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Summary

The Sit-to-Stand(STS) is defined as the transition from the sitting to standing

position. It is commonly adopted in clinical practice because musculoskeletal or

neurological degenerative disorders, as well as the natural process of ageing, deter-

mine an increased difficulty in rising up from a seated position.

This study aimed to detect the Sit To Stand phases using data from inertial sensors.

Due to the high variability of this movement, and, consequently the difficulty to

define events by thresholds, we used the machine learning. We collected data from

27 participants (13 females,24.37±3.32 years old). They wore 10 Inertial Sensors

placed on: trunk,back(L4-L5),left and right thigh, tibia, and ankles. The par-

ticipants were asked to stand from an height adjustable chair for 10 times. The

STS exercises were recorded separately. The starting and ending points of each

phase were identified by key events. The pre-processing included phases splitting

in epochs. The features extracted were: mean, standard deviation, RMS, Max and

min, COV and first derivative. The features were on the epochs for each sensor.

To identify the most fitting classifier, two classifier algorithms,K-nearest Neigh-

bours(KNN) and Support Vector Machine (SVM) were trained. From the data

recorded, four dataset were created varying the epochs duration, the number of

sensors. The validation model used to train the classifier. As validation model, we

compared the results of classifiers trained using Kfold and Leave One Subject out

(LOSO) models. The classifier performances were evaluated by confusion matrices

and the F1 scores.
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The classifiers trained using LOSO technique as validation model showed higher

values of predictive accuracy than the ones trained using Kfold. The predictive

accuracy of KNN and SVM were reported below:

• KFold

– mean of overall predictive accuracy KNN: 0.75; F1 score: REST 0.86,

TRUNK LEANING 0.35,STANDING 0.60,BALANCE 0.54, SITTING 0.55

– mean of overall predictive accuracy SVM: 0.75; F1 score: REST 0.89,

TRUNK LEANING 0.48,STANDING 0.48,BALANCE 0.59, SITTING 0.62

• LOSO

– mean of overall predictive accuracy KNN: 0.93; F1 score: REST 0.96,

TRUNK LEANING 0.79,STANDING 0.89,BALANCE 0.95, SITTING 0.88

– mean of overall predictive accuracy SVM: 0.95; F1 score phases: REST

0.98, TRUNK LEANING 0.86,STANDING 0.91,BALANCE 0.98, SIT-

TING 0.92
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Introduction

The functional evaluation is a relevant component of the physical examination as

it objectifies the loss of functioning of the patient. Furthermore, it constitutes a

base for evaluating the effect of rehabilitation therapy. Among the functional tests,

the Sit to Stand (STS), defined as the transition from the sitting to the standing

position[1], is a basic ability performed many times daily[2], and therefore it is con-

sidered a fundamental prerequisite for gait performance or postural transition[3].

It is commonly adopted in clinical practice because musculoskeletal or neurologic

degenerative disorders, as well as the natural process of aging, determine an in-

creased difficulty in rising from a seated position [4]. Moreover, the STS has been

used to predict the fall risk among elderly or frail subjects[5], as a reduced perfor-

mance during the STS has been associated with loss of lower extremities strength,

postural and balance control [6] and the extent of disability.

Although the STS is performed as a test itself, it also constitutes a portion of the

Timed-Up and Go Test (TUG), the Five Time Sit To Stand Test( FTSTS ) and

the 30-second chair stand test (30s CST). The TUG test measures the time that

a person takes to rise from a chair, walk three m, turn around, walk back to the

chair, and sit down[7]. It is widely used to evaluate balance, mobility and fall risk

[8, 9, 10]. Usually, the single outcome of the test is its duration. The FTSTS mea-

sures the time taken for completing as quick as possible 5 STS cycles[11], while the

30s CST counts the number of STS cycles performed in 30 second[12]. Although

the tests appear similar and the movements required for completing the task are
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almost the same, it has been theorized that FTSTS could be an indicator of lower

limb speed and power, while the 30s CST could be an indicator of lower limb en-

durance [13].

So, the parameters utilized for the evaluation of the performance are the time

taken to complete the task or the number of repetition in a known period. Also,

qualitative aspects such as the visual observation of the trunk leaning and/or the

alignment of the body segments during the performance are useful for the caregiver.

Although observation of these parameters has an important role in clinical practice,

they are biased by subjectivity and human error. The adoption of objective meth-

ods during the functional evaluation is mandatory for every clinician and has been

frequently highlighted [14]. In previous works, the camera-based system and force

plates made possible the objective quantification: the analysis of the biomechanics

of the movement, degrees etc.[15, 16] The use of optoelectronics system or force

plates confines the studies on kinematic in a laboratory setting, and their results

are not directly applicable to real-life conditions of patients [17]. Furthermore, this

instrumentation is expensive.

Small wearable sensors as the inertial sensors, instead, are light-weighted and

portable; less expensive. They provide information during the daily living task

and performed outside the laboratory environment[18].The Inertial Sensors usually

include accelerometers and gyroscopes.

• Accelerometers are electromechanical devices that measure the static force of

acceleration(gravity) or dynamic forces of acceleration (vibration and move-

ment). Estimation of muscle power[19] and joint angle [20] and activity

classification[21] can be executed using acceleration signals.

• Gyroscopes measure the angular velocity: they are particularly useful for pos-

tural displacement detection [22, 23].
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The spreading of inertial sensor based clinical applications increased simultaneously

with the introduction of MEMS technology and the wide occurrence of ubiquitous

smart devices, especially smartphones and tablets. Inertial sensors have been used i

in numerous clinical applications , that include assessing and quantifying kinematic

variables related to functional tasks or functional status [24, 25], classification of

physical activities[21], falls detection[26, 27] and gait analysis[28, 29, 30, 31], sport

monitoring[32, 33]. The sensorization of STS (and its variants) by inertial sensors is

nothing new[34, 23].The STS monitoring by inertial sensors could improve the fall

risk assessment [22, 35, 36, 37, 38]. For example, it has been showed that param-

eters such as jerk (the third derivative of position), or the postural sway could be

more discriminant than time for separating elderly fallers and not fallers [35, 37, 38].

The purpose of this study is to characterize the dynamic events occurring as rising

from a chair. The study of distinct events-or phases- of the STS movement would

result in a most effective description about:

• the contribution of each single body element involved in the movement;

• kinematic and kinetic variables involved during the movement and their changes

related to specific diseases;

• the pain points that could cause the failure of the movement.

[15, 16]

Previously, the identification of STS events or phases has been performed applying

specific thresholds to joint angles, velocity changes, torques, and momentum. The

high variability of the movement both between and within individuals makes it

difficult to find common thresholds[15].

The Machine Learning (ML) could be a solution for solving the above-cited prob-

lem. Machine Learning is the process to generate a set of rules from real data [39].

There are many application in medical field such as diagnosis of a disease[40, 41, 42],
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prediction of disease[43, 44, 45]. It is an instrument very versatile, and have been

used in many clinical fields such as human activity recognition[46], gait analysis or

fall detection. Following we reported some examples.

ML has been used in the gait analysis for automatic recognition of gait pattern

changes due to aging [47]; gait event detection for the functional electrical stimu-

lation [48]. ML allowed researchers to identify the falls, but also to the classify the

type of falls[49].

This study aimed to detect the Sit To Stand phases using data from inertial sensors.

Due to the high variability of this movement, and, consequently the difficulty to

define events by thresholds, we used the machine learning. In particular, we com-

pared the performances of two classifiers model in order to find the most efficient

model. The phases detection should help the recognition of the causes that lead to

the falls. The knowledge about the factors that cause falls could help the caregivers

to assess specific rehabilitation programs.

This study would be the first step of the implementation of a system able to detect

the STS phases in real time. The measurement method should not restrain the

subject with too many sensors in order to reduce the time to wear them and to

encourage the use of the system in clinical rehabilitation. For these reasons, the

phases detection have to be correct also using features computed on small sam-

ple size and from fewer sensors. We addressed this problem arranging the data

collected from the sensors in 4 datasets:

• Two datasets included the data from all the sensors; the features were com-

puted on epochs of 0.1s and 0.2 s

• Two datasets included the data from only the sensors placed n trunk and

thighs; the features were computed on epochs of 0.1s and 0.2 s

40



Chapter 1

Sit To Stand

1.1 General Overview

The functional evaluation is a relevant component of the physical examination as

it objectifies the loss of functioning of the patient. Furthermore, it constitutes a

base for evaluating the effect of rehabilitation therapy. The adoption of objective

methods during the functional evaluation is mandatory for every clinician and has

been frequently highlighted [14].

Among the functional tests, the Sit to Stand (STS), defined as the transition from

the sitting to the standing position[1], is an essential ability performed many times

daily[2], and therefore it is considered a fundamental prerequisite for gait perfor-

mance or postural transition [3]. It is commonly adopted in clinical practice because

musculoskeletal or neurologic degenerative disorders, as well as the natural process

of aging, determine an increased difficulty in rising from a seated position [4].

Moreover, the STS has been used to predict the fall risk among elderly or frail

subjects[5], as a reduced performance during the STS has been associated with loss

of lower extremities strength, postural and balance control [6] and the extent of

disability. The parameters utilized for the evaluation of the performance are the

time taken to complete the task or the number of repetition in a known period.
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In addition, qualitative aspects such as the visual observation of the trunk leaning

and/or the alignment of the body segments during the performance are useful for

the rehabilitator. Commonly, STS includes four phases:[15, 16, 50]

1. Flexion momentum phase: The initiation of the movement coincides with the

trunk flexion and pelvis rotation. The lifting of the buttocks from the chair is

the end of the first phase. The main muscles involved are the hip and ankle

flexors.

2. Transfer phase: It starts when the buttocks leave the seat, and it ends with the

maximum ankle dorsiflexion and maximum forward flexed position. During

the second phase, the maximum hip and knee torques are reached, also if the

main muscles involved are the knee extensors.

3. Extensor Phase: This phase precedes the upright stance. The knee and hip

extension velocities increase until the maximum. Then the knee extension

and hip extension velocities reduce until 0 °/sec. The hip extension velocity

reached 0 °/ sec is the final event of phase III.

4. Stabilization phase: The upright stance is achieved. The ankle plantar flexors

stabilize the body to achieve the maintenance of the balance and postural

stability. Usually, subjects experienced more postural sway.

It’s a complex movement: it requires muscular strength and coordination[51, 52].

Studies confirmed that the STS requires more muscular strength than activities

such as stair climbing [53].

Three main standing strategies performed by elderly and neurodegenerative pa-

tients have been individuated : [54]:

• Arm strategies: Pushing or swinging the arms against the chair is the most

common strategy for facilitating the rising. It is used by neurodegenerative

patients, disabled persons, elderly with difficulties getting up. Those at lower
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1 – Sit To Stand

Figure 1.1: The STS is defined as the transition from the sitting position to the standing
position. It could be divided into 4 phases. Phase: From the starting of the movement
( the beginning of the trunk flexion) to the maximum trunk flexion; Phase II: from the
maximum trunk flexion to the LIft-off; Phase III: from the lift-off to the hip extension;
Phase IV: The maintenance of the standing position [16]

functionality spectrum push the arms against the chair, while the subjects

more functional may swing the arms without looking for any support.

• Momentum Transfer Strategy: In phase I, the trunk flexion generates a mo-

mentum that will be transferred to the total body contributing to the rising.

Generally, it is used by young and healthy adults because it requires much

strength.

• Stabilization Strategy: The compensation relies more on little frequent move-

ment than on the momentum generated by the trunk.

[15, 55, 56]

1.2 Sit To Stand Test

The STS requires strength, coordination and balance[51, 52]. Generally, clinicians

and physiotherapists use it as subject’s performance test. It has been used as

indicator of postural control, fall risk, lower extremity strength, and proprioception
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and as measure of disability. It is a powerful test, but the main difficulty is to

determine the quality of the subjects’ “chair rising.” Various methods have been

used for measuring the quality of STS. The next paragraph is a general summary

of the most famous and used tests in clinical use/practice.

1.2.1 Five Times Sit To Stand

The five Time Sit To Stand Test (FTSTS) was introduced for the first time in

1985[11]. Subjects stand up five times as quick as possible. The time required

for completing the test is the main outcome. Originally, this test was introduced

for measuring lower limb extremities strength, recently is used to assess functions,

too. The study reported in [57] showed that FTSTS improve the discriminating

ability of ABC1 and DGI2 to identify people with balance dysfunction. In addition

to balance, motor control and strength, FTSTS requires the ability to integrate

visuospatial information[58] found an association between the FTSTS and cogni-

tive function assessed by Pfeiffer’s short Portable mental state questionnaire3. In

particular, if subjects completed the FTSTS within 15 s, then they were less likely

to suffer from cognitive dysfunction. Interpretation of tasks longer than 15 s was

misleading because so long time could be due to both cognitive and musculoskeletal

impairments.

1The Activities-specific Balance Confidence Scale (ABC) is a self administered questionnaire

tool used to assess the confidence is performing various ambulatory activities without falling or

experiencing sense of unsteadiness. BC scale consists of less and more challenging daily activities:

walk around the house, walk up or down stairs,...
2The Dynamic Gate Test is an 8-test to assess to quantify the dynamic balance abilities. It

has been demonstrated to be very sensitive test, since it evaluates walking during challenging

tasks.
3The Pfeiffer’s Short Portable Mental State Questionnaire (SPMSQ) is used for the assessment

of organic brain deficit in elderly patients.
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Many studies focused on the FTSTS ability to asses elderly fall risk. It has

been shown that slower FTSTS performances had been associate do to high fall

risk[59, 60, 61]. Unfortunately, in this case, the main limitation is the identification

of the right time threshold. The time needed to complete the task is not enough

as the main performance measure. The quantification of postural sway and the

smoothness of the transition could be added as quality performance indicators.

1.2.2 30s chair test

The 30-second chair stand test (30s CST) consists of counting the number of com-

pleted stands in 30 s with the hands crossed against the chest. The total number

of stands completed is used to score subjects performance. The timed-sit-to-stand

tests involve recording the amount of time to perform a prearranged number of STS

repetitions. The 30s CST was introduced for avoiding the floor effect associated

with the timed-sit-to-stand test,i.e. the difficulty of many patients to complete the

chair stand test including even five STS repetitions[12]. The 30s CST protocol

allows all subjects to receive a score, even zero, increasing the evaluation range

and the discrimination ability of the test[62]. As other chair stand protocol, it was

used as indicator of lower limb strength[13, 62]. The admission procedure in an

emergency department short-stay unit provides for patients’ physical performance.

Among the tests, the most used is the DEMMI test. This test measures mobil-

ity across the spectrum from bedbound to independent mobility[63]. It includes 51

items, and it is time-consuming. The 30s CST is faster and easier to deliver. Bruun

et al.[64] demonstrated the association between the 30s CST and the DEMMI. A

threshold of 8 repetitions could distinguish between patients with low physical per-

formance and high physical performance implying the possibility of implementing

the 30s-CST in acute settings with limited time and space for testing.

The fitness test is used to assess the motor abilities and establishes the quality of

life. The most used scales are based on the observation of common daily activities.
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The Fullerton Test is mainly intended to identify highly-active older adults who are

at an increased risk to experience fall-related injuries due to sensory impairments.

The test uses both dynamic and static balance under different situations to identify

balance deficits in older adults. The test includes the 30s CST used for assessing

the endurance and lower body strength[65].

1.2.3 Timed Up and Go Test

The Timed Up and Go (TUG) test was introduced in 1991 by Podsiadlo and

Richardson as modification of the former Get-Up and Go test4[7]. The TUG mea-

sures the time in seconds for a person to rise from sitting from a standard armchair,

walk 3 meters, turn, walk back to the chair, and sit down. The person wears regular

footwear and uses his/her customary walking aid. The original purpose of the TUG

was to test basic mobility skills of frail older adults.

The test has been used in other populations, including people with arthritis [66, 67,

68] and stroke [69, 70]. The TUG may be particularly well suited for the quantifi-

cation of disorders resulting in poor sequencing of well-learned motor skills, which

is a problem in people with PD [71, 72].

1.3 Sensorization of the Sit To Stand

The parameters utilized for the evaluation of the performance are the time taken to

complete the task or the number of repetition in a known period. In addition,the

qualitative aspects useful for the rehabilitator the visual observation of the trunk

4The Get Up and Go, as the timed up and go test, consists of the observation of the sub-

jects rising from the sitting position,walk 3 m, turn around, walk back and sitting again. The

performance was assessed qualitatively observing the task. The introduction of the time taken to

complete the task made the test more objective.
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leaning and/or the alignment of the body segments during the performance. Al-

though observation of these parameters has an important role in clinical practice,

they are biased by subjectivity and human error. The adoption of objective meth-

ods during the functional evaluation is mandatory for every clinician and has been

frequently highlighted [14]. The STS movement can be described through kinematic

and kinetic variables, obtained using devices such as force plates, video analysis,

optoelectronic systems, and inertial sensors[37].

1.3.1 Force Plate

A Force Plate is a rectangular metal plate instrumented as load cells. The force

plate produces an electrical output proportional to the force applied to it. Force

platforms may be classified accordingly to the sensors used. The piezoelectric and

the strain gauge sensors are the most commonly used. The force plates are used to

measure three orthogonal ground reaction forces (GRF), moment components and

center of pressure5. In the Biomechanics research, the force plates are used across

several movement tasks:

1. Gait Analysis: The gait analysis is the systematic study of how a person

walks. It may be conducted for a clinical purpose (diagnosis, assessment,

monitoring the results of treatments) or for research purposes. The analysis of

the ground reaction forces during walking can give valuable information about

basic locomotor and provide data which can be used to evaluate normal or

pathological gait. Indeed, the normal gait is a repetitive cycle that exhibits a

precise pattern, as shown by the figure 1.2. The Pathological gait is an altered

gait pattern due to deformities, weakness, or other impairments.

2. Jumping and landing technique: Jumping and landing activities are major

5The point of the application of the ground reaction forces under the feet[73]
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Figure 1.2: A. Kinetic events (V1, V2, V3) indicated on the trace of vertical ground
reaction force (black line), and kinematic events (K1, K2) indicated on the trace of angular
displacement of the knee (grey line). B. Scheme of the ground reaction force (GRF) vector
and limb segments orientation at the kinetic events. IC,initial contact; V1, first peak of
vertical ground reaction force; V2, mid-stance minimum of vertical ground reaction force;
V3, second peak of vertical ground reaction force; TOFF, toe off; K1, maximum knee
flexion angle at the first half of stance; K2, minimum knee flexion angle at the second
half of stance[74]
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components of some sports such as volleyball or basketball: testing GRF dur-

ing landing can identify injury risks or predict reoccurring injuries.

3. Balance tasks: Standing balance is essential in daily living. The postural sta-

bility decreases , or it decreases due to neurodegenerative pathologies as stroke

[75]. The measure of the balance of a patient could be used as quantification

of the improvements due to the rehabilitation treatment, identify the risk of

falls [76].

Analysis of the STS by Force Plate

The force plate has been used to describe the STS. Numerous studies (using dif-

ferent devices) described the STS producing different results. More than any other

human movement, the STS is characterized by high inter and intrasubject variabil-

ity [15]. Two STS performances are never equal, but unequivocal movements can

be identified and standardized, as researchers standardized the gait analysis events

(heel-ground contact, swing and toe off). [15] Etnyre et al.[15] proposed a reference

Figure 1.3: Stick Figure of STS movement, the ground reaction force, the solid line,
and the center of mass, the black dot, are plotted. At the instant of seat-off the ground
reaction force(solid line) was directed slightly backward and passed anterior of the hip and
ankle joint and far posterior of the knee joint[77].

standard for STS analysis using a force plate based on the identification of eleven

events in the 3-dimensional space, as shown by the figure 1.4. The study compared

four different STS conditions: arms free, arms crossed, hands on knees and hands-

on armrest. The figure 1.5 shows the comparison of VGRF during STS in healthy
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Figure 1.4: Three Orthogonal Ground reaction Force during standing for a single par-
ticipant ( arm-crossed condition). The graph highlights the six events individuated by
Etnyre in vertical axis: Initiation(the first deflection from the baseline); Counterforce(
the minimum peak following the start of the movement); Seat Off (The buttocks rise from
the chair); Peak Force( The greatest vertical force recorded); Rebound (the lowest force
value following the peak); Standing ( the participant recovered the postural stability)[15] .
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subjects, stroke, and stroke fallers. The fall risk increased in stroke patients due to

their pathological condition. The analysis of GRF helped to distinguish stroke pa-

tient and fallers stroke patients in order to provide the most suitable rehabilitative

program to reduce the fall risk[78].

Figure 1.5: Comparison of vertical force in healthy subjects, stroke patients and stroke
fallers patients during rising. The graph shows the force change during the movement.
In the first phase of STS, the force was steady due to the weight of feet. When the rising
begun, the force decreased and then increased until the maximal vertical force is reached.
This force peak is due to the body acceleration. The force decreased until the BW. The
asterisks on the graphs indicated the limit points of the rate of rising in force slope: the
stroke fallers patients have a lower rate rise[78]

• Difference in time: Stroke patients need more time to stabilize the cop during

rising;

• Stroke Fallers patients showed high Medio Lateral (ML) COP sway. The higher

COP oscillation in the ML plane indicates poor stability and high fall risk;

• The stroke fallers patients exhibited less peak power;

• Stroke patients distributed the body weight (BW) asymmetrically, in particu-

lar, they put more weight on the healthy leg when rising.
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• The rate of rising (dF/dT) was lower in stroke fallers patients than in stroke

patients or healthy people.

1.3.2 Electromyography

The Electromyogram(EMG) is the representation of muscles electrical activity dur-

ing the contraction, i.e., the potential electric field generated by the depolarization

of the sarcolemma. The first EMG signals investigator was H. Piper in 1912 [79].

The EMG signal can be detected by two techniques:

• Surface EMG: The signal is recorded by a pair or an array of electrodes placed

on the skin. The application is easier than the needle technique, but only

surface muscles activity can be detected; noise due to the cross-correlation

effect with other muscles. Better suited for studies related to EMG pattern

and muscular fatigue.

• Needle EMG: The signal is recorded by needle electrodes inserted into a muscle.

This technique can record action potential of spontaneously contracting single

muscle fibers (it is not possible by Surface EMG). The aim is to study the

physiology and pathology of the Motor Unit6

[79] The common applications of EMG are:

• Investigate the motor control strategy [80, 81] and in particular pathological

alterations [82], in order to understand the muscles’ functionality, diagnosis

and improve the rehabilitative treatment.

• Investigate muscular fatigue. The muscular fatigue defined as the “failure

to maintain the required or expected force” [83] can be detected only when

6Motor unit consists of a motor neuron and the skeleton muscles innervated by the motor

neuron.
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it occurs. It is based on force measurement during muscle contraction [84].

The EMG analysis of muscular fatigue reports the modification of the fatigue

associated with biochemical and physiological changes [84, 85]. The Median

frequency and the mean frequency are the spectral parameters commonly used

for analyzing the EMG spectrum. Studies have shown that MF and MDF shift

towards low frequencies, while the value of RMS increased, probably due to

the recruitment of more MU.

EMG Signal During STS The Tibialis Anterior(TA), the Bilateral Quadri-

ceps(QUA), the medial Hamstring(HAM), the soleus(SOL) are essential during the

STS. They are in charge of the anteroposterior stabilization of the and ankle joint.

In the initial phase of STS, the TA muscle is the first muscle to be activated [87, 86].

Its activation increased proportionally to the weight shift. Almost simultaneously,

the QUA was activated. It contributed to the early stabilization of the knee before

the knee extension. The TA and QUA activities increased until the reaching of

the standing phase when they became inactive. The HAM, main stabilizer of the

knee during the standing phase, is the third to be activated. The SOL was the last

muscle activated. It contributed to postural stability. The HAM and the SOL are

active during the standing phase (figure 1.6).

The analysis of the EMG pattern activation during STS or the individuation of

the muscular deficit is useful for designing a more effective rehabilitative treatment

program.

Different pattern activation of the lower limbs between stroke hemiplegic patients

and healthy patients was found. The figure 1.7 shows the different patterns of

leg muscles activation during the STS in three different groups: Healthy subjects,

Stroke Fallers, and Stroke non-Fallers.

• The stroke fallers patients activated the Soleus muscles prematurely or exces-

sively. The premature or excessive activation of the SOL might cause stiffness
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Figure 1.6: EMG signals recorded during STS. The healthy subject sat in the natural
position: feet flat on the floor, ankle joint laid in a plan slightly posterior to the knee joint,
trunk relaxed and head facing forward. The vertical line indicated the time of the “go”
signal. Accelerometer (AC), tibialis anterior (TA), soleus (SOL), quadriceps (QUA),
hamstrings (HMS), abdominals (ABD), lumbar paraspinal (LPS), sternocleidomastoid
(SCM) and trapezius (TRA). The TA was the first muscle to be activated, followed by the
LPS, QUA and HMS. These muscles were activated near the take-off. The SOL is the
last muscle recruited [86]
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of the ankle, resulting in instability.

• The stroke non-fallers patients exhibited prolonged activities of the TA and

QUA muscles of the unaffected side, probably due to a compensatory strategy.

The muscles of the unaffected side were recruited as early as possible and with

greater amplitude to compensate the weakest muscles of the hemiplegic side.

This compensatory strategy could protect them from falling.

• The Stroke fallers patients exhibited no TA muscle activation or low amplitude.

The TA was an ankle stabilizer, the absence of the TA activation could indicate

that stroke fallers utilized less the ankle musculature than healthy subjects or

stroke non-fallers patients [87].

Figure 1.7: Different pattern of leg muscle activation in three different groups during
STS. TA, Tibialis Anterior; QUA Bilateral Quadriceps; HAM, medial Hamstring; SOL,
soleus. These four muscles are essential in controlling anteroposterior stabilization of the
knee and ankle joint in a healthy subject. The activation sequence for healthy subjects
is TA, QUA, HAM, and SOL( Pattern 1). The muscle activation of the unaffected side
(Pattern 2, 3, 4, 5) of the stroke patients (both fallers and non-fallers) is quite similar to
the healthy subjects activation. Prolonged activation of TA and QUA has been detected
in stroke non-fallers, while in stroke non-fallers the amplitude activity of the TA muscle
decreased ( or interrupted). The muscle activation of the affected side of the stroke fallers
is quite varying (pattern 6,7,8,9,10). Stroke fallers exhibited an absence or reduction of
motor output or interrupted motor unit activation [87].

The knee Osteoarthritis (KOA) is related to knee pain [88]. The knee pain and
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disability is associated with the Quadriceps Femoris7 muscles weakness resulting

in a diminished force output from one muscle group on one side of the knee and

creating joint instability [89, 90]. Patients affected by KOA used a compensatory

strategy for rising from a chair. In particular, they tend to load the hips more than

healthy subject and generated less knee joint torques. This could increase the risk

to develop Osteoarthritis at hips too and lead to knee muscle atrophy and weakness

[91]. The affirmation is confirmed by the evidence that knee extensor muscles of

women with KOA are less efficient than healthy subjects. Moreover, the Biceps

Femoris (BF) activity of women with OA is higher than controls [92]. The BF is

a biarticular muscle involved in both the knee flexion and hip extension. During

STS, the force generated at the hip by the BF muscles is transferred to the knee

joint through the recto femoris [77]. Likely explanations are:

• Patients affected by KOA use more the hip muscles than the knee muscle

transferring the load from the knee to the hip;

• The higher BF activation is used for stabilizing the knee and reducing the pain

[92].

Patients with KOA performed the Total Knee Arthroplasty (TKA) as a remedy

for alleviating the knee pain. Despite the functional improvements, they continued

to obtain a lower score than healthy controls on the functional test. The investi-

gation on the STS performed by subjects three months and one year following the

TKA highlighted that 3 months after the TKA the Quadriceps Femoris is still weak.

Subjects 1 year following TKA recovered the Quadriceps Femoris strength, but they

continued to use a compensatory strategy during STS. This finding highlighted the

need for retraining after the intervention because resolving the impairment did not

automatically lead to regaining the correct use of muscles [93].

7The Quadriceps Femoris is a muscle group (Rectus Femoris, Vastus Lateralis, Vastus Inter-

medius) involved in the extension of the knee joint.
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Figure 1.8: The RMS-EMG activity of Biceps Femoris (BF), Vastus Lateralis(VL), and
Vastus Medialis (VM) during STS in women with knee osteoarthritis (OA) and controls.
VM and VL did not show any statistically significant difference between the two groups.
The main difference between the two groups is the BF activity, significantly higher in OA
group [92]

1.3.3 Optolectronic system

In literature, the Optoelectronics system is considered a gold standard in human

movement analysis [17]. The system detects light and uses this detection to estimate

the 3D position of marker via time-of-flight triangulation. The markers can be:

• Active Markers: They use LEDs that shine a light toward the camera. Each

active markers can flash at a different frequency that makes marker tracking

easier.

• Passive Markers: Passive Markers are reflective and bounce light back at the

cameras where they can be detected.

The Optoelectronics system in biomechanics is particularly useful for:

• calculation of the center of Mass: The center of Mass (CoM) is the unique

position at which the weighted position vectors of all parts of a system sum

up to zero. It is the point where any uniform force on an object acts. In
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other words, it is the balance point of an object’s mass. This simplifies the

motion description of oddly-shaped objects and the complicated system as

the human body. In general, the CoM can be found by vector addition of

weighted position vectors which point to the center of mass of each object in

a system. The human body is a system of segments linked to each other at

the joints: mass distribution changes as the body posture changes making the

CoM changes continuously. The human body consists of several segments: the

overall mass distribution within the body is a function of the mass distribution

within the individual segments and the body posture. The body posture, in

particular the join position and angles, can be estimated from the optical

motion system, while the segment body mass distribution can be estimated

by anthropometric tables [94].

• Evaluation of body segment position: the kinematic data, acceleration, veloc-

ity, angles are indirectly measured.

Figure 1.9: The Center of Mass (CoM) is the balance point of an object mass. Its
calculation simplifies the description of the mechanics of an object. The position of CoM
in the human body changes and body posture changes. The human body consists of several
segments; the CoM can be estimated combining the information about each segment mass
distribution and the body posture. [95]
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Analysis of STS by Optoelectronic System The figure 1.10 shows the

displacement of the CoM during STS: in the first part of the movement, it moved

forward by the rotations of the upper body; then it moved upward by the legs

extension. The velocity pattern of the CoM is used by Roebrock et al. [77] to

distinguish three different phases:

• The acceleration phase: The CoM accelerated horizontally. The phase started

at the beginning of the movement and ended when the CoM reached the

maximal horizontal velocity.

• The transition phase: The CoM horizontal acceleration decreased, while the

CoM vertical acceleration increased. The phase started when the maximal hor-

izontal accelerations are reached, while the conclusion coincides to the reaching

of the maximal vertical velocity.

• The Deceleration phase: The vertical velocity decreased until the end of the

movement. The horizontal velocity fluctuated around zero.

Schenckman et al.[16] used a simple motion capture system to describe the STS.

The study individuated four key events, as shown in figure 1.1. The motion analysis

is based on the flexion and extension angles of ankle knee, hip, trunk, and head.

The key events are the maximum values achieved and the timing of maximum join

angles, velocities, and torques.

Obesity is a chronic disease whose incidence is increasing among children and ado-

lescents. The altered weight distribution and muscular weakness caused the use of

a motor strategy that can negatively affect the joints. Obese patients could suf-

fer from lower back pain due to postural changes. The STS performance detected

by an Optoelectronics system evaluated the different rising strategy used by obese

patients and the control group. The control group lean forward the trunk and

keep the initial foot position. Instead, the obese group limited the trunk flexion

and moved the feet backward respect to the initial position. The limitation of the
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Figure 1.10: Horizontal and vertical velocity of the CoM during STS. The solid line
represented the horizontal velocity, while the dotted one the vertical velocity. Based on
the CoM patterns three phases were distinguished. The vertical lines indicated the limits
between the three phases. Phase 1: the movement began and horizontal velocity increased
until its maximal point. Phase 2 started when the CoM reached the maximal velocity;
in this phase, the vertical velocity began to increase. The phases concluded when the
horizontal velocity is near to zero, and the CoM vertical velocity reached the peak. Phase 3
started when the CoM reached the maximal vertical velocity; the vertical velocity decreased
until the end of the movement. The horizontal velocity fluctuated around zero.[77]
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trunk flexion is probably due to the lower back pain. Furthermore, this strategy

exposed the knee to high load and increased the muscular fatigue [96, 97].

Figure 1.11: STS performance of Control Group (a) and Obese Group (b). The position
of the left shoulder and left malleolus are reported. a) The control group used a rising
strategy characterized by a high degree of the trunk flexion. The feet movement are near
to zero. b) The obese group limited the trunk flexion and moved backward the feet. This
strategy is very inefficient because the momentum on the knee joint increased accelerating
the muscular fatigue.[97]

1.3.4 Inertial Sensor

The use of optoelectronics system or force plates confines the studies on kinematic

in a laboratory setting, and their results are not directly applicable to real-life con-

ditions of patients[17].

The sensorization of STS by MEMS may enhance its objectivity through the mea-

surement of different kinematic variables such as trajectories and accelerations of

the involved body segments.

The clinicians evaluate the performance of the STS using parameters such as the

time taken to complete the task, the visual examination of the movement and the

number of repetitions in a known period. Usually, clinicians use a stopwatch to
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measure the task duration, but it may be imprecise and may lack specificity.

In clinical practice, the movement fluency helps evaluate the functional status of

the patient but its evaluation with visual observation may limit its validity and re-

liability and may rely upon the experience of the observer [98]. The use of inertial

sensors allows the calculation of several indices of the smoothness of the movement.

The most known index is the Jerk, i.e. the third derivative of the position. It lacks

a univocal definition: it can be obtained from the first derivative of the acceleration

[35] or as the slope of the Antero-Posterior acceleration-time curve [38]. The use of

inertial sensors for monitoring the STS will be discussed in Chapter 2
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Chapter 2

Inertial Sensors

2.1 General Overview

Inertial Sensors are sensors based on inertia. They usually include at least an ac-

celerometer and a gyroscope.

Micro-Electro-Mechanical Systems is a technique of combining Electrical and Me-

chanical components to produce a system of small dimensions. The main advantage

of MEMS technology is the low cost and the little dimensions [99]. The spreading

of inertial sensor based clinical applications increased simultaneously with the wide

occurrence of ubiquitous smart devices, especially smartphones and tablets.

Nowadays, the integration of inertial sensors in smart devices has become a stan-

dard procedure [100]. Inertial sensors embedded in smart devices have been used in

numerous applications, that include assessing and quantifying kinematic variables

related to functional tasks or functional status [24, 25], classification of physical ac-

tivities [21], falls detection [26, 27], and gait analysis, sport monitoring [32, 33]. The

smart devices as the smartphones have the main advantage to be not perceived as

invasive by users, making them more collaborative [27]. The Inertial Sensors have

few advantages in the clinical practice compared to a monitoring system such as

optoelectronics system or force plate [17]. The Inertial Sensors could be placed on
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several body regions accurately and reliably [101].

2.1.1 Accelerometers and Gyroscopes

Accelerometers are electro-mechanical devices that measure the static force of ac-

celeration(gravity) or dynamic forces of acceleration (vibration and movement).

Figure 2.1 shows a simplified model of an accelerometer. It consists of a proof mass

(M), a spring-damper (k,c) system suspended in an outer casing behaving like a

second order mass-damper-system. External accelerations cause the displacement

of the mass; the spring stretches with a force that corresponds to the acceleration.

The acceleration is measured using the distance of the spring stretch (proportional

to the stretching force) [102].

Figure 2.1: General accelerometer structure and its mechanical model. The accelerom-
eter consists of a spring-mass (M), and a damper-spring system. It behaves as a second-
order spring-mass-damper system. External acceleration causes the displacement of the
outer case. The mass stretches the spring in the direction opposite to the movement of
the outer case. The acceleration is derived from the force exerted on spring by the mass
is measured by the relative displacement x [103].

Here are reported a few examples of the most used transducers for building the

accelerometers.

• Piezoelectric Sensors: Some materials, such as the quartz, generate an elec-

trical charge when deformed. The mass is attached to the piezoelectric crystal.

When the outer case moves, the mass compresses the crystal, which in turn

generates an electrical charge. They are not suited for steady or quasi-steady
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measurements, because, during the action of a static force, the charge will

decay with time. They are particularly recommended for measuring vibration.

• Capacitative Accelerometers: The acceleration is measured by detecting

the change in capacitance due to a moving plate or sensing element [102, 104].

The capacitance can be measured using electronic circuitry. They have high

sensitivity, good dc response and noise performance, low drift, low-temperature

sensitivity, low power dissipation, and a simple structure.

Figure 2.2: Piezoelectric Sensors: they employ the piezoelectric effect of some crystals,
i.e., the ability to generate an electric charge when the crystal is deformed. The piezo-
electric material is placed between two conductive plates (for example, silver). When a
force is applied, an electric charge is generated by the movement of the electrons from one
side on fo the conductive surface to another. The charge generated is stored in the in-
herent capacitance of the piezoelectric material itself. a) Longitudinal effect: The Charge
is given by Q = F ∗ d, where F is the applied force and d is the piezoelectric coefficient
of the material. d b) Transverse effect: The Charge is given by Q = F ∗ d ∗ b/a if the
ratio of the dimensions, b/a, is greater than 1 (the usual case), the transverse effect will
produce a greater charge than the longitudinal effect.[103]

The Gyroscopes are used for measuring the angular velocity. Conceptually, they

consist of a spinning wheel in which the axis of rotation is free to assume any possi-

ble orientation. During the rotation, the orientation of this axis remains unaffected

by tilting or rotation of the mounting, according to the conservation of angular

momentum. Due to this principle, a gyroscope can lead to the measurement of

orientation and its rate of change. The basic structure is similar to the acceler-

ation sensors: a mass supported by springs. The angular velocity is obtained by
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measuring the Coriolis Force1 on the vibrating mass. Data from accelerometer and

gyroscope can be used to estimate the orientation of the inertial frame2 [105].

The dead reckoning is the process of estimating the sensor orientation and position.

The procedure involves the use of the data from Accelerometers and Gyroscopes.

The integration of the gyroscopes measurements returns information about the sen-

sor orientation. The sensor position is obtained from the double integration of the

acceleration. Before to integrate, the subtraction of earth gravity is required, hence

the need to know the sensor orientation[106].

Despite the theory, it is quite hard to obtain the “ perfect pose” estimation because

of measurement noises and time slowly time-varying bias. Due to the bias, the

Inertial Sensors output is non-zero also in the absence of any input. The bias is a

time-depending error added to the measured signal. Furthermore, the integration

of measurements leads to error accumulation [106, 107].

The solutions proposed to overcome the drift problem included the wavelet analy-

sis3. This technique is used for removing the drift before the integration [109].

It has been proven that the incorporation of additional sensors such as magnetome-

ters and the application of proper fusion filter (as the Kalman filter ) reduced the

drift and improved the accuracy [110, 111]. The magnetometers are highly sensitive

to magnetic field disturbances generated by ferrous materials that usually there are

in any laboratory [112]. To reduce the errors due to magnetic disturbances in the

1The Coriolis Force: an inertial force described by Coriolis. The effect of the Coriolis force is

an apparent deflection of the path of an object that moves within a rotating coordinate system.

The object does not deviate from its path, but it appears to do so because of the motion of the

coordinate system.
2The inertial frame is the stationary frame. The Inertial sensors measure linear acceleration

and angular velocity with respect to this frame.
3Wavelet analysis. The wavelets transform was introduced by Morlet and Grossman, and it

allows analyzing the signal in both the time and frequency domain. A signal can be decomposed

in terms of wavelets, which are generated from a fixed function called mother wavelet [108]
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laboratory, Musić et al. replaced the magnetometers with a dynamic human body

model. The human body model simulated the STS motion. Three segments con-

stituted the model: shank, thigh and Head-Arms-Trunk ( see the figure 2.3 ). The

accelerometers ( placed on shank, thigh, and shoulder ) data were integrated into

the data obtained by the human body model by the Kalman Filter [113].

Figure 2.3: Standing up motion human body model proposed by Musić. The body model
replaced the use of magnetometers to improve the accuracy of the accelerometers and
gyroscope to detect the STS. The model constituted by shank, thigh, and Head-Arms-
Trunk. The joints in the ankle, knee, and hip connected the three segments. The Kalman
filter has been used to integrate the data from the accelerometers ( placed on shank, thigh,
and shoulder )to the data obtained by the body model. [113]

An attitude and heading reference system (AHRS) consists of various sensors

along the three axes: accelerometers, gyroscopes, and magnetometers. Onboard

processing in an ARHS, which provides information about the own orientation

device, differentiates it from the inertial sensors. Indeed the inertial sensors collect

data and deliver them to a computational device [114]. This system was born in the

avionics field to measure the attitude and heading of aircraft; it has been adopted in
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the biomechanics field to measure segments and joints kinematics in a wide variety

of contexts [115].

2.2 Clinical Application

2.2.1 Gait Analysis

Gait is an important skill for ensuring independent living. The study of gait param-

eters can indicate deteriorating functionality and increasing falls risk: for example

walking speed, stride time, stance, and swing time can be used as falls predictors

[116, 117]. Temporal parameters, such as the gait time, can be detected by ac-

celerometers placed on heel, thigh and waist [118], while sensors placed on both

legs have provided information about the stride symmetry [118, 119]. The walking

speed can be estimated by a single accelerometer placed on the trunk or by a triax-

ial accelerometer attached to tieback and a uniaxial accelerometer attached to the

top of the right heel [119, 120].

The accelerometer required additional signal processing for compensating the influ-

ence of gravity. The data integration can be affected by drift. Another accelerom-

eter pain point is the attachment point of the sensor on the body and skin artifact

during the movement [121]. Parameters as the duration of swing, single and double

stances during a gait cycle can be detected by knowing the heel strike and toe-off

for each legs. These can be measured also by stand-alone Gyroscopes. Greene et

al. [31] used an adaptive threshold algorithms for detecting the Initial Contact and

the Terminal Contact during the gait cycle. The algorithm showed good results at

normal walking speeds, but it had difficulties when shuffling gait is recorded. The

wavelet analysis fit for the gait analysis identification [122]. The shank angular

velocity measured during the gait, showed peaks when the heel strike and toe-off

occurred. These peaks varied their amplitude accordingly to subject weight or ve-

locity, painful articulation and so on. They can easily detected by decomposing the
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shank angular velocity into wavelet packages [122].

The gyroscopes are insensitive to the influence of the gravity and are easier to

place on the body [121, 123], but the measurements from gyroscopes are less reli-

able change direction[123].

The fusion of data from gyroscopes and accelerometers resulting in more robust

Figure 2.4: Shank and thigh gyroscope signals in a normalised gait cycle. The vertical
lines mark the heel strike (HS), foot flat (FF), heel off (HO), and toe off (TO). The
dotted line is the angular velocity in each gait cycle and the solid line is the average value
for angular velocity. The signals from the gyroscope placed on the shank had an higher
correlation with the Vicon motion analysis system than the signals from the gyroscope
placed on the thigh.

estimations [124]. As highlighted by [124], the joint estimation calculated by in-

tegrating the difference of two angular rates around the corresponding coordinate

axis is accurate on short time, but it is affected by the slowly-time drift. The effect
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of the drift on the gyroscope can be reduced using the acceleration based joint angle

found without integrating. However, the accelerometer-based angles affected by the

accelerometer noise and seems to be less reliable in moments of large acceleration

changes. The combination of both angles by a standard fusion tool (as the Kalman

Filter) resulted in angle accurate on small and large time scales as shown in the

picture 2.5.

The detection of the gait events by foot switches is strongly dependent on thresh-

Figure 2.5: Sensor Fusion of the Gyroscope-based and the accelerometer-based knee angle
of a leg prosthesis. The agyr is accurate on short time but affected by drift. The aacc angle
is not affected by drift but is less reliable in moments of large acceleration angles. [124]

old choice. Inertial sensors places on foot are possible to detect gait events, such

as the foot-switches [30, 29]. Additionally, the information from the Inertial sen-

sors can be used for reconstructing the trajectory of the foot where the sensor was

placed [30] 2.6.

The smartphones are more advantageous than inertial sensors. They are ubiq-

uitous; they can save and process data; the data can send by mail, wi-fi application

and Bluetooth. The gate parameters obtained by the smartphones are reliable, as

shown in [28]. The study compared the data obtained by the triaxial accelerometer

and the data from the sensors embedded in smartphones. They found that the

waveforms of the embedded sensors and triaxial accelerometer are similar, and the

parameters obtained by the smartphone are highly correlated with the data from

the triaxial accelerometer [28].
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Figure 2.6: The inertial sensor was placed on the foot in order to replace the foot
switches. Indeed, the gait events detected using the foot switched are dependent on the
choice of the thresholds. By combining the data from gyroscope and accelerometers of
the inertial sensor is possible to reconstruct the trajectory in the sagittal plane of the foot
where the sensor was placed.[30]

Figure 2.7: Acceleration signals from smartphone and triaxial accelerometer (dotted
line). The waveforms are quite similar and the parameters obtained from the smartphones
are highly correlated with data from the triaxial accelerometer used as reference in the
study [28]

2.2.2 Fallers

Falls are one of the major hospitalization cause, above all among the elderly. Falls

are often associated with fractures, fear of falling that lead to a sedentary life re-

sulting in a reduction of quality life. Despite there is not a unique and “ gold

standard” definition of what Fall means [77], the risk factors for falls are several
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and commonly approved: previous falls, balance impairment, muscle weakness, vi-

sual impairment,... just to cite a few [125]. The motor performance during the

STS may be used as a predictor of frailty status, even if it may be influenced by

somatosensory afferents, balance, and psychological status [126][8, 9]

The clinician evaluates the performance of the STS using parameters such as the

time taken to complete the task, the visual examination of the movement and the

number of repetitions in a known period. The task duration is an important pa-

rameter during the clinical evaluation of the fall risk or frailty assessment as fallers

needed more time for completing the task [60]. Despite its relevance in the clinical

practice, some studies disagreed on time as a discriminant feature for separating

fallers and not fallers. For example, in Weiss et al. [38] the time difference between

fallers and the control group was not significant. Doheny, Walsh[35] reported that

a classifier with time duration and kinematic features had greater accuracy, sensi-

tivity, and specificity than a classifier including the only time duration. The task

duration measured with a stopwatch may be imprecise and may lack specificity, it

may be used in combination with other clinical criteria, such as the Fried’s criteria

[127] and the UPRDS, to perform an initial screening and select those patients in

which the sensorization of the STS may be appropriate.

In clinical practice,the movement fluency is helpful for evaluating the functional

status of the patient but its evaluation with visual observation may limit its validity

and reliability and may rely upon the experience of the observer [98]. The use of

inertial sensors allows the calculation of several indices of the smoothness of the

movement. One of the most common is the jerk, i.e. the third derivative of posi-

tion, an index that characterizes the average rate of change of acceleration during

a movement [128]. Although the jerk may be an analytical way to objectify the

smoothness of the movement, it lacks a univocal definition as it depends mainly

on the movement amplitude, the duration and the intervals of arrest [129]. For

example, Weiss et al.[38] defined the jerk as the slope of the Antero-Posterior (AP)
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Figure 2.8: Movement patterns of raw Inertial Signals for frail (a), pre-frail (b) and
healthy subjects (c). The blue line is the X-Orientation signal, the green line is the Z
acceleration, and the red line is the Z-Position signal.The circle outlines the extra for-
ward and backward lean for more frail subjects, and the arrows feature the time duration
and X-orientation range. X-Orientation is the quantification of the trunk tilt evaluated
according to the trunk movement. During the Impulse phase (definition on Millor arti-
cle), the frail subjects had greater X-Orientation Value, indicating that the frail subjects
require extra forward and backward leaning to connect one cycle with another. During the
standing and sitting, the X-Orientation value of frail subjects differed from Pre-Frail and
Healthy Subjects, whereas the difference between these last two groups was not statisti-
cally different. Indeed, the frail subjects were not strong enough to produce power output
for raising, so they need a more compensatory movement that the healthy subjects. The
healthy subjects reached greater “minimum Z acceleration” values during standing and sit-
ting up compared to frail and pre-frail. The minimum Z acceleration values were greater
in the pre-frail subjects than in the frail. The maximum Z acceleration was statistically
significant for differing the healthy Subjects from the Frail and pre-frail, but no difference
was noticed between frail and pre-frail. The explanation could be that the frail subjects
have less lower limb power and strength.[37]
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acceleration-time curve during the STS and reported that the fallers exhibited lower

jerk compared to controls. Moreover, this parameter was more discriminant than

the time duration in detecting the fallers group. In Doheny et al. [35], the jerk,

defined as the first derivative of the acceleration, was similar between the groups

while the addition of other kinematic features increased the discriminant validity of

the classifier. In contrast, Ganea et al. [36] evaluated the smoothness plotting the

norm of acceleration versus the trunk angular velocity measured around the ML

axis. The quantification of the smoothness was related to the fractal dimension of

the movement patterns and showed to be the most discriminant. Therefore, the

jerk may constitute an interesting index to measure the smoothness of the STS,

despite its additional value in increasing the specificity of an STS movement needs

a shared definition and further inquiries. The postural sway is related to balance

functions that are important for the fall risk assessment. The sensorization of the

STS allowed the measurement of the postural sway even though they proved to

not discriminate between pre-frail and healthy subjects [37]. However, in clinical

practice, the adoption of two postural strategies, called ankle strategy and hip

strategy, is usually assessed to evaluate the ability to maintain the body balance

after a perturbation. The ankle strategy repositions the center of mass using an

inverted pendulum that moves around the ankle joint, and it is usually lost in the

elderly. The hip strategy is based on a two-segment inverted pendulum moving at

the hip joint, and it is used when the perturbation is stronger. The STS can be

seen as a merging of the two strategies: the hip strategy is used during the rising

phase of the movement, while the ankle strategy starts when the person has stood

up. However, the sensorization of the STS to measure the goodness of the ankle

and hip strategies requires some consideration on the number of sensors and their

placement over the body. Positioning one sensor is more comfortable and portable,

but its location on the body limits the quantity of information. For example, a

sensor located on the sternum could give information about trunk leaning in the
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space, but it is unable to detect trunk movements with respect to the lower limbs,

that could be components of the postural strategies. Similarly, in many studies, the

sensor was positioned over the lumbar spine that, given its high mobility, impeded

to study precisely the postural strategies [130]. Therefore, the application of two

or more sensors could track not only the body oscillations, that have been proven

less effective in detecting the fallers [37], but also could measure whether features

characterizing the above mentioned postural strategies are suitable predictors of

fall risk.

Finally, we could highlight two limitations of using inertial sensors, accelerometers,

and gyroscopes:

1. the discrimination between faller and non-fallers depend on the data processing

and, consequently, on outcome features;

2. which sensor placement provide the most important features.
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Chapter 3

Sit To Stand Phases

Detection

3.1 General Overview

Among all daily life activity, the STS is the most crucial one. It is considered the

prerequisite of walking and it is strictly connected to functional independence[131].

The STS is a complex movement and one of the most mechanical demanding [53].

Neurodegenerative diseases, pathologies and the process of ageing make it harder.

Indeed, it is commonly used as an indicator of overall functioning and balance

performing; as a predictor of fall risk and to assess lower extremity strength and

balance [13, 62, 132]. In the clinical practice, the main evaluation parameter is the

duration of the performance: prolonged STS movement duration could lead most

likely to fall [59, 60, 61]. The visual analysis of the movement helps the caregiver to

assess the status of subjects. It is a qualitative analysis and often depends on the

caregiver experience and sensitivity. In previous works, the camera-based system

and force plates allowed the objective quantification: the analysis of the biome-

chanics of the movement. This instrumentation is expensive, and the analysis can
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be carried out outside the laboratory environment. The inertial sensors, instead,

are lightweight and portable; less expensive. They have been used in the daily life

activity recognition [133], gait analysis [28, 30, 119, 120, 118] and falls detection

[22, 35, 36, 37, 38].

The purpose of this preliminary study is to characterize the dynamic events occur-

ring as rising from a chair. The study of the distinct events-or phases- of the STS

movement would result in a most effective description about:

• the contribution of each single body element involved in the movement;

• the kinematic and kinetic variables during the movement and their changes

related to specific disease;

• the pain point that could lead to movement failure.

[15, 16]

Previously, the identification of STS events or phases has been performed applying

specific thresholds to joint angles, velocity changes, torques o and momentum. The

high variability of the movement both between and within individuals makes it dif-

ficult to find common thresholds[15]. Although the application of thresholds could

lead to misleading results, it has been shown that the trunk angles and orientation

can be used for the phases detection [134, 135]. Van Lummel et al. [134] analyzed

the variation of trunk angle (φ) to detect the STS phases. The figure 3.1 shows the

sine of the trunk angle resulted from the application of the wavelet transform. The

phases have been detected by the dips and slope changes of the signal [134]. This

methodology is efficient, but cannot be applied in real time.

We used the Machine Learning (ML) or data mining to overcome both the thresh-

old limitation and the real-time phase detection.

Machine Learning is the process to generate a set of rules from real data [39]. There

are many application in medical field such as diagnosis of a disease [40, 41, 42], pre-

diction of disease [43, 44, 45]. The advantages of the use of ML are: the possibility
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Figure 3.1: The figure shows the wavelet transform of the sine of the trunk angle,
dw_sin(φ). Wavelet transform has been used to remove the drift and any noise. The
vertical lines identify the STS phases. They have been detected by analyzing the dips of
the graph [134]

to the constantly expanding healthcare databases for predicting disease at early

stages [44]; or to simplify the diagnosis process [42]. It is very versatile, and have

been used in many clinical field such as human activity recognition [46],gait analysis

or fall detection. We reported some examples below.

ML has been used in the gait analysis for automated recognition of gait pattern

changes due ageing [47]; gait event detection for the functional electrical stimula-

tion [48]. ML allowed researchers to identify the falls, but also to the classify the

type of falls [49].

In this study, we trained two classifier models and compared their performances.

The inertial sensors data were used to train the classifiers. The preprocessing phase

included the STS phases identification based on the definition provided by [16]. The

phases’ starting and ending points were detected by the identification of some key
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events.

3.2 Material and Methods

3.2.1 Data acquisition

Twenty-seven healthy subjects (13 females, 24.37 ± 3.32 years old) participated in

the study. Eight wireless inertial sensors (Xsens Technologies BV, Enschede, The

Netherlands) were placed on: sternum, back (L4-L5), right and left thigh, tibia and

ankle.

The licensed radio data receiver Awinda drove the communication and synchroniza-

tion between the sensors and enabled the communication with the PC. The MT

Manager (Xsens licensed software) acquired the sensors data collected by the radio

station. The software automatically set the frequency sampling at 50 Hz.

The participants sit on a height-adjustable chair shown in figure 3.2. An electric

switch placed on the chair detected the seat on and the seat off. The chair height

was adjusted for each subject so that the knee angle was 90°when the exercise

started.

The Data Acquisition device (DAQ) NIUSB 6343 (National Instruments, Austin,

TX, USA) recorded the chair’s switch electric signal at 1024 Hz. Also, it sent a

square wave signal that started and enabled the Xsens data acquisition. The signal

frequency was set to 1024 Hz. It was stored with the chair’s switch and used for

the synchronization between the devices. The data from the DAQ were acquired

using a custom script in MATLAB 2016a (MathWorks, Natick, MA, USA).

The MATLAB software has been used for data processing and classifier training.

During the exercises, the participants were asked to keep their arms crossed at the

chest. They were asked to stand and sit back down for 11 times. The exercises

were recorded separately. An operator gave the command for standing up.
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Figure 3.2: The height adjustable chair used in the experiment.

Two webcams filmed the exercises. An expert clinician watched the video recordings

and discarded the tasks performed wrongly.

3.2.2 Signal Processing

Data Processing

The figure 3.3 shows the processing data workflow.

1. Signal Phases Segmentation. The signals from each inertial sensor were split

into phases. The phases were defined as:

• Resting: The subjects sit on the chair before or after the movement.

• Trunk Leaning (TL): The start of the STS movement. This phase began

with the flexion of the trunk and ended just before the buttocks lifted

from the seat of the chair.

• Standing (SD): From the seat off to the full extension of hips, knees and,

trunk ( quiet posture standing )

• Balance (BL): The subjects reached the quiet posture standing, it ended

when they started to sit;
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• Sitting (ST): This phase began with the start of the descending movement.

It ended when the buttocks sit down on the chair [16].

The phases were delimited by specific key events. Refer to 3.2.2 for more

details.

2. Phases split in epochs. The classifier models should be able to recognize a spe-

cific phase using features computed on small samples. Indeed, the next step of

this work is to use the trained classifier in real time phases detection. So, each

phase was split in not overlapping time-windows(epochs). We decided to use

two-time windows corresponding to 0.1 s and 0.2 s [136] of the sensors signal

to compare the performances of different datasets. We did not apply the time

normalization.

3. Features Extraction. The Mt Manager software preprocessed the Xsens raw

data. The software applied a fusion filter that estimated acceleration and

orientation. For this analysis, we used the accelerometer signal and the Euler

Angles1 resulted from the MT Manager preprocessing. The features were

computed on six signals for each sensor: the acceleration signals along the

axis and the three Euler angles. The features analyzed were: mean, standard

deviation, RMS, Max and Min, COV,and first derivative. The features were

computed on the epochs for each sensor.

4. Database Building. All epochs of all recordings of all subjects were gathered all

together to construct the Classifier Database. We can imagine the database

as a matrix: the rows correspond to the epoch, while the columns to the

features. The last column contains the labels relative to each epoch (i.e. the

1Euler Angles: They are used to describe the orientation of a rigid body with respect to a

reference system [137].
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label expressed the membership of each epoch to a specific phase). The table

3.2 is an example of the database.

5. Classifier Training. We compared the performance of two classifiers for each

dataset:

• K-Nearest Neighbour (KNN)

• Support Vector Machine

For further details see 3.2.3.

Phases segmentation

A phase is a piece of signal between two key events. We identified five key events:

Start of the STS movement, Seat Off, End of Sit-Stand, Start of Stand-Sit, and

Seat On. Any piece of signal before the Start Of the STS Movement and after the

Seat On has been included in the Rest phase.

Phases Starting Point Ending Point
Trunk Leaning Start Of the STS Movement Seat Off

Standing Seat Off End of Sit-Stand
Balance End of Sit-Stand Start of Stand-Sit
Sitting Start of Stand-Sit Seat On

Table 3.1: The phases were identified using six key events. The table shows the starting
and ending point of each phase

Start Of the STS Movement The first event of the STS is the trunk flexion

[16]. The start of the movement has been identified using the AP acceleration

signal recorded by the sensor placed on the sternum (corresponding to the Z-axis

sensor). The signal was divided into epochs of 0.1 s and 0.2 s accordingly to the

Dataset. The standard deviation (SD) has been calculated for each signal epoch.

The movement began when the SD increased five times the baseline. The baseline
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is the absolute value of the mean of the standard deviation computed on the first

three signal epochs.

Seat Off and Seat On Detection An electric switch on the chair detected

the Seat Off (when the buttocks left the chair) and the Seat On ( when the but-

tocks reached the chair again). The switch signal was acquired by the DAQ De-

vice(National Instrument, Austin, Texas, US) at 1024 Hz. It has been re-sampled

at 50 Hz, the same sampling frequency of the inertial sensors. The Start of The

Movement and Seat On delimited the Trunk Leaning phase.

End of standing and start of sitting The events were identified using the

femoral acceleration, as described in [35]. Doheny et al. [35] used the femoral

acceleration to isolate the STS phases during the FTSTS. The fig 3.4 shows the

triaxial accelerometers signal recorded and processed by the above cited authors.

Initially, they identified the minimum acceleration over the total FTSTS, Amin.

Successively, they used it to locate the minimum acceleration for each STS phase,

referring them as mid-stand-points(Ams). Empirical thresholds were used to estab-

lish the phases of STS:

• Start of Sit-stand transition: the signal amplitude fell below 0.2 Ams

• End of Sit-stand transition: the signal amplitude fell below 0.8 Ams

• Start of Stand-sit transition: the signal amplitude increased above 0.8 Ams

• End of Stand-Sit transition: the signal amplitude increased above 0.2Ams

The figure 3.5 shows the vertical acceleration (corresponding to X-axis) recorded

by the sensors we used. The accelerometers data were low pass filtered at 5 Hz us-

ing a 4th order Butterworth filter.

The positive direction of the vertical axis is opposite compared to the positive di-

rection of the sensor used in the reference study [35]. We made changes to the
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Figure 3.4: Triaxial Accelerometers signals recorded during an FTSTS task. A) Verti-
cal acceleration, accelerometer on right thigh. B) Mediolateral acceleration, accelerometer
on the sternum. C) Anteroposterior acceleration, accelerometer on sternum D) Vertical
acceleration, accelerometer on the sternum. The sit-stand-sit phased of the FTSTS were
detected using the femoral acceleration. The Mid Stand Points were defined as the min-
imum acceleration during each phase. The mid standpoints with acceleration less than
0.8 of the minimum acceleration over all the performance were considered successful SSS
attempts. The start and end of sit-stand and stand-sit were detected using thresholds
empirically [35].
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algorithm accordingly to the sensors axis direction. Instead of the minimum ac-

celeration, we individuated the Maximum Acceleration, AMax. Since we recorded

a single STS transition Ams and AMax coincided. The STS events were defined as

follows:

• Start of Sit-Stand transition: the signal amplitude increased above 0.2 Ams

• End of Sit-Stand transition: the signal amplitude increased above 0.8 Ams

• Start of Stand-Sit transition:the signal amplitude fell below 0.8 Ams

• End of Stand-Sit transition: the signal amplitude fell below 0.2Ams

We selected for our purposes only the End of Sit-Stand ( used as end of the Standing

phase and start of Balance phase) and Start of Stand-Sit used as end of the Balance

phase and start of Sitting phase).

Figure 3.5: Vertical acceleration recorded by the sensor placed on the left thigh. The X-
Axis of the sensor is aligned to the femur axis and it has the same direction of the gravity.
The key events reported in the picture. Red Circle: Start of the movement, green circle
: Seat Off, black circle: End of Sit To Stand, green cross: Start of Stand Sit, magenta
cross: Seat On.
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3.2.3 Classifier

Dataset

This report is an exploratory study aimed to build up a system able to detect the

STS phases in real time. The fundamental issues related to the potential real-time

Classifier were:

• the number of sample or time frame/epochs to compute the features;

• the number of inertial sensors;

To compare the classifier performances on epochs of different duration, we selected

0.1 s and 0.2 s as epoch duration. While to compare the classifier performances on

a various number of inertial sensors, we used dataset including all sensors or some

of them.

Hence, the datasets generated were four:

• Dataset1: Epochs of 0.1 s, all inertial sensors included

• Dataset2: Epochs of 0.2 s, inertial sensors on the chest, left and right thigh

included

• Dataset3: Epochs of 0.2 s, all inertial sensors included

• Dataset4: Epochs of 0.1 s, inertial sensors on the chest, left and right thigh

included

The wearability of the system could improve by reducing the number of sensors.

As described in chapter 2, the sensor body placement could limit the quantity of

the information. We selected sensors on the right and left thighs and chest as

sensors subset. The clinical definition of the beginning of the STS coincides with

the beginning of the trunk leaning. The sensor located on the chest measures the

trunk acceleration and orienting allowing us to determine the beginning of the trunk
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flexion ( see 3.2.2), but it is unable to detect trunk movements with respect to the

lower limbs, that could be components of the postural strategies [130].

Moreover, the starting and ending of the Balance phase have been detected by the

thigh acceleration( see 3.2.2 ). To monitor potential limb impairment during the

STS task, we included in the subset bot the sensors placed on the thigh. Elderly

could suffer from Weight Bearing Asymmetry (WBA)2 as a result of a stroke [139],

arthroplasty [140] or muscle weakness. The WBA could contribute to falling during

STS task [141, 142].

The datasets are matrices, in particular:

• each row corresponded to an epoch;

• each column corresponded to features;

• The last column contained the label for each epoch.

The table 3.2 is an example of how a dataset looks like.

Features_1 Feature_2 Feature... Features... Labels
epoch_1 C1
epoch_2 C1
epoch_3 TL
epoch_4 ...
epoch...
epoch_m C1

Table 3.2: Example of a dataset template

2Weight Bearing Asymmetry: It occurs when the body weight is not equally distributed

between the legs. For example, as a result of a stroke or Total Knee Arthroplasty, patients load

more the unaffected leg [138]
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Model Evaluation

The Supervised Machine Learning aims to infer a function "f " able to make pre-

dictions based on input data. The system infers the function of learning from the

data, i.e. the system learns general concepts from a specific example. The gen-

eral concepts are used to make a prediction based on data unseen by the system.

This process is called "Training." The goal of the Training is to find the best fit in

order to maximize the predictions on the new data points [143]. If the system is

too well trained, the noise will be memorized as data points by the system. This

phenomenon is called Overfitting and it impacts negatively the performances of the

model [143, 144]. The overfitting can be avoided by evaluating the performances

of the model during the Training and adjusting the model parameters accordingly.

The datasets were split into the Training set, from which the Validation set was

extracted, and the Test Set in order to evaluate the model.

Beore to continue, we give some definitions:

• Training Dataset: The sample of data used to fit the model.

• Validation Dataset: The sample of data used to provide an unbiased evalua-

tion of a model fit on the training dataset while tuning model hyperparameters.

The evaluation becomes more biased as a skill on the validation dataset is in-

corporated into the model configuration. The validation set is used to evaluate

a given model, but this is for frequent evaluation.

• Test Dataset: The sample of data used to provide an unbiased evaluation

of a final model fit on the training dataset. The Test Set provides the gold

standard used to evaluate the model. It is only used once a model is completely

trained(using the train and validation sets). The test set is what is used to

evaluate competing models. Usually, the validation set is used as the test set,

but it is not good practice. The test set is generally well curated. It contains

carefully sampled data that spans the various classes that the model would
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face when used in the real world.

• Hyperparameters: parameters that have to be set/adjusted during the

Training.

[144, 145]

The dataset was initially divided into the Training set and Test set. The Validation

Set was extracted from the Training Set. As validation models, we compared K-Fold

Cross-validation and Leaving-One-Subject-Out methods.

Validation model: K-Fold vs Leaving-One-Subject-Out

• K-Fold Cross Validation Cross-validation is a resampling procedure used

to evaluate machine learning models on a limited data sample. The K-Fold

Cross Validation consists of dividing the set of observation into k groups, or

folds, of equal size. Iteratively, each fold is treated as a validation set. The

Classifier is trained on the k − 1 folds. The mean square error is computed

on the hold-out observation. At the end of the iterations, the process resulted

in k estimation of the mean square error. The validation set error rate is

obtained by averaging the k mean square error [145]. The hyperparameters

were automatically selected by the built-in functions of MatLab. The resulting

dataset was split as follow:

– Test set: For each subject, we selected the last sit to stand performed.

These are excluded from the training set.

– Training set: all the STS tests performed by subjects fewer ones included

in the Test set.

– Validation set: The validation set was extracted using the Classification

Learner MatLab built-in functions. The hyperparameters tuning was com-

pletely automatic.
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Figure 3.6: A schematic display about 5-Cross Validation Model. The training set
containing n observation is divided into k (five), not overlapping sets- folds- of equal size.
The Classifier is trained k times, each time with a fold is used as a validation set and the
remainder as the Training Set. The estimated error is the mean of the k mean square
errors resulted at the end of the iterations [145].

• Leave One Subject out(LOSO) This methodology consists of "leaving out"

the data of one subject from the sample used for validation and training [146].

The dataset was split in the following way:

– The Test set included all the STS recordings performed by one single

subject.

– The Training set included the remaining data, i.e. the exercises performed

by all subjects less the subjects included in the Test set.

– The Validation Set included all the STS tasks executed by one of the

subjects included in the Training set.

The splitting procedure was repeated n times: all the subjects were included

in the Test set and Validation set.

For each time, the mean error on the validation set was calculated. At the
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end of all iterations, the loss curves were plotted. The hyperparameters corre-

sponding to minimum errors were chosen. The chosen hyperparameters were

used to train the best Classifier and for computing the accuracy of it on the

Test Set. Accordingly to the classifier model, we manually tuned some hyper-

parameters.

Figure 3.7: a)Data is split into Training (blue), and Test (pink) sets to evaluate the
performance of machine learning algorithms. The LOSO uses as Training set the data of
one subject. b) The remaining data were split into Training (blue) and Validation (green).
The data from one subject were added as the Validation Set. The procedure was repeated
n times. Iteratively, one by one, all subjects were included in the Test Set and Validation
Set.

Metrics

The Classifier is evaluated by different performance metrics. We compared the

classifiers performances using the confusion matrix and the F1 score.

– Confusion matrix: it is a table that summarizes information about ac-

tual values and predicted classification. The table 3.3 reports an example

of a binary classification3 matrix. The actual classifications are the rows,

and the predicted ones are the columns [147].

3Binary Classification: the elements of a given dataset belong to only two classes.
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Table 3.3: Example of binary confusion matrix

Predicted
Positive Negative Total

Actual Positive TP FN TP + FN
Negative FP TN FP + TN
Total TP + FP FN + TP N

∗ True Positive (TP): True positives were the cases when the actual

class of the data point was 1 (True), and the predicted is also 1 (True)

(The epochs have been correctly labelled as "x").

∗ False Positive (FP): False positives were the cases when the actual

class of the data point was 0 (False), and the predicted is 1 (True).

False is because the model has mispredicted, and positive because the

class predicted was a positive one (epochs have bee incorrectly labelled

as "x" since they belong to the class "y").

∗ False Negative (FN): False negatives were the cases when the actual

class of the data point was 1 (True), and the predicted is 0 (False).

False is because the model has mispredicted and negative because the

class predicted was a negative one (epochs have been incorrectly la-

belled as "y," but they belong to class "x").

∗ True Negative (TN): True negatives were the cases when the actual

class of the data point was 0 (False), and the predicted is also 0 (False)

(epochs have been correctly labelled as not belonging to the class "x").

Since there are more than two potential classes, this study addressed a

multi-class classification task. Each sample is assigned to one and only

one class. The confusion matrix results will be shown as in the table

example 3.4.

The metrics for each class reported in the confusion matrix are :

∗ Accuracy: It measures how well the test predicts the true positive and
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Predicted
C1 C2 C3 C4 C5

Actual

C1 AccC1 MisClass MisClass MisClass MisClass SensC1
C2 MisClass AccC2 MisClass MisClass MisClas SensC2
C3 MisClass MisClass AccC3 MisClass MisClass SensC3
C4 MisClass MisClass MisClas AccC4 MisClass SensC4
C5 MisClass MisClass MisClass MisClass AccC5 SensC5

PrecC1 PrecC2 PrecC3 PrecC4 PrecC5 OverallAcc

Table 3.4: Multi class confusion matrix template used in this study. The green
cells contains the accuracy for each class (AccClass). The cyan cell the overall
accuracy(OverallAcc). The last column contains the Sensitivity computed for each
class(SensC), while last row contains the Precision computed for each class (PrecC).
The cells MisClass are the fraction of the misclassified observation on the total of the
observations.

true negative observations.

Accuracy = TP + TN

TP + TN + FP + FN
(3.1)

∗ Precision: it’s the fraction of the true positive observation over the re-

trieved observations.4. It measures how often the prediction is correct.

Precision = TP

TP + FP
(3.2)

∗ Sensitivity or Recall: it measures the proportion of the observation

correctly classified over the total amount of relevant observations5 .It

measures how well the test predicts one category.

Sensitivity = TP

TP + FN
(3.3)

∗ Misclassified observation: the fraction of the misclassified observa-

tion(the number of observation in cells that not lie in matrix diag-

onal)on the total of the observations.

4Retrieved Observations The observation classified as positives -belongig to a specific class
5Relevant Observations all samples that should have been identified as positive
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[148]

– F1 Score In statistical analysis, the F1 score (also F-score or F-measure)

is a measure of a test’s accuracy. It considers both the precision p and

the recall r of the Test to compute the score: it is a comparison indicator

between Precision and Recall. The F1 score is the harmonic average of the

precision and recall, where an F1 score reaches its best value at 1 (perfect

precision and recall) and worst at 0.

F1 = 2 ∗ Precision ∗Recall
Precision+Recall

(3.4)

Classifier Models

Different classifiers perform differently, based on the application and datasets

[136]. The study compared the performances of two different supervised clas-

sifiers models6.

– K-nearest neighbour

– Support Vector Machine

All the above-cited classifiers are defined as non-parametric machine learning

model: the model structure determined from the dataset. It means that there

are not assumption about the form of the mapping function [144].

K-Nearest Neighbours

The K-Nearest Neighbours (KNN) algorithm is a non-parametric method used

for classification and regression 7. The principle behind the nearest neighbour

6In supervised learning, the class labels in the dataset are known
7The predictive models approximate a mapping function (f) from input variables (X) to an

output variable (y).
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classification consists in finding a predefined number, i.e. the k- of training

samples closest in the distance to a new sample, which has to be classified [149].

These Neighbours will define the label of the new sample. The KNN classifiers

assign the test sample( the observation to classify/label) to the majority class

among the k nearest neighbours. The k neighbours can be fixed, or they

have to be iteratively modified. The classifiers find the k nearest neighbours

computing the distance between the test sample and the training set [150].

The distance can, in general, be any metric measure: standard Euclidean

distance is the most common choice. Neighbours-based methods are known

as non-generalizing machine learning methods since they "remember" all of

its training data. Classification can be computed by a majority vote of the

nearest Neighbours of the unknown sample.

Hyperparameters

– Number of K neighbours: the number varied between all numbers

from 1 to 65.

– Distance Weight: the weight of the contribution of each of the k neigh-

bours according to their distance to the query point. We compared:

∗ "Equal": No weighting; the contribution of all Neighbours is the same.

∗ "Inverse": Weight is 1/distance; the contribution of the most distant

"neighbours" is lower than the nearest neighbours.

• Distance Metrics To classify an unknown instance represented by some fea-

ture vectors as a point in the feature space, the KNN Classifier calculates

– Classification: the output variable y is a discrete set of values ( such as sunny, cloudy or

rainy). The output variables are called labels or categories.

– Regression: the output variable y is a continuous variable, a number (such as tomorrow’s

temperature). The output variable is a conditional expectation of the real value of y.

[144]
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Figure 3.8: An example of KNN classification. The solid line circle corresponds to the
number of Neighbours K=3, while the dashed line circle to the number of neighbours=5.
The training sample shown in this example contains only two classes: the blue square and
the green triangle. The mission of the Classifier is to assign the green circle to one of
those classes. The Classifier uses the distance function to find the K Neighbours to the
sample. The test sample will be assigned to the class of the majority of the K-nearest
Neighbours. So when K=3, the green circle is assigned to the red triangle class, while if
K=5 it will be assigned to the blue square class[150].

the distances between the point and points in the training data set. Then,

it assigns the point to the class among its k nearest neighbours (where k is

an integer)[151]. We compared two distance functions: Euclidean and Cosine.

Given an mx n data matrix X, which is treated as mx (1-X-n) row vectors

x1, x2, ..., xm, and an my X-n data matrix Y, which is treated as my (1-by-n)

row vectors y1, y2, ..., ym, the various distances between the vector xs and yt

are defined as follows:

– Euclidean

d2
st = (xs − yt)(xs− tt)′ (3.5)

– Cosine

dst = 1 − (xsy
′
t√

(xsx′
s)(yty′

t)
(3.6)

[152]
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Support Vector Machine

The gaol of the support vector machine algorithm is to find a hyperplane 8 in an N-

dimensional space that distinctly classifies the data point [153]. In two dimensional

space, the hyperplane is a line dividing the plane into two parts were in each class

lay on either side, see the figure 3.9.

Hyperparameters

Figure 3.9: An example of a separable problem in two dimensions. The heavy line is the
maximum margin separator. The margin is the width of the area bounded by the dashed
lines; it is large twice the distance from the separator to the nearest point. The support
vectors, marked with gray, are the training data that determines the margin-they are the
examples closest to the separator. The hyperplane is the function with the maximal margin
between the vectors of two classes [144, 153].

• Box Constraints: It is a parameter that controls the number of misclassified

observations in the training set. It applies a cost to the misclassification.

8In n-dimensional space, a hyperplane is the (n − 1)-dimensional solution set of one (homo-

geneous, non-trivial) linear equation: a1x1 + a2x2 + ... + anxn = 0. An optimal hyperplane is

defined as the linear decision function with the maximal margin between the vectors of the two

classes [153]
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The higher the box-constraint, the higher the cost of the misclassified points,

leading to a more strict separation of the data [154].

3.3 Results and Discussion

The results found in this study are an exploratory step towards gaining knowledge

about potential elements of a real-time phase detection system.

The main purpose of this study is to find an eligible system for real-time STS phases

detection.

The STS movement has high variability both within and between subjects. It makes

difficult finding and applying thresholds to detect STS phases [15]. Some solution

to this problem included the use of adaptive thresholds [135] and the analysis of

the slope variation of the trunk angle [134]. Both these methodologies cannot be

applied in real-time, but off-line. Our methodology involves Machine Learning al-

gorithms.

We used eight sensors to measure the movement. To increase the potential wear-

ability of the system, we selected a subset of sensors and compared it against the

complete set. We selected a subset the data from the sensors placed on the right

and left thighs, and on the sternum

As shown in [22, 134, 135], one sensor placed on the back (L5) was enough to de-

scribe the trunk trajectory during the STS and to detect the STS movement phases.

Due to the high lumbar spine mobility, the sensors placed on it could detect some

postural strategies that elderly and neurodegenerative patients apply to prevent

falls during rising from a chair [130]. Differently than [113], we did not assume that

the STS movement is symmetrical. Indeed, Elderly could not equally distribute the

loading between the lower limbs during the movement (Weight Bearing Asymmetry

) increasing the falling risk[141, 142].
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The 27 subjects performed 297 exercises. We discarded 16 exercises because:

• The exercises were performed wrongly (5) ;

• The data from the inertial sensors were missing (11);

The total dataset included 281 STS tasks. We did not apply any control au-

tonomous quality control [155] for two main reasons:

• the complete dataset is limited to less than 300 tasks;

• use data more raw possible.

3.3.1 Phases duration

The table 3.5 reports the mean and standard deviation of the phases for all subjects.

In general, accordingly to our results, the shortest phase is confirmed to be the

Trunk Leaning phase, while the longest is the Balance phase. This finding differed

from the results of [16], according to which the shortest phase is the Momentum

Transfer phase, i.e. when the buttocks lifted from the seat. In our study the

Balance phase included part of the extension phase, that Scheckman et al. [16]

included in another phase. We guessed that this different phase definition could be

main cause of disagreement between the studies.

While the results about the duration of the Standing and Sitting agreed with the

results found by Doheny et al. [156].

The table 3.9 shows mean and standard deviation of phases duration for each

subject.

Trunk Leaning [s] Standing[s] Balance[s] Sitting [s]
0.486±0.317 0.574±0.237 1.166±0.662 0.865±0.352

Table 3.5: Mean and standard deviation of phases duration
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3.3.2 DataSet and Features

This study aimed to compare datasets split in epochs of duration 0.1 s and 0.2

s and with different number of sensors. Four datasets were evaluated. The total

number of features extracted is 336 for Dataset_1 and Dataset_4 ( eight sensors,

seven features and six signals), while the number of features for Dataset_2 and

Dataset_3 is 126 (three sensors, seven features,six signals ).

The table 3.6 summarizes the size of the datasets.

Dataset N epochs (rows) N Features (columns)
Dataset_1 32,001 336
Dataset_2 20,522 126
Dataset_3 32,001 126
Dataset_4 20,522 336

Table 3.6: The table shows the size of the datasets evaluated in this study

3.3.3 Model Validation

To avoid overfitting (i.e. the classifier fits too much with the data of the training

set), the hyperparameters are tuned using the validation set as explained above.

We compared the performances of datasets trained using the K-Fold and the LOSO

validation.

The K-Fold Validation randomly splits the dataset into training set and test set. In

a scenario where the aim is to generalize old and new subjects, the K-Fold valida-

tion could be misleading: both training set and test set included the observations

from the same subject[157]. The LOSO technique have been introduced to reduce

the bias due to the inclusion of the observation of a same subject both in training

and data set [157, 158, 159].

We used the Classification Learner App of MatLab for training the classifiers using

the K-Fold validation. The MatLab application automatically tuned the Hyperpa-

rameters.
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We built custom scripts to train the classifier using the LOSO technique.

We coded two scripts: one for the KNN classifier, one for the SVM classifier.

The predictive inaccuracy of the models was obtained by Matlab built-in function

"loss". The Loss function output could vary between 0 and 1. Lower loss output

indicates better predictive model[160].

Leave-One-Subject-Out:KNN Classifiers The figures below display the

loss curves of KNN Classifiers for each dataset varying the number of neighbours

k, distance weight and metrics. The predictive inaccuracy of all models is less than

10%.

As shown by the table 3.7, the model EE is the more affected one by varying the

number of the K neighbours ( distance weight: Equal, distance metric: Euclidean).

Indeed, the ratio between the minimum and the maximum points of the loss curve

is around 80% for all datasets. However, considering the KNN classifier EE, the

worst performance is obtained for the first dataset (all sensors, epochs of 0.1 s),the

number of neighbours is 29 and the predictive inaccuracy is 8.1%. Still, less than

10%.

CE[%] CI[%] EE [%] EI[%]
Dataset_1 66 17 76 46
Dataset_2 76 50 83 24
Dataset_3 72 58 80 15
Dataset_4 74 7,3 81 12

Table 3.7: Ratio between the minimum and maximum values of the Loss Curve
for KNN classifiers: CE=Cosine, Equal; CI=Cosine, Inverse; EE=Euclidean, Equal;
EI=Euclidean, Inverse
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Figure 3.10: The Loss curve is used for displaying the predictive inaccuracy of the
model.Dataset_1 :a) k=51, L=0.0635.b)k=53, L=0.0050 c)k=29, L=0.0810 d)k=55,
L=0.075
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Figure 3.11: The Loss curve is used for displaying the predictive inaccuracy of
the model.Dataset_2 a) k=15, L=0.0619 b)k=15, L=0.0050 c)k=17, L=0.065 d)k=55,
L=0.04
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Figure 3.12: The Loss curve is used for displaying the predictive inaccuracy of the model.
Dataset_3 a)k=17, L=0.0414.b)k=43, L=0.0279 c)k=7, L=0.0665 d)k=45, L=0.0126
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Figure 3.13: The Loss curve is used for displaying the predictive inaccuracy of the model.
Dataset_4: a)k=33, L=0.0481 b)k=25,L=0.024 c)k=11, L=0.0636 d)k=15 ,L=0.024

Leave-One-Subject-Out:SVM Classifiers The figure 3.14 displays the loss

curves of SVM Classifiers for each dataset varying the Box Constraints "C "( a pa-

rameter introduced that assigns penalty to the misclassification: as C increases as

the strictness of the model increases). The predictive inaccuracy of all models is

less than 5%: less than the KNN classifiers.

As shown by the table 3.8, the variation of the Box Constraint affected more the

model trained on the Dataset_4. Indeed, the ratio between the minimum and the

maximum points of the loss curve is around 82% .
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The model trained on the Dataset_3 shows the lower Loss curve values: the max-

imum value is about 3.2%.

The Loss curves of SVM classifiers trained on Dataset_2, Dataset_3, Dataset_4

increased as the box constraint increased until to reach a plateau. The Loss curve

of the SVM Classifier trained on Dataset_1 reached the highest point and after

dropped until the plateau.

[%]
Dataset_1 75
Dataset_2 78
Dataset_3 78
Dataset_4 82

Table 3.8: Ratio between the minimum and maximum values of the Loss Curve for SVM
classifiers
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Figure 3.14: The Loss curve is used for displaying the predictive inaccuracy of
the model.a)Dataset_1,C=0.0625, L=0.0375; b)Dataset_2,C=0.0625, L=0.0359; c)
Dataset_3 C=0.0625, L=0.0255; d)Dataset_4,C=0.0625, L=0.344

3.3.4 Model Evaluation

We compared the performances of classifiers trained on the different datasets and

with two validation model: KFold and LOSO. The performances have been evalu-

ated using the confusion matrices(the tables from 3.10 to3.43) resulting from the

test set evaluation.

The confusion matrices below (tables:3.10, 3.11,3.12, 3.13, 3.18, 3.17, 3.16, 3.15,

3.20, 3.21, 3.22, 3.23, 3.25, 3.26, 3.27, 3.28, 3.30, 3.31, 3.32, 3.33, 3.35, 3.36, 3.37,

3.38, 3.40, 3.41, 3.42, 3.43)display the classifiers accuracy at predicting each class
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(the green cells along the diagonal cells); the last column represents the sensitivity

of classifiers at predicting each class; the last row represents the precision of classi-

fiers at predicting each class; the last value along the diagonal (the cyan cell) is the

overall accuracy. The other cells of the matrices are the fraction of observations

not correctly labelled over the total number of observations. Tables 3.14, 3.19,

3.24,3.29, 3.34, 3.39, 3.44 report the F1score values.

K-Fold vs. LOSO We would expect higher accuracy values for the classifiers

using the K-Fold Validation. This technique randomly split the dataset into Train-

ing and Validation sets. So, the data of a certain subject were in both datasets.

The prediction accuracy should improve, and hyperparameters tuning was biased

by the presence of each subjects data in the validation set[157]. We evaluated the

model on a test set including one STS exercise from each subject joined to the

study.

In general, the predictive accuracy, precision, and sensitivity of the classifiers

trained using the LOSO validation technique were higher than the metrics result-

ing from classifiers trained using the K-Fold validation model. The different size

of Test Sets of the two validation models could cause a difference in the predictive

accuracy. Also, we guessed that the low predictive accuracy of the K-Fold vali-

dation model could be affected by the high inter-subject variability. Indeed, the

application tuned the hyperparameters taking into account phases from different

subjects that could be misleading.

Another difference between the two validation models was the disagreement be-

tween the single-class and the overall accuracy in the K-Fold Validation model.

Although the single-class predictive accuracy is high for each class, the overall

accuracy is lower. The disagreement could be due to the predominance of some

classes. We noticed that the Test Set included more instances of some classes. Also,

110



3 – Sit To Stand Phases Detection

the number of True Positive observations of those classes was greater than the num-

ber of other classes True Positive observations. The True Positive observations of a

certain class are included in the True Negative set of observations of another class.

The numerator of the single-class accuracy formula increased resulting in higher

accuracy output value. The accuracy is the proportion of correct classifications

among all classifications. It is a very intuitive measure, but it could be misleading

in case of imbalanced Class9. The Datasets used in this study were imbalanced be-

cause the duration of the phases displayed large inter-individual variability. So, it

is likely having more observations of one class than others. Looking at the metrics

values reported in the tables: 3.10, 3.11, 3.12, 3.13, 3.15, 3.16, 3.17, 3.18, among

all classes the REST class is the one with lower accuracy, but with higher sensi-

tivity and precision. The number of true positive observation of the REST class

affected the accuracy evaluation of other classes. For this reason, the precision and

sensitivity measures are more reliable to judge the quality of the classifier.

There is not disagreement between the predictive single-class accuracies and the

overall accuracy. There is not the prevalence of the REST class respect to the

others because of the smaller size of the Test Set. Aside from the better results, the

LOSO technique is to prefer because we want to be able to build a model that gen-

eralize new subjects not included in the training or dataset. The LOSO validation

model is the technique closest to how the system can be used.

KNN vs SVM LOSO10 The performances of the two classifiers were quite

similar and comparable.

9Imbalanced Class: The imbalanced class distribution has many more instances of some classes

than others[161]
10Since, we tuned the hyperparameters in the LOSO validation model, we are going to comment

only the results from LOSO
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• KNN

– The classifier trained using "Cosine" as distance metrics showed better

performances than classifiers trained using Euclidean as distance metrics.

The choice of the distance weight (Equal or inverse) did not influence the

hyperparameters tuning.

– The KNN showed better results using as dataset the Dataset_4.

• SVM We used the same Box Constraint for all four datasets. The only

parameter that affected the classifier performance was the dataset choice.

Dataset_3 showed the best performance. Nevertheless, we guessed that the

best choice could be using a Dataset_2 because it included three sensors in-

stead of ten(The wearability of the system improved) and the duration of

the epoch are longer (to facilitate the data handling and processing for the

system).

Both Classifiers performances could be affected by large unbalanced dataset (see

the case of K-Fold, where the observations belonging to REST phase are higher

than others)[161]. The KNN algorithm is an easier algorithm than the SVM, but

the computational cost increases as increases the training size [162].
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Subject Trunk Leaning[s] Sitting[s] Balance[s] Standing[s]
CNT_02 0.419± 0.192 0.56 ± 0.0709 1.06± 0.138 0.827±0.11
CNT_03 0.56±0.481 0.468 ± 0.125 0.484 ±0.143 0.566± 0.0566
CNT_04 0.391±0.197 0.7±0.0651 1.18±0.184 0.974±0.0951
CNT_05 0.348±0.245 0.689±0.272 1.01±0.325 0.6±0.322
CNT_06 0.469± 0.345 0.604±0.354 0.738±0.200 0.906±0.349
CNT_07 0.758±0.496 0.825±0.287 1.070±0.890 0.301±0.109
CNT_08 0.245±0.112 0.582±0.056 0.710±0.122 0.549±0.076
CNT_09 0.431±0.131 0.591±0.0968 0.504±0.167 0.533±0.069
CNT_10 0.226±0.139 0.699±0.0592 0.590±0.239 1.000±0.221
CNT_11 0.265± 0.100 0.698±0.086 0.979±0.113 0.855±0.144
CNT_13 0.441±0.154 0.493±0.125 1.100±0.0701 0.629±0.157
CNT_14 0.355±0.204 0.465±0.106 1.0±0.198 0.642±0.084
CNT_15 0.544±0.479 0.397±0.735 0.743±0.12 0.566±0.464
CNT_16 0.522±0.125 0.574±0.0415 0.918±0.105 0.622±0.0726
CNT_17 0.433±0.118 0.431±0.0385 0.376± 0.108 0.491±0.078
CNT_18 0.582±0.405 0.411±0.123 1.06±0.778 0.672±0.161
CNT_20 0.376±0.121 0.465±0.0412 1.160±0.138 0.892±0.104
CNT_21 0.622±0.437 0.392±0.515 0.977±0.278 0.735±0.492
CNT_22 0.684±0.377 0.481±0.0551 1.05±0.199 0.917±0.113
CNT_23 0.466±0.363 0.462±0.265 1.04±0.208 1.07±0.334
CNT_24 0.749±0.221 0.69±0.112 2.73±0.373 1.16±0.134
CNT_25 0.5±0.362 0.551±0.103 0.972±0.384 1.08±0.141
CNT_26 0.492±0.339 0.51±0.262 1.83±0.37 1.02±0.411
CNT_27 0.669±0.232 0.610±0.0774 2.300±0.256 1.210±0.243
CNT_28 0.496±0.433 0.558±0.062 0.993±0.291 1.2±0.207
CNT_29 0.459± 0.189 0.779±0.147 1.98±0.246 1.4±0.143
CNT_30 0.524±0.327 0.602±0.095 1.59±0.302 1.16±0.236

Table 3.9: Mean and standard deviation of phases duration for each subject
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.818 0.03 0.05 0.12 0.06 0.66
TL 0.00 0.91 0.00 0.01 0.01 0.52

STANDING 0.00 0.00 0.92 0.00 0.00 0.81
BALANCE 0.00 0.00 0.00 0.85 0.00 0.94
SITTING 0.00 0.00 0.00 0.00 0.90 0.91

1.0 0.37 0.39 0.28 0.37 0.69

Table 3.10: Classifier: KNN; Dataset_1; Validation Model: K-Fold. Hyperparameters
automatically tuned by MatLab. The green cells along the matrix diagonal contains the
classifier accuracy at predicting each class; the last column of the matrix reports the
sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.86 0.04 0.04 0.08 0.06 0.72
TL 0.00 0.94 0.00 0.00 0.00 1.00

STANDING 0.00 0.00 0.94 0.00 0.00 0.90
BALANCE 0.00 0.00 0.00 0.91 0 0.95
SITTING 0.00 0.00 0.00 0.00 0.92 0.84

0.99 0.31 0.52 0.52 0.48 0.76

Table 3.11: Classifier: KNN; Dataset_2; Validation Model: K-Fold. Hyperparameters
automatically tuned by MatLab.The green cells along the matrix diagonal contains the
classifier accuracy at predicting each class; the last column of the matrix reports the
sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.91 0.02 0.01 0.03 0.03 0.84
TL 0.03 0.88 0.02 0.01 0.03 0.32

STANDING 0.00 0.00 0.94 0.00 0.00 0.86
BALANCE 0 0.00 0.00 0.95 0.00 0.98
SITTING 0.00 0.00 0.00 0 0.92 0.95

0.94 0.58 0.56 0.75 0.48 0.79

Table 3.12: Classifier:KNN; Dataset_3; Validation Model: K-Fold. Hyperparameters
automatically tuned by MatLab. The green cells along the matrix diagonal contained the
classifier accuracy at predicting each class; the last column of the matrix reported the
sensitivity of classifiers at predicting each class; the last row reported the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy.The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.86 0.02 0.03 0.08 0.06 0.72
TL 0.00 0.94 0.00 0.00 0.00 0.85

STANDING 0.00 0.01 0.94 0.00 0.00 0.82
BALANCE 0.00 0.00 0.00 0.89 0.00 0.95
SITTING 0.00 0.00 0.00 0.00 0.92 0.96

1.00 0.44 0.60 0.44 0.47 0.76

Table 3.13: Classifier:KNN; Dataset_4; Validation Model: K-Fold. Hyperparameters
automatically tuned by MatLab. The green cells along the matrix diagonal contains the
classifier accuracy at predicting each class; the last column of the matrix reports the
sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations

REST TL STANDING BALANCE SITTING
Dataset_1 0.80 0.44 0 0.53 0.44 0.50
Dataset_2 0.83 0.47 0.65 0.67 0.61
Dataset_3 0.91 0.32 0.645 0.67 0.62
Dataset_4 0.97 0.23 0.73 0.62 0.59

Table 3.14: KNN F1 score for the four datasets
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Dataset_1 Dataset_2 Dataset_3 Dataset_4

0.7

0.72

0.74

0.76

0.78

0.8

KNN SVM

Figure 3.15: The graph reports the overall accuracies of both KNN and SVM classifiers.
The validation model is K-Fold.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.88 0.02 0.03 0.05 0.03 0.78
TL 0.00 0.89 0.01 0.07 0.02 0.43

STANDING 0.00 0.00 0.84 0.06 0.00 0.33
BALANCE 0.00 0.00 0.00 0.85 0.00 0.98
SITTING 0.00 0.00 0.00 0.00 0.91 0.88

0.98 0.58 0.42 0.28 0.41 0.71

Table 3.15: Classifier Algorithm: SVM,validation model:K-Fold, Dataset_1. Hyper-
parameters automatically tuned by MatLab. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.90 0.04 0.03 0.01 0.05 0.78
TL 0.00 0.94 0.00 0.00 0.00 0.89

STANDING 0.00 0.00 0.88 0.05 0.00 0.43
BALANCE 0.00 0.00 0 0.91 0.00 0.97
SITTING 0.00 0.00 0.00 0.00 0.92 0.89

1.0 0.30 0.58 0.53 0.46 0.77

Table 3.16: Classifier Algorithm: SVM,validation model:K-Fold,Dataset_2. Hyper-
parameters automatically tuned by MatLab. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.93 0.00 0.00 0.00 0.00 0.98
TL 0.08 0.80 0.03 0.00 0.05 0.24

STANDING 0.00 0.01 0.84 0.09 0.00 0.35
BALANCE 0.00 0.00 0.00 0.89 0.00 0.97
SITTING 0.00 0.00 0.00 0.00 0.93 1.00

0.84 0.75 0.60 0.47 0.52 0.71

Table 3.17: Classifier Algorithm: SVM,validation model:K-
Fold,Dataset_3.Hyperparamters automatically tuned by MatLab. The green cells
along the matrix diagonal contains the classifier accuracy at predicting each class; the
last column of the matrix reports the sensitivity of classifiers at predicting each class;
the last row reports the precision of classifiers at predicting each class; the cyan cell is
the overall accuracy. The other cells of the matrices are the fraction of misclassified
observations over the total number of observations
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.92 0.00 0.01 0.05 0.03 0.83
TL 0.00 0.93 0.01 0.01 0.01 0.55

STANDING 0.00 0.00 0.93 0.02 0.01 0.62
BALANCE 0.00 0.00 0 0.90 0.00 0.98
SITTING 0.00 0.00 0.00 0.00 0.92 0.88

0.99 0.77 0.66 0.44 0.52 0.80

Table 3.18: Classifier Algorithm: SVM,validation model:K-Fold, Dataset_4. Hyper-
parameters automatically tuned by MatLab. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations

REST TL STANDING BALANCE SITTING
Dataset_1 0.87 0.49 0.37 0.43 0.56
Dataset_2 0.88 0.45 0.44 0.68 0.61
Dataset_3 0.91 0.36 0.44 0.64 0.68
Dataset_4 0.91 0.64 0.64 0.61 0.65

Table 3.19: SVM F1 score for the four datasets

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.00 0.00 0 0.00 0.97
TL 0.00 0.97 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.98 0.00 0.00 0.91
BALANCE 0.01 0.00 0.00 0.97 0.00 0.93
SITTING 0.00 0.00 0.00 0.00 0.97 0.91

0.96 0.74 0.87 0.97 0.89 0.93

Table 3.20: Classifier Algorithm: KNN,validation model:LOSO,Dataset_1, distance
weight: Equal, distance metrics: Cosine. The green cells along the matrix diagonal con-
tains the classifier accuracy at predicting each class; the last column of the matrix reports
the sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.01 0.00 0.00 0.01 0.97
TL 0.00 0.97 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.97 0.00 0.00 0.90
BALANCE 0.00 0.00 0.00 0.97 0.00 0.93
SITTING 0.00 0.00 0.00 0.00 0.97 0.90

0.96 0.74 0.87 0.97 0.89 0.93

Table 3.21: Classifier Algorithm: KNN,validation model:LOSO,Dataset_1, distance
weight: Inverse, distance metrics: Cosine. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.96 0.01 0.00 0.00 0.02 0.94
TL 0.00 0.97 0.00 0.00 0.00 0.94

STANDING 0.00 0.00 0.97 0.00 0.006 0.88
BALANCE 0.00 0.00 0.00 0.97 0.00 0.93
SITTING 0.00 0.00 0.00 0.00 0.96 0.87

0.97 0.63 0.83 0.96 0.82 0.91

Table 3.22: Classifier Algorithm: KNN,validation model:LOSO,Dataset_1, distance
weight: Equal, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.957 0.02 0.00 0.00 0.02 0.93
TL 0.00 0.97 0.00 0.00 0.00 0.95

STANDING 0.00 0.00 0.97 0.00 0.00 0.91
BALANCE 0.01 0.00 0.00 0.97 0.00 0.93
SITTING 0.00 0.00 0.00 0.00 0.96 0.88

0.97 0.61 0.82 0.96 0.81 0.91

Table 3.23: Classifier Algorithm: KNN,validation model:LOSO,Dataset_1, distance
weight: Inverse, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations

Dataset_1 REST TL STANDING BALANCE SITTING
CE 0.96 0.81 0.87 0.93 0.89
CI 0.96 0.81 0.87 0.93 0.89
EE 0.95 0.72 0.83 0.93 0.84
EI 0.95 0.70 0.84 0.93 0.83

Table 3.24: KNN-The table reports the F1score computed for the Dataset_1 varying the
distance metrcs and weight. CE= distance weight equal, distance metric cosine; CI= dis-
tance weight inverse, distance metric cosine; EE= distance weight equal, distance metric
euclidean; EE= distance weight inverse, distance metric euclidean

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.01 0.00 0.00 0.00 0.96
TL 0.00 0.97 0.00 0.00 0.00 0.88

STANDING 0.00 0.00 0.98 0.00 0.00 0.91
BALANCE 0.00 0.00 0.00 0.99 0.00 0.95
SITTING 0.00 0.00 0.00 0.00 0.97 0.88

0.98 0.73 0.87 0.99 0.87 0.94

Table 3.25: Classifier Algorithm: KNN,Dataset_2, distance weight: Equal, distance
metrics: Cosine. The green cells along the matrix diagonal contains the classifier accuracy
at predicting each class; the last column of the matrix reports the sensitivity of classifiers
at predicting each class; the last row reports the precision of classifiers at predicting each
class; the cyan cell is the overall accuracy. The other cells of the matrices are the fraction
of misclassified observations over the total number of observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.01 0.00 0.00 0.00 0.96
TL 0.00 0.97 0.00 0 0.00 0.88

STANDING 0.00 0.00 0.98 0.00 0.00 0.91
BALANCE 0.00 0.00 0.00 0.99 0.00 0.95
SITTING 0.00 0.00 0.00 0 0.97 0.88

0.97 0.74 0.87 0.99 0.87 0.94

Table 3.26: Classifier Algorithm: KNN,Dataset_2, distance weight: Inverse, distance
metrics: Cosine. The green cells along the matrix diagonal contains the classifier accuracy
at predicting each class; the last column of the matrix reports the sensitivity of classifiers
at predicting each class; the last row reports the precision of classifiers at predicting each
class; the cyan cell is the overall accuracy. The other cells of the matrices are the fraction
of misclassified observations over the total number of observations.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.02 0.00 0 0.01 0.94
TL 0.00 0.97 0.00 0.00 0.00 0.93

STANDING 0 0.00 0.98 0.00 0.00 0.93
BALANCE 0 0 0.00 0.99 0.00 0.96
SITTING 0.00 0.00 0.01 0 0.97 0.87

0.98 0.64 0.85 0.98 0.87 0.93

Table 3.27: Classifier Algorithm: KNN,Dataset_2, distance weight: Equal, distance
metrics: Euclidean. The green cells along the matrix diagonal contains the classifier
accuracy at predicting each class; the last column of the matrix reports the sensitivity
of classifiers at predicting each class; the last row reports the precision of classifiers at
predicting each class; the cyan cell is the overall accuracy. The other cells of the matrices
are the fraction of misclassified observations over the total number of observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.02 0.00 0.00 0.01 0.94
TL 0.00 0.97 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.98 0.00 0.00 0.93
BALANCE 0.00 0.00 0.00 0.99 0.00 0.96
SITTING 0.00 0.00 0.00 0 0.97 0.87

0.98 0.64 0.85 0.98 0.87 0.93

Table 3.28: Classifier Algorithm: KNN,Dataset_2, distance weight: Inverse, distance
metrics: Euclidean. The green cells along the matrix diagonal contains the classifier
accuracy at predicting each class; the last column of the matrix reports the sensitivity
of classifiers at predicting each class; the last row reports the precision of classifiers at
predicting each class; the cyan cell is the overall accuracy. The other cells of the matrices
are the fraction of misclassified observations over the total number of observations.

Dataset_2 REST TL STANDING BALANCE SITTING
CE 0.96 0.80 0.87 0.94 0.89
CI 0.96 0.81 0.87 0.94 0.89
EE 0.95 0.72 0.83 0.93 0.84
EI 0.95 0.70 0.84 0.93 0.83

Table 3.29: KNN-The table reports the F1score computed for the Dataset_2 varying the
distance metrcs and weight. CE= distance weight equal, distance metric cosine; CI= dis-
tance weight inverse, distance metric cosine; EE= distance weight equal, distance metric
euclidean; EE= distance weight inverse, distance metric euclidean

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.00 0.00 0.00 0.01 0.97
TL 0.00 0.98 0.00 0.00 0.00 0.91

STANDING 0.00 0.00 0.99 0.00 0.00 0.95
BALANCE 0.00 0.00 0.00 0.99 0.00 0.96
SITTING 0.00 0.00 0.00 0 0.98 0.93

0.98 0.81 0.92 0.99 0.91 0.96

Table 3.30: Classifier Algorithm: KNN,validation model:LOSO,Dataset_3, distance
weight: Equal, distance metrics: Cosine. The green cells along the matrix diagonal con-
tains the classifier accuracy at predicting each class; the last column of the matrix reports
the sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations.

122



3 – Sit To Stand Phases Detection

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.01 0.00 0.00 0.01 0.96
TL 0.00 0.98 0.00 0.00 0.00 0.91

STANDING 0.00 0.00 0.98 0.00 0.00 0.95
BALANCE 0.00 0.00 0.00 0.99 0.00 0.95
SITTING 0.00 0.00 0.00 0.00 0.98 0.93

0.99 0.80 0.91 0.99 0.90 0.95

Table 3.31: Classifier Algorithm: KNN,validation model:LOSO,Dataset_3, distance
weight: Inverse, distance metrics: Cosine. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.01 0.00 0.00 0.01 0.96
TL 0.00 0.98 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.98 0.00 0.00 0.95
BALANCE 0.00 0.00 0.00 0.99 0.00 0.97
SITTING 0.00 0.00 0.00 0.00 0.97 0.90

0.98 0.76 0.89 0.99 0.91 0.95

Table 3.32: Classifier Algorithm: KNN,validation model:LOSO,Dataset_3, distance
weight: Equal, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.02 0.00 0.00 0.01 0.94
TL 0.00 0.97 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.98 0.00 0.00 0.96
BALANCE 0.00 0.00 0.00 0.99 0.00 0.97
SITTING 0.00 0.00 0.00 0.00 0.97 0.93

0.99 0.70 0.88 0.99 0.88 0.94

Table 3.33: Classifier Algorithm: KNN,validation model:LOSO,Dataset_3, distance
weight: Inverse, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.

Dataset_3 REST TL STANDING BALANCE SITTING
CE 0.98 0.85 0.93 0.98 0.91
CI 0.98 0.84 0.93 0.97 0.90
EE 0.97 0.81 0.91 0.98 0.90
EI 0.96 0.75 0.91 0.98 0.89

Table 3.34: KNN-The table reports the F1score computed for the Dataset_3 varying the
distance metrcs and weight. CE= distance weight equal, distance metric cosine; CI= dis-
tance weight inverse, distance metric cosine; EE= distance weight equal, distance metric
euclidean; EE= distance weight inverse, distance metric euclidean

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.00 0.00 0.00 0.00 0.98
TL 0.00 0.98 0.00 0.00 0.00 0.95

STANDING 0.00 0.00 0.98 0.00 0.00 0.934
BALANCE 0.01 0.00 0.00 0.97 0.00 0.94
SITTING 0.00 0.00 0.00 0 0.98 0.94

0.97 0.84 0.91 0.98 0.92 0.95 0.958

Table 3.35: Classifier Algorithm: KNN,validation model:LOSO,Dataset_4, distance
weight: Equal, distance metrics: Cosine. The green cells along the matrix diagonal con-
tains the classifier accuracy at predicting each class; the last column of the matrix reports
the sensitivity of classifiers at predicting each class; the last row reports the precision of
classifiers at predicting each class; the cyan cell is the overall accuracy. The other cells
of the matrices are the fraction of misclassified observations over the total number of
observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.00 0.00 0.00 0.00 0.98
TL 0.00 0.98 0.00 0.00 0.00 0.95

STANDING 0.00 0.00 0.98 0.00 0.00 0.93
BALANCE 0.01 0.00 0.00 0.97 0.00 0.94
SITTING 0.00 0.00 0.00 0.00 0.98 0.94

0.97 0.84 0.91 0.98 0.92 0.95

Table 3.36: Classifier Algorithm: KNN,validation model:LOSO,Dataset_4, distance
weight: Inverse, distance metrics: Cosine. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.01 0.00 0 0.01 0.95
TL 0 0.98 0.00 0.00 0.00 0.97

STANDING 0.00 0.00 0.97 0.00 0.00 0.92
BALANCE 0.01 0.00 0.00 0.98 0.00 0.94
SITTING 0.00 0.00 0.00 0.00 0.97 0.90

0.97 0.75 0.87 0.96 0.88 0.93

Table 3.37: Classifier Algorithm: KNN,validation model:LOSO,Dataset_4, distance
weight: Equal, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.97 0.01 0.00 0.00 0.01 0.95
TL 0.00 0.98 0.00 0.00 0.00 0.97

STANDING 0.00 0.00 0.97 0.00 0.00 0.92
BALANCE 0.00 0.00 0.000.98 0.00 0.94
SITTING 0.00 0.00 0.00 0.00 0.97 0.90

0.97 0.74 0.87 0.96 0.88 0.93

Table 3.38: Classifier Algorithm: KNN,validation model:LOSO,Dataset_4, distance
weight: Inverse, distance metrics: Euclidean. The green cells along the matrix diagonal
contains the classifier accuracy at predicting each class; the last column of the matrix
reports the sensitivity of classifiers at predicting each class; the last row reports the preci-
sion of classifiers at predicting each class; the cyan cell is the overall accuracy. The other
cells of the matrices are the fraction of misclassified observations over the total number
of observations.

Dataset_4 REST TL STANDING BALANCE SITTING
CE 0.98 0.85 0.93 0.98 0.91
CI 2 0.98 0.84 0.93 0.97 0.90
EE 0.97 0.81 0.91 0.98 0.90
EI 0.96 0.75 0.91 0.98 0.89

Table 3.39: KNN,model Validation LOSO -The table reports the F1score computed
for the Dataset_4 varying the distance metrcs and weight. CE= distance weight equal,
distance metric cosine; CI= distance weight inverse, distance metric cosine; EE= distance
weight equal, distance metric euclidean; EE= distance weight inverse, distance metric
euclidean.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.00 0.00 0.00 0.00 0.98
TL 0.00 0.97 0.00 0.00 0.00 0.89

STANDING 0.00 0.00 0.98 0.00 0.00 0.91
BALANCE 0.00 0.00 0.00 0.99 0.00 0.99
SITTING 0.00 0.00 0.00 0.00 0.97 0.91

0.98 0.81 0.90 0.98 0.93 0.95

Table 3.40: Classifier Algorithm: SVM, validation model: LOSO, Dataset_1,
C=0.0625. The green cells along the matrix diagonal contains the classifier accuracy
at predicting each class; the last column of the matrix reports the sensitivity of classifiers
at predicting each class; the last row reports the precision of classifiers at predicting each
class; the cyan cell is the overall accuracy. The other cells of the matrices are the fraction
of misclassified observations over the total number of observations.
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Dataset_1 Dataset_2 Dataset_3 Dataset_4
0.91

0.92

0.93
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0.96

CE CI EE EI

Figure 3.16: Classifier: KNN, Validation Model: LOSO. The graph shows how the
overall accuracy of the four datasets changed accordingly to the hyperparameters choice.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.00 0.00 0.00 0.00 0.98
TL 0.00 0.97 0.00 0.00 0.00 0.87

STANDING 0.00 0.00 0.98 0.00 0.00 0.95
BALANCE 0.00 0.00 0.00 0.99 0.00 0.99
SITTING 0.00 0.00 0.00 0.00 0.98 0.92

0.98 0.84 0.88 0.99 0.95 0.96

Table 3.41: Classifier Algorithm: SVM,validation model: LOSO, Dataset_2, C=0.0625.
The green cells along the matrix diagonal contains the classifier accuracy at predicting
each class; the last column of the matrix reports the sensitivity of classifiers at predicting
each class; the last row reports the precision of classifiers at predicting each class; the cyan
cell is the overall accuracy. The other cells of the matrices are the fraction of misclassified
observations over the total number of observations.
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Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.99 0.00 0.00 0.00 0.00 0.99
TL 0.00 0.98 0.00 0 0.00 0.90

STANDING 0.00 0.00 0.98 0.00 0.00 0.96
BALANCE 0.00 0.00 0.00 0.99 0 0.99
SITTING 0.00 0.00 0.00 0.00 0.99 0.95

0.99 0.91 0.92 0.99 0.97 0.97

Table 3.42: Classifier Algorithm: SVM, validation model: LOSO, Dataset_3,
C=0.0625. The green cells along the matrix diagonal contains the classifier accuracy
at predicting each class; the last column of the matrix reports the sensitivity of classifiers
at predicting each class; the last row reports the precision of classifiers at predicting each
class; the cyan cell is the overall accuracy. The other cells of the matrices are the fraction
of misclassified observations over the total number of observations.

Predicted
REST TL STANDING BALANCE SITTING

Actual

REST 0.98 0.00 0.00 0.00 0.00 0.99
TL 0.00 0.98 0.00 0.00 0.00 0.93

STANDING 0.00 0.00 0.98 0.00 0.00 0.94
BALANCE 0.00 0.00 0.00 0.99 0.00 0.96
SITTING 0.00 0.00 0.00 0.00 0.98 0.90

0.98 0.87 0.92 0.99 0.96 0.96

Table 3.43: Classifier Algorithm: SVM, validation model: LOSO, Dataset_4,
C=0.0625. The green cells along the matrix diagonal contains the classifier accuracy
at predicting each class; the last column of the matrix reports the sensitivity of classifiers
at predicting each class; the last row reports the precision of classifiers at predicting each
class; the cyan cell is the overall accuracy. The other cells of the matrices are the fraction
of misclassified observations over the total number of observations.

REST TL STANDING BALANCE SITTING
Dataset_1 0.98 0.83 0.9 0.99 0.90
Dataset_2 0.98 0.84 0.90 0.99 0.93
Dataset_3 0.99 0.892 0.927 0.994 0.96
Dataset_4 0.98 0.89 0.93 0.97 0.92

Table 3.44: SVM, model Validation LOSO-the table reports the F1score for the four
datasets
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Dataset_1 Dataset_2 Dataset_3 Dataset_4
0.95
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0.96

0.96
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0.97
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Figure 3.17: Classifier: SVM, Validation Model: LOSO. The graph shows the overall
accuracy across of the four datasets.
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Conclusion

The purpose of this preliminary study is to characterize the dynamic events occur-

ring as rising from a chair. The study of the distinct events-or phases- of the STS

movement would result in a most effective description about:

• the contribution of each single body element involved in the movement;

• the kinematic and kinetic variables during the movement and their changes

related to specific diseases;

• the pain point that could cause the failure of the movement.

The STS exercises have been recorded by the inertial sensors. In contrast with

devices as force platforms or optoelectronics cameras, the inertial sensors are small,

wearable and not expensive. They could be used outside the laboratory environ-

ment.

Because of the high inter and intra-variability of the STS movement, the STS de-

tection using thresholds related to kinematic and kinetic data could be inaccurate.

We tried to solve the problem using Machine Learning.

The machine learning aims to generalize model from experience, i.e. from the real

data. In particular, in this study, we trained two classifier models: KNN and SVM.

We compared two classifier algorithms performances varying the duration of the

epoch, the number of sensors, and the validation model used to train the classifier.

The classifier performances were evaluated by confusion matrices and the F1 scores.
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We compared the K-Fold and Leave One Subject Out validation models. The K-

Fold validation model randomly extracts observations to use as the validation set.

The LOSO validation model use as validation model data from one subject. The

classifier is validated by data that classifier does not know. The results of our study

suggested that the predictive accuracy, precision, and recall of classifier trained were

higher using the LOSO. This is because the size of test set was smaller than the

size of K-Fold validation set resulting in a less unbalanced dataset. Furthermore,

the LOSO validation technique was closer to how the system will be used. Indeed,

the system should be able to generalize new subjects.

The hyperparameters varied in the KNN model were the distance metrics(the func-

tion that calculates the distance between the query point and the neighbours) and

distance weight(the weight of the contribution of each of the k neighbours according

to their distance to the query point). The classifier performances was more affected

by The distance metrics than the the distance weight

The SVM classifiers performed better with lower box constraints(penalties assigned

to the misclassification). More than box constraints the SVM classifiers were af-

fected by the dataset choice.

In the case of LOSO, the KNN and SVM classifier model showed high-performance

metrics and were quite similar, but KNN performed better (0.3% better than SVM).

Both Classifiers performances could be affected by a large unbalanced dataset. The

KNN algorithm is an easier algorithm than the SVM, but, generally, the computa-

tional cost increases as increase the training size.

The SVM Classifier trained on Dataset_3 ( three sensors-sternum, right and left

thigh-0.1 epoch duration) showed the best results. Although this study presents

high accuracy values, several issues that still need to be addressed before such tech-

niques could be used in a more applied setting.

Next Steps
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• We discarded the task performed wrongly and missing data recordings. We

assumed that all the picked measurements were good, so we did not apply any

quality control algorithm to discard potential bad "sequences." To estimate how

the reliability and accuracy of the sensors’ measurement could influence the

classifier performances it could be useful to apply a quality control algorithm.

In the case, it is necessary to estimate the time to evaluate the quality of the

sequence.

• Use the classifier in real time;

• This study included a small data sample (27 healthy subjects and 281 STS

exercises). It would be interesting to increase the data sample and investigating

if and how will change the predictive accuracy;

• To estimate the potential variation of the overall predictive accuracy and single

phases accuracy, it would b useful including healthy elderly subjects and elderly

with history fall.

• It would be interesting evaluating the ability of the classifier to recognize the

STS phases when the task is performed wrongly.

• The clinical relevance of this system could be enhanced by combining it with

classical clinical tools as falls and functional questionnaires. The question-

naires could be useful in identifying functional status. The sensor-based mea-

sures will be correlated with the outcomes of the clinical tools adding a diag-

nostic significance to the measures.
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Appendix:

Publications and Research

Activities

PUBLICATIONS AND PROCEEDINGS

• Marco Testa, Anna Di Marco, Raffaele Pertusio, Peter Van Roy, Erik Cat-

trysse, Silvestro Roatta, A validation study of a new instrument for low cost

bite force measurement, Journal of Electromyography and Kinesiology, Volume

30, October 2016,Pages 243-248, ISSN 1050-6411, http://dx.doi.org/10.1016/j.jelekin.2016.08.005.

• A. Di Marco, M. Testa (2017,October), Real time detection of sit-to-stand

phases: An early study, presented at Italian Society of Clinical Movement

Analysis Congress in Turin, Italy

RESEARCH ACTIVITIES

Movement to sound, from sound to movement: Progettazione e vali-

dazione di un Sistema di feedback uditivo applicato al Sit To Stand(STS)

The main aim of this study is the development of an auditory feedback to facili-

tate the re-learning of Sit-To-Stand (STS) movement, using inertial sensors (IS).
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IS detect the movement of the limbs involved in the STS movement and, by the

elaboration of the data collected, should permit the individuation of a movement

pattern associable to STS. The pattern will be the basis for the development of an

auditory-musical feedback system. The quality of the sound generated by the sys-

tem will be related to the adherence of the actual sit to stand to the ideal pattern

of execution, indicating precision and quality of the performance of the subject.

The data processing involves temporal features extraction (mean, standard devia-

tion,RMS, maximum and minimum) and machine learning application, that should

allow the identification of a pattern relative to STS.

Visual feedback system for the biting and pinching force control The

objective evaluation of pinching or biting accuracy can be of support to monitor

the progress of neuromuscular pathologies and it gives a reference point for creating

personalized rehabilitation therapies. During my first year of PhD studies, I have

been working to refine an already existent visual feedback software prototype for

the evaluation of the biting and pinching force control. In particular, the graphic

interface of the software and the acquisition from the force sensors have been op-

timized. Moreover, the system has been set for being used coupled with surface

emg.

Study of prevalence and mechanical pathogenetic factors of neck pain

in the Judoka Among the most common martial arts, judo is the one that has

the highest number of reported injuries to the head and neck.The aim of this study

was to quantitatively analyze, using inertial sensors applied on the Judoka’s body,

forces really acting on the athlete’s neck during the repeated execution of imbalance

techniques. Obtained data will be compared with pathogenic mechanisms already

extensively studied including, in particular, those of whiplash, to assess any similar-

ities and develop, therefore, more effective strategies for the prevention of neck pain

in Judo.Two inertial sensors (MTw, wireless motion Tracker, Xsens Technologies
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B.V.,Enschede, Netherlands )have been used, one placed on the middle of forehead

and the other placed on the upper part of the sternum. The preliminary analy-

sis of the collected data seems to confirm that in Judo, the stresses acting on the

neck while performing unbalancing techniques are comparable to those recorded in

whiplash 67 and, however, characterized by a propagation speed, from the trunk to

the head, lower than that of the activation of the muscular response. Faced with

a similar antero-posterior acceleration of the head, it was not recorded a vertical

acceleration of the head, a mechanism that, in the light of current knowledge on

whiplash, seems to be the one the more harmful and primarily responsible for the

disorders associated with whiplash.

Inter-muscular adaptations in presence of Trigger Point Musculoskele-

tal pain of myofascial origin is one of the major causes of increased national health

services’ costs because of the elevated request of diagnostic imaging and treatments

together with the impact on economic costs due to productivity loss. The most ac-

credited cause of myofascial pain is the trigger point(TrP). The present project aim

at investigating the relationship between the presence of myofascial trigger point

and muscles’ recruitment analyzed by means of muscle synergies during a reach-

ing Surface EMG signals were recorded with OT Bioelettronica EMG-USB system.

The surface EMG acquisition was conducted simultaneously with the motor per-

formance recordings In order to qualify and quantify the deviation from the desired

trajectory, the subjects was equipped with inertial sensors (MTw, wireless motion

Tracker, Xsens Technologies B.V.,Enschede, Netherlands to register the motion of

the arm in terms of articular angles in a three-dimensional space, velocity and accel-

eration. The inertial sensors were positioned on the forearm, the arm, on top of the

acromion and on the Lewis’s sternal angle. The results of this preliminary exper-

iment have shown that muscles with TrP contribute less to the relative activation

of synergies containing them in the movement space of reference
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a b s t r a c t

Quantitative assessment of force in masticatory muscles is not a routine clinical test, probably due to the
lack of an ‘‘easy-to-use” device. Aim of this study is (1) to present a low cost bite force instrument located
in a custom-made housing, designed to guarantee a comfortable and effective bite action, (2) to evaluate
its mechanical characteristics, in order to implement it in clinical settings and in experimental setups.
Linearity, repeatability and adaptation over time were assessed on a set of four different sensors in bare

and housed condition. Application of the housing to the transducer may appreciably alter the trans-
ducer’s response. Calibration of the housed transducer is thus necessary in order to correctly record real
bite force. This solution may represent a low cost and reliable option for biting force measurement and
objective assessment of individual force control in the scientific and clinical setting.

� 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Bite force is a biological variable that has been frequently used
to assess the function of the masticatory system. Variations of
maximum voluntary bite force and precision seem related to
different conditions as acutely provoked pain (Wang et al., 2010),
chronic orofacial pain (Pereira et al., 2009) and temporomandibu-
lar disorders (Bakke and Hansdottir, 2008; Kogawa et al., 2006),
occlusal factors (Koc et al., 2011; Trawitzki et al., 2011), wearing
dentures (Caloss et al., 2011) or prosthetic implants
(Rismanchian et al., 2009) and can be considered as useful
indicator in diagnosing the functional status of the masticatory
system and monitoring the effectiveness of a therapy.

The first experimental attempt to measure bite force was con-
ducted by Giovanni Alfonso Borrelli and described in his book De
Motu Animalium in 1680 (Ortug, 2002). Since then, depending
on the available technologies, bite force was measured in different
ways. As examples, Castroflorio et al. (2008) used intraoral load
cells embedded in customized acrylic splint, Hoyuela et al.
(2015) measured jaw elevator muscles force in rheumatoid
arthritis women by a bite fork mounted with strain gauge and
complex extra oral devices were used to assess bite force and oral
reflexes (Turker et al., 2004). The bite force in clinical setting is not

yet used as routine outcome measure, while it is extensively mea-
sured in research by study-customized devices. Indeed, only few
commercial devices for measuring bite force are available and were
tested for their reliability. Tscan III (Tekscan Inc, South Boston,
USA), a widely used system for assessing forces on dental surfaces,
did not show an adequate level of validity in measuring the
absolute bite force value, due to individual response behaviour of
the pressure sensors utilized by the system (Cerna et al., 2015).

GM10 occlusal force-meter (Nagano Keiki Japan) is a portable
bite force gauge that demonstrated a good accuracy and reliability
in clinical setting but was found to be uncomfortable due to
excessive hardness of the bite (Serra and Manns, 2013). Major
practical and technical problems related to measuring the force
of bite are:

(1) thickness of the intraoral sensor: excessive interocclusal dis-
tance alters the physiological posture of the mandible and
affects the developed force. On the other hand miniature
load cells are delicate, expensive and not adequate for rou-
tine clinical use;

(2) positioning of the sensor: when a single force transducer is
placed between the incisors it requires a protrusion of the
mandible, which affects the biting force, while placement
of the sensor in the premolar or molar region makes the pre-
cise repositioning of the sensors more difficult, thus affect-
ing repeatability;

http://dx.doi.org/10.1016/j.jelekin.2016.08.005
1050-6411/� 2016 Elsevier Ltd. All rights reserved.
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(3) costs: extra oral apparatuses have been developed, con-
nected with servo controlled motors, adequate to investigate
motor function and reflexes (Turker et al., 2004; van der Bilt
et al., 2006) however, due to their cost and complexity, these
systems are more suited for research purposes than for rou-
tine clinical examination. Some authors have used load cells
mounted on a customized dental (Castroflorio et al., 2008)
device to evaluate bite force, but also this approach results
in a complex and costly technical procedure.

Aim of this study is to present a much simpler and practical
solution, based on a low cost and versatile piezo-resistive force
sensor, adequate to measure bite force in a clinical setting. A thin
commercial transducer is accommodated within a protective rub-
berized housing and characterized from the electro-mechanical
point of view.

2. Material and methods

2.1. Sensor housing description

Force measurement was based on the piezoresistive force
transducer Flexiforce A201 (Tekscan, Boston, MA, USA), featuring
a load range of 100 lb, equivalent to 440 N, and a sensitivity of
0.01 V/N. The FlexiForce force sensor is a flexible printed circuit
with at one end an active sensing area made of pressure-
sensitive ink of 1 cm of diameter. The circuit is embedded within
two polyester film layers with a final thickness of 0.2 mm
(Fig. 1A).

Forces exerted on the active sensing area cause a roughly pro-
portional change of the sensor’s conductance. A special housing
was developed in order to protect the sensor from mechanical
damage and to reduce discomfort for the subject during clenching.
The force transducer was inserted in a home made ‘‘sandwich
structure” composed of different plastic foils and a steel disc, stuck
together by bi-adhesive film. The multi-layer ‘‘L” shaped housing
was developed as shown in Fig. 1B and C. The external layer is
made of a silicone rubber material, commonly used in preparing
dental orthotics (Bioplast – Scheudental - Germany). This layer
provides the possibility of small yielding of the surface under the
teeth, thereby generating a wider contact surface, thus lowering
local pressure. It also provides improved comfort during clenching,
as compared to a hard surface. An internal thinner layer is made of
two hard plastic foils, which provide a flexible support as well as a
graduated handle for the housed sensor. The force transducer is
inserted in-between the two plastic foils, coupled with a metal disc
(diameter = 10 mm, thickness 0.8 mm) located exactly below the
sensory area of the transducer and fixed by bi-adhesive film to
the plastic foil and the transducer. The steel disc ensures that vir-
tually all the force lines between upper and lower teeth are con-
veyed through that area, according to recommendation given by
the manufacturer in the flexiforce user manual (https://www.
tekscan.com/support/faqs/flexiforce-user-manual). The lateral,
short arm of the ‘‘L” structure can be shortened by simply cutting
the excess with scissors in order to adapt to the latero-lateral
dimension of the subject’s mouth.

Since the sensor does not tolerate heat or immersion steriliza-
tion, it should be inserted into a disposable latex or nitrile glove
in order to prevent contact with saliva and thus exclude the need
for sterilization. Final thickness of the housed sensor is about
7 mm and decreases to (5–6) mm after some pressure is exerted
by the teeth, slightly accommodating in the superficial layer. This
allows jaw-elevator muscles fibers to work at optimal length,
therefore permitting an adequate expression of force (Fernandes
et al., 2003; Manns et al., 1979).

A graduated handle allows for accurate repositioning along the
antero-posterior direction, in different experimental sessions.
Moreover, the ‘‘L” shape of the housing allows both the sensor
and the graduated handle to exit the mouth through the inter-
incisal opening, thus preventing damage by canine teeth.

2.2. Device characterization

Force-output measurements of bare and housed transducer
have been performed on a set of four A 201 Flexiforce devices.
The sensor under test was first preconditioned according to the
manufacturer recommendations (https://www.tekscan.com/
support/faqs/flexiforce-user-manual). The preconditioning
consisted of loading the sensor up to 490 N for 30 s for three times.
This treatment was actually repeated few more times to improve

Fig. 1. (A) – The piezoresistive film sensor. (B) – Housed transducer, top view. (C) –
Housed transducer, lateral view: (1) external silicone layer, (2) internal hard plastic
layer, (3) metal disc.
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stability of the transducer. A lever system and a set of weights was
used to apply controlled loads in the range 0–314 N.

The lever system was progressively loaded and unloaded in
eight steps of 39 N. (0-39-78-118-157-196-235-274-314-314-274
-235-196-157-118-78-39-0). The whole procedure lasted about
5 min. The load was exerted perpendicularly to the sensor surface
through a conic head of 10 mm in diameter, corresponding to the
active area of the flexiforce transducer and was measured by a load
cell. In order to assess relative and absolute reliability of the mea-
surement in both conditions, this procedure was performed on the
bare and on the housed sensor and repeated after 24 h.

In addition, in order to test the dependence of the sensor
response on the contact surface, four transducer were loaded
(300 N) against a smooth or rough Plexiglas surface.

Finally, the application of a constant load of 390 N for 4 min was
performed to investigate the output drift over time.

Electric signals generated by the cell and by the Flexiforce trans-
ducer were amplified, sampled at 15 Hz and digitally-converted (16
bit) by a dedicated hardware (Cal4met, OT Bioelettronica, Torino,
Italy) and transmitted to a personal computer (via USB). Numerical
data were acquired and stored by a custom-made software written
inMatlab (Mathworks, Natick, Massachusetts, USA). Measures from
the load cell are expressed in Newton (N), while readings from the
sensors are in Volt (V). Linear fitting of sensor load/unload-response
curve provided a measure of the sensor sensitivity (slope) and of
linearity (R^2) in both the bare and housed condition. Hysteresis
has been defined as difference between the areas under the loading
and unloading curves, divided to the area under the loading curve,
and the relative means were calculated on absolute values. Relative
reliability was assessed by Intraclass Correlation Coefficient (ICC)
and absolute reliability by Standard Error of Measurement (SEM)
and by Bland and Altman’s 95% Limits of Agreement (LOA). Calcula-
tions were conducted using ‘‘R” software (R Core Team, 2013).

3. Results

3.1. Sensor characterization

The characteristic load-response curves of four different sensors
in bare and housed conditions have been measured in two consec-
utive days. Their qualitative behaviour is given in Fig. 2.

The different sensors showed a similar load-response curve,
slightly decreasing the slope at increasing load.

Regression analysis of the curve for each sensor in bare and
housed condition and in the two days was performed (Table 1).
It can be observed that the slope of the regression line, i.e. the sen-
sor sensitivity, may appreciably change in the different sensors
(e.g.: 0.004–0.005 V/N, bare sensors, day 1). Moreover, it was sys-
tematically higher in the housed than in the bare condition. As
for the intercept, ranging between 0.15 and 0.34 V, it is to be
attributed to a specific feature of the hardware, which introduces
a positive offset in order to avoid negative output at 0 load.
Linearity of the curves was in all cases very high (R^2 > 0.94) and
little affected by the housing.

Mean absolute values of hysteresis, calculated over all
sensors and both days was about 0.9% either in bare (range:
0.002–2.177%) and in housed condition (range: 0.065-4.707%).

Between days relative reliability was very high: ICC1: 0.99; CI:
0.98–0.99 (bare sensors) and ICC1: 0.98; CI: 0.97–0.99 (housed
sensors) as such as absolute reliability described by SEM (0.04 V

Fig. 2. Individual load-response curve of the four sensors in bare and housed conditions. Ascending (circle) and descending (triangle) for the bare (black) and housed sensor
(grey).

Table 1
Values of intercept (in V) and slope (in V/N) of each sensors in bare and housed
conditions and in two days.

Condition Day Intercept
(V)

Slope
(V/N)

R^2 p

SENSOR 1 Bare First 0.23 0.0039 0.97 <0.001
Second 0.24 0.0039 0.96 <0.001

Housed First 0.30 0.0054 0.97 <0.001
Second 0.29 0.0052 0.96 <0.001

SENSOR 2 Bare First 0.34 0.0051 0.95 <0.001
Second 0.34 0.0055 0.95 <0.001

Housed First 0.27 0.0063 0.98 <0.001
Second 0.31 0.0058 0.96 <0.001

SENSOR 3 Bare First 0.22 0.0038 0.97 <0.001
Second 0.23 0.0032 0.96 <0.001

Housed First 0.23 0.0056 0.99 <0.001
Second 0.25 0.0059 0.98 <0.001

SENSOR 4 Bare First 0.21 0.0042 0.98 <0.001
Second 0.21 0.0039 0.98 <0.001

Housed First 0.24 0.0060 0.98 <0.001
Second 0.26 0.0061 0.98 <0.001
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for the bare and 0.06 V for the housed) and by Bland & Altman plots
(Fig. 3A and B).

When the sensors were loaded with a constant force of 300 N
against a smooth Plexiglas surface the average output was
1.015 ± 0.126 V and consistently decreased to 0.645 ± 0.104 V
when loaded against a rough surface, individual decrease ranging
from 33 to 40% in the different sensors.

The response to a sustained load of 390 N for 4 min conducted
on bare sensors produced a small drift in the output of 0.7 ± 0.6%
at 1 min, stabilizing at 1 ± 0.5% at 4 min.

4. Discussion

The low-cost system for the measurement of biting force here
described provides a satisfactory performance in terms of linearity,
reliability and response to constant load.

The load-response curves in bare and housed condition showed
that sensitivity (1) is highly variable between different sensors. (2)
slightly decreases at increasing load due to non-perfect linearity;
(3) is substantially increased by application of the housing (by
35%, on average).

It was surprising to see the sensitivity of the sensor increased
after application of the housing.

In fact, a decrease of sensitivity was expected instead of an
increase, considering that in the housed sensor part of the load
could be transmitted through the housing rather than through
the piezoresistive area of the sensor. To prevent this risk and to
make experimental measurements less dependent on the shape
of the contact surface of the teeth, increased separation between
upper and lower surfaces of the housing, was pursued by the inser-
tion of the metal disks (Fig. 1). The increased sensitivity introduced

by the housing must then be attributed to the different nature
(hardness, roughness. . .) of the surfaces taking direct contact with
the sensor. In fact, when the same load was tested against a rough
rather then a smooth plexiglas surface the force reading was
shown to decrease by as much as 40%.

The observed non linearity is very small (R^2 > 0.94) and is
most likely to be attributed to the signal conditioning, based on a
non inverting amplifier and also implementing low-pass filtering
and electrical isolation. This non-linearity and the individual vari-
ability of the sensitivity may potentially result in a systematic
error. However this error may be easily prevented by implement-
ing a multi-point sensor calibration, in the specific load range of
the measurement. In this way reliable recording of absolute force
values can be achieved. Due to the large dependence of the sensor
response on the contact surfaces, it is advisable to apply the hous-
ing prior to calibration.

As already mentioned in the results, a little offset (sensor output
at 0 load) is introduced by the housing. This offset needs to be
accounted for by the calibration procedure and removed, in order
to prevent large errors at low load conditions.

Although we did not assess the effect of temperature change on
the sensor output, the variation reported by the manufacturer
in the user manual of the flexiforce sensor (https://www.
tekscan.com/support/faqs/flexiforce-user-manual) is about 0.36%/
�C. If we account for 15–17 degrees of temperature difference
between the sensor when tested at the bench and when located
in the mouth, this variation would be in the order of 5–6%.
However, a similar variation is expected to occur in all subjects
thus producing negligible changes in the comparisons between
subjects or between sides of the same subject.

Sensors operating in the mouth are also potentially exposed to
high humidity, whose effect has not been tested in the present

Fig. 3. Limit of Agreement of the four sensors: (A) in bare condition; (B) in housed condition.
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study, however exposure to saliva and humidity may be prevented
by shielding the sensor with a latex or nitrile finger glove.

Plastic and rubber shielding of the sensor was proven to
improve comfort and stability of the force signal (Fernandes
et al., 2003; Waltimo and Kononen, 1993). The present results
indicate that, although increasing the sensitivity of the sensor, as
discussed above, the housing does not affect its linearity. The nom-
inal working range of the sensor (440 N) is adequate for use with
adult subjects. In case a wider or smaller range of registration is
needed, it could be scaled up or down by adjusting the sensor’s
dynamic range by tweaking its external drive circuit. The values
of interday relative and absolute reliability obtained by testing
the sensors in bare and housed condition were quite high. Bland
and Altman plots revealed a slightly better performance of the sen-
sors in housed condition. The present device has already been
employed in two preclinical studies. In a sample of seventeen vol-
unteers the control of unilateral bite force was assessed during a
reach and hold task (Testa et al., 2011) This trial demonstrated a
good reliability of the measurements (ICC ranged between 74%
and 88%). In a subsequent study, the device was employed to
assess bilateral control of bite force, two sensors being placed
between left and right molars during an isometric task requiring
independent adjustment of force on the two sides. Also in this case,
the reliability was quite good (ICC of different force indices ranging
from 0.66 to 0.78) (Testa et al., 2015b).

Recently, the system for bite force recording was used, coupled
with surface electromyography, in a group of patients affected by
chronic neck pain to assess the modification of masticatory mus-
cles recruitment during bite force reach and hold tasks (Testa
et al., 2015a).

In each of the above described trials the housed sensors were
well tolerated, thanks to the limited thickness (5–6) mm and the
rubber surface. When inserting a device of such thickness between
the first or second molar, the mouth opens by no >2–3 mm of
inter-incisal distance. It means that the condyles stay almost cen-
tred in the fossa temporalis, the position corresponding to most of
the common jaw activities (Osborn, 1989). The inter-incisal space
allows the passage of the graduated handle (long arm of the ‘‘L”
shaped sensor), proving useful for accurate device repositioning.
Film-based force sensors provide a potentially interesting means
tomeasure biting force, given their very low thickness and low cost,
however only few applications have been presented in the dentistry
field up to now (Baba et al., 2003; Fernandes et al., 2003; Maki et al.,
2001; Miura et al., 2001; Rottner and Richter, 2004; Takeuchi et al.,
2001). The reason of this scarce utilization could be that these sen-
sors are still considered less precise and accurate than load cells,
even if in one study the film sensors compared with a conventional
bite force transducer demonstrated a better performance
(Fernandes et al., 2003). The system proposed by Fernandes et al.
(2003) adopted a steel disc presenting a small bulge in the centre,
aimed to exert pressure on the transducer. In case of repetitivemea-
surements, this solution, could damage the sensor and reduce its
life. The presented customized housing provided with a flat steel
disc permits to re-use several times thefilmsensors (up to6–8 times
in our experience), significantly reducing the costs of each exam.

A system called T-SCAN and its upgrade (T-SCAN II and III) had a
good success and diffusion in clinical practice among dentists.
(Tekscan, Inc. 307 West First Street. South Boston, MA. 02127-1309,
USA) This system uses a film sensor to record the distribution of
occlusal forces which is graphically described over the occlusal sur-
face by a qualitative colorimetric representation of dental contact-
intensity. The information given by the system can support clinical
decision in prosthetic dentistry, but has limited value in giving
information about the neuromuscular control of the bite force.

In other studies film sensors were embedded in splints for long
duration recordings (Baba et al., 2003; Takeuchi et al., 2001).

Recently Castroflorio et al. (2008) proposed a system of bite force
registration that is based on customized upper and lower dental
appliances. These systems must be customized for each subject
with significant extra costs. In addition, the complexity of the pro-
cedure limits its application within dentistry departments. The
piezo-resistive force transducer used in the present study has com-
parable shape and dimensions to the one used by Fernandes et al.
(2003) and shows similar characteristics in terms of measurement
errors, making this sensor a potentially useful tool for routine clin-
ical examinations, provided sensor calibration in its working con-
dition is carefully accomplished.

5. Conclusions

A simple instrument to measure bite force, based on a commer-
cially available sensor inserted in a protective housing and con-
nected to a simple hardware has been developed. The limited
thickness of the developed sensor, the easy repositioning of the
device in the mouth and its low cost overcome the most common
problems encountered in bite force measuring. Indeed, the housing
of the sensor can be assembled by hand and the signal conditioning
can be obtained by adopting the hardware recommended by the
manufacturer or another equivalent solution like the one we have
used in the present work.

The characterization tests showed that the presence of the hous-
ing layers does not worsen, but on the contrary enhance the sensi-
tivity of the sensor. Accurate preconditioning and subsequent
calibration of the housed sensor in its working conditions, by acqui-
sition of the I/O response curve over the load range of interest, is
recommended in order to account for themany limitation including
non linearity, individual variability of the sensitivity and depen-
dence of the output response on the nature of the contact surfaces.

The proposed transducer may be a handy solution to assess the
bite force in the clinical setting and a valid support for standardiza-
tion of EMG studies on jaw-closing muscles.
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