a d-closed real (1, 1)-form on X whose cohomology class is α. For every b
in a neighborhood of (X,φ) in MZ , there is a d-closed real (1, 1)-form α̃b on Xb depending
continuously on b and converging to α̃ (for b converging to 0). Letting αb be the cohomology
class of α̃b, as qX(α) > 0 (since α ∈ CX), up to restricting the neighborhood, we can suppose
qXb(αb) > 0 for every b; that is, αb ∈ CXb . In particular, for every n, we have αn ∈ CXn , and
the limit of the αn is α. As NS(Xn) = 0, by [Huy99, Corollary 5.7], either αn or −αn is Kähler
(for all n � 0). But this means that either αn ∈ EXn or −αn ∈ EXn (for all n � 0). By [PU18,
Theorem 5.9], we then conclude that either α ∈ EX or −α ∈ EX .

The connected component of CX contained in EX will be denoted by C+
X and called the positive

cone of X, in analogy with the hyperkähler case.

3.3 Deformations and Kähler classes

The first result we prove is the following.

Proposition 3.3. Let X be a compact, connected holomorphic symplectic manifold in the Fujiki
class C which is a limit of compact hyperkähler manifolds. Let α ∈ CX .

(i) If for every non-zero β ∈ H2(X,Z), we have qX(α, β) 6= 0, then there is a t ∈ T (α) such
that Xt is Kähler and either αt or −αt is a Kähler class on Xt.

(ii) If moreover α ∈ C+
X , then αt is Kähler.

Proof. Let Z be a compact hyperkähler manifold which is deformation equivalent to X, and
let (Λ, q) be its Beauville–Bogomolov lattice. Fix a marking φ on X (which exists by Propo-
sition 1.21), and consider the point (X,φ) ∈ MZ . As X is a limit of compact hyperkähler

manifolds, we have (X,φ) ∈Mhk
Z .

We first show that for a generic t ∈ T (α), the fiberXt is inMhk
Z . Let X −→ B be the Kuranishi

family of X, and let 0 be the point of B over which the fiber X0 is X. As (X,φ) ∈ Mhk
Z , as

seen in the proof of Lemma 3.2, there is a sequence {bn} of points of B verifying the following
properties:

(1) The sequence bn converges to 0 in B.

(2) For every n, the fiber Xn of X over bn is compact hyperkähler and NS(Xn) = 0.

(3) For every n, there is αn ∈ CXn such that the sequence αn converges to α.

As NS(Xn) = 0, up to changing the sign of α, and hence of αn, we can suppose αn ∈ KXn for
every n. We let Tn be the twistor line of αn, which is a rational curve in B passing through the
point (Xn, φn). As (Xn, φn) converges to (X,φ), and as αn converges to α, we see that the twistor
lines Tn converge to T (α). This means that if t ∈ T (α), there is a sequence {st,n} of points of B
such that

(1) the sequence {st,n} converges to t;

(2) for every n, we have st,n ∈ Tn.

As st,n ∈ Tn, and as Tn is the twistor line of the Kähler class αn, we see that the fiber Xst,n of
the twistor family of αn over st,n is a compact hyperkähler manifold. As st,n converges to t, we

then see that Xt is a limit of compact hyperkähler manifolds. This means that (Xt, φt) ∈M
hk
Z .
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Now, recall that we have supposed X to be in the Fujiki class C; hence, in particular, X
verifies the ∂∂-lemma for 2-forms. This property being open, we can suppose (Xt, φt) ∈ M∂∂

Z

for t sufficiently near to 0. By Proposition 2.3, this implies that Xt is bimeromorphic to a
compact hyperkähler manifold Yt. Now, by hypothesis, we have qX(α, β) 6= 0 for every non-zero
β ∈ H2(X,Z). This implies that T (α) does not intersect at 0 (and hence generically) any of the
hypersurfaces Sβ; that is, for a generic t ∈ T (α), the period of (Xt, φt) is generic in ΩΛ (recall
that Sβ is the smooth hypersurface in Def(X) given by those b ∈ Def(X) such that β ∈ NS(Xb);
see the proof of Proposition 2.6).

As the periods of (Xt, φt) and (Yt, ψt) are equal, it follows that for a generic t ∈ T (α), the
compact hyperkähler manifold Yt is such that NS(Yt) = 0, so that Xt and Yt are biholomorphic.
It follows that Xt is compact hyperkähler and that KXt is one of the components of CXt . As
αt ∈ CXt , it follows that either αt or −αt is a Kähler class on Xt. Let us now suppose, moreover,
that the class α is even pseudo-effective and that αt is not a Kähler class. By what we just
proved, it follows that −αt is Kähler for generic t ∈ T (α). As KXt is contained in EXt , we then
have a family −αt of pseudo-effective classes converging to −α. Now, by [PU18, Theorem 5.9]
(which we can apply as by the previous part of the proof, the family X (α) −→ T (α) is a family
of manifolds in the Fujiki class C, and hence of sGG manifolds), a limit of pseudo-effective classes
along the family X (α) is a pseudo-effective class on X. This means that −α is a pseudo-effective
class on X. As by hypothesis, α is pseudo-effective too, it follows that α = 0, which is not possible
as qX(α) > 0, concluding the proof.

Remark 3.4. The proof of Proposition 3.3 shows that the statement holds for a generic t ∈ T (α)
sufficiently near to 0.

We now use Proposition 3.3 to show the following, which is an improved version of Proposi-
tion 2.3.

Proposition 3.5. Let X be a compact holomorphic symplectic manifold in the Fujiki class C
which is a limit of compact hyperkähler manifolds, and let α ∈ C+

X be such that qX(α, β) 6= 0 for
every non-zero β ∈ H2(X,Z). Then there exist a compact hyperkähler manifold Y and a cycle
Γ = Z +

∑
iDi in X × Y such that the following properties are verified:

(i) The cycle Z defines a bimeromorphic map between X and Y .

(ii) The projections Di −→ X and Di −→ Y have positive-dimensional fibers.

(iii) The cycle Γ defines a Hodge isometry [Γ]∗ between H2(X,Z) and H2(Y,Z).

(iv) The class [Γ]∗α is Kähler.

Proof. Consider the family κα : X (α) −→ T (α). By Proposition 3.3, we know that for a generic
t ∈ T (α), the fiber Xt of κα over t is a compact hyperkähler manifold and that αt is a Kähler
class on it.

Let X ′ −→ T (αt) be the twistor family of (Xt, αt), and notice that π(T (α)) is identified with
an open subset of π(T (αt)) and that for every s ∈ T (αt), the fiber X ′s of X ′ over s is Kähler.
Restricting the twistor family X ′ to such an open subset, we then find two families X (α) −→ C
and X ′ −→ C over the same base curve, with isomorphic fibers over t such that the fibers of X ′
are all Kähler. We let 0 ∈ C be the point over which the fiber of X is X, and we let X ′ be the
fiber of X ′ over 0. Both families are endowed with natural markings φs and φ′s for each s such
that (φ′t)

−1 ◦ φt is induced by the biholomorphism Xt ' X ′t. The class α′s := (φ′s)
−1 ◦ φs(αs) is a

Kähler class on X ′s for every s ∈ C. In particular, the class α′ := (φ′0)−1 ◦φ0(α) is Kähler on X ′.
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Now, we have (X,φ0) ∈ Mhk
Z and (X ′, φ′0) ∈ Mhk

Z . Moreover, by hypothesis, X is in the
Fujiki class C; hence, it verifies the ∂∂-lemma for 2-forms. This condition being open, we can
suppose that this is the case for all Xs in the twistor family of X over C (up to restricting C).
The proof of Proposition 2.6 then shows that there is a cycle Γ = Z+

∑
i Yi on X×X ′ such that

(1) the cycle Z defines a bimeromorphic map between X and X ′;

(2) the projections Yi −→ X and Yi −→ X ′ have positive-dimensional fibers;

(3) the cycle Γ defines a Hodge isometry [Γ]∗ between H2(X,Z) and H2(X ′,Z);

(4) we have [Γ]∗ = (φ′0)−1 ◦ φ0.

It follows that [Γ]∗α = α′, which is Kähler, and we are done.

3.4 The proof of Theorem 1.19

We are now ready to prove Theorem 1.19, namely that if X is a compact, connected holomorphi-
cally symplectic manifold in the Fujiki class C which is a limit of compact hyperkähler manifolds,
any very general class α ∈ C+

X (that is , qX(α, β) 6= 0 for every non-zero β ∈ H2(X,Z)), such
that α · C > 0 for every rational curve C on X is a Kähler class on X, and in particular X is
Kähler.

Proof of Theorem 1.19. By Proposition 3.5, as α ∈ C+
X is such that qX(α, β) 6= 0 for every

β ∈ H2(X,Z), there exist a compact hyperkähler manifold Y and a cycle Γ = Z +
∑

iDi in
X × Y such that the following properties are verified:

(1) The cycle Z defines a bimeromorphic map between X and Y .

(2) The projections Di −→ X and Di −→ Y have positive-dimensional fibers.

(3) The cycle Γ defines a Hodge isometry [Γ]∗ between H2(X,Z) and H2(Y,Z).

(4) The class α′ := [Γ]∗α is Kähler on Y .

The argument used in the proof of [Huy03, Theorem 2.5] shows that since [Γ]∗α is a Kähler
class on Y and α · C > 0 for every rational curve C on X, all the irreducible components Di

of Γ which are contracted by the projection pX of X × Y to X are such that the codimen-
sion in X of pX(Di) is at least 2. By [Huy99, Lemma 2.2], it then follows that the morphisms
[Di]∗ : H2(Y,Z) −→ H2(X,Z) are all trivial. As a consequence, we have α = [Γ]∗α

′ = [Z]∗α
′.

We let f : Y 99K X be a bimeromorphism whose graph is Z. As α′ is Kähler, for every
rational curve C ′ in Y , we have

∫
C′ α

′ > 0. Notice that α′ = f∗α, so that we have
∫
C α > 0

and
∫
C′ f

∗α > 0 for every rational curve C in X and every rational curve C ′ in Y . By [Huy03,
Proposition 2.1], it follows that f extends to a biholomorphism, and α is then a Kähler class.

4. Kählerness of moduli spaces of sheaves

This last section is devoted to the proof of Theorem 1.13. Hence, we let S be a K3 surface and
v ∈ H2∗(S,Z) be of the form v = (r, ξ, a), where r > 0 and ξ ∈ NS(S) are relatively prime.
Moreover, we let ω be a Kähler class on S, which we suppose to be v-generic.

We want to show that if the moduli space M := Mv(S, ω) is a b2-manifold, then it is Kähler.
To do so, we apply Theorem 1.19 to M ; we then need to prove that M is a compact, connected
holomorphically symplectic manifold in the Fujiki class C which is a limit of compact hyperkähler
manifolds, and we need to provide a very general class α ∈ C+

M such that α · C > 0 for every
rational curve C in M .
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We will always assume v2 > 2, as the cases v2 6 0 are already known: if v2 < −2, we have
M = ∅; if v2 = −2, then M is a point; if v2 = 0, then M is a K3 surface by [PT17, Corollary 5.3].

Step A: The moduli space M is a compact, connected holomorphically symplectic b2-manifold
which is a limit of compact hyperkähler manifolds. The fact that M is a compact, holomor-
phically symplectic manifold is due to Toma (see [Tom01, Remark 4.5]). The connectedness is
given by[PT17, Proposition 4.24]. The fact that M is a b2-manifold is one of the hypotheses in
the statement of Theorem 1.13 (that we are proving).

We show the following.

Lemma 4.1. The moduli space M is a limit of compact hyperkähler manifolds.

Proof. Let S −→ B be the Kuranishi family of the K3 surface S, where B is a complex manīfold
of dimension 20. Let Bξ ⊆ B be the subvariety of B given by those b ∈ B such that ξ ∈ NS(Sb).
Similarly, let Bω ⊆ B be the subvariety of B given by those b ∈ B such that the class ω is in
H1,1(Sb,R). Moreover, let Bξ,ω := Bξ ∩ Bω. Recall that Bξ and Bω are smooth hypersurfaces
of B. Moreover, up to replacing ω with another class in the same v-chamber where it lies, we
can suppose that ξ and ω are linearly independent. Then Bξ and Bω intersect transversally, so
that Bξ,ω is a smooth analytic subset of B of positive dimension (see [Huy99, Section 1.16]). By
[Huy99, Theorem 3.5], the subset Bp

ξ,ω of Bξ,ω given by those b such that Sb is projective is dense
in Bξ,ω.

We now consider the restriction S ′ := S|Bξ,ω , together with a morphism S ′ −→ Bξ,ω. We
suppose 0 ∈ Bξ,ω to be such that S0 ' S. Consider the family S ′ −→ Bξ,ω (which is a smooth
and proper family of compact Kähler surfaces) and the Hodge bundle E1,1 (whose fiber over a
point b ∈ Bξ,ω is isomorphic to H1,1(Sb)), together with a morphism p : E1,1 −→ Bξ,ω. Inside
E1,1, we define the relative Kähler cone K as the subset of E1,1 such that Kb := K∩p−1(b) is the
complexified Kähler cone of Sb (the open and convex cone in H1,1(Sb) given by the complexified
Kähler classes, that is, classes whose imaginary part is a Kähler class).

As a consequence of [KS60, Theorem 15], the relative Kähler cone K is open in the total space
of the vector bundle E1,1 with respect to the Euclidean topology (see [Mag12, Proposition 2.1]).
Now, recall that ω is a Kähler class on S; that is, ω defines an element in iω ∈ K0. Consider
the constant section sω : Bξ,ω −→ E1,1 sending b ∈ Bξ,ω to iω (which is in E1,1 since ω is a real
(1, 1)-class on Sb for every b ∈ Bξ,ω). As K is open in E1,1, the intersection of the image of sω
with K is open. It follows that there is a Euclidean open subset D′ ⊆ Bξ,ω containing 0 and such
that for every b ∈ D′, we have that iω is in the complexified Kähler cone of Sb, in other words,
that ω is a Kähler class on Sb. We can then consider the relative moduli spaceM−→ D′, whose
fiber over b is the moduli space Mb = Mv(Sb, ω) of µω-stable coherent sheaves on Sb whose Mukai
vector is v.

As the v-genericity is an open property in the Euclidean topology, there is an open subset
D of D′ such that for every b ∈ D, the class ω is v-generic. We then consider the restriction
SD of S to D, together with a morphism SD −→ D. For every d ∈ D, the K3 surface Sd comes
equipped with a Mukai vector v = (r, ξ, a) and a v-generic polarization ω. As a consequence, the
restriction of M to D, denoted by MD, is such that for every d ∈ D the fiber Md is a compact,
connected complex manifold (see again [PT17, Proposition 4.24]). The morphism MD −→ D
is submersive (see, for example, the proof of [PT17, Proposition 4.23]), and its fibers are all
compact, connected manifolds. By [Ehr95, Proposition 1], the family MD −→ D is a smooth
and proper family whose fiber over 0 is Mv(S, ω).
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Now, as Bp
ξ,ω is dense in Bξ,ω, it follows that Bp

ξ,ω∩D is dense in D. Hence, for the generic point
d ∈ D, the fiber Sd is a projective K3 surface, and the fiber Md is a compact hyperkähler manifold
(see [PT17, Theorem 3.4]). Hence, Mv(S, ω) is a limit of compact hyperkähler manifolds.

Step B: The moduli space M is in the Fujiki class C. In order to show that M is in the Fujiki
class C, we make use of Proposition 2.7. To do so, recall that there is a morphism λv : v⊥ −→
H2(M,Z), which is an isometry (since v2 > 2) with respect to the Mukai pairing on v⊥ and the
Beauville–Bogomolov form of M (see [PT17, Proposition 5.2]). This remains true if we tensor
with R, and we get an isometry λv : v⊥ ⊗ R −→ H2(M,R). We will then construct the desired
class α by taking an appropriate element of v⊥ ⊗ R.

The choice we make is the following: let m ∈ N and

αm,ω := (−r,−mrω, a+mω · ξ) ∈ H2∗(S,R) ,

where ω · ξ is the (real extension of the) intersection product on S. First of all, we remark that
αm,ω ∈ v⊥ ⊗ R; indeed, by the definition of the Mukai pairing (see Section 1.2), we have

(v, αm,ω)Muk = mrω · ξ − r(a+mω · ξ) + ra = 0 ,

and hence αm,ω ∈ v⊥ ⊗R. If we let λv,R : v⊥ ⊗R −→ H2(Mv,R) be the real extension of λv, we
then define

α := λv(αm,ω) ∈ H2(M,R) .

We now show that qM (α) > 0.

Lemma 4.2. If m� 0, we have α ∈ CM .

Proof. We have qM (α) = qM (λv(αm,ω)) = (αm,ω, αm,ω)Muk = m2r2ω2+2ra+2mrω ·ξ. As m� 0
and ω2 > 0 (since ω is Kähler on S), we then see that qM (α) > 0, that is, α ∈ CM .

We are finally ready to prove the following.

Lemma 4.3. The moduli space M is in the Fujiki class C.

Proof. By Lemma 4.1, there is a marking φ on M such that (M,φ) ∈Mhk
Z , where Z = Hilbn(K3)

and 2n = v2 + 2. Let m ∈ N, and consider a d-closed real (1, 1)-form ω̃ on S whose cohomology
class is mrω and a real 4-form χ on S whose cohomology class is a + mω · ξ (under a chosen
isomorphism H4(S,R) ' R). Let pS and pM be the two projections of S ×M onto S and M ,
respectively, and consider a quasi-universal family E on S ×M of similitude ρ. For every i, we
let γi be a real d-closed (i, i)-form on S ×M whose cohomology class is chi(E).

By the definition of the morphism λv given in [PT17, Section 5.2], for every class α =
(α0, α1, α2) ∈ v⊥ ⊗ R, we have

λv(α) =
1

ρ

[
pM∗

(
p∗S
(
α∨ ·

√
td(S)

)
· ch(E)

)]
2
,

where α∨ = (α0,−α1, α2) and [·]2 is the component lying in H2(M,R). More explicitly, we have

ρα = α0 · ch3(E)− p∗Sα1 · ch2(E) + p∗Sα2 · ch1(E) .

We then notice that the real (1, 1)-form

α̃ := −r · γ3 + p∗Sω̃ · γ2 + p∗Sχ · γ1
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is d-closed and its cohomology class is ρα. If m� 0, by Lemma 4.2 we then conclude that on M ,
there is a d-closed real (1, 1)-form α̃ such that qM ([α̃]) > 0.

We now consider the family MD −→ D introduced in the proof of Lemma 4.1. The fiber
over 0 ∈ D is M , and the fiber over a point b ∈ D is the moduli space Mb := Mv(Sb, ω). The
morphism λv can be defined in families by using a relative quasi-universal family, and for every
b ∈ D, we have α ∈ H2(Mb,R), and α is still the cohomology class of a d-closed real (1, 1)-
form. As the Beauville–Bogomolov form is a topological invariant, if m� 0, we then again have
qMb

(α) > 0.

Now, as we saw in the proof of Lemma 4.1, there is a sequence {bn}n∈N of points in D
converging to 0 and such that Sbn is projective. Hence, Mbn is a compact hyperkähler manifold.
We can then apply Proposition 2.7 to conclude that M is in the Fujiki class C.

Step C: The class α is very general, it lies in C+
M , and it is such that α · C > 0 for every

rational curve C of M . We start by showing that α is very general in H2(M,R).

Lemma 4.4. If ω is sufficiently generic, then for every β ∈ H2(M,Z) such that β 6= 0, we have
qM (α, β) 6= 0.

Proof. As β ∈ H2(M,Z), and as λv : v⊥ −→ H2(M,Z) is an isometry by [PT17, Proposition 5.2],
there is a γ ∈ v⊥ such that β = λv(γ). If we write γ = (s,D, b), the condition γ ∈ v⊥, that is,
(γ, v)Muk = 0, reads D · ξ = sa+ rb. Again, as λv is an isometry, it follows that

qM (α, β) = qM (λv(αm,ω), λv(γ)) = (αm,ω, γ)Muk = mω · (rD − sξ) + rb− sa .

Suppose qM (α, β) = 0; this is then equivalent to

ω · (rD − sξ) =
D · ξ − 2rb

m
,

which means that ω is on some hyperplane in H2(S,R) associated with D. As the family of these
hyperplanes is countable (since the family of D ∈ H2(S,Z) is countable), and as ω is sufficiently
generic, we see that qM (α, β) 6= 0 for every non-zero β ∈ NS(M).

Remark 4.5. Recall that a v-generic polarization ω lies in a v-chamber, which is an open convex
cone of the Kähler cone of S (see [PT17, Section 2.2] for the definition of v-chambers). By [PT17,
Proposition 3.2], if ω and ω′ are two v-generic polarizations lying in the same v-chamber, then
Mv(S, ω) = Mv(S, ω

′); we can then always suppose that ω is sufficiently generic. By Lemma 4.4,
we can then always suppose that α is very general.

Next, we show that α is pseudo-effective.

Lemma 4.6. If m� 0, then α ∈ C+
M .

Proof. By Lemma 4.2, we know that α ∈ CM . By Lemmas 4.1 and 4.3, we know that M is a limit
of compact hyperkähler manifolds and in the Fujiki class C. By Lemma 3.2, in order to show
that α ∈ C+

M , we then just need to show that α ∈ EM . To show this, consider the deformation
MD −→ D we introduced in the proof of Lemma 4.1. We let 0 ∈ D be the point over which the
fiber is Mv(S, ω). For a generic b ∈ D, the fiber is Mb = Mv(Sb, ω), where Sb is a projective K3
surface; hence, Mb is a projective hyperkähler manifold. Notice that ω is still a v-generic Kähler
class on Sb, and the class α is still in CMb

, and this for every b ∈ D. We write α0 := α.

Now, as shown in [PT17, Remark 3.5], in the same v-chamber where ω lies there is a class of
the form ω′ = c1(H) for some ample line bundle H on Sb. We let α1 := λv(αm,ω′). Moreover, for
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every t ∈ [0, 1], we let ωt := (1− t)ω+ tω′, which is a segment contained in the v-chamber where
ω and ω′ are, and we let αt := λv(αm,ωt). By the linearity of λv, we have αt = (1 − t)α0 + tα1,
and the image of the map α : [0, 1] −→ H1,1(Mb,R) defined by letting α(t) := αt is a segment
in CMb

.

Our aim is to show that α ∈ EM . As the family MD −→ D is a family of manifolds in
the Fujiki class C by the previous paragraph, by [PU18, Theorem 5.9], it is sufficient to show
that α0 ∈ EMb

for a generic b around 0. As for the generic b around 0, we have that Mb is
compact hyperkähler, this is equivalent to showing that α0 ∈ C+

Mb
. As C+

Mb
is a convex cone and

the segment [α0, α1] is contained in CMb
, to show that α0 ∈ C+

Mb
, it is sufficient to show that

α1 ∈ C+
Mb

. But now, as Sb is projective, we can use a general construction presented in [HL97]:
if H is a v-generic ample line bundle on Sb, we can construct an ample line bundle L(H) on
Mv(Sb, H), and we have c1(L(H)) = λv(αm,c1(H)). We know that ω and c1(H) are in the same
v-chamber, hence Mv(Sb, ω) = Mv(Sb, H) (see Remark 4.5); it follows that λv(αm,ω′) is an ample
class on Mv(Sb, ω). It then lies in the Kähler cone of Mb, and hence in C+

Mb
.

In conclusion, we have shown that up to choosing m� 0 and ω sufficiently generic, the class α
is a very general class in C+

M . We are left to show that α ·C > 0 for every rational curve C in M .

Lemma 4.7. If m� 0 and ω is sufficiently generic, we have α ·C > 0 for every rational curve C
on M .

Proof. Let [C] ∈ H2n−1,2n−1(M,Z), and let βC ∈ NS(M) be the dual of [C], so that α · C =
qM (α, βC). We then just need to prove that qM (α, βC) > 0 for every rational curve C on M .

Let S −→ B be the Kuranishi family of S, and let 0 ∈ B be such that S0 = S. We let BC
be the subset of B of those b ∈ B such that βC ∈ NS(Sb); that is, C is a rational curve on Sb.
Consider the intersection DC := D ∩BC , which is an analytic subset of D, whose generic point
d is such that Sd is a projective K3 surface. We letMC be the restriction of the relative moduli
space MD −→ D to DC (see Lemma 4.1 for the definition of the family MD) and consider the
family MC −→ DC , whose fiber over a point d ∈ DC is denoted by Md. Notice that for every
d ∈ DC , we have the class α ∈ CMd

and the rational curve C on Md. As the intersection product
of α with C is constant along DC , it is sufficient to show that qMd

(α, βC) > 0 for some d ∈ DC .

As βC ∈ NS(Md), and as the morphism λv : v⊥ −→ H2(Md,Z) is an isometry by [PT17,
Proposition 5.2], there is a class γ ∈ v⊥ such that βC = λv(γ). We write γ = (s, ζ, b), where s, b ∈
Z and ζ ∈ H2(S,Z). Moreover, as Md is a manifold in the Fujiki class C, on H2(M,Z) we have
a Hodge decomposition, and the morphism λv is a Hodge isometry (see [PT17, Corollary 5.3]).
As βC ∈ H1,1(M), we then need γ ∈ (v⊥)1,1; that is, we have ζ ∈ NS(Sd).

Now, as λv is an isometry, we have

qMd
(α, βC) = qMd

(λv(αm,ω), λv(γ)) = (αm,ω, γ)Muk .

It is then sufficient to show that (αm,ω, γ)Muk > 0. By [PT17, Lemma 3.3], there is an ample class
ω′ on Sd which is in the same v-chamber of ω and is such that for every η ∈ NS(Sd), we have
ω · η = ω′ · η. Then we have αm,ω′ ∈ v⊥ and (αm,ω, γ)Muk = (αm,ω′ , γ)Muk. It is then sufficient
to show that (αm,ω′ , γ)Muk > 0. To do so, consider a rational ω′′ in a neighborhood of ω′ in the
ample cone of Sd. Let p ∈ N, and let H be an ample line bundle on Sd such that pω′′ = c1(H). As
we can choose m� 0, we can suppose that m = m′p for some very big m′ ∈ N. As H is v-generic,
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λv(αm′,c1(H)) is the first Chern class of an ample line bundle, so that λv(αm′,c1(H)) ·C > 0. Since

λv(αm′,c1(H)) · C = qMd
(λv(αm′,c1(H)), βC)

= qMd
(λv(αm′,c1(H)), λv(γ)) = (αm′,c1(H), γ)Muk ,

it follows that (αm′,c1(H), γ)Muk > 0. But now, notice that

αm′,c1(H) = (−r,−m′rc1(H), a+m′c1(H) · ξ)
= (−r,−m′prc1(H)/p, a+m′pξ · c1(H)/p) = (−r,−mrω′′, a+mω′′ · ξ) = αm,ω′′ ;

hence, (αm,ω′′ , γ)Muk = (αm′,c1(H), γ)Muk > 0. As this is true for all rational classes ω′′ in a
neighborhood of ω′, this implies that (αm,ω′ , γ)Muk > 0. As we saw before, this implies that
α · C > 0 for every rational curve C in M . But as βC ∈ NS(M) and α · C = qM (α, βC), and as
we know that α is very general by Lemma 4.4, it follows that α · C 6= 0. In conclusion, we have
α · C > 0, and we are done.

Step D: The previous steps allow us to complete the proof of Theorem 1.13.

Proof of Theorem 1.13. We consider a K3 surface S, a Mukai vector v = (r, ξ, a) such that r and ξ
are relatively prime and v2 > 2 and a v-generic polarization ω. The moduli space M := Mv(S, ω)
is then a compact, connected holomorphically symplectic manifold of dimension v2 + 2, which
is deformation equivalent to a Hilbert scheme of points on a projective K3 surface (see [PT17,
Theorem 1.1]).

If M is Kähler, then we clearly have b2(M) = h2,0(M) + h1,1(M) + h0,2(M). We are left
with the proof of the opposite direction, so we suppose that M is such that b2(M) = h2,0(M) +
h1,1(M) + h0,2(M), and we show that M is Kähler. By Lemma 4.1, we know that M is limit of
hyperkähler manifolds, and by Lemma 4.3 we know that M is in the Fujiki class C. Moreover, by
Lemmas 4.4, 4.6 and 4.7 (and by Remark 4.5), we know that on M there is a real (1, 1)-class α
which lies in the positive cone of M , is very general and intersects positively all rational curves
on M . By Theorem 1.19, it then follows that M is Kähler.
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