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ABSTRACT 

This work focuses on the geological, geophysical and geochemical exploration of the geothermal 

reservoirs located in the East Africa Rift System (EARS), with particular reference to the characterisation of 

some geothermal fields located in Ethiopia, Kenya, Tanzania and Malawi. Moreover, this study provides an 

updated overview of the procedures for the exploration of geothermal resources and can serve therefore as a 

best-practice guide for future endeavours. Field activities included geological surveys, geophysical 

investigations (gravity, electromagnetic and seismic measurements) and geochemical survey/analyses. 

Moreover, stratigraphic data and P&T logs were available at some explored geothermal prospects. An 

overview of the main investigated geothermal fields was given and three case studies were described in 

detail as representative examples of geothermal play types of EARS: (i) the Alalobeda field (Ethiopia), 

located in correspondence of the triple junction Read Sea-Aden Gulf-Main Ethiopian Rift and (ii) the Kiejo-

Mbaka field (Tanzania), belonging to EARS’ western branch, both falling in the extensional domain play 

type, fault controlled or fault-leakage controlled; (iii) the Menengai field (Kenya), the second most important 

geothermal field in EARS, where a huge quantity of direct data from more than twenty drilled wells is 

available. The latter can be classified as convection-dominated magmatic play type. 

Compared to geothermal fields of South-East Asia and Central America, the geothermal of EARS 

presents some peculiar characters and differences. The plutonic play-type (convection dominated), occurring 

in fore- or back-arc regions of fold-thrust belts along subduction zones, denotes a well-developed thick and 

continuous cap rock mainly formed by clay minerals. In the plutonic play of Menengai, the typical 

impermeable cap rock is practically missing. A “zonation” of the play types occurring in EARS can be 

recognized. The Western Branch is characterised by the presence of fault/fault-leakage controlled play types. 

In the Eastern Branch, geothermal plays are associated to active or quite recent volcanoes. 

Due to the foregoing characters, a different approach should be followed in order to characterize 

properly the geothermal fields present in EARS. In a subduction context, geophysical results from 

electromagnetic investigations play a fundamental role in the exploration of potential geothermal reservoirs, 

as in such an environment they are often succesfully used to detect the occurrence of an impermeable cap 

rock overlying the reservoir (target zone). Therefore, if the resistivity structures inferred in EARS 

geothermal plays are simply associated with “standard” resistivity models of cap rock-reservoir formations, 

the inferred geophysical conceptual model may be grossly incorrect. Wherefore, an accurate and integrated 

interpretation of all the geoscientific data is essential. In this regard, a detailed structural survey is of primary 

importance especially in the fault-controlled plays, whereas its importance is often under-estimated in 

subduction realms. A high-resolution structural survey allows to define a detailed configuration of fractures 

and faults that may control the fluid upflow from the reservoir.  

Concerning the application of geochemical methods, in EARS, typical approaches and models developed in 

the subduction geothermal systems should be re-evaluated. The high-temperature geothermal reservoirs of 

the Eastern branch (e.g., Olkaria and Menengai in Kenya, and Aluto-Langano in Ethiopia) host not only 

mature chloride waters, as the geothermal systems situated along subduction zones, but also mature 

bicarbonate-chloride and mature bicarbonate waters. In volcanic-magmatic regions, deep geothermal liquids 

are assumed to be produced through neutralization of initially acidic meteoric-magmatic aqueous solutions. 

The few available data for volcanic gases indicate that subduction zones volcanic gases are enriched in Cl 

relative to hot-spot and divergent-plate volcanic gases. Therefore, the comparatively small supply of Cl-

bearing magmatic gas species (chiefly HCl) in the root of the Eastern EARS geothermal systems might be 

responsible for the comparatively low Cl contents of related geothermal liquids. The situation might be even 

more complicated in the western EARS, due to the absence of magmatic systems. Therefore, a more 

comprehensive approach to water classification is needed to distinguish mature waters from immature ones. 

In view of the differences with the geothermal systems hosted in subduction zone environments, the future 

exploration and development of geothermal resources of EARS should thus consider that geothermal 
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resources are rarely due to the presence of a hot magmatic source, but rather to the crustal thinning, which 

determines thermal anomalies of moderate intensity. Moreover, favorable thermal conditions are not always 

accompanied by an adequate hydrogeological setting, expecially when they occur in low permeability 

basalts. In these cases, it is essential to pay attention to the structural setting, in order to design the wells with 

the highest likelihood of intersecting permeable tectonic structures. Unlike in most Indonesian fields, where 

permeability tends to be widespread throughout the rock, in the EARS permeability appears in many cases 

limited to major faults. The planned program of drilling in several prospects of Ethiopia and Tanzania will 

make available further information improving the overall understanding of the geothermal characteristics of 

EARS. 
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ACRONYMS 

B/C Benefit/Cost ratio 

Bara Bar absolute 

BTD Brittle-ductile transition 

CSG Production casing 

EARS East Africa Rift System 

ECE Economic Commission for Europe 

EEP Ethiopian Electric Power 

EIRR Economic Internal Rate of Return 

EOS Equation of state 

ESIA Environmental Social Impact Assessment 

ETM+ Enhanced Thematic Mapper Plus 

FCRS Fluid Collection and Re-injection System 

φCth Storativity 

GDC Geothermal Development Company - Kenya 

GDEM Global Digital Elevation Model 

GPP Geothermal Power Plant 

GSE Geological Service of Ethiopia 

ICEIDA Icelandic International Development Agency 

IFDM Integral Finite Difference Model 

IGA International Geothermal Association 

II Injectivity index 

ISOR Iceland GeoSurvey 

kh Reservoir transmissivity 

MER Main Ethiopian Rift 

MFA Ministry for Foreign Affairs in Iceland 

MoNREM Ministry of Natural Resources, Energy and Mining 

MT Magnetotelluric 

MWD Measured while drilling 

η Hydraulic diffusivity of formations 

NCG Non-Condensable Gases 

NDF Nordic Development Fund 

NPV Net Present Value 

OH Open hole 

ORC Organic Rankine Cycle 

P&T Pressure and Temperature 

PPA power purchase agreement 

RVP Rungwe Volcanic Province 

SH Superheated steam 
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SS Saturated steam 

STA/LTA Short Time Average over Long Time Average 

TDEM Time-domain electromagnetic 

TEM Transient Electromagnetic 

TGH Thermal gradient hole 

TOUGH Transport Of Unsaturated Groundwater and Heath 

TRM Tanganyika-Rukwa-Malawi 

TVA Tectono-Volcanic Axes 

UNECE United Nations Economic Commission for Europe Energy Industry 

UNEP United Nation Environment Program 

VNIR Visible and Near InfraRed 

WB World Bank 

WHP Well head pressure 

XRD X-Ray Diffraction 

3G Geology, Geochemistry and Geophysics 
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1. INTRODUCTION 

Geothermal energy is obtained by exploiting the subsurface heat, which may accumulate in 

correspondence of peculiar geodynamic environments such as continental rifts, convergent plate 

margins, hot spots and deep magmatic structures. Commonly, the term “geothermal resource” indicates 

the part of the Earth's heat that can, or could, be commercially recovered and exploited, becoming a 

significant source of renewable and sustainable energy, for both direct uses and electric power 

generation. 

Temperature or enthalpy alone cannot describe a geothermal resource, because at least two 

thermodynamic properties are required to characterise a geothermal reservoir, which should be better 

defined in terms of steam dominated or liquid dominated system. Therefore, talking about high-enthalpy 

or high-temperature systems is not properly correct. Geothermal resources can be classified into High 

Energy Resources by their capacity to generate electricity directly, and into Low Energy Resources, 

which are good for direct uses only. 

In the last four years, I had the opportunity to study in detail several geothermal fields in the 

East Africa Rift System (EARS). Therefore, this PhD thesis is focused on the geological, geochemical 

and geophysical exploration of the geothermal reservoirs located in the EARS. The study is aimed at 

characterising some geothermal fields of Ethiopia, Kenya, Tanzania and Malawi, and thus giving a 

picture of the recent advances in the exploration of geothermal resources in the EARS. Moreover, this 

study can provide an updated overview of the procedures for the exploration of geothermal resources 

and can serve therefore as a best-practice guide for future endeavours. 

This study is based on the data obtained thanks to my direct participation in seven international 

projects, four of which (Ethiopia, Kenya, Tanzania) co-financed by the Ministry for Foreign Affairs in 

Iceland (MFA)-Directorate for International Development Cooperation (ICEIDA) and by the Nordic 

Development Fund (NDF) and the two (Malawi) financed by the World Bank. The seventh project was 

commissioned directly to my employer (ELC Electroconsult) by the Geothermal Development 

Company (GDC, Kenya). My contribution to these projects implied field activities, collection, 

processing and interpretation of geological, geochemical and geophysical data as well as the integrated 

interpretation of the results deriving from the different geoscientific investigations. 

The thesis addresses the following issues: 

- Exploration and exploitation of the geothermal resources. Overview on the i) different 

geothermal plays; ii) phases and goals during the geothermal development; iii) risks in geothermal 

exploration and exploitation; iv) standards and protocols for estimating and reporting geothermal 

potential. 

- Investigation methods and data collection. Description of the most used techniques for 

geothermal investigations. 

- Case-studies. Definition of the rationale to select the case-studies and describe the geoscientific 

investigation results, as well as to report direct information derived from the drilled wells. 

- Assessment of the geothermal resource. Integrated interpretations of the geological, geochemical 

and geophysical models, and definition of conceptual models for the selected geothermal fields. 

- Comparison of the case studies. General guidelines for the optimum procedures in the exploration 

of the geothermal resource are finally addressed. 

http://dictionary.reference.com/browse/hot%20spots
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2. GOALS AND PHASES OF GEOTHERMAL EXPLORATION 

2.1. Foreword 

In the following paragraphs the meaning of geothermal energy, the main targets of geothermal 

exploration, as well as the development phases of a geothermal field are defined. The study of a 

geothermal prospects starts from the definition/characterization of the resource up to its possible 

exploitation. 

2.2. Geothermal energy 

The New Mexico Geothermal Resources Conservation Act (1978) defines the Geothermal 

Resource/Energy as the natural heat of the Earth, in whatever form, which may be extracted from 

natural heated fluids found below the Earth surface. 

There is no standard international nomenclature in use throughout the geothermal community, 

which is unfortunate, as this would facilitate mutual comprehension (International Geothermal 

Association - IGA website). The following are some of the most common definitions and classifications 

in this discipline (Armstrong, 2016): 

- AUSTRALIA (Queensland): Geothermal Energy - the heat energy derived from Earth’s 

natural (sub-surface) heat. Geothermal Resources - the geological strata and associated 

material in which elevated levels of geothermal energy exist. 

- EUROPEAN UNION: Geothermal Energy - the energy stored in the form of heat beneath the 

surface of the solid Earth. 

- ICELAND: Geothermal Energy - reserves of energy in the bedrock; a constant flow of heat 

from the depths of the Earth, which does not constitute ground water. 

- KENYA: Geothermal Resources - any product derived from and produced within the Earth by 

natural heat; and includes steam, water, and a mixture of any of them that has been heated by 

natural heat whether as a direct product or resulting from other material introduced artificially 

into an underground formation and heated by natural heat. 

- PHILIPPINES: Geothermal Resources - mineral resources, classified as renewable energy 

resources, in the form of: (i) all products of geothermal processes, embracing endogenous 

steam, hot water, and hot brines; (ii) steam and other gases, hot water, and hot brines resulting 

from water, gas, or other fluids artificially introduced into geothermal formations; (iii) heat or 

associated energy found in geothermal formations; and (iv) any by-product derived from 

them. 

- UNITED STATES OF AMERICA: Geothermal Resources (Geothermal steam and associated 

resources) - (i) all products of geothermal processes, embracing endogenous steam, hot water, 

and hot brines; (ii) steam and other gases, hot water, and hot brines resulting from water, gas, 

or other fluids artificially introduced into geothermal formations; (iii) heat or other associated 

energy found in geothermal formations; and (iv) any by-products derived from them. 
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2.3. Geothermal plays 

A “Play Type” might be defined by the type of heat source, the geological controls on the heat 

migration pathway, the heat/fluid storage capacity and the potential for economic recovery of the heat, 

allowing worldwide analogy comparison. Ultimately, the geological framework does not only control 

the play type but also the decision for applied heat recovery technology (Moeck, 2014). 

The identification of the geothermal resource type of the prospect under exploration is of 

paramount importance, since such identification affects the interpretation of the assumed geometric 

configuration and characteristics of the system and consequently the strategy to be adopted in the course 

of the deep exploration stage. 

Cataloguing of geothermal systems by geothermal play type has been discussed in several 

papers by Moeck (2014) and Moeck et al. (2014). A play type describes the generic geological 

environment that might host an economic accumulation of the commodity. 

Making specific reference to the geothermal resource, geothermal plays can be broadly 

separated into two types related to the mechanism by which heat is transported into the reservoir, 

inasmuch as the heat transport is dominated by either convection or conduction. 

Convection-dominated geothermal plays host medium to high enthalpy resources (> 150-

200 °C) and occur at plate tectonic margins or settings of active tectonism or volcanism (see Figure 2-

1). Convection of thermal fluids induced by a heat source or by an anomalous thermal gradient 

transports heat from deeper (shallower than 3,000 m) levels towards surface. 

Structural elements have a major influence on the fluid flow pathways and high permeability is 

necessary to allow significant convection. The magmatic, plutonic and extensional domains are the 

common convection-dominated geothermal plays; they are therefore characterized by a high thermal 

gradient, natural fluids flow and fluids dynamics. 

Conduction-dominated geothermal plays, on the other side, host low to medium enthalpy 

resources (< 150-200 °C) and are predominantly located in tectonic plates, where no significant recent 

tectonism or volcanism has occurred (see Figure 2-1). 

The thermal gradient is average, wherefore the reservoir is located at greater depth than in the 

case of convection-dominated plays (deeper than 3000 m). Faults can play an important role as fluids 

conduit or barrier during production and may induce compartmentalization of the system into separate 

fault blocks. Intracratonic basins, orogenic belts and foreland basin, crystalline rock/basement are the 

common conduction-dominated geothermal plays. 

Each play type lies within a geological/tectonic environment, and it is possible for specific 

geothermal systems to have geological characteristics of more than one play type (Moeck, 2014). 

Figure 2-2 shows all 187 producing geothermal fields included in Figure 2-1, separated into three 

regional triangles for the Americas, Europe/Atlantic/Africa and Asia/Pacific. 

Analysing plots of Figure 2-2, it is evident that most of the developed geothermal systems in the 

world represent convection-dominated magmatic play types (including volcanic and plutonic plays). 

Developed extensional domain plays are mainly located in the Basin-and-Range in the U.S.A. and in 

western Turkey. 
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Figure 2-1 Worldwide producing geothermal fields related to the plate tectonic setting. Example fields a 

selected as play types. Modified from Moeck (2014), installed geothermal fields compiled from 

http://geothermal-powerplant.blogspot.com; www.thinkgeoenergy.com 

The development of conduction-dominated geothermal plays has predominantly been restricted 

to Europe (precisely Germany) where the regulatory framework has supported their development. 

Differently, not a single conduction-dominated play has been developed in the Americas, and only two 

in the Asia/Pacific region (precisely Australia). Conduction-dominated geothermal plays usually host 

‘tight’ reservoirs that require specific technologies to achieve an economical productivity. 

The developed conduction-dominated geothermal plays in Germany are mainly located in the 

Bavarian Molasse Basin, where the fail-safe German feed-in tariffs for geothermal power guarantees the 

dynamically evolving geothermal technology improvement. The lessons learned from the Bavarian 

geothermal fields show that geothermal developments are more cost-effective to date compared to 

10 years ago, when geothermal field development began with exploration and drilling stimulated by 

Germany’s ‘Renewable Energy Act’ (Lentsch and Schubert, 2013; Lentsch et al., 2012). The producing 

reservoir within the Bavarian Molasse Basin is an example of a previously non-economic play type with 

high recovery uncertainty that has evolved into a play type with greater probability of exploitation 

efficiency. 
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Figure 2-2 Worldwide developed geothermal systems, grouped into play types and into three regions. 

Geothermal systems are taken from the map in Figure 2-1. Notice the cluster on conduction 

dominated plays in the regional triangle of Europe/Atlantic/Africa representing the German 

developed systems in the Bavarian Molasse Basin (after Moeck, 2014) 

2.3.1. Greenfield survey 

In a geothermal context, a greenfield survey means the early stage exploration of a geothermal 

prospect that have a total lack of geoscientific information or only very limited data sets. 

The first “greenfield investigation stage” is to perform a Preliminary Reconnaissance Survey, 

which includes but it is not limited to the following phases: 

i) analyse all the available technical documentation regarding the identified greenfield; 

ii) visit the prospects in order to get a general assessment of their geological setting and to collect a 

few water samples, which may provide some indications on the origin of the fluids and on the 

underground temperatures; 

iii) at conclusion of the previous activities, it is possible to rank these geothermal features according 

to the probability that the manifestations are the surface expression of a geothermal system. 

Ranking is essentially based on technical grounds, but also takes into account non-technical 

factors, such as morphology, accessibility, land use, environmental and social framework, 

distance from the national grid, etc. 

In accordance with the established ranking, some prospects will be selected to be covered by 

more detailed investigations (geoscientific exploration), which will include remote sensing study, 

geological mapping, geochemical sampling of thermal fluids (waters and gases) and geophysical 

surveys (magnetometry, gravity, electromagnetic methods and microseismicity records). 
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2.3.2. Geoscientific exploration 

This stage aims at collecting and providing enough information for a proper technical analysis, 

due to allow a sound decision on the opportunity to pursue the development of the selected site. The 

foreseen investigations include a refinement and integration of the previously conducted geological and 

geochemical surveys, but are mainly focused on the implementation of geophysical survey. The choice 

of geophysical methods to be adopted is left to the experts, depending on the characteristics of the 

prospect, but in principle, electromagnetic and gravimetric investigations are mostly applied. 

At the conclusion of this phase, a detailed geo-scientific report is developed covering the 

explored area, including a preliminary conceptual model of the geothermal prospect 

(Monroy Parada, 2016). The report should present recommendations on the strategy to be pursued for 

extending the exploration of the geothermal resource, as well as preliminary development strategies for 

the area. 

2.3.3. Drilling and testing 

The continuation of the exploratory phase has the main goal to prove the existence and potential 

of the geothermal resource (Monroy Parada, 2016) through the definition of the boreholes geology, 

thermodynamic properties and geometry (boundaries) of the reservoir. A drilling program is designed 

and a set of a few slim holes or full size geothermal wells, ranging from 1000 to 3000 m depth, are 

drilled based on the preliminary conceptual model defined during the geoscientific exploration phase. It 

is worth mentioning that the drilling program has to be evaluated/updated continuously during the 

drilling activity as a function of the geological and well testing results progressively acquired. Location 

of wellpads will not only be depending on geoscientific information but also on social-environmental 

considerations in the area. 

The first well is the most critical one, as it is meant to maximize downhole information. If the 

first well does not encounter hot fluids, downhole data must be evaluated in conjunction with the initial 

geological, geochemical and geophysical studies before deciding on the next well target. If the first 

exploration well is a success, a step-out well is drilled. Step-out wells should not be too distant from the 

exploration well (~1-2 km) and should normally target high fractured rocks and other geological 

structures (e.g. faults). Well logging and discharge tests follow the completion of drilling. Results of the 

well surveys and tests may confirm the resource and, together with the earlier investigation results, a 

refined conceptual model can be developed. 

Wells often do not readily discharge after drilling even if there are sufficient indications of 

permeability and high temperature. In such cases, well discharge is stimulated by using compressors and 

boosters of suitable pressure and volume either for pressurizing the well or for coil tubing operation. 

Prior to implementation of the drilling operations, an Environmental Social Impact Assessment (ESIA) 

needs to be prepared, in order to obtain permits from the appropriate entities. 

2.3.4. Feasibility study 

The results of the exploratory drilling activities are utilized to develop a technical and economic 

feasibility study, which will provide the owner of the geothermal concession with all information and 

data necessary to take an informed decision on the convenience to proceed with the implementation of 

the geothermal development of the prospect. 
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➢ Resource feasibility 

The modern analysis and evaluation methodology of geothermal resources ( reservoirs) is 

based on the use of mathematical simulation models. These models describe the physical processes 

of heat and mass transport within the reservoir through numerical solution of the appropriate mass 

and energy balance equations, allowing to study the dynamic reservoir behaviour, in both its natural 

state and under exploitation conditions. 

The numerical model represents an idealization of the real reservoir in its present state, 

formulated taking into account the main system characteristics summarized in the conceptual 

model. It always implies a simplification of the natural system, which is characterized by an 

extreme complexity and only partially is directly known. In spite of this, the use of an appropriate 

mathematical model can give very valuable answers to the basic questions on the field capacity and 

exploitability, greatly contributing to the formulation of safe development plans and reducing the 

risk of oversizing of the power plant. The first step is the development of a 3-D natural state 

numerical model of the geothermal system. The input data of the simulation model shall include: 

- model geometry, involving the definition of model extension and 3-D gridding; 

- assigning of boundary conditions (pressure and temperature/heat flow, fluid recharge and 

outflow); 

- assigning of initial conditions (pressure, temperature, saturation, composition); 

- rock petro-physical properties distribution (density, specific heat, thermal conductivity, 

compressibility, permeability, relative permeability curves, capillary pressure curves). 

The natural state model needs to be calibrated in order to reproduce inferred thermodynamic 

conditions, measured well pressure and temperature profiles. It is used to run sensitivity studies on key 

parameters whose incertitude may considerably affect the natural state of the geothermal system. The 

natural state model is built using numerical reservoir simulation. 

➢ Field development plan 

The objective of the field development plan is to ensure the presence of suitable geothermal 

fluids for the full life of a power plant. Such target is achieved through the definition of: i) the optimal 

production conditions; ii) the reinjection strategy; iii) the required number and location of production, 

reinjection and make-up wells. 

The natural state model is the basis for constructing the 3-D exploitation model of the 

geothermal system, which will inherit from the former the initial and boundary conditions and the 

petrophysical properties distribution. As far as the representation of wells within the numerical model 

is concerned, two approaches can be followed: a well-by-well approach, in which each well is 

explicitly represented within the discretization grid; a lumped well field approach, in which groups of 

wells are producing from the same grid elements. The first approach has the advantage to allow the 

calibration of single wells productivity against production test results and to supply a more reliable 

estimate of wells deliverability evolution during reservoir exploitation. 

The 3-D exploitation model is used to: 

- determine the full and sustainable electric power production potential of the geothermal reservoir 

for planned field development; 

- predict the reservoir response to the above-mentioned exploitation, assessing in particular the 

impact of possible additional expansions; 
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- establish future requirements of replacement (make-up) wells, due to reservoir pressure decline, 

and of re-injection wells; 

- evaluate the long-term trend of wells deliverability features (enthalpy and composition) and 

reservoir conditions (pressure, temperature, saturations and thermodynamic conditions). 

The field development strategy has to be elaborated in conjunction with the conceptual design of 

the fluid collection and re-injection system (FCRS). 

➢ Engineering feasibility 

This step involves the definition of the essential characteristics of the power plant/transmission 

system in terms of thermal cycle, power station basic design, location and interconnection to the power 

grid. The configuration of the thermal cycle of the geothermal power plant (GPP) has the main purpose 

of optimizing the plant output capacity. The cycle and the scheme of resources exploitation, outlined at 

a preliminary level during this phase, will be examined in detail during the field development stage, in 

order to optimize the most significant parameters and the criteria of conceptual design. 

Design of the FCRS should ensure a reliable and economic operation of the GPP. The 

optimization of the FCRS includes the general architecture, layout, well-pads arrangement, steam-brine 

separation strategy, piping sizing, fluid-dynamic simulations in static and dynamic conditions, piping 

stress analysis. 

➢ Financial and economic feasibility 

The feasibility study shows also project cost estimates, development timelines and the economic 

and financial analyses under probable power demand scenarios. The cost estimate is carried out for each 

component and structure, on the basis of the engineering options defined during the feasibility study. 

The cost estimate shows the direct construction cost, labour and equipment, split into local and foreign 

currency and subdivided into the following sections: i) geothermal field, that is wells, fluids separation 

and conveyance system, taking into account estimated depth and productivity of the wells, accessibility, 

morphology, geological and geotechnical conditions, etc.; ii) power plant, through an itemized list of the 

systems and sub-systems; iii) transmission line; iv) costs related to the introduction of mitigation 

measures as a result of the Environmental and Social Impact Analysis. 

The Economic Analysis shall evaluate the economic costs and benefits of the project, utilizing 

the cost estimate as described above and assuming as benefit the "avoided cost", that is the energy cost 

which would be incurred in the absence of the studied geothermal exploitation or feed-in tariff. This 

analysis, based on economic prices with and without social prices shall compute the usual parameters, 

which indicate the project's viability: i) economic internal rate of return (EIRR); ii) net benefit (B-C) or 

net present value (NPV); iii) benefit/cost ratio (B/C); iv) payback period; v). In the economic analysis, 

also costs and benefits related to the environment will be taken into account. 

The financial viability of the project will be evaluated by elaborating projections of the 

investments for the construction and the costs-benefits of the operation, as well as the origin and 

application of funds and a general balance, considering first separately and then as a whole power 

producers. 

➢ Environmental-social feasibility 

At this stage, in accordance with national environmental laws and regulations, an Environmental 

Social Impact Assessment (ESIA) need to be prepared in the framework of the full geothermal field 

development. During this phase, some consultations with local communities and authorities are 

performed, to assess and evaluate the perception of the project by local communities and to collect 
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environmental information on the project area. Once completed these activities the ESIA identifies the 

potential environmental and socio-economic impacts of: i) drilling activities; ii) FCRS construction; 

iii) the power plant construction; iv) the power plant operation, v) the alternative transmission line 

options for connecting the plant(s) to the National grid. 

2.3.5. Field development 

The words “field development” refer to the realization (drilling) and testing of the 

production/reinjection wells, as well as to the FCRS construction. Several steps lead up to the 

drilling/construction activities, namely: i) preparation of technical specifications; ii) preparation of the 

bidding documents; iii) evaluation of offers; iv) contract negotiation and award. Only after the 

completion of both wells and fluid collection/reinjection system the geothermal resource is available to 

be fully exploited. 

2.3.6. Power plant construction 

Power plant construction phase begins once the resource is defined and proven. The general 

configuration of the thermal cycle of the GPP, as defined in the feasibility study, needs to be updated 

and a detail design is prepared. As in the field development phase, the following steps are preparatory to 

the GPP construction activities, namely: i) preparation of technical specifications; ii) preparation of the 

bidding documents; iii) evaluation of offers; iv) contract negotiation and award. 

The plant erection phase is associated with factory and field tests of the 

mechanical/electromechanical equipment. Finally, the last action in a geothermal project is the 

commissioning and start-up of the GPP. 

2.3.7. Power plant operation 

Even in the presence of a good resource, it is essential to manage it properly through a 

power plant operation optimization. Moreover, also an adequate maintenance planning is necessary 

to guarantee a plant long-life. From the economic point of view spare parts & consumable material 

procurement plan, as well as periodic operating cost controls, are to be envisaged. 

2.4. Risks and investment profile in geothermal exploration and exploitation 

A full-size geothermal project typically takes more than 7-8 years to be completed 

(Gehringer et al., 2012). During the project development, a number of risks are faced, either associated 

with any investment in the power sector, or specifically connected to the peculiarities of the geothermal 

energy; specifically: 

- Risks common to other types of power projects: delay, off-take, price/tariff, operational, regulatory 

risk, financing (high upfront costs) 

- Risks specific to geothermal energy (see Figure 2-3): 

i) Exploration Phase, up to Test Drilling: surface studies are not able to significantly reduce project 

risks. However, they imply low investment costs; the following exploratory drilling phase is 

more capital intensive, but not yet able to minimize risks related to the exploitability of the 

resource, at least till the test completion. Wherefore, significant investments are not completely 

repaid by a proportional risk reduction; in fact, geothermal resource characteristics remain 

largely unknown (i.e. enthalpy, permeability, chemical composition, etc.); 
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ii) Resource Risk During Project Implementation: As any other mining business, this risk depends 

on the nature of the resource that remains largely unknown till when commercial wells are 

drilled and tested, i.e. at the end of the project development, when investors and lenders are 

highly exposed. 

 

Figure 2-3 Typical Costs and Risk Profile of Geothermal Development. Modified from Gehringer, M. and 

Loksha, V. (2012) 

2.5. Standards and protocol for estimating and reporting geothermal potential 

Originally, the resource assessment process of geothermal prospects was based on stored heat 

(also known as volumetric) methods, while in the last decades it has been based on numerical reservoir 

modelling (Grant, 2011). Several attempts to codify such assessment process have been tempted. The 

proposed reporting codes are represented by the following guidelines: 

- Australian Geothermal Reporting Code (AGEA, AGEG, 2010a,b); 

- Canadian Geothermal Code for Public Reporting, the Geothermal Energy Association (Deibert et 

al., 2010); 

- New Geothermal Terms and Definitions - a Guide to Reporting Resource Development Progress 

and Results to the Geothermal Energy Association (GEA, 2011); 

- Application of United Nation Framework Classification for Fossil Energy and Mineral Reserves 

and Resources 2009 to Geothermal Energy Resources - ECE 2010 (UNECE-IGA, 2016). 

The United Nation (UN) approach has to be pointed out as the evaluation of geothermal resource 

potential integrated with the evaluation of the resource feasibility and economic viability. 

It should be mentioned that some of the above listed codes/classifications based on the heat 

stored method have been harshly disapproved by world-renowned experts (e.g. Grant, 2011), as shown 

for instance by the review of the Australian Code. As a matter of fact, the comparison between the 

actual and the originally estimated performance for a significant number of examined geothermal 

resources proved that the method proposed by the Australian Code based on the heat stored method is 

highly unreliable, and usually strongly biased. In particular, the tendency to overestimate has led to the 

reduced credibility of the method, inasmuch as the main problem lies in the assumed “recovery factor” 

(Grant, 2011). 
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At the end, the preferred methodology to classify and report geothermal resources is the recently 

published UNECE - IGA specifications for the application of United Nations framework, 

“Classification for Fossil Energy and Mineral Reserves and Resources”, which is likely to become a 

standard for the geothermal industry. It is a generic principle-based system (using a numerical and 

language independent coding scheme) in which input data from different assessments are classified on 

the basis of: i) fundamental criteria of economic and social viability (E); ii) field project status and 

feasibility (F); iii) geological knowledge (G). The method combines these criteria to create a three-

dimensional system (Figure 2-4). This means that what is customarily called geothermal resources 

assessment is only part of the overall description, to be completed with other information. 

 

Figure 2-4 UN 2009 3D-classification system 
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3. INVESTIGATION METHODS AND DATA COLLECTION 

Several indirect and direct approaches are commonly used to explore and identify the occurrence 

of geothermal resources. Indirect studies are developed during the preliminary phase of geoscientific 

exploration, whereas direct investigations are carried out in the subsequent exploratory phase. Among 

the numerous indirect methods, the worldwide standard generally includes investigations of remote 

sensing, geology, geochemistry (including soil gas), and geophysics. On the other hand, the data 

obtained during the direct investigation phase provide the only direct information on the hydraulic-

thermodynamic-chemical characteristics of the geothermal reservoir. The overall objectives of the 

geothermal exploration are aimed at: 

- identifying the heat source of the potential geothermal system; 

- estimating the position, depth and boundary of the reservoir; 

- identifying possible hazards in the geothermal area, such as volcanism, seismicity, etc.; 

- assessing the reservoir characteristics (enthalpy, hydrodynamic status, scaling and corrosion 

potential, content of non-condensable gases, etc.); 

- estimating the electric power capacity of the resources; 

- providing recommendations on location, depth and target of exploratory wells; 

If the results of the geoscientific investigations are consistent, a preliminary conceptual model of 

the geothermal system can be formulated and suitable sites for exploratory drilling can be pointed out. 

Geological samples (drill cuttings and occasionally cores) are obtained from the wells to determine the 

lithology and alteration of the rocks. The wells make it possible to introduce various measuring tools 

right into the heart of the geothermal reservoir and to carry out measurements for estimating reservoir 

parameters, the most important of which are reservoir temperature and pressure (Steingrimsson, 2006). 

In this Chapter, I will briefly present the main geological and geophysical approaches that were applied 

to the geothermal plays of the East African Rift System during the present PhD thesis work. 

3.1. Remote sensing 

Recent significant improvements in the wavelength coverage, spectral resolution and quality of 

remote sensing imagery have led to the extensive application of this investigation approach in 

exploration and site characterization. Traditional techniques in spectral and spatial analysis of imagery, 

coupled with new, high signal-to-noise data, allow their direct application to problems in geothermal 

energy exploration and development (Calvin et al., 2005). The remote sensing study is planned to 

support the geo-structural interpretation of a geothermal area, focused to the exploration and 

exploitation of the geothermal resources. Different types of remotely sensed images were utilized in the 

framework of this work to the EARS geothermal systems; this multiple choice was dictated by the fact 

that different sensors offer distinct types of information, increasing the possibilities of interpretation. 

The most common analysed images were, as follows: 

✓ Landsat ETM+ 7: these scenes can be acquired, already ortho-rectified, from the Global Land 

Cover Facility imagery archive (http://glcf.umiacs.umd.edu/). For the purposes of the 

interpretation, the scenes needed to be processed by means of: i) a pan-sharpening process; ii) 

preparation of a series of colour composites to be directly interpreted on the computer screen, in 

order to verify the different appearance of morphologic and structural features. 

http://glcf.umiacs.umd.edu/
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✓ Terra Aster VNIR: The Aster Volcano Archive (ava.jpl.nasa.gov/) provides a number of free 

Aster images concerning all the volcanic areas of the world. The images are colour composites of 

the three VNIR (Visible and Near InfraRed) bands 3, 2, 1. 

✓ Aster GDEM: Among the products provided by the Terra Aster sensor, there is the Global Digital 

Elevation Model generated by the processing of stereo pair images. The Aster GDEM has a 

ground resolution of 30 m and average vertical accuracy of 20 m 

(see http://asterweb.jpl.nasa.gov/gdem.asp). 

✓ Orthophoto: A true colour orthophoto, generated by the mosaic of aerial photos acquired 

specifically for the geothermal prospect, is utilized. The orthophoto has a ground resolution of 

0.4 m (40 cm) and no coordinate conversion is required. 

The simplest results deriving from the remote sensing study is geomorphological information, in 

terms of drainage pattern and landforms. However, in geothermal exploration, the most important issue 

is the fracture analysis. Linear features are therefore considered as the surface expression of fractures 

affecting the bedrock, even where blanketed by thick soil or vegetation. Another assumption is that the 

observed linear features are the surface expression of structural deformations affecting a considerable 

thickness of rocks at depth. During the interpretation, linear features may be classified according to their 

length and photographic expression, unless they are directly recognized as faults or dykes. Thus, the 

linear features of the study area can be classified, as follows: i) regional lineaments; ii) faults; iii) major 

Fractures; iv) lineations. 

The information offered by the total field of linear features is generally so rich that an attempt of 

analysis without proper logical tools may lead to an almost infinite number of possible combinations 

and interpretations. For this reason, a statistical analysis is generally applied. This refers mainly to two 

series of data: i) orientation and relative importance of recognizable fracture trends; ii) distribution of 

the intensity of fracturing, i.e. fracture density. 

For the first purpose, the strike and length of each feature is measured and the results are 

elaborated to obtain azimuth distribution diagrams. The analysis of the azimuth distribution frequencies 

and their variability leads to the definition of azimuth sectors, for which it is assumed that the linear 

features there included are the expression of a discrete structural dynamics. Such structural directions 

are referred to as trends. The relative importance of the trends, their relationships with the geological or 

structural units and their distribution in a studied region, allow drawing hypotheses about the dynamics 

and the succession of the structural deformations that affected a region. 

The second type of elaboration of the total field takes into consideration the areal density 

distribution of the linear features, irrespective of their azimuths, to produce a density map of the total 

field. This map can be considered to represent effects of various origins, mainly the mechanical 

properties and age of the outcropping formations and the amount and type of structural deformation. In 

the case of the application of fracture analysis to hydrogeology and to geothermal exploration, it 

becomes of interest to analyse the distribution and density of the crossing points of two or more linear 

features (nodal points, or nodes). In fact, this type of analysis helps to evaluate the secondary 

permeability. 

Besides the density of nodes, for a correct analysis of the fracturing intensity, a weight is 

attributed to the linear features according to a series of parameters reflecting their classification as well 

as the tectonic and morphological conditions of the area. The weight is inferred by combining the 

different parameters through a multicriterial analysis, which assigns to each parameter a specific 

value and calculates a final weight through the application of an appropriate algorithm. In 

http://ava.jpl.nasa.gov/
http://asterweb.jpl.nasa.gov/gdem.asp
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geothermal exploration, the final aim is to assign to each linear feature a numeric value representing 

its potential to allow groundwater or, more generally, fluids circulation. 

3.2. Geological surveys 

Geological surveys are aimed at defining the characteristics of the geothermal prospects in 

relation with the potential presence and geometrical configuration of the geothermal system. The survey 

is accordingly focused on the reconstruction of the stratigraphic and structural setting, identification of 

possible heat sources and analysis of the thermal manifestations considered as surface expression of the 

geothermal system. In order to reach the above objectives, in the investigated geothermal fields the 

geological study was conducted at two distinct levels of detail, namely: 

- At semi-regional scale, where emphasis was given on structural aspects, as derived from the 

analysis of the existing documentation and on the results of the remote sensing study. 

- At local scale, where the geological study was based, besides the existing documentation and 

remote sensing study, on the findings of a field mapping program and of the associated laboratory 

analyses. 

In general, geological surveys include the following phases: 

✓ Analysis of existing documentation: The available geological literature, in the form of published 

and confidential reports, aerial photos interpretation, papers and maps, is thoroughly analysed, in 

order to finalize the program of geological investigations, identifying those aspects, which deserve 

specific attention in both field and laboratory activities. 

✓ Geological mapping: A detailed geological mapping of the prospect needs to be carried out 

utilizing large-scale topographic maps (1:10000 or 1:25000). Mapping is also based on the 

data from the remote sensing study. Lithological formations are mapped and geological 

structures are traced to provide comprehensive information on the extent of faults and other 

lineaments, as well as of their age. Primary and secondary permeability of geological 

formations is also assessed and potential geological hazards identified. Moreover, careful 

examination of thermal manifestations and hydrothermal alteration zones may reveal relations 

between fracture-controlled permeability and fluid flow. 

✓ Laboratory analyses: Representative rock samples of the different formations are collected in 

the course of the mapping and studied in laboratory through petrographic and chemical 

analysis, in order to define composition, texture and alteration of the various lithological 

units. Moreover, ad-hoc selected samples of deposition or alteration minerals are collected 

from hydrothermal manifestation zones for XRD analyses, to provide information on the 

thermal conditions occurring during the deposition/alteration phases. 

✓ Data interpretation: The information derived from the available literature, the remote sensing 

study, the geological mapping and the laboratory analyses is interpreted jointly to come up 

with a reconstruction of the stratigraphic, structural and hydrogeological setting of the 

geothermal prospect and the identification of the relationship between geological and 

hydrothermal features and the possible presence of a geothermal system. 

The final stage of the geological survey consists of a report in which the available 

documentation is critically reviewed, and the regional geology, the litho-stratigraphic setting, the 

structural pattern, the volcanological features (if the prospect is located in a volcanic area) are described. 
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Moreover, the report is particularly focussed on the identification of potential heat sources and phreatic 

structures, the drainage system and the precipitation regime, the type and degree of permeability of the 

geological formations, geological hazards (seismic, volcanic, slopes stability, flooding, etc.), the natural 

recharge and the potential role of the geological formations in the geothermal system. A synthesis of the 

geological features and a preliminary evaluation of the “priority zones”, i.e. the zones of the geothermal 

area in which geothermal resources are more likely to occur, are finally included in georeferenced 

geological maps at adequate scale in a GIS environment, as well as of geological profiles. These maps 

also describe the hydrothermal manifestations and the respective temperature, flow rate, pH and 

electrical conductivity, as well as secondary mineral deposits and alteration. 

3.3. Geochemical surveys 

The geochemical surveys aim at defining the characteristics of the geothermal fluids, in terms of 

composition and temperature, as inferred from the chemistry of the thermal manifestations, to 

reconstruct the deep circulation of the geothermal system (recharge, upflow and outflow) and to identify 

possible drawbacks such as scaling/sealing and corrosion. A geochemical survey is generally focussed 

in the same area of the local-scale geological mapping, but may be extended, if necessary, to the 

peripheral part of the prospect. The scheme of geochemical investigations (Giggenbach, 1984) carried 

out in this study includes: 

✓ Fluids sampling (waters and gases): water samples were collected from thermal springs, cold 

springs/shallow wells discharging local groundwater and surface water bodies. Moreover, gas 

samples were collected from gas-bubbling hot springs, cold gas vents and fumaroles. Each 

sampling spot was documented by photos and sampling cards, indicating: GPS coordinates and 

elevation, geological/structural setting, rock alteration and mineral deposition, dimension of 

surface manifestation or sampling point area, approximate water flow rate, ambient temperature 

and results of field determinations (Giggenbach, 1991a,b). Temperature, pH (and temperature of 

pH measurement), electrical conductivity (and temperature of conductivity measurement), total 

alkalinity and total sulfide concentration were measured in the field by means of portable 

instruments. Field pH and total alkalinity, together with other chemical data obtained in the 

laboratory, were used to compute total dissolved inorganic carbon. 

With reference to gas sampling from fumarolic areas or bubbling pools, two different gas samples 

were collected: (i) a gas sample (including water vapour) in the Giggenbach bottle; (ii) a dry gas 

sample (without water vapour) in a glass bottle previously evacuated. 

✓ Laboratory analyses: Chemical and isotopic analyses of all collected samples of water and gas 

were carried out in laboratories (Craig, 1961). In the water samples, the following chemical 

components were commonly analyzed: i) anions (Cl, HCO3, SO4, F, NO3); ii) major cations (Na, 

K, Mg, Ca) and some minor components (B, Li, Fe, As); iii) SiO2; iv) 2H and 18O. pH, electrical 

conductivity and alkalinity were again determined in the laboratory with the same approach of 

field determinations. In the gas samples, O2, N2, Ar, CO2, CH4, H2, and He were commonly 

analyzed. In addition, H2S and CO were also measured, being fundamental for the 

characterization and geothermometric determination of the gas mixtures (Chiodini and 

Marini, 1998). The stable isotope ratio of carbon in CO2 (13C-CO2) was also determined 

(Giggenbach, 1991). Carbon monoxide and 13C-CO2 values were measured in dry gas bottles, 

whereas all the other gas species were determined in the Giggenbach’s bottles. Carbon dioxide 

was measured on the alkaline solution by titration against HCl using an automatic titrator. 

Hydrogen sulfide determination is performed by ion-chromatography upon complete conversion 
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of H2S to SO4. All the other gas species were determined by gas chromatography; the 13C-CO2 

value was measured using a Delta S (Finnigan) mass spectrometer, after standard extraction and 

purification procedures of the dry gas mixtures. 

✓ Data Interpretation: The main outcomes of the processing and interpretation of the geochemical 

data were: (i) the water chemical classification on the basis of ternary diagrams of major anions 

and major cations; (ii) chloride plots to investigate mixing processes and boiling processes (if 

any); (iii) the origin of water and the estimation of the elevation of the meteoric recharge of the 

geothermal system by means of stable isotopes of oxygen and hydrogen; calculation of reservoir 

temperatures (Fournier, 1979) based on solute geothermometers (Na-K, silica/quartz and K-Mg) 

and use of suitable geothermometric plots (Guidi et al., 1990), namely ternary plot of Na-K-Mg0.5, 

plot of log(Na/K) vs. log(SiO2) and plot of log(K2/Mg) vs. log(SiO2); (iv) evaluation of mixing 

with surface/ground waters and estimation of chemical composition and temperature of reservoir 

water by means of the iso-chemical geothermometric approach (if needed); (v) correlation plots of 

gas ratios (e.g. CO2/H2 and H2/Ar) for the estimation of reservoir temperature and 

steam/(water + steam) mass ratio; (vi) characterization of the origin of the CO2 gas based on 

carbon isotopes (Bertrami et al., 1985); (vii) characterization of the origin of He based on the He 

isotope ratio (Ballentine and Burnard, 2002); (viii) evaluation of scaling and corrosion potential of 

the geothermal fluids. 

All the results of the geochemical survey formed the basis for the formulation of the final geochemical 

model of the geothermal prospect. 

3.4. CO2 flux and ground surface temperature 

This survey was aimed at detecting CO2 flux and temperature anomalies, which may be caused 

by circulation and upwelling of hydrothermal fluids in correspondence of permeable structures 

associated with active faults or fractures (Chiodini et al., 1998). Measurements have to be taken along 

profiles, at spots approximately spaced 20-30 m. If flux or temperature anomalies are detected, 

additional profiles should be investigated, and spacing among stations decreased to 10 m the spacing 

among stations. Under this measurement scheme, the choice of the priority sector/s becomes very 

critical and should be taken after a close examination of the structural, hydrothermal and 

hydrogeological conditions. The surveys of CO2 emission and temperature consisted of the following 

phases: 

✓ Field Work: CO2 flux and temperature at a depth of 0.5 m was measured simultaneously. Location 

of the measurement stations was determined with GPS units. To avoid potential problems caused 

by water saturation of soil porosity, the soil gas survey needs to be performed as much as possible 

during the dry season, in principle some days after the last rainy day (Battaglini et al., 2013). 

Determination of CO2 flux was carried out through the accumulation chamber method by means 

of the CO2 flux meter, which was equipped with an infrared gas analyser, a “type-B” 

accumulation chamber and palmtop device. The chamber was pressed firmly against the ground 

and loose soil was packed around the chamber, to avoid gas exchanges with the atmosphere. 

Temperature at 0.5 m bgl was determined by using a thermocouple after the insertion of a 

titanium pipe in the ground to the programmed depth. 

✓ Data Interpretation: The collected soil gas and temperature data were interpreted by means of 

probability plots, utilizing the partitioning procedure of Sinclair (1991), to identify individual 

populations and their statistical parameters, as well as thresholds to be adopted both in the classed 
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post maps and in the contour maps. Contour maps were drawn by means of geostatistical 

approaches, such as Kriging (e.g. Clark, 1979). The distribution of gas flux and temperature in the 

soil was interpreted in terms of possible correlations between anomalies and structural and 

hydrothermal features (Chiodini et al., 2008). 

3.5. Ground magnetic surveys 

Subsurface geology can be investigated on the basis of anomalies of the Earth’s magnetic field 

resulting from the lateral variations of magnetic properties of the underlying rocks (see e.g. Telford et 

al., 1990; Kelly and Mareŝ, 1993). In general, the magnetic behaviour (susceptibility) of rocks is 

extremely variable depending on the lithotypes and its alteration degree. In a geothermal environment, 

due to high temperatures, magnetic susceptibility tends to decrease compared to normal geological 

conditions. High-resolution ground magnetic data can provide maps and models the magnetic anomalies 

and additional constraints for the structural modelling of the geothermal area. The main results, in terms 

of magnetic linear trends, can be compared and integrated with the magnetotelluric, gravimetric and 

geological data. The scheme I usually applied in the magnetic survey field work included the following 

phases: 

✓ Field Work: The ground magnetic survey was carried out along lines perpendicular to the main 

geological structures and spaced 50 to 100 m, an optimal spacing between measurement spots is 

5 m. During the field campaigns, two proton procession magnetometers were commonly used for 

the survey. One magnetometer recorded the magnetic field at a fixed base station to monitor the 

diurnal variation. Three readings were taken at each station and nearby sources of potential 

interference were annotated in the field book. 

✓ Data Correction and Interpretation: Raw data were corrected for diurnal variation and then 

displayed as individual profiles and contour maps. An interpretation of the results was finally 

performed. Digital enhanced maps (vertical and horizontal derivatives, filtering, continuations, 

terracing, Werner deconvolution) and 2D/3D modelling helped detection of faults and geological 

contacts, as well as of possible buried volcanic bodies and dykes. 

3.6. Gravity surveys 

Hidden geological structures and associated faults and fractures, can be revealed by the analysis 

of the gravity anomalies, in particular in correspondence of positive/negative anomalies or in presence 

of sharp lateral gradients (see e.g. Parasnis, 1986). Information on subsurface structures can be of help 

to understand groundwater flow path and, consequently, the geothermal pattern of the investigated area. 

Positive anomalies could be related to deep magmatic bodies, i.e. potential heat sources, or to layers 

affected by high-temperature alteration (e.g. propylitization). 

Concerning the integration of the different geophysical information, gravity surveys offer 

significant benefits to the interpretation of magnetotelluric (MT) data (see e.g. Tulinius et al., 2008 and 

Yu et al., 2009). It is well known that the density models obtained from gravity data are intrinsically 

non-unique and that the resolution of these models is generally low. Gravity information can be 

successfully utilized in conjunction with conventional MT data interpretation by performing joint and/or 

integrated analyses. The resultant models are then reciprocally consistent, because they represent the 

simultaneous solution of a joint process honouring observed MT and gravity data at the same time and 

location. 
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The common scheme of gravity stations distribution used in this study consists of: 

- a regular grid with 600-700 m spacing; 

- about 15-20 stations at distances of 10 to 20 km away from the focal area for a more realistic 

definition of the residual Bouguer anomaly map. 

Additional stations were sometimes located where abrupt lateral gravimetric variations were 

recorded, with the objective to clarify these anomalous situations. 

The gravity surveys usually included two phases: 

✓ Field Work: Five readings at one minute interval were taken at every station, taking care to avoid 

actual shifts in the reading point caused by severe vibrations from wind or nearby human activity. 

Moreover, a reference station was established at a convenient spot and readings were taken at this 

site every day before starting and at the end of the survey operations, in order to determine the 

gravimeter drift. All surveys were conducted with a Lacoste-Romberg gravimeter (model G) with 

a sensitivity of 0.001 mGal, coupled with a high-precision geodetic GPS (vertical accuracy 

±10 cm). 

✓ Data Interpretation: Each raw observation from the gravity meter was processed to get the Free 

Air and Bouguer Anomaly value. The following standard corrections were applied to the acquired 

gravimetric data: instrument scale factor correction, tide correction, drift correction, gravity 

computation, normal gravity, free air anomaly, Simple Bouguer anomaly, terrain correction, 

complete and residual Bouguer anomaly. The Bouguer and terrain corrections both assume a 

uniform normal reference density to be estimated. Whenever it was possible, rock samples of the 

different formations were collected form the survey areas, in order to characterize the lithological 

sequence and use the density values determined in the collected samples for the gravimetric 

modelling. 

The gravity surveys results were represented in a set of maps (Free air, Bouguer and residual 

Anomaly maps) and 2D and 3D gravity model, in both the form of cross-sections and slices. 

3.7. Transient electromagnetic (TEM) and magnetotelluric (MT) surveys 

In modern geothermal exploration, the reconstruction of the underground structure of the 

geothermal prospects is performed mainly through transient electromagnetic (TEM) and magnetotelluric 

(MT) techniques. The TEM method employs a transmitter that drives an alternating current into a square 

loop of insulated electrical cable laid on the ground. The time-variant nature of the primary 

electromagnetic field creates a secondary electromagnetic field in the ground beneath the loop. 

Measurements of the secondary currents are made only during the time-off period by a receiver located 

in the center of the transmitter loop. The intensity of the eddy currents at specific times and depths is 

determined by the bulk conductivity of subsurface rock units and their contained fluids (see e.g. 

McNeill, 1994). 

The MT (low frequency-deep investigations) methods allow the mapping of the electrical 

resistivity distribution downward the earth from measurements of natural variations of the surface 

electric and magnetic fields over a high frequency range. Operations were preceded by one day 

simultaneous record of the local electromagnetic field via three different stations to verify the plane 

wave assumption and identify the less disturbed hours (from electromagnetic noise) of the day in which 

operate (Egbert, 1997; Siripunvaraporn and Egbert, 2000). The application of the remote reference 

method was evaluated on the base of the preliminary results recorded during the calibration tests. The 
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simultaneous use of three stations allowed cross-correlation and coherence checks for external 

electromagnetic noise. 

The combination of TEM and MT methods usually gives information of the underground 

structure to 4-5 km depth. The MT method (low frequency, deep investigations) allows mapping of the 

electrical resistivity distribution downwards through measurements of natural variations of the surface 

electric and magnetic fields over a high-frequency range. In particular, the MT method was successfully 

used to measure subsurface electrical resistivity in complex geothermal systems, detecting variations 

related to high and low-temperature fluid flows and to distribution of hydrothermal minerals (e.g., Revil 

et al., 1998; Ólafur, 2005). 

The electromagnetic methods allow detection of resistivity anomalies at various depths, which 

could be associated with geothermal reservoirs (low-resistivity values in the order of 30-50 Ω m), faults 

and the presence of a cap rock (low-resistivity values in the order of 1-10 Ω m). Geothermal water has 

high concentrations of dissolved salts, which result in conducting electrolytes within a rock matrix. The 

electrolytes and the rock matrix (to a lesser extent) are temperature-dependent in such a way that there is 

large reduction in the bulk resistivity due to increasing temperature. The resulting resistivity is also 

related to the mineralogical nature of the formations: for example, the presence of clay minerals 

determines a sharp decrease of resistivity. Therefore, the correlation between low resistivity and fluid 

concentration/temperature could be not so straightforward (Ussher et al., 2000). 

In all the investigated geothermal areas of EARS, the stations distribution followed a common 

scheme: 

- at first, stations were set within the focal area with a regular spacing of about 750 m. 

- about 15 more stations were set at the periphery of the focal area with a spacing of 1.5 km. 

- finally, additional stations were located where abrupt lateral electro-stratigraphic variations were 

recorded, with the objective to clarify such anomalous situations. 

TEM and MT surveys were developed in this way: 

✓ Field Work: TEM stations were located through GPS measurements and set in the same spots of 

the MT stations. They were carried out to furnish detailed shallow conductivity imaging and 

correct for static shift effect the MT measurements. TEM measurements were usually carried out 

with external loop of 200x200 m, injecting current of at least 20 A, recording transients from 

90 µs to 70 ms with at least 10 data per cycle. 

The MT surveys were usually carried out utilizing three MT units, one of which serving as 

reference station, to be placed at a distance of 20 to 100 km from the geothermal prospect at an 

electro-magnetically quiet place and to operate throughout the whole duration of the surveys. The 

other two roving units were operated contemporaneously, recording frequencies between 300 Hz 

and 0.001 Hz for a period of at least 20 hours. The five electric field sensors (porous pots) for 

each MT unit were non-polarizable electrodes, to avoid electrochemical effects, and an electrical 

dipole length of about 100 m was adopted. To avoid potential drift due to bentonite drying, wet 

bentonite (clay) in electrode holes was sometimes used depending on the recording duration and 

climatic conditions. The magnetic sensors (one vertical and two horizontal) were broad band 

induction coils to minimize noise and maximize sensitivity. They were installed in holes, to 

protect them by temperature variations. The data-acquisition system was based on a 24-bit 

analogue-to-digital (A/D) converter. In all stations, the vertical component of the magnetic field 

was measured in addition to the horizontal components of the electric and magnetic fields. 

http://en.wikipedia.org/wiki/Resistivity
http://en.wikipedia.org/wiki/Geothermal
http://en.wikipedia.org/w/index.php?title=Cap_rock&action=edit&redlink=1
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✓ Quality Control: Quality control and pre-processing was carried out on MT data in the field. It 

consisted of direct visual inspection of the records, cross-correlation/coherence between channels 

and three different stations operating simultaneously in the geothermal prospect, computation and 

analysis of the complex impedance tensor and geomagnetic transfer functions (tipper), 

determination of 1D apparent resistivities, impedance phases and resistivity pseudosections plots. 

Both TEM and MT measurements were controlled and pre-processed on a daily basis to verify 

consistency of the data. 

Data Interpretation: The MT and TEM data were finally interpreted with dedicated software, mostly 

developed in-house. 1D electrical conductivity models up to 400-500 m depth were obtained from of 

the TEM soundings. MT data were corrected for the static shift error by joint inversion with TEM data 

and the impedance tensor and tipper were computed by robust MT data processing. MT 1D and 3D 

inversion and modeling were carried out by ad-hoc magnetotelluric inversion codes (e.g. Tulinius et 

al., 2010). Results were presented as contour maps of resistivity at different elevations; 3D electrical 

conductivity models, with iso-resistivity maps and resistivity cross sections up to 5 km depth, Moreover 

Strike analysis with maps showing the Tipper strike were also drawn. 

3.8. Microseismicity surveys 

This technique is applied to monitor the occurrence of local earthquakes within the 

neighbourhood of a geothermal play. This yields earthquakes location and their characterization and 

seismic velocity models (P and S waves) of the geothermal play types. Usually, the area to be studied 

with micro-seismic monitoring corresponds approximately to the most promising sector of the prospect, 

which could cover a surface of some tens square kilometers up to more than one hundred square 

kilometers. 

Before analysing the results concerning the earthquake distribution and its interpretation in the 

key of the geothermal characterization, the conceptual model of seismicity in the geothermal play 

should be introduced. High-temperature hydrothermal systems are rheologically zoned with depth. A 

schematic model for active magmatic-hydrothermal systems, involving the seismicity component and 

derived from several studies of geothermal fields, was proposed by Nielson (1996). 

Above the heat source, usually a magmatic zone, intruded by igneous bodies, which may also 

contribute variable amounts of magmatic fluid to the system, there is a zone that due to the high 

temperature, has a ductile response to stress. Between the cap rock and the ductile zone, a horizon 

responding to stress in a brittle way is present, wherein water is able to circulate through fractures. This 

horizon corresponds to the geothermal reservoir - generally termed hydrothermal circulation zone - and 

is also characterized by formation of hydrothermal breccia, normally along fault zones. The base of the 

hydrothermal circulation zone is marked by an increase in the number of earthquakes resulting from an 

increase in shear resistance. Below this, a discontinuity or a transition zone separates brittle from ductile 

behaviour. In continental realms, the brittle-ductile transition (BTD) is recognized to occur at 

temperatures as high as 370-450 °C (e.g. Pasquale et al., 2010 and references therein). By analogy with 

the oceanic crust, Foulger (1995) claimed that the temperature at which seismic failure likely ceases at 

Hengill geothermal area (southern Iceland) is about 650±50 °C. 

Below the BTD, the temperature gradient increases due to restricted fluid circulation resulting 

from closure of microcracks related to increase in pressure and sealing by hydrothermal phases. This 

results in a sharp decrease of seismicity with depth (hypocentral cut-off). According to this conceptual 

model, one can conclude that the main contribution of a microseismicity survey is the characterization 
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of the hydrothermal circulation zone (the number of earthquake in this zone can be a proxy of the 

fracturation degree and permeability) and the identification of brittle-ductile transition zone which can 

be regarded as a proxy of the 450±100 °C isotherm. 

✓ Field Work: Micro-seismic survey was performed in some of the investigated geothermal plays of 

EARS (i.e. Alalobeda and Aluto-Langano fields) by using a network of digital mobile seismic 

stations (e.g. broadband seismic recorder Reftek, model 130S-01/3) equipped with short period 

1 Hz seismometers (Lennartz, mod. LE-3Dlite MKII). Stations were synchronized and localized 

with GPS and equipped with GPRS communication protocol for remote control and data 

download. Each station was commonly supplied with a 12V battery, re-charged with solar panel. 

Data were recorded in continuous mode. The seismic networks were planned in order to locate 

the local earthquakes with a nominal network mesh-grid not exceeding 5 km. As refers to 

network installation and operation, the following actions were taken: 

➢ In the course of the installation period, a short acquisition test is needed therefore a survey 

should last at least 9 months (better 1 year). 

➢ On site, instrumental control was made performing a cluster test of all stations. This consists 

of placing all stations with seismometers in a small area (maximum 10 m2) and in recording 

the background noise and an active seismic source (mass drop or hammer). Data of cluster 

test were analysed with component/component and H/V spectral ratio techniques. 

➢ For each planned site, a preliminary site characterization was made and micro-tremors 

measurements were performed in order to assess the seismic noise background and to obtain 

a semi-quantitative indication on the presence of local amplification seismic effects and/or on 

the stratigraphy of the site. Data were acquired and analyzed using SESAME European 

Project protocol (Broekstra et al., 2002). 

➢ After 4-5 months of micro-seismicity monitoring and data processing, if the collected data 

allowed it, a reconfiguration of the seismic network geometry was possible, in order to 

optimize the earthquake locations. 

✓ Data Interpretation: The following processing steps were the standard adopted for the recorded 

data: 

➢ Events coincidence analysis, consisting of: i) internal coincidence of the seismic network: 

from the continuous recording of all stations, triggered events were detected by a Short Time 

Average over Long Time Average (LTA/STA) procedure using different filter parameters; ii) 

external coincidence with regional events and international earthquakes list; iii) internal and 

external event coincidences were merged and allowed to extract the final recordings data set 

of the seismic network. 

➢ Events spectral characterization, in order to recover the signature and magnitude of the local 

earthquakes. 

➢ P and S travel time reading. This operation was performed using the manual P and S picking 

aided with spectral and particle motion analysis. A check of pickings was performed with a 

consistence and error analysis. 

➢ 1D P and S velocity model assessment with travel-time analysis and minimum apparent 

velocity analysis. 

➢ Earthquakes location with 1D P-S velocity model using standard location programs (i.e. 

HYPO type, NLLOC (Klein, 2014). Focal mechanism calculation. 

➢ Earthquake location and 2D/3D velocity inversion (Thurber, 1992; Lomax et al., 2000). 
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3.9. Exploration drilling 

3.9.1. Foreword 

The results of the above described geoscientific investigations should converge in a preliminary 

conceptual model of the geothermal system and point out suitable sites for exploratory drilling. Once 

surface exploration of a geothermal system has been carried out, further exploration and evaluation of 

the geothermal system is mainly based on information gained from wells drilled into the reservoir. 

Geological samples (drill cuttings and occasionally cores) are obtained from the wells to determine the 

lithology and alteration of the rocks. The wells make it possible to introduce various measuring 

instruments right into the heart of the geothermal reservoir and to carry out measurements for estimating 

reservoir parameters, of which the most important ones for geothermal purposes are reservoir 

temperature and pressure (Steingrimsson et al., 2006). 

Geothermal specialists are stationed at the well site for longer or shorter periods of time 

throughout the drilling of the well, which typically takes 40-50 days from start to completion of a 2 km 

deep well. The specialists group consists of well site geologists, logging engineers, and reservoir and 

drilling engineers. Their duty is to monitor the progress of drilling, analyse drilling parameters and drill 

cuttings and carry out well logging operations and well tests. They make the preliminary interpretation 

of the collected data, write daily and preliminary reports. An important part of their work is consultancy 

at the drill site to the Client and the drilling Contractor and participation in meetings regarding the work. 

Such consultancy demands a solid general knowledge of geothermal drilling and experience in 

analysing well data (Gudmundsson, 2005). 

In a couple of the case studies (Menengai and Aluto-Langano), object of this thesis, a detailed 

processing and interpretation of the available wells data were performed and then, the achieved results 

were utilized as essential input for both feasibility study and numerical simulation of the geothermal 

reservoirs. 

The reconstruction of the temperature and pressure distribution in the reservoir is one of the 

essential aspects of the geothermal reservoir assessment and is going to be based on the static 

temperature and pressure profiles of the wells taken after sufficient thermal stabilization. Pressure and 

Temperature (P&T) distribution gives information on the reservoir extension and on the fluid flow path, 

with possible location of recharge and outflow zones (Stefanson and Steingrímsson, 1980). P&T 

conditions, together with the composition of reservoir fluids in terms of Non-Condensable Gases (NCG) 

and salt content, allow to infer the distribution of thermodynamic conditions distinguishing liquid 

dominated or vapour dominated zones (if any) and single or two-phase conditions. State-of-the-art 

models for H2O-NaCl-CO2 ternary mixtures are employed to check thermodynamic conditions and 

evaluate phase properties as function of pressure, temperature and composition (Battistelli et al., 2002). 

Well production characteristics need to be analysed, as follows: i) wells deliverability curve, describing 

how wellhead pressure and production enthalpy change with flow rate; ii) downhole P&T surveys 

recorded under flowing conditions. A detailed study of the production characteristics of the individual 

wells is of paramount importance for defining lay-out and design of the conveyance system, as well as 

to optimize the design parameters of the power plant. The analysis shall also include the reinjection 

wells, to verify their water absorption capacity (Battistelli et al., 2012). 

Dynamic P&T surveys are reviewed to supplement the interpretation of P&T surveys recorded 

under shut-in conditions, and to evaluate: flash depth and conditions, if any; production temperature of 

deeper feed zones; pressure drawdown at the bottom as function of production rate. These data are also 
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used for the calibration of wellbore flow models necessary for the subsequent study of the convenience 

of using large-diameter instead of conventional diameter wells in order to increase the productivity of 

the individual well and reduce accordingly the number of required wells. 

3.9.2. Monitoring of drilling data 

➢ Analysis of drill cuttings 

The basic method of geological monitoring during the drilling activities is to analyse the drill 

cuttings and prepare lithological and alteration logs. Drill cuttings are commonly collected at 5 m 

intervals. The instrument used for analysis of cuttings at the drill site is a binocular microscope, but if 

required, XRD-analyses can be performed (within 24 hours). For a better definition of the primary and 

secondary characteristics of the collected samples, thin sections can be prepared out of the cuttings and 

studied by means of petrographic microscope. In addition to lithological analyses of the cuttings, other 

analyses pertinent at the drill site are carried out, such as identification of a possible collapse in a well, 

metal fragment contamination in the cuttings to trace malfunction in the drill string, and structure of the 

fragments to assess the conditions of the bit. However, the main purpose is to analyse the geological 

formations being penetrated and to identify the secondary minerals. During drilling in high-temperature 

areas it is important to evaluate simultaneously the formation temperature by identifying main index 

minerals (e.g. actinolite min. temp. of formation: 280 °C (see Franzson, 1998; Kristmannsdóttir, 1979). 

Mapping the subsurface stratigraphy is a direct continuation of surface geological mapping. The 

first exploration well shows the main formations penetrated to some depth and extends the first 

conceptual model into the geothermal reservoir, including porosity, permeable zones, and chemical 

composition of the rock. The first wells are located to confirm the geological and geochemical 

interpretation derived from the surface exploration. Furthermore, drill cuttings together with geophysical 

logs allow extrapolation with more confidence of tectonic features to some depth. 

➢ Monitoring of drilling data 

Monitoring of the performance of the drilling operation is conducted through various electronic 

sensors, the data being computerized and displayed continuously on computer screens. The main 

parameters monitored are: well depth, penetration rate, weight on bit, rotation of bit, pump pressure, 

pump rate of the circulating fluid, fluid returns, circulation loss/gain, temperature of circulating fluid 

and fluid return (Bourdet et al., 1983). Besides, there are some other technical parameters for the rig. 

The geothermal data collection has been divided into four main categories: i) Measuring the gain or loss 

of the circulation fluid; ii) Measuring the temperature of the circulation fluid up and down; 

iii) Measuring the amount of the circulation fluid pumped down and the pressure of the pumps; 

iv) Measuring the temperature close to the bit while drilling (MWD). 

3.9.3. Basics of well testing 

One of the early stages of reservoir engineering is to estimate the relevant reservoir and wellbore 

parameters by a P&T test (Rutagarama, 2012). This information is needed to confirm whether a well is 

satisfactorily drilled and decide how to exploit the reservoir. The main reservoir and wellbore 

parameters to be determined are permeability, formation storage (or the storativity), skin factor and 

wellbore storage. The type of reservoir (porous or fractured) and the type and location of the reservoir 

boundaries are also important. Several kinds of tests may be designed to determine the above-mentioned 

parameters and reservoir properties. 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 28 of 136 

3.9.4. Well testing description 

A well test can be defined as a fluid flow test conducted in wells to obtain data and information on 

the properties of the reservoir and of the well. Well tests are conducted before exploiting the reservoir, as 

well as after a period of production, to see whether and how much the reservoir properties have 

changed/evolved. During a well test, the temperature and the pressure response of the reservoir to 

changing production (or injection) conditions is monitored. The pressure can be measured within the 

well itself where the flow rate has been changed or in neighbouring wells (Horne, 1995), performing an 

interference test. Since the pressure response depends on the properties of the reservoir, it is possible to 

deduce various reservoir properties from the pressure response. 

In practice, well testing (or pressure transient tests) essentially consists of changing the well’s 

flow rate in terms of either fluid production from it or injection into it and measuring the well’s response 

as a function of time. The shape of the reservoir response can then be matched against an archive of type 

curves to identify a suitable reservoir model/type. Finally, the model is fitted to the data and the 

reservoir and well parameters deduced from the model. To do so a mathematical model is built to 

describe the fluid flow in the reservoir/well system (Horne, 1995; Bourdarot, 1998). The procedure is 

illustrated in Figure 3-1. 

Measurement

Input

Measurement

Input
Model

Parameters

Reservoir & Well

Parameters

P

P

Match

Time

Time

Model Response

Reservoir Response

 

Figure 3-1 Well testing procedure (modified from Horne, 1995) 

3.9.5. Wellbore storage 

Well testing measurements are commonly carried out at two specific locations, namely: 

downhole and at the wellhead. In the latter case, an additional parameter, the wellbore storage, has to be 

considered when evaluating the reservoir system. When the well is opened to flow, the fluid at surface is 

initially dominated by the expansion of the fluid stored in the wellbore and the reservoir contribution is 

negligible. Similarly, when a well is shut-in, the flow rate will be zero at the top of the well, but will not 

drop to zero instantaneously at the bottom of the well, due to the compressibility of the fluid in the 

wellbore. In this case, the wellbore storage effect is called “after-flow” (Bourdet, 2002). 

It has to be emphasised that the wellbore storage cannot be interpreted literally to give a 

wellbore volume. It should be considered as a nuisance effect that affects the form of the pressure 

transient curves. The wellbore storage is quantified in terms of a coefficient, C, which represents the 

volume of fluid that the wellbore itself will produce due to a unit drop of pressure (Grant & Bixley, 

2011). 
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3.9.6. Skin effect and turbulence 

Drilling of a well and well treatment operations cause changes of the reservoir characteristics in 

the vicinity of the well as compared to those further away in the reservoir. This effect is known as the 

skin effect. Mathematically, in a reservoir model, skin is represented as a region of increased or 

decreased permeability surrounding the wellbore (Figure 3-2). The skin factor, s, can be positive or 

negative. 

Positive skin (damaged well) means an increase in pressure drop and negative skin (stimulated 

well) means a decrease in pressure drop at the interface between the reservoir and the wellbore 

(Agarwal et al., 1970; Ramey, 1970). Productive geothermal wells usually display a negative skin 

factor. According to Horne (1995), the skin effect can be described in terms of an effective wellbore 

radius, corresponding to the apparent well radius due to the reduction or increase in flow caused by the 

skin effect. 
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Figure 3-2 Pressure changes around a wellbore due to the skin effect (modified from Horne, 1995). Where: rw 

is the wellbore radius; rs is the altered zone radius; s is the skin factor 

At high flow rates, or in fractured reservoirs, fluid flow tends to be turbulent, and Darcy's law is 

no longer applicable. Skin due to turbulent flow or non-Darcy flow is the additional pressure drop 

caused by high fluid velocity near the wellbore. Depending on the rate this effect can be significant and 

must be accounted for. It has to be noted that skin due to turbulence is always positive and is a part of 

the total skin. Thus, a production test on a stimulated well can still yield a positive total skin, s, value 

due to the turbulent component, even if no skin damage is present. 

3.9.7. Types of well tests 

During conventional well tests, fluid is extracted to the surface or injected into the well at 

controlled rates. A program of flow and shut in periods is used to establish deliverability and completion 

efficiency of the well. Tests can involve a single well or many wells. Depending on test objectives and 
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operational considerations, a range of well tests can be carried out. The tests usually fall into the 

following categories (Horne, 1995; Bourdet, 2002): 

➢ Build-up test: This test is conducted in a well that has been producing for some time at a constant 

rate and is then shut-in. The build-up downhole pressure, measured in correspondence of the main 

feed zone or in case of doubts in front of the deepest one, is then recorded for a given time. 

➢ Drawdown test: This test is conducted with a well flowed at a constant rate. The downhole 

pressure and the production rate are measured as functions of time and analysed to estimate the 

reservoir properties. The major difficulty of this test is the difficulty of maintaining a constant 

flow rate. 

➢ Injection test: This test is identical to a drawdown test, except for the fact that flow takes place 

into the well rather than outside of it. Fluid is injected into the well at a constant rate and the 

injection rate and the downhole pressure are measured as functions of time. 

➢ Fall-off test: This test is analogous to a build-up test and measures the pressure decline as a 

function of time subsequent to the interruption of injection. Measurements are taken in 

correspondence of the main feed zone or, in case of doubts, in front of the deepest one. 

The combined response can be interpreted in a number of ways to estimate the permeability-

thickness and the skin factor. Figure 3-3 illustrates the types of well tests defined here. 
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Figure 3-3 Types of well tests: a) Drawdown test, b) Build-up test, c) Injection test and d) Falloff test (Horne, 

1995) (modified from Horne, 1995). Where: t is time; p is pressure; q is flow 

One of the most important tests to be performed once a few wells have been drilled in different 

wellpads is the Interference Test. In this test, one well is under production and pressure is monitored in a 

different well (or wells). An interference test monitors pressure changes out in the reservoir, at a 

distance from the original producing well. The advantage of interference testing is that a much greater 

area of the reservoir is tested, providing estimates of reservoir properties between wells. 
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In addition, the interference response is little affected by the complicating factors of wellbore 

storage and skin effect that make single well test interpretation more difficult. Furthermore, the nature of 

the response over distance makes it possible to estimate not only the reservoir transmissivity (kh), but 

also storativity (φCth). The disadvantage is that pressure drops can be very small over distance, and are 

affected by other operational variations in the field at large. However, modern electronic gauges are 

quite capable of registering such small pressure drops (often less than 1 psi over days or even weeks), 

and thus interference testing is a powerful method of proving up new discoveries. In “new” reservoirs, 

an interference test is not affected by other production in the field (since there is none) and serves to 

prove the existence of productive reservoir between the wells (Horne, 1995). 

To process interference test data the type-curve matching technique is commonly used with 

semi-log method and computerized fitting (Earlougher, 1977; Horne, 1995). There are some other 

innovative methods described by either Eppelbaum and Kutasov (2008), who introduced the hydraulic 

diffusivity of formations (η) or Néstor and Fernando (2001), who analysed the pressure interference test 

through the use of the pressure derivative. 
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4. THE EAST AFRICAN RIFT SYSTEM 

4.1. Regional tectonic setting 

The East African Rift System (EARS) is the most extensive, currently active zone of continental 

rifting in the world and it is often considered as a model for the break-up of continents and the onset of 

ocean basin formation (Brown and Girdler, 1980; Chorowicz, 2005). The Precambrian basement of East 

Africa consists of the Archean Tanzanian craton, which is in the center of the East African Plateau, and 

of a number of Proterozoic mobile surrounding belts (Figure 4-1). The EARS consists of several 

segments cutting through the continent from the Afar region in Eritrea and Ethiopia down to South 

Africa. The well-expressed eastern branch traverses Ethiopia (Main Ethiopian Rift) and Kenya (Gregory 

Rift). At its termination in northeast Tanzania, it intersects the margin of the craton, and the graben 

structures found to the north give way to a much wider zone of block faulting (Ebinger et al., 1998; 

Foster et al., 1997). 

The western rift, on its side, comprises numerous en-echelon fault bounded basins (Ebinger et 

al., 1989), many of which contain deep lakes. The Tanzania Craton is surrounded on its southern and 

eastern sides by the Paleozoic Usugara Belt (Mruma, 1995; Fritz et al., 2005); the northeastern 

extension is poorly defined, as it was reworked into the Pan-Africa Mozambique Belts (Pinna et al., 

2004). 

 

Figure 4-1 Structural scheme showing the African Rift System (Modified from Atekwana et al., 2004) 
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In the southeastern side of Tanzania, the coastal basin splits in two branches. One branch runs 

along the margin of the Precambrian basement of the Mozambique Belt, having a NNE-SSW direction. 

This branch of the basin corresponds to a Karoo rift (Selous rift system) developed since Permo-

Triassic. Karoo sediments, in fact, crop out to the west, along the Uluguru basement massif from which 

they are separated by the Rufiji Fault. The second branch develops in NNW-SSE direction along the 

coast, separated from the first one by a spur of basement, still belonging to the Proterozoic Mozambique 

Belt. This portion of the coastal basin contains a sedimentary sequence spanning in time from Permo-

Carboniferous to Cretaceous and is affected by faults trending NNW-SSE (Lindi trend system), having a 

downthrow to the east, representing the western side of the major rift extending into the Mozambique 

Channel. 

In the rift axis of the eastern branch, numerous volcanoes of Quaternary age occur whose 

products overlie Miocene and Pliocene volcanic products (Omenda, 2010). The shield volcanoes are 

largely formed by intermediate lavas and the associated pyroclastics, thus indicating the presence of 

shallow hot bodies (magma chambers). In the Western Branch, there is paucity of volcanism along the 

entire length of the rift with the main volcanic areas being Virunga and Rungwe. The geothermal 

activity in the EARS consists of hot springs, fumaroles, hot and hydrothermally altered grounds and is 

closely associated with shallow hot magma bodies under the Quaternary volcanoes, which act as heat 

sources. In the Afar rift, where the crust is as thin as 5 km, extensive manifestations and high heat flux 

are due to a combination of mantle heat and magma bodies occurring at shallow depths. In the less 

magmatic western branch of the rift, heat sources could be combination of buried plutons and high heat 

flux associated with thinned crust. 

Using today's technologies, Eastern Africa has the potential to generate over 5,000 MW of 

energy from geothermal power. Despite this potential, so far only Kenya and Ethiopia have a 

geothermal generation of 270 MW and 7.2 MW, respectively. Different projects of geothermal 

exploration and research have been undertaken in Djibouti, Eritrea, Uganda, Tanzania, Zambia and 

Malawi (Zemedkun, 2018). 

The Main Ethiopian Rift (MER) and Afar Rift represent the northernmost part of the East 

African Rift (Figure 4-1). Volcanic activity in Djibouti, Eritrea and Ethiopia started at about 30 Ma with 

uplift followed by eruption of large volumes of basalts (Mohr and Zanettin, 1988). However, activity 

reduced since the Miocene times with eruptions of bimodal suite (basalts and more alkaline silicic lavas) 

concentrated within the rift zone. More recent activity in the axis of the rift consisted of rhyolite 

volcanoes and domes as well as ignimbrites and nonconsolidated pyroclastics. Studies by Mohr (1992) 

indicate that over 90 % of the eruptive are of silicic composition. 

In the axis of the rift occurs the Wonji fault belt (central part of Ethiopia), which is a region of 

Quaternary crustal extension. The fault zone is offset in several locations along its length and some of 

the large volcanoes, including Aluto-Langano (one of the case studies) are located at the fault 

intersections (Omenda, 2010). 

The Afar rift is the most active segment of the entire EARS, with the Erta Ale’s lava lake 

(Ethiopia) being presently active. The Afar rift floor is dotted with a large number of rhyolitic volcanoes 

in the south and more basaltic centres in the north. The surface geology in the south is similar to that of 

the MER, where ignimbrites are abundant whereas in the north basalt sheets of Quaternary age 

dominate. The volcanics overlie older sedimentary rocks in the Afar rift zone. 

Geothermal manifestations occur as fumaroles, hydrothermally altered grounds, steaming 

grounds and hot springs in many locations, most of which are associated with young volcanic fields in 
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the rift valley. Hot springs also occur on the flanks of the rift where they are associated with Tertiary 

faulting episodes. The manifestations are more pronounced and vigorous within the axis of the rifts than 

on the flanks due to the favourable hydrology and relatively shallow heat sources. The heat sources for 

the geothermal systems are related to (1) shallow magma chambers associated with the young rhyolite 

volcanoes that are common in the southern Afar and MER and (2) upper mantle intrusion/upwelling 

associated with the thin crust in the area that averages between 5 and 20 km. 

4.2. The Kenya Rift (Eastern Branch) 

The Kenya rift (Gregory Rift) is the segment of EARS that extends from Lake Turkana to 

northern Tanzania (see Figure 4-2). The formation of the Kenya rift started about early Miocene in the 

north around Lake Turkana and migrated southwards, being active from about middle to late Miocene in 

the central segment. The development of the rift largely occurred within the Late Proterozoic basement 

of Mozambique belt and close to the eastern margin of the Tanzania craton. 

In terms of geodynamic processes the formation of the rift begun by up-doming and volcanism 

on the crest of uplift and followed by faulting to form a half graben. The formation of a full graben 

occurred during the early Pleistocene, on the floor lava flows of basaltic and trachytic composition were 

erupted, and intercalated with tuffs. Subsequently, sheet trachytes were grid faulted with dominant 

north-south closely spaced faults. In Quaternary times, many large shield volcanoes of silicic 

composition in the axis of the rift developed (Dunkley et al., 1993). 

 

Figure 4-2 Map of the Kenya rift showing the locations of geothermal areas (modified from Omenda, 2010) 
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Activity in the southern extreme of Kenya and northern Tanzania segment of the Kenya rift is 

dominated by alkaline and carbonatitic volcanism of which Ol’Doinyo Lengai is well known. 

Prevalence of the carbonatites in the region is attributed to deep source of the lavas occasioned by the 

thick cratonic crust in the region (Van Straaten, 1989). Alkaline lavas are predominant in the areas 

around Kilimanjaro where micro-rift grabens occur near Arusha and further south. 

The entire length of the Kenya rift from Lake Turkana in the north (northern Tanzania) has 

young volcanoes dominantly of silicic composition in its axis. The youthfulness of the volcanoes attests 

to active magmatism under the rift. Similarly, geothermal manifestations are more abundant and 

stronger within the rift and in many cases, they are associated with the Quaternary volcanoes. 

Geothermal manifestations in the Kenya rift include fumaroles, hot springs, spouting springs, 

hot and hydrothermally altered grounds and solfatara (sulphur deposits). Fumaroles commonly occur on 

the mountains whreas hot springs and geysers are common on the lowlands. 

Olkaria and Menengai (one the case studies analyzed) geothermal prospects were developed for 

electricity generation while a pilot plant is planned for Eburru. The Olkaria, Menengai and Eburru 

geothermal systems are volcano hosted resources and thus, the heat driving the systems are associated 

with hot intrusive bodies under the volcanic complexes. 

4.3. Western Branch 

The western branch of the rift runs along the western side of Lake Victoria and along the edge of 

the East African plateau (Figure 4-3). It typically exhibits half grabens characterized by high-angle 

normal rift faults. The western branch of the rift is characterized by paucity of volcanism with respect to 

the Kenyan and Ethiopian rifts. Whereas the volcanism and tectonic activity in eastern branch 

commenced about 30 Ma ago in the eastern branch of the rift, volcanic activity in the western branch 

started about 12 Ma in the north, near Lake Albert and about 7 Ma in the Tanganyika rift (Ebinger et al., 

1989). 

The northern zones of the rift comprise several basins that define the Albertine Graben near 

Lake Albert. The Lake Albert rift started early Miocene and is dominated by thick sequence of 

sediments and is largely non-magmatic, except for the southern basins wherein volcanic products occur. 

The Albertine basin is also thought to have petroleum potential. The western branch is characterized by 

the abundance of potassic alkaline rocks that consists of carbonatites, ultrapotassic mafic rocks and 

potassic mafic-felsic lava. Volcanic activity is more intense in the Virunga volcanic field where 

Nyiragongo and Nyamuragira in the DR Congo are active with generally silica-undersatured basaltic 

eruptives. 

The Tanganyika-Rukwa-Malawi (TRM) segment of the western branch follows the fabric of the 

basement structures inherited from the Proterozoic period (Bennett, 2008). The rift is characterized by 

normal boundary faults, which define half grabens, horsts and step faults with riftward tiled blocks and 

monoclinal structures (ELC-MoNREM, 2018). The Malawi segment extends south to the Urema and 

Lebombo grabens in southern Mozambique. Within the rifts occur lakes Tanganyika and Malawi, which 

are deep sedimentary basins. The rift segment was largely non-magmatic during the Quaternary times 

since volcanic fields only occur at Rungwe between lakes Tanganyika and Rukwa. Late Cenozoic 

volcanism started about 9-7 Ma ago in the Rungwe volcanic province where the rift follows the NE-SW 

trend in line with the Kenya rift. The volcanic products include Quaternary mafic and felsic rocks (Laó-

Dávila et al., 2015). 
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There is scarcity of recent volcanism in this segment of the rift (Scholz, 2006). The 

manifestations in the TRM Rift include mainly hot springs at temperatures of up to 86 °C, which occur 

at Mbeya within the Quaternary Rungwe Volcanic Province (RVP), but they seem controlled by fault 

leakage (ELC-TGDC, 2018). The area is also characterized by high seismicity signifying that the area is 

still tectonically and magmatically active (Kiejo eruption occurred in the last 17th Century). Other hot 

springs occurring in Malawi, Zambia and Mozambique are fault-controlled and are associated with the 

border faults (ELC-TGDC, 2018). The hot springs are probably due to deep circulation of groundwater 

through the rift structures. 

 

Figure 4-3 Map showing the structural relationship between the Eastern (Kenya) and Western branches of the 

EA Rift system (modified from Omenda, 2010) 

4.4. Regional geophysical features 

The East African Rift System is generally considered as an example of continental breakup at its 

early stages. In this section, such breakup is examined trough results of investigations, obtained from 

various geophysical techniques, of the deep structure below the EARS, focussed the Kenyan Rift, 

wherein several important geothermal systems occur. 

4.4.1. Gravity studies 

From a general understanding of rifts, it is expected that gravity anomalies could result from a 

number of causes. The infilling on the rift floor by low-density lavas and sediments should produce a 
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negative anomaly. However, the shallowing in depth to the Moho resulting from crustal thinning, which 

brings the denser mantle closer to the surface, will produce a positive anomaly (e.g. Arab, 1972). 

However, this positive anomaly is likely to be reduced by the mantle beneath the rift being hotter and so 

having a lower density than normal mantle to either side. The crust shows lateral variations of density 

due to the association with rocks of different density. Resolving all these causes is not possible by 

gravity alone, but because of the effort and cost of obtaining seismic and other geophysical data on a 

regional scale, many of the early concepts about the deep structure of the rift were based on gravity data, 

and some of the early models are described hereinafter. 

The first study was carried out in the early 1930s (using pendulum measurements rather than 

modern gravimeters). It was a large-scale survey and established that the uplifted plateau on the east 

side of the rift was isostatically compensated but over the rift gravity is negative (Birt et al., 1997). 

Later, more detailed surveys exhibited that gravity in the rift is much more complicated than the simple 

broad negative anomaly found in the early studies (see Figure 4-4). 

 

Figure 4-4 Gravity profile models across the Kenya Rift (densities in Mg/m3) in (a) Suswa and (b) Menengai 

geothermal prospects (modified from Musset et al., 2000) 
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For example, a gravity profile across the rift in the vicinity of the volcano Suswa showed a 

positive anomaly within the broad negative (Figure 4-4a). This was interpreted by Searle (1970) in 

terms of a dense mantle-derived intrusion 20 km wide extending from a depth of 20 km to within 2 or 

3 km of the rift floor. Independently, Baker and Wohlenberg (1971) interpreted the positive anomaly 

observed along the Menengai profile (further north) as also being due to high-density material intruded 

into the crust. In addition, they attributed the broad negative anomaly to anomalous mantle material with 

lower than average density due to higher temperature beneath the rift (Searle, 1970). Menengai 

geothermal prospect is one of the case studies analyzed in the present thesis and the above-described 

interpretation was validated by new gravimetric survey/data processing carried out in the present study. 

These two models stimulated a lot of interest in the rift because they implied, by their wide 

intrusions along the axis of the rift, that crustal separation had already taken place by ten or more 

kilometres (i.e., that the continent had already split). Clearly, the gravity models proposed are 

speculative, largely due to the no uniqueness of the method, as they lack independent information on 

densities or depths of the postulated bodies. This could be provided from boreholes data (as from the 

geothermal deep wells drilled in the Menengai prospect in 2011-2014) or seismic surveys. Furthermore, 

a more refined model has been defined by combining seismic and gravity data (see section 

4.4.5. Combined seismic and gravity models). 

4.4.2. Seismicity 

The continuous belt of earthquakes extending from the Carlsberg Ridge into the Gulf of Aden, 

(Red Sea) and the East African Rift System is well known and clearly delineates the plate boundaries 

(Figure 4-5). Though seismicity is clearly associated with the Rift (Birt et al., 1997), fewer earthquakes 

with high magnitude were being recorded in the Ethiopian-Kenya Rift system than the Western Rift 

even though the greater volcanism in the Eastern Rift suggests there would be greater activity there. 

However, there is the probability that additional “weak” earthquakes might be occurring in the Eastern 

Rift but were too small to be recorded by the global network, which had only a single station in Kenya. 

To verify this hypothesis, temporary local networks with up to a few tens of stations were set up in the 

Kenya Rift in the 1990’s (Birt et al., 1997). The new seismicity records showed that tens of small 

earthquakes did occur every day, with magnitudes down to M ≤ 3 (Figure 4-6). 
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Figure 4-5 Left: digital elevation model. Right: earthquakes location, and volcanoes of the Afro-Arabian Rift 

System. Earthquakes epicentres were derived from events recorded by World Wide Standard 

Seismograph Network (WWSSN). (modified from Musset et al., 2000) 

Most of the seismic activity occurs as swarms within the rift, at depths ranging from 5 to 10 km; 

surprisingly few occur on the main rift faults. Some of this activity was attributed to movement of 

geothermal fluids (as directly verified in the Menengai case study) or the propagation of dykes in the 

upper crust. In addition to the location of earthquakes, seismic recordings can reveal their fault planes 

and sense of motion, or the tensional and compressional axes associated with them. Wherefore, data 

recorded by the WWSSN and by the temporary local networks in Kenya show that the stress directions 

are those expected for crustal extension across the rifts. 
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Figure 4-6 Simplified geologic map of Kenya with earthquake epicentres and volcanoes (modified from Musset 

et al., 2000) 

4.4.3. Teleseismic studies 

Besides composition, the seismic velocities of rocks depend on temperature, especially towards 

the melting points. This can be used for comparing temperatures in the upper mantle beneath different 

parts of a region, because at this depth the composition is likely to be laterally uniform. Velocities can 

be found using refraction surveys, but these imply large costs. A less expensive, though less accurate, 

alternative is to utilise distant earthquakes as seismic sources (Khan et al., 1998). For Teleseismic 

sources, which are at least 2000 km (18° epicentral angle) distant, the rays travel up to the surface at a 

fairly steep angle and so spend minimal time in the variable crustal rocks. In case of some portions of 

the subsurface are hotter, the seismic velocity will be lowered and so rays that pass through them will be 

delayed relative to those travelling through cooler rocks. By recording arrivals from earthquakes in 

different directions, the hotter region can be located and its form roughly estimated tomographically. In 

Kenya, the WWSSN station near Nairobi, which is very close to the Rift, recorded arrivals about 2 sec 

late relative to Bulawayo (Zimbabwe), which is undoubtedly on normal continental crust, therefore 

indicating that the rocks at depth near the Rift are hotter. 
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4.4.4. Seismic refraction and wide-angle reflection surveys 

Teleseismic studies, for their resolution (lack of details) is limited by station spacing, and 

uncertainties in the origin time, location, and source characteristics of the earthquakes recorded. For 

higher resolution, controlled sources and closely spaced stations are needed, though the depth of 

investigation is limited to about 50 km for practical reasons (e.g. Brabham and McDonald, 1992). 

In the Kenya Rift International Seismic Project (KRISP, 1989-1990), a series of experiments, 

were conducted applying controlled sources (Prodehla et al., 1997). Five profiles were shot (see Figure 

4-7). For the required resolution, an average station spacing of less than 2 km was needed and over 200 

portable recorders were used. One profile was along the Rift axis (A to C), two across the Rift (D and 

G), and two outside the Rift (E and F). Figure 4-8 shows a sample of the data, with each trace (reduced 

plot) showing the vertical component of a seismic recorder. 

 

 

Figure 4-7 Locations of seismic refraction lines performed during the KRISP experiments (modified from 

Prodehla et al., 1997) 

https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
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Figure 4-8 Reduced record section for Line G (modified from Prodehl et al., 1997) 

Together with the refracted phases Pg, P1 and Pn, there are some later phases, Pi1P, Pi2P, Pi3P, 

and PmP, which are due to wide angle reflections from the tops of intracrustal boundaries and the Moho 

(Prodehla et al., 1997). In the inset (red rectangle in Figure 4-8), the amplitudes were increased to show 

the mantle arrivals more clearly. Figure 4-9 shows the model inferred to account for the arrival times of 

the phases, obtained from a preliminary simple model, built from the slope and intercept times, refined 

by adjusting the velocities until the travel times calculated for the rays shown on the model (Figure 4-

9a) matched the ones recorded. Figure 4-9b shows the travel-times calculated from the model and those 

shown on Figure 4-8, Figure 4-9c is the final model, taking into account all the arrivals from all shots 

into the line (Slack and Davis, 1994). Other profiles were treated in the same way. 

There are some clear differences in the crustal structure below the Rift compared to outside it. 

Far from the Rift, the crust is “stratified”, with thickness varying between 33 and 44 km, and overlies 

mantle with the typical velocity of 8.0 to 8.2 km s-1; underneath the rift, the mantle velocity is 

anomalously low, being between 7.5 and 7.7 km s-1 (Prodehla et al., 1997). 

The crustal thickness also changes, being thicker (about 35 km) north of Nairobi and close to the 

summit of the Kenya dome, where the Rift is about 60 km wide up to only 20 km in Turkana, where the 

rifted zone is about 180 km wide, indicating that extension has been much greater in the latter area. A 

thinned crust is expected from the combination of elevation and high Bouguer anomaly in the region. 

Observing in detail at the E-W section of Line D (Figure 4-7), it crosses the Rift near the top of the 

Kenya dome, the uppermost layer is referred to a basin filled with sediments and volcanics, which have 

low seismic velocities (Khan et al., 1998). The basin is asymmetric, being about 8.7 km thick against the 

bounding fault to the west but thinning eastwards. Velocity increases from 3.8 km s-1 at the top of the 

infill to about 5.8 km s-1 at its base. Below the sedimentary basin, in the upper crust, velocity is from 6.1 

to 6.4 km s-1, the highest values being in the Archaean rocks at the western side. Velocity also increases 

downwards through the middle and lower crust to 7.1 km s-1. The section also shows that crustal 

thinning of about 5 km, overlying anomalous mantle, is confined to the Rift zone itself. Across the 

https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
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southern flank of the dome uplift, the structure beneath Line G (see Figure 4-9) shows similar features, 

but more subdued compared to the above-described Line D. 

 

 

Figure 4-9 Seismic model for Line G (see also Figure 4-7 for location; modified from Prodehla et al., 1997) 

The differences between the properties of the crust east and west of the Rift support the idea that 

the rifting is developing along the old suture zone between the Archaean Nyanza craton to the west and 

the Proterozoic Mozambique Belt to the east, as illustrated in the schematic cross-section of Figure 4-

10. 

 

https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
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Figure 4-10 Schematic section across the Rift along Line G (modified from Prodehla et al., 1997). Details as in 

Figure 4-9 

4.4.5. Combined seismic and gravity models 

Integrated interpretation of the seismic and gravity data provides better models than either 

separately, not just because they depend on different physical variables - seismic velocities and density - 

but also because these are related to each other, allowing a seismic model to be tested against the gravity 

results as well as the seismic ones. 

During the gravity surveys (Section 4.4.1), many density laboratory measurements were made, 

thus values are available for the near-surface rocks. For the deeper layers, densities were estimated from 

the seismic velocities using the empirical Nafe-Drake curve. The density model corresponding to the 

seismic model of Figure 4-9c is shown in Figure 4-11d, while Figure 4-11a compares the calculated and 

observed Bouguer anomalies (Birt et al., 1997). The main features of the observed profile are 

reproduced in the calculated one except for the general rise from west to east shown in Figure 4-11b. 

After removing this regional effect, the model of Figure 4-11c, was obtained, which agrees well with the 

observed values. 

The regional increase in gravity from west to east is to be expected from the observation, noted 

in Section 4.4.1., that the elevated topography is isostatically compensated. The compensation 

mechanism must have its origin below 60 km depth, i.e. the base of the model. A model of the 

lithosphere extending to over 100 km, that accounts for this compensation, shows a low-density region 

beneath the plateau, which could be due to the higher temperatures, producing velocity perturbations. 

https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
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Figure 4-11 Gravity model for seismic Line G (densities in Mg/m3) (modified from Prodehla et al., 1997) 

4.4.6. Heat flow studies 

High heat-flow values in the rift is expected, not only because the widespread occurrences of 

active volcanism involve shallow heat sources, but also because continental rifting would be 

accompanied by upwelling of hot mantle. Upwelling may not simply be a consequence of the splitting 

but actually initiate it, by the force of buoyancy, particularly if it occurs as a plume. Measuring heat 

flow offers a way to understand more about thermal processes at depth (e.g. Lachenbruch, 1970; Pasqua 

et al., 2016; Chiozzi and Verdoya 2018). 

The results of heat flow measurements in Kenya, recorded in several shallow holes drilled for 

water and in others drilled for oil exploration purpose (Wheildon et al., 1994) are presented in Figure 4-

12. The values are slightly scattered, but in general are higher within the Rift than outside it, as 

https://www.sciencedirect.com/science/article/pii/S004019519700098X#!
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expected. Unfortunately, the measured heat flow depends not only upon the temperature at depth in the 

crust and mantle, but also from the type of the near surface rocks and shallow hydrothermal processes. 

Therefore, it can be affected by the variability in thermal conductivity and by groundwater flow, which 

in turn depends upon permeability (pores and fractures of the rocks). 

The high heat flow in the Kenya Rift could be due in part to an anomalously hot mantle, but it is 

more likely related to magmatic activity and hydrothermal circulation. Simple thermal calculations (see 

e.g. Pasquale et al., 2017) indeed indicate that there has not been sufficient time for heat to conduct up 

from the Moho, about 30 km deep. 

 

Figure 4-12 Heat flux data recorded in Kenya (after Wheildon et al., 1994) 

Heat flow studies are also important to locate places where geothermal resources might be 

exploited. Shallow magma chambers that have fed the volcanics of the rift can be sources of heat. 

However, for a productive geothermal field, water is also essential to create and recharge the geothermal 

reservoir (porous rocks filled mainly by water/steam). Hydrothermal alteration of the volcanic rocks 

near the surface may lead to the formation of an impermeable layer (clay cap), which has a confining 

role, providing a seal for containing the superheated water until it is penetrated by drilling and gives rise 

to high-pressure fluids/steam, which is used to drive turbines. Kenya already produces a significant 

amount of electricity (about 650 MW) in this way. In addition, there may be geothermal fields 

associated with dyke injection that has no surface expression but could be inferred from seismicity. 

4.4.7. Electrical conductivity 

As explained in paragraph 3.7, the reconstruction of deep structure of the geothermal prospects 

is largely based on electrical conductivity studies (TEM and MT). Conductivity often depends on the 

amount of water the rock contains and the amount of dissolved salts in the water. However, high 

conductivities (or low resistivities) are often found in the middle and lower crust associated with high 

temperatures due to the presence of magma or fluids released from them. Such depths are usually too 
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deep for investigation using resistivity methods because these would need extremely large arrays with 

many tens of kilometres of cables. However, to define conductivities at great depth (study of the crust 

and upper mantle) it is possible apply the magnetotelluric (MT) method. A limitation of the method is 

that it cannot define electromagnetic sequence with enough detail; it only indicates large volumes of 

higher or lower conductivity. 

MT surveys have been largely applied in Kenya to investigate the conductivities of the deep 

crust and uppermost mantle. They indicated a region of high conductivity about 20 km beneath the Rift 

axis, which was already associated with positive gravity anomalies and several very prominent 

volcanoes and probably due to the presence of magma. Another high-conductivity zone 50 km was 

recognized deep near Mount Kenya, which could be related to the presence of magma. This greater 

depth is consistent with the petrologic evidence that volcanics outside the Rift originated at greater 

depth than those inside. 

Birt et al. (1997) measured conductivity below seismic lines F and G of Figure 4-7, and the 

results are schematically shown in Figure 4-13. As expected, there is higher conductivity in the crust 

and mantle below the Rift. The Rift infill is particularly conducting, probably due to the porous 

volcanics and sediments containing saline water. The infill has higher conductivity to the west than that 

to the east, consistent with the seismic section described in Figure 4-11, which shows the infill to be 

much thicker to the west. There is a sharper contrast between the Rift and western flank than for the 

eastern one. Beneath the western flank, the upper mantle shows low conductivity but is underlain by 

conductive mantle. Away from the Rift to the east are the Chyulu Hills, a young volcanic field, and 

there are highly conducting zones within 1 km of the surface. The high conductivities in the lower crust 

and upper mantle support the models, derived from the gravity and seismic data, which are consistent 

with partially molten zones. 

 

Figure 4-13 Conducting regions beneath the Kenya Rift and its flanks 
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5. EARS GEOTHERMAL RESOURCES 

5.1. Geothermal Potential 

Several African Countries located along the EARS, have important geothermal resources for 

both power generation and direct use application, namely Djibouti, Democratic Republic of Congo, 

Eritrea, Ethiopia, Kenya, Malawi, Mozambique, Rwanda, Tanzania, Uganda and Zambia. The 

geothermal exploration in Burundi is only at reconnaissance stage. 

The United Nation Environment Program (UNEP) is the main key player, leading the 

development of geothermal energy in Africa. UN Environment supports countries to improve energy 

efficiency and increase the use of renewable energy as part of their effort to achieve low-carbon and 

climate resilient development. In November 2018, UNEP took a picture of the Geothermal Resource 

Potential in East Africa. In summary, (i) Africa’s geothermal potential in the Eastern Africa Rift is 

estimated larger than 20000 MWe; (ii) at present, only Kenya and Ethiopia have operational geothermal 

power stations; (iii) there are plans to increase geothermal installation in Eastern Africa by over 

3000 MWe over the next 10 years. 

In the following, a summary of the main geothermal resources in the several countries is 

presented, then a brief outline some of the most important geothermal fields of EARS is described with 

particular reference to those areas that were investigated during this PhD word. Finally, specific details 

some of them, i.e. those characterised by high-quality data and peculiar geological, geochemical and 

geophysical characteristics, are reported. The presented case-studies can provide guidelines for the 

optimum procedures of geothermal resource exploration in the EARS region. 

5.2. Country Updates 

5.2.1. Djibouti 

The geothermal potential of Djibouti was estimated to be about 1,000 MWe (Zemedkun, 2018). 

The exploration wells are preparation in Fiale and other parts of Lake Assal. Moreover, geoscientific 

studies are on-going in Hanle Gagade, Arta, Obok and Gubbet prospects. 

5.2.2. Eritrea 

An active crustal spreading center, characterized with numerous NW trending fissures, faults, 

felsic volcanoes and thinned crust, occurs in Eritrea. The Alid area was identified as the most promising 

high enthalpy prospect for geothermal utilization. Detailed geoscientific studies in Alid started in 2015 

and supported by UN Environment and ICEIDA. Detailed surface studies of the other prospects (e.g. 

Nabro-Dubbi) are planned. 

5.2.3. Ethiopia 

Ethiopia is being explored for its geothermal resources since 1969, over twenty-three high-

temperature possible geothermal areas were identified, but only three geothermal prospects are subject 

to drilling, namely Alalobeda, Tendaho-Dubti and Aluto-Langano. Zemedkun (2018) estimated a 

geothermal potential >10000 MWe. Furthermore, a larger number of areas have potential for medium-

low temperature resources throughout the Ethiopian Rift System. To date, only the Aluto-Langano field 
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is generating electricity, the installed capacity of the Geothermal Combined Cycle Unit built in 1998 is 

7.2 MWe. Preparation for additional drilling is underway to allow for expansion of the field of 70 MWe. 

In the Tendaho-Dubti field, a total of 3 deep and 3 shallow exploration wells were drilled 

between 1993-1998, confirming the presence of high-temperature geothermal resources. Tendaho-

Alalobeda field is being evaluated for development of a 12 MWe pilot plant (ELC, 2016). An expansion 

to 100 MWe in subsequent phases is planned. Moreover, the Corbetti geothermal prospect is managed 

by Corbetti Geothermal Ltd. (private investor), a power purchase agreement (PPA) for 500 MWe was 

signed and the exploratory drilling started in 2018. 

5.2.4.  Kenya 

Zemedkun (2018) estimated a geothermal potential of >10000 MWe in over twenty-three sites. 

However, to date only Menengai, Olkaria and Eburru are under production. The potential of the 

Menengai Block is 1600 MWe, the drilling still on-going and a 105 MWe (ELC, 2014) tender was 

awarded to private developers. The potential of the Olkaria Block is 1200 MWe of which 636 MWe 

installed and the remaining 560 MW are under development. In the Eburru geothermal field, six 

exploratory wells were drilled, with an estimated potential amount of 60 MW. KenGen installed in 2012 

a 2.5 MW well-head power plant. 

5.2.5. Tanzania 

Geothermal systems in Tanzania are mainly associated with both the eastern and western rift 

branches and five prospects are prioritized, namely: Ngozi, Songwe, Kiejo-Mbaka, Luhoi and Lake 

Natron. To date, geoscientific investigations were done in all the above-mentioned prospect. On the 

other hand, slim wells were planned in Ngozi (2019) and Kiejo-Mbaka (2020), while detailed 

surface studies and thermal gradient holes (TGH) are planned for Songwe. TGDC (2018) estimated a 

geothermal potential of the country >500 MWe. 

5.2.6. Rwanda 

Geothermal prospects in Rwanda, Gisenyi and Mashyuza, are associated with the Virunga 

volcanic complex: All the resources in Rwanda are classified as medium to lower temperature. Deep 

exploration drilling in Karisimbi did not intersect a geothermal system. Gisenyi and other areas are 

being evaluated for only direct use applications. 

5.2.7. Democratic Republic of Congo 

In 1950s, shallow wells were drilled at Kiabukwa hot springs. The discovered geothermal 

resource has a temperature of 91 °C and a flow rate of 40 l/s. In order to support the mining operations 

in such area a 0.2 MWe binary plant was installed in 1952. Others geothermal areas are at 

reconnaissance stage. 

5.2.8. Uganda 

Most of the geothermal potential areas are associated with the western branch of the EARS. The 

four major geothermal prospects are Katwe-Kikorongo, Buranga, Kibiro and Panyimur and geothermal 

systems are considered to be fault controlled (Zemedkun, 2018). The two prospects in which the 

geoscientific studies were concentrated are Kibiro and Buranga. For Kibiro, geothermometryic 

estimations indicated reservoir temperatures >150 °C and drilling of thermal gradient hole (TGH) is 

planned. The Buranga prospect has the largest geothermal manifestation in Uganda, i.e. hot springs, 
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mud pools, fumaroles, etc. The prospect is located at the foot of the Ruwenzori Mt, and it is associated 

to a fracture-controlled system. 

5.2.9. Zambia 

Since 1980s, the government of Zambia and Italy have been carrying out exploration studies in 

Kapsiya and Chinyunyu prospect areas. In 1986, a pilot plant in Kapisya was installed by the Italians. 

This power plant has two Organic Rankine Cycle (ORC) turbo-generators of 200 kW, but it never 

operated. 

5.2.10. Malawi 

Over twenty geothermal areas are discharging hot water at T=40-80 °C. Detailed surface studies 

are ongoing in some prospects, and only low to medium temperature resources were so far discovered. 

Two prospects, Kasitu and Chiweta, were selected for a pre-feasibility study. 

5.2.11. Mozambique 

The Renewable Energy Atlas of Mozambique - Resources and Projects for Power Generation 

(Gesto-Energia, 2014) describes thermal springs that reach temperatures exceeding 60 °C. Even a 

temperature of 95 °C was historically recorded. The provinces with geothermal occurrences are Tete, 

Manica, Sofala, Zambézia, Nampula and Niassa. 

A geochemistry campaign was conducted in 2012, in which twenty-two water samples were 

collected from hot springs, mineral springs, water pumps, rivers and sea, in 6 provinces: Manica, Tete, 

Nampula, Niassa, Zambézia and Sofala. At four sites, geothermometers indicate enough temperature for 

electricity production: Boroma (164 °C), Morrumbala (153 °C), Maganja da Costa and Namacurra 

(155 °C). An additional geophysical campaign was performed in 2013 in the six selected locations, 

distributed by the provinces of Tete, Zambézia and Niassa, with the acquisition of approximately 250 

magnetotelluric and gravity stations. The analysis of geophysical data indicated areas with low 

resistivities that may correspond to potential geothermal reservoirs at depths ranging between 1500 and 

2500 m. 

5.3. Recent advances in the geothermal studies of EARS 

During this PhD work, several geothermal fields in the East Africa Rift System (EARS) were 

studied in detail. In particular two geothermal prospects located in Ethiopia, one in Kenya two in 

Malawi and Tanzania. These investigated prospects are well widespread along the Eastern and Western 

Branches of the EARS, and give representative insights into the different geothermal play types of the 

Region (Figure 5-1). 

This PhD study was based on the data obtained thanks to my direct participation in seven 

international projects, four of which co-financed by the Ministry for Foreign Affairs in Iceland (MFA)-

Directorate for International Development Cooperation (ICEIDA) and by the Nordic Development Fund 

(NDF) and two by the World Bank (WB). The seventh project was commissioned directly to my 

employer (ELC Electroconsult) by the Geothermal Development Company (GDC, Kenya). 

The contribution reported in this PhD work in the above listed projects implied: 

- Field activities (geological, geochemical and geophysical surveys); 

- Laboratory analyses (petrographic, XRD and chemical); 

- Well data analysis; 
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- Integrated interpretation of the results deriving from the different geoscientific investigations 

and from the deep/shallow exploratory drilling (conceptual model); 

- Numerical modelling; 

- Wells targeting. 

First, the investigated geothermal fields are briefly introduced, while in the following a detailed 

picture of three of them (Alalobeda, Menengai and Kiejio-Mbaka) is reported, as derived from the 

several geological, geochemical and geophysical campaigns during which I operated. 

 

Figure 5-1 Location of the investigated geothermal fields (little red squares) during the present PhD activities 

5.3.1. Alalobeda - Ethiopia 

The Alalobeda geothermal prospect is located in the western sector of the Tendaho Graben (see 

Figure 5-2), a major structure extending within the Northern Afar Region, which hosts also the 

prospects of Dubti and Ayrobera. These two prospects were extensively investigated, as well as deep 

exploratory wells were drilled. In Dubti, the existence of a shallow reservoir of commercial interest was 

proved, whereas the deep reservoir, albeit characterized by high temperature, is characterized by a rather 

low permeability. 

In the framework of the full development of the geothermal resources of the country, the 

Geological Service of Ethiopia (GSE) decided to pursue the exploration of the Alalobeda prospect 

through the implementation of a series of geoscientific investigations aimed at improving the knowledge 

of Alalobeda and acquiring factual elements needed for the identification of favorable drilling targets, 

whose results were combined to elaborate the conceptual model of the field. A surface exploration 

program, including geological, geochemical and geophysical surveys, as accordingly commissioned to 

ELC-GSE (2016). In the project organization, I held the position of both Project Manager and Lead 

Geologist. The results of the geoscientific study are described in detail in Section 5.4. 

500 km 
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Figure 5-2 Generalized geological map of the Tendaho Graben: MH =Manda Hararo; MG =Manda Gobaad; 

KK = Kurab Koma; UN = Undurur (from Thurmond et al., 2006). Red dot indicates the Alalobeda 

prospect location 

5.3.2. Aluto-Langano field - Ethiopia 

The Aluto-Langano geothermal prospect is located in the floor of the Ethiopian Rift Valley, 

close to its eastern escarpment, some 200 km south of Addis Ababa (see Figure 5-3). In the framework 

of the full development of the geothermal resources of the country, the Ethiopian Electric Power (EEP), 

with the support of the Geological Service of Ethiopia (GSE), decided to pursue the exploration of the 

Aluto-Langano prospect through the implementation of a series of geoscientific investigations, aimed to 

advance the state of knowledge of the prospect. This program falls within the Geothermal Exploration 

Project (GEP), co-financed by the Icelandic International Development Agency (ICEIDA) and the 

Nordic Development Fund (NDF) and aimed at supporting geothermal exploration and capacity 

building in East Africa. Iceland GeoSurvey (ISOR) was designated to provide technical support 

throughout the implementation of the GEP. 

Since 1969, the Aluto-Langano prospect has been the object of a number of investigations and 

during 1980s of a program of deep exploratory drilling, which led to the discovery of a geothermal field 

of commercial interest and the installation of a small geothermoelectric power plant. Following the 

execution of additional geoscientific investigations and a review of all documentation by West JEC, the 

geothermal potential of the Aluto-Langano field was estimated at 35 MWe (Aluto I) and a field 

development plan for the exploitation of this potential was outlined. The plan foresees the initial drilling 

of two “appraisal” wells, to be followed by the implementation of a full development drilling campaign. 

Drilling of the first of the two appraisal wells (LA-9 and LA-10) was completed. 

Alalobeda 
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Figure 5-3 Location of the Aluto-Langano study area 

To fully develop the Aluto-Langano prospect, it was planned to extend the exploration beyond 

the sector now under development, with the final object to increase the electric potential to additional 35 

and possibly 70 MWe (Aluto II and III). This implied the implementation of geological, geochemical 

and geophysical surveys over the whole Aluto Volcanic Complex (AVC), which covers an area of about 

100 km2. 

Within the framework of this program, a surface exploration survey was commissioned to ELC-

GSE (2016). In the project organization, I was both Team Leader and Lead Geologist. The results of the 

geoscientific study were, as follows: 

- A model of the subsurface resistivity within the AVC. 

- A Bouguer gravity map of the AVC area. 

- A micro-seismic survey over the AVC system, maps and cross sections showing earthquakes 

distribution, frequency, focal depth and magnitude. 

- A map of soil gas chemistry (CO2 flux, and 220Rn and 222Rn concentrations). 

- A detailed structural analysis of the AVC and Wonji Fault Belt that elucidates the connection 

between the regional tectonics and geothermal activity at the geothermal field. 

The foregoing outcomes were integrated with other data provided by GSE (including temperature and 

production data from previously drilled wells) to obtain a conceptual model of the Aluto geothermal 

system (supported by 3D modelling software). A proposal for potential drilling targets was formulated, 

adequate enough to sustain the proposed a second 35 MW unit. In case of positive outcome, this would 

lead to a further stage of the Aluto development through implementation of a deep exploratory drilling 

program to exploit the geothermal potential of the field. 

Aluto-Langano 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 54 of 136 

5.3.3. Menengai field - Kenya 

The Menengai geothermal prospect is located at the outskirts of Nakuru Town, situated about 

180 km NW of Nairobi (see Figure 5-4), and covers an area of about 110 km2. The Government of 

Kenya through the Ministry of Energy appointed the Geothermal Development Company Limited 

(GDC) to develop a study of the Menengai field, which is located in a recent caldera. 

 

Figure 5-4 Location of the Menengai study area 

The Menengai caldera is occurs in correspondence of the “triple junction” of the African rift, i.e. 

the intersection of the ENE-WSW trending Kavirondo (also called Nyanza) Rift with the Gregory Rift 

in the point where the latter changes its direction from NNE-SSW to NW-SE. Such a junction is 

considered to be the surface evidence of a mantle plume (Omenda, 2010) and corresponds to a 

concentration of large calderas associated with huge explosive eruptions, contrasting with the 

predominantly lavic and fissural activity of the northern and southern sectors of the rift (Figures 4-2 and 

5-4). 

Menengai has been the object of geoscientific investigations since 1960s. Integrated results of 

these studies indicated the existence of a geothermal resource that could be commercially exploited 

under the Menengai caldera, characterized by high temperature (more than 300 °C) and extending over 

an area of about 50 km2. Underground exploration started in February 2011 through an extensive 

drilling program consisting of deep wells (up to 3 km). 

A study was commissioned to ELC-GDC (2011-2015), to evaluate the full potential and the 

development of the geothermal resources. In the study organization, I held the position of both Project 

Manager and Hydro-geologist. The results of the study and the characteristics of the Menengai 

geothermal field are described in detail in section 5.4. 
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5.3.4. Kiejo-Mbaka and Luhoi fields - Tanzania 

Kiejo-Mbaka Prospect (Figure 5-5) is located some 50 km north of the Malawi border, along the 

NW-SE trending Mbaka Fault, which extends within the Karonga basin in the East African Rift. Several 

recent volcanoes of the Rungwe Volcanic Province are found within the rift, being aligned along its 

NW-SE direction. About 10 years ago, the prospect was the object of a reconnaissance study by the 

Geological Survey of Tanzania and BGR and in 2012 of additional studies by Geothermal Power 

Tanzania Ltd (GPT). 

Luhoi Prospect (Figure 5-6) is located ca. 160 km south of Dar es Salaam in the coastal region, 

within the Rufiji sedimentary basin, where hot springs are attributed to rifting and magmatic intrusions. 

The prospect was in the past concessioned to First Energy Company Ltd (Ethiopia) and object of a 

reconnaissance study. 

In view of the national interest in enhancing and accelerating the development of geothermal 

energy, a project was started aimed at increasing the knowledge of the Luhoi and Kiejo-Mbaka 

geothermal prospects, acquiring factual elements needed for elaborating the conceptual model of the 

field and possibly siting deep exploratory wells (ELC-TGDC, 2017 and 2018). In the project 

organization, I held the position of both Project Manager and Senior Geothermal Geologist. The surface 

exploration in Kiejo-Mbaka and Luhoi, was co-financed by the Ministry for Foreign Affairs in Iceland - 

Directorate for International Development Cooperation (ICEIDA) and by the Nordic Development Fund 

(NDF). It was implemented by the Tanzania Geothermal Development Company Limited (TGDC), a 

subsidiary company of the Tanzania Electric Supply Company Limited (TANESCO). 

In both the prospects, models of the subsurface resistivity, maps of Bouguer gravity anomaly 

and CO2 flux were obtained. Moreover, a magnetometric survey was carried out in Luhoi. The 

geological and geochemical investigations in both the prospects led to disclose the connection between 

the regional tectonics and geothermal activity, to propose potential drilling targets and to preliminarly 

assess environmental and social impacts. 

 

Figure 5-5 Map of the proposed surveys in the Kiejo-Mbaka prospect 
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Figure 5-6 Map of the proposed surveys in the Luhoi prospect 

5.3.5. Chiweta and Kasitu fields - Malawi 

The Ministry of Natural Resources, Energy and Mining (MoNREM) was supporting the 

implementation of the Malawi Energy Sector Support Project (ESSP). The overall objective of the 

project was to increase the electricity supply in the major load centers of Malawi, which currently 

derives almost exclusively from hydroelectrics. The ESSP is expected to build capacity in the electricity 

generation subsector by bringing about diversification in the use of alternative sources of energy for 

power generation, including wind, solar, thermal (using coal), biomass (obtained through sugar, tea and 

timber processing) and geothermal. 

With reference to the geothermal sector, in order to stimulate the development in Malawi, a 

project for the “Assessment of Geothermal Resources in Malawi: a Reconnaissance and Pre-feasibility 

Study” started in 2016 (ELC, 2018). In the project organization, I held the position of Senior 

Geothermal Geologist. The project was developed in three stages, with increasing level of detail. 

➢ Stage 1: Reconnaissance Study. After an analysis of all the available literature information and 

technical documentation, six prospects, namely Chiweta, Kanunkha, Kasanama, Kasitu, Mawira 

and Chipudzi, were selected for the preliminary assessment stage (see Figure 5-7). 

➢ Stage 2: Preliminary Appraisal. At conclusion of Stage 1, the six selected prospects were subject 

to more detailed investigations, including remote sensing study, geological mapping and 

geochemical sampling of waters and gases. Finally, the Chiweta and Kasitu prospects, 

corresponding to well-known hot springs of the Central region (Dulanya, 2006) resulted with the 

highest ranking and singled out for additional and more detailed investigations. Chiweta prospect 

is likely characterised by the hottest springs in the country, where gas emissions and boiling pools 

are also discharged. 

➢ Stage 3: Pre-feasibility Study. The Chiweta and Kasitu prospects were further investigated with 

detailed remote sensing and geological surveys, as well as geophysical (MT/TEM and gravity) 
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campaigns. The integrated interpretation of the results led to the elaboration of the “basic” 

conceptual model of the fields and hence to the estimation of their geoelectrical potential. 

 

Figure 5-7 Location of the prospects covered by preliminary appraisal 

5.4. Case studies 

In this section, three case studies are described in detail as they can be considered the most 

representative examples of geothermal play types present in the EARS: 

Alalobeda field: It is located in correspondence of the triple junction Read Sea-Aden Gulf-Main 

Ethiopian Rift. It can be classified as extensional domain play. However, at the present level of 

knowledge, to discriminate whether Alalobeda system is a fault controlled or fault-leakage 

controlled is not possible. 

Menengai field: It represents the second most important geothermal field in the EARS after Olkaria 

(Kenya). Moreover, at the current field development stage (feasibility study) a huge quantity of 

100 km 
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data, deriving from more than twenty drilled wells is available. Menengai can be classified as 

convection-dominated magmatic play type. 

Kiejo-Mbaka field: It is a typical case of geothermal system present in the EARS’s Western Branch. 

The Kiejo-Mbaka prospect can be classified as extensional domain play fault controlled or fault-

leakage controlled. 

5.4.1. The Alalobeda geothermal field 

The Tendaho Graben, Northern Afar Region (Ethiopia), hosts two well-studied geothermal 

systems: Dubti and Ayrobera (Aquater, 1979-1996). Previous investigations performed in these 

prospects proved the existence of an exploitable, shallow geothermal reservoir, whereas a deeper 

reservoir, albeit characterized by suitable thermal conditions, exhibits rather low permeability. The 

study of the Alalobeda geothermal field, located in the western sector of the Tendaho Graben, was a 

further step towards the development of the geothermal resources in the Ethiopia (GSE and BGR, 

2012). 

5.4.1.1. Geological setting 

From the stratigraphic point of view (Figure 5-8), two distinct groups of rocks are outcropping: 

i) the Plio-Pleistocene age and ridge forming volcanic rocks and their minor intercalated sediments (the 

Afar Stratoid Series - ASS); ii) the Pleistocene-present, rift floor filling continental sediments 

intercalated with some lava flows. 

For the first time, ASS was subdivided in the present study in three units, namely (from the 

youngest to the oldest): a. flow laminated trachybasalt; b. plagioclase phyric and perlitic basalt; c. 

moderately porphyritic basalt. The intercalated sediments are fluvio-lacustrine, sometimes rich in 

bentonite. 

The rift floor filling sediments are highly variable from the viewpoint of grain size, ranging from 

coarse conglomerate to clay, and are products of river, shallow lake and wind deposition. The several 

gradient holes and six exploratory wells (deep and shallow) drilled by GSE and Aquater between 1990 

and 1998 around the Dubti plantation, that is 10-15 km NE of the Alalobeda prospect, showed that these 

sediments have a thickness of more than 1200 m (Battistelli, et al., 2002). Moving towards the border of 

the Tendaho Graben, which is to the Alalobeda prospect, such thickness is expected to decrease 

progressively. 

The poor permeability of the ASS may be due to either hydrothermal self-sealing processes or a 

limited downwards extension of the normal faults. Under this point of view, primary targets for the 

future drilling exploration would correspond to zones where neo-tectonic events are expected to be 

particularly developed, i.e. whenever the two NW-SE and NNE-SSW rift systems are intersecting. 

Extrapolation of the drilled wells data (Aquater, 1990-1998) to the south-west located Alalobeda 

prospect may be useful to select primary targets and predict the lithological sequence. According to this 

reconstruction (Gebregziabher, 1998), the Upper Extrusive Sequence, in the study area, will be 

significantly reduced to only few hundred meters, since the Alalobeda zone is very close to the major 

Logiya fault and the axial basalts may also completely lack. The sediments will probably be on the 

whole coarse grained, since their source is near, wherefore slope scree and gravel are expected to be the 

predominating products, intercalated with the finer lacustrine sediments. 
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From the structural point of view (Figure 5-8), in the study area there are the three rift systems, 

named Red Sea (NW-SE), Ethiopian Rift (NNE-SSW) and Gulf of Aden (ENE-WSW), that meet 

around the Dama-ale volcano and Lake Abhe, forming a zone of triple junction. The Red Sea and the 

Ethiopian Rift trending faults interact in the study area, particularly in the western half, forming NW 

elongated rhombic blocks. Near the western margin of the Tendaho Graben, where the NW trending 

faults are younger, they have left laterally displaced the NNE trending faults curving the latter ones to 

the west. 

All hydrothermal manifestations of the study area (hot springs, fumaroles and warm to hot 

grounds) are confined within the western half of the prospect that is in the sector of interaction between 

the Red Sea and Ethiopian Rift systems (ELC-GSE, 2016). In particular, along the Logiya fault the fluid 

manifestations start where the NW system displaces left laterally the NNE one. The fact that these 

thermal discharges are located exactly in correspondence of the rejuvenated junction of the two fracture 

systems indicates the presence of a zone of decompression allowing a preferential way for the uprise of 

thermal fluids, as well, possibly, of magmatic bodies. 

 

Figure 5-8 Geological-structural map of the Alalobeda geothermal prospect 

5.4.1.2. Geophysical data 

Gravimetric investigations were carried out in the Alalobeda geothermal prospect. The analysis and 

interpretation of the gravimetric data (Figure 5-9) indicated that: 

i. Graben shoulder is separated from the graben depression by different main fault systems that 

define different bedrock sectors (ELC-GSE, 2016). The most external main fault is MF0, which 

is defined by its outstanding topographic escarpment. The correspondent first graben sector D0 

has a very thin sedimentary cover (when existing). A second main fault MF1 imaged by gravity 

(actually a fault system composed by different normal faults) separates the sector D0 from sector 

D1, where the sedimentary infill is thicker. A third main fault (system) MF2 divides sector D1 

from D2 (the deepest). 
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ii. Both the MF1 and MF2 fault systems are shifted towards NE at the locations indicated by labels 

SHFT. Shifting may occur along transfer faults that accommodate the evident large-scale NE 

trending shift of the graben shoulder moving from the survey area to the SE. 

iii. The buried ASS bedrock below the sediments in the plain (sector D1) shows a horst-graben 

structure (white lines in the figure, main local horsts labelled H1, H2, H3), similar to the horsts 

outcropping from the plain close to the mountains. The graben shoulder (in the survey region) is 

therefore composed by a set of asymmetrical horst and grabens rather than half-grabens. 

iv. The deepest D2 sector of the buried ASS bedrock is located in correspondence of the inferred 

stripe of dominantly normal-polarity intrusions and/or diking originated in the past 0.78 Ma. The 

D1 sector on the contrary shows a reversed magnetic polarity due to ASS basalts formed during 

the reverse Matuyama Chron (>0.78 Ma) 

v. A region of enhanced density (density contrast >300 kg/m3) is located inside the ASS basalts 

below the graben shoulder at an elevation range modelled approximatively between -500 to        

-1,500 m asl. The denser region is spatially well correlated with a region of enhanced 

conductivity (2-3 times larger than the surroundings) detected by the MT survey. 

 

Figure 5-9 LEFT - Structural map derived from the gravimetric interpretation superimposed on the DEM. 

Epicentres are represented by the small red circles (see text). MF: main fault; H: horst structure. 

D: structural sector; B: bedrock. RIGHT - Location of resistivity cross sections 

From the geomorphological point of view, Alalobeda area can be divided into two domains: (i) 

Alalobeda Plain, extending along the Tendaho Graben (TG) and (ii) Alalobeda Ridge, overlying basaltic 

products of the Afar Stratoid Series (ASS). Such lithological differences were also found to be reflected 

by electromagnetic investigations (MT/TEM). 
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In the Alalobeda ridge, a 1D inverse modelling example, shown in Figure 5-10, carried out over 

an outcrop of basalts of the ASS, indicates the following electrostratigraphic sequence: 

- A surficial relatively resistive layer (≈20 Ohm m) with a thickness of about 60 m; 

- A very conductive layer (≈0.5 Ohm m), denominated ASS-CL1, centered at a depth of about 

100 m; 

- A moderately resistive layer (≈10 Ohm m) centered at a depth of about 250 m; 

- A second very conductive layer (<1 Ohm m), denominated ASS-CL2, centered at a depth of 

about 500 m; 

- A progressive increase of resistivity up to about 50 Ohm m at 2 km; 

- The two very conductive layers centered at depths of 100 and 500 m might reflect the existence 

of important hydrothermal alteration. 

 

Figure 5-10 Smooth 1D model relevant to A102 station 

➢ An example of 1D inverse modelling for the Alalobeda plain is shown in Figure 5-11. It points out 

the following electrostratigraphic sequence (the first three layers are denominated S-CL and the 

fourth one ASS): 

- A shallow conductive layer (≈2 Ohm m) with a thickness of about 30 m; 

- A very conductive layer (<1 Ohm m) centered at a depth of about 200 m; 

- A rise of resistivity up to over 10 Ohm m at 1,000 m depth; 

- A further progressive increase of resistivity up to about 40 Ohm m at 2 km. 

 

Figure 5-11 Smooth 1D model 
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The 3D inversion was carried out with different initial models, in order to validate the final 

model being interpreted. Thus, inversion was performed starting from a 50 Ohm m homogeneous 

medium, a 10 Ohm m homogeneous medium and a resistivity distribution resulting by the linear 

interpolation of the smooth 1D models. The data fit obtained from these models is good to excellent. 

From the 3D inversion, resistivity cross-sections were prepared. The symbols utilized are the 

same already described for the 1D model and a selection of these profiles (PT04, see Figure 5-9 right) is 

represented in Figures 5-12, while Figure 5-13 represents horizontal slice at elevations 0 m asl -

600 m asl. 

 

Figure 5-12 PT04 3D longitudinal profile. Scale color in LOG10 [resistivity (ohm.m)] 

 

    

Figure 5-13 PT04 3D longitudinal profile, at 0 m asl (left) and -600 m asl (right) 

The overall resistivity distribution is in good agreement with the results from 1D 

pseudosections. However, greater deviations in the ridge sector led me to a different explanation of the 

conductivity anomalies. 

i. The shallow conductive layer ASS-CL1 (see Figure 5-12) can be identified in the ASS basalts in 

the ridge sector. It results as a superficial alteration level that extends up to the MF1 fault 

system. To the NE it is hindered by the sediments and likely forms the base of the S-CL 

conductive layer in the plain sector. 
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ii. The deeper conductive anomaly referred to ASS-CL2 (see Figures 5-12 and 5-13) is 

discontinuous and cannot be identified with a continuous conductive layer. It is made by many 

different distinct lenticular anomalies at approximatively the same ranging depth. In the figures, 

we have still labelled every single anomaly as ASS-CL2. Note that it is very hard to identify any 

fault inside each anomalous body, wherefore faults detection becomes difficult and only 

undoubted cases have been marked in the sections. 

iii. The shallow horizontal slices (from 350 to -200 m asl) show that in the ridge sector the single 

ASS-CL2 anomalies are elongated along NNE trending lineaments, suggesting a structural 

control by the NNE trending MER faults. A few longitudinal sections (PL06 and PL07, see 

Figure 5-9 right) show that below the single ASS-CL2 anomalies, the resistive bedrock RB 

shows a correspondent deepening. These features were interpreted as generated by enhanced 

hydrothermal alteration focussed along the permeable narrow fracture zones marked as FZ1-

FZ3. High temperature clays cause the deepening of the resistive bedrock at depth, while low 

temperature clays generate the stronger ASS-CL2 anomalies at shallower depth. 

iv. The conductive layer S-CL is well mapped in the plain area and easily used as a proxy to fault 

detection in the ASS bedrock hindered by sediments. There is a good agreement with the faults 

inferred by the gravity indicated by black arrows and the faults traced from the 1D 

pseudosections. 

v. The anomaly marked as FZ0 in the longitudinal sections and in slices deeper than -400 m is the 

most important feature at depth. It may be caused by enhanced hydrothermal alteration focused 

along a large and deep structural discontinuity trending NS, with no evident relationships with 

surface structures. 

Micro-seismic monitoring has led to identify two elements of primary interest with respect to the 

possible existence of a geothermal system, namely depth and density of the events. As refers to depth, 

the Alalobeda area is generally characterized by a relatively shallow seismicity that shows the maximum 

of event frequency at about 4-5 km of depth (see Figure 5-14). Below this depth, a clear decrease in 

seismicity is observed, allowing to hypothesise that the seismicity cut-off is located at approximately 

5 km depth. This could be interpreted, as the limit of the brittle-ductile zone that may correspond to 

isotherms characterized by temperature ranging from 350 to 550 °C (Gresta et al., 1997). The seismicity 

above this zone may be related to the hydrothermal circulation processes, which activate the existent 

fractures inside that. 

As refers to events density, five anomalous zones were identified, out of which the most 

conspicuous one is located in correspondence of the Alalobeda manifestations and exhibits a NNW-SSE 

trend, sub-parallel to the trend of the Tendaho Graben. Inside this zone, it is possible to recognize two 

subzones (see Figure 5-9 left), as the northernmost one assumes the highest values of event density with 

a clear event cluster pattern. 
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Figure 5-14 LEFT - Map of the earthquake locations in the restricted area of ±10 km, in E and N directions, 

from station S07. The triangles indicate the stations and the circles the epicentral locations with 

variable radius depending on their magnitude. The distances are referred to station S07. RIGHT - 

West-Est and North-South sections of the hypocentral depths in the restricted area. The triangles 

indicate the stations and the circles the epicentral locations with variable radius depending on their 

magnitude. The distances are referred to station S07 

5.4.1.3. Integrated interpretation of geophysical data 

For a better understanding of the overall setting of the Alalobeda prospect, in terms of 

interrelation between stratigraphy, structure and hydrothermal alteration, the results of the MT survey, 

were further examined through a detailed analysis of the Blocky 1D inversion of all the soundings. Such 

analysis was focused on the interpreted depth of the resistive basement and consequent identification of 

lateral geoelectrical discontinuities. Moreover, the configuration of the shallow and deep conductive 

units was studied and the presence of a very deep conductive unit was recognized. On the whole, with a 

few exceptions, a good consistency among adjoining soundings was observed, allowing a reasonable 

correlation along performed transversal profiles, subject obviously to the inaccuracies which are implicit 

in geoelectrical interpretation. The investigated area was accordingly subdivided into three distinct 

sectors (Figure 5-15), and the most interesting findings (see Figure 5-15) of such combined 

interpretation are mentioned hereafter: 

✓ The gravimetric survey clearly shows that the structure of the area is mostly controlled by the Red 

Sea, NW-SE trending system. Transversal elements, either NNE-SSW or WSW-ENE, affect 

marginally the overall structural pattern. 

✓ The major structures identified through gravimetry are almost perfectly coincident with the 

contacts between Sectors A and B and Sectors B and C. 

✓ Similarly, the positive gravimetric anomaly along the shoulder of the Tendaho Graben follows 

exactly Sector B in its southern portion. At the height of the WSW-ENE structure causing a 

shifting of the NE boundary of this sector. The anomaly becomes narrower and tends to be shifted 

to the SW. It is reminded that the gravimetric anomaly is interpreted as being related to an 

intermediate depth source, possibly due to hydrothermal alteration (propylitization) of the basalts 

causing a density increase. 

✓ The WSW-ENE structures recognized through the geoelectrical and gravimetric surveys may be 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 65 of 136 

interpreted as associated with sinistral strike-slip faults conjugate with the formation of the 

Tendaho Graben. 

✓ The micro-seismic survey highlighted two elements, which may have direct correspondence with 

the existence and configuration of a geothermal system, namely density of the seismic events and 

depth of the relative hypocenters. 

✓ As refers to density of the events, a very pronounced anomaly, classified as A3 zone, was 

identified: this anomaly occurs in the northern portion of Sector B, just south of the WSW-ENE 

structure which displaces the SW boundary of this sector. 

✓ As refers to depth of the events, presumably reflecting the boundary between brittle and 

ductile zones, the above mentioned A3 zone, associated with the maximum density of events 

in the transitional zone, is also characterized by the shallowest depth of the hypocenters, 

which does not exceed 5 km 

In general, a good consistency of the favorable factors pointing to the potential existence of a 

geothermal system can be recognized. These factors tend to single out a preferential zone centered 

around the main hydrothermal manifestations of Alalobeda and are utilized for inferring the extent of 

the reservoir. 

 

Figure 5-15 Synthesis map of the Alalobeda geothermal prospect 

1 km 
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5.4.1.4. Geochemical data 

Using concentration of major anions and major cations, three water types were identified 

(Figure 5-16), namely: 

- Sodium-chloride type. It is represented by both the thermal manifestations of Alalobeda and the 

reservoir liquids encountered by the exploratory wells drilled in the Dubti prospect. Limited 

differences are encountered between the two groups of samples. In spite of these differences, it 

is reasonable to hypothesize that also the Alalobeda thermal waters are mature aqueous solutions 

coming from a high enthalpy geothermal reservoir (ELC-TGDC, 2016). 

- Sodium-bicarbonate type. It is represented by the sample collected from the manifestation 

situated some 700 m WNW of the main Alalobeda manifestations (ALB-W-10). This sample is 

a natural steam condensate, possibly affected by mixing with local rainwaters. 

- Sodium (calcium)-bicarbonate (sulfate) type. It is represented by the sample collected from the 

Awash River Dam Lake (ALB-W-17). The chloride and sulfate components are presumably 

related to other natural and/or anthropogenic processes of hard identification. 

The concentration of each chemical constituent was examined against the concentration of 

chloride, chosen as reference component owing to its mobile behaviour. The main object of this 

correlation was the identification of the natural causes which may have brought about significant 

variations in the composition of the water samples collected during the present work and in the previous 

campaigns. These variations, and in particular the increase in K and SiO2 and the decrease in Mg, 

suggest that (i) the reservoir zones feeding today the Alalobeda hot springs are hotter than those which 

were delivering hot fluids in the past, and/or (ii) the deep hot waters at present reach the surface more 

quickly than in the past and, consequently, they are less affected by re-equilibrium upon cooling. 

      

Figure 5-16 LEFT - Triangular diagram of main anions (from Giggenbach, 1988, modified) for the water 

samples collected in the Alalobeda area during this work. Also shown are the water samples 

obtained in the Alalobeda area during previous works and the water samples from the Tendaho 

deep geothermal wells (data computed at reservoir conditions). RIGHT - Triangular diagram of 

main cations for the water samples collected in the Alalobeda area during this work. Also shown 

are the water samples obtained in the Alalobeda area during previous works and the water samples 

from the Tendaho deep geothermal wells (data computed at reservoir conditions) 

The observed chemical changes are consistent with the transition from geyser activity to steady 

hot water discharge, admitting that today the hot uprising water flows through underground conduits 
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larger than in the past. Moreover, the Cl-B and Cl-Li relationships suggest that chloride is probably 

contributed almost entirely as magmatic HCl entering the roots of the geothermal system of Alalobeda 

together with other magmatic gases. These are absorbed into deep circulating groundwaters, whose 

neutralization generates the deep geothermal liquids. 

Based on the Na-K and K-Mg geothermometers of Giggenbach (1988), all the samples from the 

Alalobeda thermal springs collected during this work indicate that the initial unboiled reservoir liquid is 

close to equilibrium with albite, K-feldspar, chlorite, illite and a silica mineral at 220 °C (see Tables 5-

1 and 5-2). Assuming maximum steam separation, the silica (quartz) geothermometers by Giggenbach 

et al. (1994) and Fournier (1973) indicate temperatures close to 200 °C, which are reconciled with Na-K 

and K-Mg temperatures admitting the occurrence of some silica loss (104-131 mg/kg) through 

precipitation of amorphous silica upon adiabatic cooling.  Considering the increase in K and Ca 

concentrations due to boiling from 220 °C to 100 °C, an average PCO2 of 0.0528  0.0054 bar (1) is 

estimated for the aqueous solutions prior to boiling by using the K-Ca PCO2-indicator. 

Alternatively, based on the Na-K geothermometer of Fournier (1979) and the maximum-steam-

loss silica (quartz) geothermometers by Giggenbach et al. (1994) and Fournier (1973), the initial 

unboiled reservoir liquid would be close to equilibrium with albite, K-feldspar, and quartz at 200 °C. 

Accepting this interpretation, it must be admitted that the K-Mg temperatures overestimate the reservoir 

temperature due to secondary processes and/or analytical uncertainties. Considering the increase in K 

and Ca concentrations due to boiling from 200 °C to 100 °C, an average PCO2 of 0.0556  0.0057 bar 

(1) is obtained for the aqueous solutions prior to boiling by means of the K-Ca PCO2-indicator. Samples 

collected in 1995 from springs AL-1 and AL-2 and samples obtained in 1990 from springs AL-2 and 

AL-4 substantiate both interpretations, whereas the remaining 25 previous samples are affected by 

secondary processes and possibly by uncertainties due to analytical problems and improper sample 

preservation. 

Finally, the Na-HCO3 sample ALB-W-10 (coming from the fumarolic area situated to the NW 

of the thermal manifestations of Alalobeda, at a distance of 700 m) could proceed from a relatively 

shallow peripheral aquifer at 155-160 °C as indicated by chalcedony solubility and the K-Mg 

geothermometer. 

Table 5-1 Temperatures computed through direct application of geothermometric functions for the samples 

collected from the Alalobeda thermal manifestations during this work 

Tch Tqz Tqz-msl TSiO2 TSiO2-msl TKMg TKMg-msl TNaK-F TNaK-G

°C °C °C °C °C °C °C °C °C

ALB-W-01 207 221 201 224 198 202 -195 204 220

ALB-W-02 207 221 201 224 198 218 -210 205 221

ALB-W-03 201 216 197 218 193 195 -189 198 215

ALB-W-04 207 221 201 225 198 -235 226 204 220

ALB-W-05 210 224 203 228 201 -234 225 204 220

ALB-W-06 206 220 200 224 197 -235 226 204 220

ALB-W-07 208 222 202 226 199 205 -198 200 216

ALB-W-08 206 220 200 224 197 217 -209 205 221

ALB-W-09 209 222 202 226 199 209 -202 205 221

ALB-W-11 207 221 201 225 198 216 -208 203 219

ALB-W-12 203 218 198 220 195 212 -205 198 215

ALB-W-13 212 225 204 230 202 -231 222 202 219

ALB-W-14 210 224 203 228 201 -231 222 202 219

ALB-W-15 210 224 203 228 201 -228 220 198 215

Average 207 221 201 225 198 209 223 202 219

Std.dev. 3 2 2 3 2 8 3 3 2

ALB-W-10 157 178 167 169 156 154 151 272 283

Sample
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Table 5-2 Temperatures computed through direct application of geothermometric functions for the samples 

collected from the Alalobeda thermal manifestations during previous investigations 

Tch Tqz Tqz-msl TSiO2 TSiO2-msl TKMg TKMg-msl TNaK-F TNaK-G

°C °C °C °C °C °C °C °C °C

AL-1 1980 219 231 209 238 208 146 143 190 207

AL-2 1980 204 219 199 221 196 158 155 178 196

AL-3 1980 202 216 197 218 193 150 147 187 205

AL-4 1980 195 211 193 211 188 163 159 193 210

AL-5 1980 209 223 203 227 200 169 165 180 197

AL-6 1980 206 220 200 223 197 150 147 196 213

407 1980 206 220 200 223 197 158 155 187 204

AL-1 11/10/1990 216 229 207 235 206 179 174 202 219

AL-2 11/12/1990 206 220 200 223 197 209 202 194 211

AL-3 11/12/1990 201 216 197 218 193 177 172 195 212

AL-4 11/12/1990 204 219 199 221 196 192 186 194 211

AL-5 13/11/1990 204 219 199 221 196 156 153 192 209

AL-1 05/12/1995 195 211 193 211 188 241 232 186 203

AL-2(8) 05/12/1995 199 214 196 216 192 236 227 195 211

Ala sp-B 02/08/1996 213 226 205 232 203 142 140 177 195

Ala sp-1 02/08/1996 204 219 199 221 196 160 156 181 198

Ala sp-c 02/08/1996 272 274 242 297 -250 163 159 186 204

Ala sp-d 02/08/1996 -125 -151 -144 -135 -129 160 156 181 198

Ala sp-e 02/08/1996 -133 -157 -149 -143 -135 120 119 180 197

Ala sp-g 02/12/1996 197 212 194 213 189 151 148 165 184

Ala sp-f 02/12/1996 201 216 197 217 193 172 167 181 199

AL-1 09/04/2000 207 221 201 224 198 173 168 179 197

AL-1 04/01/2003 201 216 197 217 193 174 169 187 204

73 04/01/2003 201 216 197 217 193 174 169 187 204

AL-2 04/01/2003 199 214 196 216 192 135 132 185 203

AL-3 04/01/2003 193 209 192 209 187 172 167 185 203

AL-1 H.sp 2004 190 206 190 206 184 177 172 192 209

AL-2 H.sp 2004 190 206 190 206 184 176 171 192 209

UN-73 H.sp 2004 185 202 186 200 180 162 158 184 201

Average 204 219 199 222 194 169 164 187 204

Std.dev. 16 13 10 17 7 26 24 8 7

Sample Date

 

In conclusion, the geochemical analyses of water samples collected from the Alalobeda hot 

springs indicated reservoir temperatures of 200-220 °C. Such temperatures are substantially consistent 

with those (on average 185-225 °C) inferred from fumaroles gases. 

All the fumarolic gases collected during this work (see Table 5-3) in the Alalobeda and 

Ayrobera areas have N2/Ar molar ratio varying from 38.7 to 44.8 around an average value of 41.3  1.5, 

which is very close to the ASW value, 39.4. This correspondence suggests that both N2 and Ar are 

supplied in toto as dissolved gases into the meteoric recharge. The only exception is represented by 

sample G20, whose N2/Ar ratio is somewhat higher, 53.9, due to addition of atmospheric air. 

The gas samples obtained in this work have somewhat different He/Ar and He/N2 ratios 

evidently due to variable addition of He deriving from the mantle source to the gases supplied from the 

meteoric source. In fact, they are situated along the tie line connecting these two endmembers. Quite 

similarly, most previous data plot along the lines joining the He-rich compositions typical of gases from 

either the mantle or the crust and the two He-poor atmospheric endmembers (ASW and air), although 

previous data are more scattered than present-day data. 

The He enrichments of both datasets are attributable to involvement of mantle gases rather than 

crustal gases, considering the high 3He/4He isotope ratios measured in the Tendaho wells TD-2 and TD-

4 and in two manifestations of the Dubti area, which are close to 13 R/RA (values corrected for air 

contamination; Aquater, 1995). 
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These very high He isotope ratios are typical of the so-called Ethiopian mantle plume, whose 

high-3He signature was established by Craig and Lupton (1977) based on the volcanic gases of the 

Ethiopian Rift Valley from 6°N (region of Lake Abaya) to 12° (Tendaho Graben). The 3He/4He isotope 

ratios in these gases range up to 15.1 R/RA at 7.3°N in the Corbetti Caldera volcanoes, showing that a 

Primitive Mantle plume is present in the Ethiopian Flood Basalt province, as passive upwelling of the 

asthenosphere cannot produce basalts with ratios greater than the characteristic MORB value, 8 R/RA. 

These early findings were later confirmed by Scarsi and Craig (1996) who measured the helium 

isotope ratios in olivine and pyroxene phenocrysts from basalts of the Ethiopian Rift Valley and Afar 

Depression. High 3He/4He isotope ratios were found all along the Ethiopian Rift and into the Afar 

Depression, with a maximum value of 17.0 R/RA at 8°N in the Rift Axis and a high value of 14.2 R/RA, 

in the central Tat’Ali sector of the Afar Depression. Recently, 3He/4He isotope ratios of 10.9 to 11.9 

R/RA were reported for a series of hot springs located near Dallol volcano within the Danakil 

Depression by Darrah et al. (2013). 

Table 5-3 Results of the chemical analyses of the samples of total fumarolic fluids (i.e., steam plus gases) 

collected during this study in Giggenbach’s bottles. All the gas samples come from the Alalobeda 

area, apart from sample G24 which proceeds from Ayrobera. H is altitude, T is outlet temperature, 

ppmv is the acronym of parts per million by volume, which is numerically equivalent to parts per 

million by mol or mol/mol 

Sample T H2O CO2 H2S N2 CH4 Ar O2 H2 He

Code °C ppmv ppmv ppmv ppmv ppmv ppmv ppmv ppmv ppmv

G5 26/09/2014 97.8 994166 5806 - 24 1.7 0.6 1.9 0.0046 0.0263

G5 26/09/2014 97.8 994110 5855 - 30 2 0.7 2.3 0.0033 0.023

G6 26/09/2014 97.9 995632 4344 - 19 3.3 0.48 1.1 0.0061 0.0199

G6 26/09/2014 97.9 995709 4276 - 13 1.2 0.33 0.66 0.003 0.0138

G10 26/09/2014 97.9 995893 3993 - 96 0.0035 2.3 16 0.0032 0.101

G10 26/09/2014 97.9 994483 5456 14 43 1.1 1 1.8 0.033 0.0308

G18 26/09/2014 97.8 994324 5627 - 42 0.0027 1 6 0.0025 0.0425

G18 26/09/2014 97.8 994811 5104 - 71 9.6 1.8 2.8 0.0199 0.0642

G19 27/09/2014 97.9 993903 5985 - 75 33 1.9 1 1.2 0.0863

G20 27/09/2014 98 964315 34782 - 822 2.8 15.3 66 0.046 0.442

G21 27/09/2014 98.2 995978 4007 - 13 1 0.33 0.52 0.011 0.00831

G22 28/09/2014 97.3 994224 5728 9.4 29 8.5 0.67 1.2 0.015 0.0238

G23 28/09/2014 96.7 994322 5599 - 70 3.6 1.7 3.6 0.025 0.0484

G24 28/09/2014 97.2 994336 5578 9.2 65 8.8 1.5 0.039 2.1 0.0697

G24 28/09/2014 97.2 994192 5690 - 101 0.0053 2.3 15 0.0053 0.0614

Date

 

The tritium content of a groundwater can be used to estimate its residence time in the 

subterranean circuit, by referring to the two theoretical models of: (i) piston flow and (ii) perfectly 

mixed reservoir (Pearson and Truesdell, 1978). The first model assumes the absence of mixing along the 

entire water circuit, from the infiltration point of to the discharge point at the surface. The second model 

is based on the hypothesis that the water entering the reservoir mixes perfectly with that already 

contained into it and that the water leaving the reservoir is representative of such a mixture. These 

theoretical models do not apply if the water of the considered circuit mixes with one or more different 

waters. The tritium content of many springs is actually due to mixing of virtually tritium-free deep water 

with tritium-rich shallow water. 

Both theoretical models are based on the knowledge of the time changes of the tritium content of 

local rainwater. The tritium content of the rainwater of the GNIP-IAEA-WMO station of Addis Ababa 

was determined quite regularly from 1964 to 1974, again from 1984 to 1987, and finally from 1990 to 

1997. A time series consisting of 151 tritium data is available for this location in the GNIP-IAEA-WMO 
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database (IAEA/WMO, 2013). The tritium content of Addis Ababa rainwaters is displayed in Figure 5-

17, showing its gradual decrease from 1964 to 1997. 

 

Figure 5-17 Chronogram of tritium content in the rainwaters collected at the GNIP-IAEA-WMO station of 

Addis Ababa (data from IAEA/WMO, 2013) 

The high tritium contents in the 1960s were due to the introduction of large quantities of tritium 

in the atmosphere through the above-ground testing of nuclear weapons in the mid-1950s and early 

1960s. The amount of tritium in the atmosphere from weapons testing peaked in 1963 worldwide and 

has been decreasing ever since due to the cessation of these activities. This tritium decrease is 

essentially controlled by its decay through beta emission to stable 3He with a half-life of 12.26 years, 

corresponding to a radioactive decay constant  (0.05576 y-1) (Faure, 1986). The tritium data of Addis 

Ababa rainwaters are conveniently explained by the following regression equation (N= 151; 

R2 = 0.759): 

(3H) = exp(-0.09815  y)  119.8 

where y indicates the number of years since 1964. Tritium data of Addis Ababa rainwaters also exhibit a 

very pronounced short-period variability, but it is likely that such a variability is significantly attenuated 

by the mixing processes occurring in the subterranean aquifers. 

The above equation was used to obtain the relations between the residence time of water in the 

subterranean circuit and tritium content for each one of the two reference models. The well-mixed 

reservoir model is more suitable to the characteristics of both the waters discharged from the Alalobeda 

hot springs (whose available tritium are summarized in Table 5-4) and the hydrogeological circuit they 

come from. Nevertheless, Figure 5-18 shows the graphical relationships between residence time and 

tritium content for both theoretical models for completeness. To be noted that these graphical relations 

are valid for 1996. 

Among the seven samples collected at Alalobeda in that year, four are tritium free whereas the 

other three have tritium content of 0.1, 0.3, and 0.7 TU (Kalberkamp et al., 2012). Moreover, a tritium 

content of 0.7 ± 0.51 TU was measured for a sample collected from spring AL-1 on 05/12/1995. To be 

noted that the absence of correlation between tritium and chloride (R2 = 0.069) suggests that the 
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occurrence of mixing (dilution) is very unlikely. Therefore, tritium can be used to estimate the residence 

time of the Alalobeda thermal waters. 

Table 5-4 Tritium data available for the Alalobeda hot springs 

Sample Date Tritium Reference Sample Date Tritium Reference

dd/mm/y TU dd/mm/y TU

AL-1 11/10/1990 0.00 ± 0.6 Aquater (1995) Ala sp-B 02/08/1996 0 Kalberkamp et al. (2012)

AL-2 11/12/1990 0.00 ± 0.6 Aquater (1995) Ala sp-d 02/08/1996 0 Kalberkamp et al. (2012)

AL-3 11/12/1990 0.00 ± 0.6 Aquater (1995) Ala sp-e 02/08/1996 0 Kalberkamp et al. (2012)

AL-4 11/12/1990 0.00 ± 0.6 Aquater (1995) Ala sp-g 02/12/1996 0 Kalberkamp et al. (2012)

AL-5 13/11/1990 0.00 ± 0.7 Aquater (1995) Ala sp-f 02/12/1996 0.1 Kalberkamp et al. (2012)

Ala sp-1 02/08/1996 0.3 Kalberkamp et al. (2012)

AL-1 05/12/1995 0.7 ± 0.51 Aquater (1995) Ala sp-c 02/08/1996 0.7 Kalberkamp et al. (2012)  

Based on the theoretical model of the well-mixed reservoir (Figure 5-18, right), the tritium 

contents of 0.7 and 0.1 TU measured for the Alalobeda thermal springs indicate residence times of 500 

and 3000 years, respectively. These values should be considered as minimum estimates as the virtual 

absence of tritium in many samples points to higher residence times. 

However, both the present-day precipitations regime and isotopic data argue that the Alalobeda 

geothermal reservoir hosts paleo-water seeped in early times. Groundwater is expected to flow mostly in 

the Afar Stratoid Series, reaching a depth of 1,500-2,500 m. 

 

    

Figure 5-18 Graphical relations between residence time of water in the subterranean circuit and its tritium 

content in 1996. These graphical relations are based on the theoretical model of (left) piston flow 

and (right) well-mixed reservoir. The well-mixed reservoir model is used to interpret the tritium 

data of 0.1 and 0.7 TU for some samples collected in 1996 from the Alalobeda hot springs 

5.4.1.5. Conceptual model 

The essential features of the Alalobeda geothermal field can be summarized, as follows: 

a. Heat Source. The magmatic conditions in the Alalobeda prospect can be classified on the 

whole as fair in terms of possibility of occurrence of a suitable heat source. A further 

confirmation about the likelihood of the existence of an active chamber is provided by the 
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observation that chloride contained in the reservoir fluids is probably contributed almost 

entirely by magmatic HCl entering the roots of the system with other magmatic gases (i.e., CO2 

and He, as indicated by 
13

C values of CO2 and 
3

He/
4

He ratios; see Table 5-3). The exact 

geometric configuration of the chamber(s) cannot be inferred just from surface evidences, but, 

based on structural and resistivity considerations, an extension between the main thermal 

manifestation and the Debel and Halebayre “dome” may be assumed, at a depth presumably 

in the order of 10 km. 

b. Geological Setting. In the peculiar geological setting of the Alalobeda prospect, the basalts of the 

Afar Stratoid Series are expected to play both roles of cap-rock and reservoir formation, while the 

underlying Dahla formation would play exclusively the role of reservoir. In fact, the sedimentary 

sequence, with a thickness nowhere exceeding a few hundred meters, is not adequate by itself to 

restrict the escape of the geothermal fluids. Obviously, the different roles to be played by the 

basalt assume the development of well distinct histories which modified the original conditions of 

the basalt: 

✓ The basalt associated with the cap-rock formation underwent intense phenomena of 

argillification at temperatures lower than 200 °C, which determined conditions of 

imperviousness. Resistivity of the cap-rock formation is expected not to exceed 5 Ohm m. 

✓ The basalt associated with the reservoir formation underwent phenomena of high temperature 

hydrothermal alteration (propylitization), which enhanced the brittle nature of the rock: such 

brittle nature on its side allowed, in presence of neo-tectonic activity, the formation of 

widespread fracturing and hence the increase of permeability. Resistivity of the reservoir 

formation is expected, by analogy with other geothermal fields in the world, to be in the order 

of 20-50 Ohm m. 

c. Reservoir Geometry. The definition of the geometry of the cap-rock and reservoir formations, in 

terms of lateral extension and depth, was essentially based on the findings of the MT survey, 

combined with the indications derived from the geological, gravimetric and micro-seismic 

surveys. The geographical distribution of fumaroles was not considered because owing to the low 

vapor/liquid separation temperatures (close to 100 °C), fumaroles might be related to liquids that 

have experienced substantial lateral migration. The integrated interpretation of these 

investigations leads to the following main conclusions: 

✓ Two different causes may be called for to explain the low resistivity units registered through 

the MT survey. In fact, such low resistivity can derive from the primary lithology of the rocks 

or from intense argillification phenomena. Making reference to the subdivision into three 

sectors of the area (see Figure 5-15), it is assumed that the conductive units of Sector C 

correspond to fine grained sediments, while those of Sectors A and B consist of strongly 

altered basalts. 

✓ In Sector A, disregarding the very shallow and narrow conductive unit, of hard interpretation 

and of negligible bearing over the potential geothermal system, the conductive unit is quite 

constant in terms of both thickness and resistivity, covering a surface of at least 30 km2 and 

being still open in all directions. 

✓ In Sector B, the very thick horizon of low-medium conductivity can be at least partly 

attributed to the cap-rock formation. The average value of 5 Ohm m of this horizon rises to  

8-10 Ohm m proceeding southwards between transversal profiles and this boundary can be 

conventionally assumed as the southern limit of the cap-rock. 
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✓ The whole resistive basement of Sectors A and B can in principle play the role of reservoir 

formation, although the interpreted values of resistivity (often in excess of 100 Ohm m) are 

somewhat higher than the ones normally recorded in other geothermal fields. 

✓ From the point of view of structural setting, the priority sector can be referred to the 

intersection between the shoulder of the Tendaho Graben and the major faults which belong 

to the Main Ethiopian Rift system, trending NNE-SSW and well developed in the south-

western portion of the prospect. The Alalobeda main manifestations are situated in 

correspondence of such intersection. 

✓ It should be stressed that the lateral geoelectrical discontinuities between Sectors A, B and C 

should not be viewed as faults in a strict sense. Actually, they are deemed to delimit 

structural blocks which underwent distinct tectonic events affecting the permeability of the 

formations and hence the geothermal fluids circulation pattern and the distribution of 

secondary mineralogy. 

The combined analysis of these observations can be used to carry out a zonation of the prospect 

based on the probability of existence of a geothermal system and to infer the geometric 

configuration of the reservoir. 

Two clear boundaries were recognized (see Figure 5-15), namely: (1) to the NE the contact 

between Sectors B and C; (2) to the SE the zone where a marked resistivity increase of the 

potential cap-rock unit was observed. In the remaining area investigated by the geoelectrical 

survey encompassing both Sectors A and B, a continuous horizon of low resistivity, possibly 

associable with the cap-rock of the system, could be recognized. This area can be classified as 

zone of potential geothermal interest. 

Such zone extends over a surface of some 60 km2, out of which about 80 % fall over the basaltic 

ridge, that is in an environment characterized by very hard accessibility. The bottom of the 

conductive unit, which may indicate the top of the reservoir, occurs at a depth of 800-1,000 m bgl. 

No elements are available for estimating the elevation of the bottom of the reservoir: by 

analogy with other geothermal fields and considering that no lithological variations are expected 

to occur downwards, the thickness is assumed to be in the order of 1,000-1,200 m. Within the 

zone of potential geothermal interest, a first priority zone (see Figure 5-15) can be singled out, 

delimited on two sides by NNW-SSE trending geoelectrical discontinuities between A and B and 

between B and C sectors and on the other two sides by two transversal discontinuities trending 

WSW-ENE. The zone thus delimited includes the main hydrothermal manifestations and covers a 

surface of about 8 km2. 

It should be reminded that the actual lateral extent of the first priority zone is associated with a 

very high degree of uncertainty. In fact, only the eastern boundary is well defined, while the other 

boundaries are based on somewhat flimsy evidences. At any rate, it is stressed that the 

identification of the first priority zone serves mainly the purpose of selecting drilling targets rather 

than of estimating the potential of the reservoir. 

For this purpose, in view of the definition of the drilling program, a second priority zone (see 

Figure 5-15) was identified. Such zone is located over the shoulders of the Tendaho Graben to the 

west of the first priority zone, occupying an area of about 7 km2 and extending within the positive 

gravimetric anomaly, but at the margin of the micro-seismic anomaly. From the geoelectrical 

point of view, the zone is characterized by the presence of a thick conductive unit, underlain by a 

resistive basement: the contact between the two units, assumed to reflect the top of the reservoir, 

occurs at an average elevation of -400 m asl, that is some 200 m higher than the elevation 
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registered in the first priority zone. 

d. Natural Fluids Flow Pattern. The isotopic composition of the geothermal fluids (deriving from 

both literature and PhD data, see Table 5-5), as inferred from the chemical analysis of the 

Alalobeda hot springs compared with the isotopic values of the Ethiopian rainwaters, suggests 

that the reservoir hosts paleowaters, which infiltrated into it during one or more previous pluvial 

periods. 

Table 5-5 Results of the isotopic analyses of fumarolic CO2 and steam condensates collected during this 

study. All the gas samples come from the Alalobeda area, apart from sample G24 which 

proceeds from Ayrobera 

Sample Northing Easting T 
2
H-H2O 

18
O-H2O 

13
C-CO2

Code m m °C ‰ vs. V-PDB

G5 26/09/2014 1287723 719661 97.8 -39 -5.7 -6.83

G6 26/09/2014 1287699 719599 97.9 -46 -6.2 -9.9

G10 26/09/2014 1288203 718849 97.9 -55 -8 -9.52

G18 26/09/2014 1290621 717324 97.8 -57 -7.8 -11.75

G19 27/09/2014 1285089 720297 97.9 -54 -7.1 -8.05

G20 27/09/2014 1284462 721439 98 -51 -6.8 -8.14

G21 27/09/2014 1284427 721444 98.2 -57 -7.3 -10.39

G22 28/09/2014 1287358 719155 97.3 -55 -7 -8.61

G23 28/09/2014 1287219 719217 96.7 -57 -7.6 -6.33

G24 28/09/2014 1315617 727913 97.2 -33 -5.2 -11.65

Date
‰ vs. V-SMOW

 

Such indication seems to be confirmed by the fact that tritium content in the water points to a 

residence time included between 500 and 3,000 years. It should be added that, during the possible 

future exploitation of the field, a hydraulic gradient could be created such as to recall fluids from 

peripheral regions, which are going to recharge the system. Independently from the age of the 

fluids, it may be assumed that meteoric water infiltrating deeply into the ground, upon getting in 

proximity of an active heat source represented by a magmatic intrusion, tends to heat up and to 

upflow in correspondence of sectors characterized by intense fracturing and hence by good 

permeability as well as by thinning or termination of the cap-rock. In the specific case of 

Alalobeda, it is deemed that the heat source occurs at an approximate depth of about 10 km and 

that the sector of enhanced permeability is found at the intersection of the major tectonic systems, 

namely the Red Sea and Main Ethiopian Rift ones. These fluids rise up to a depth of a few 

kilometres, where their temperature is presumably slightly in excess of 200 °C. They are of a 

sodium-chloride type: the Cl-B and Cl-Li relationships suggest that Cl is probably contributed 

almost entirely by magmatic HCl entering the roots of the geothermal system with other 

magmatic gases (i.e., CO2 and He, as indicated by 
13C values of CO2 and 3He/4He ratios). 

The uprising of the heated fluids is restricted by the presence of impervious formations (cap-

rock), which formed in the past as a result of argillification processes at temperature lower than 

200 °C. Fluids tend therefore to expand laterally through fractured basalt flows and to install 

convective cycles, typical of geothermal systems. Due to their temperature, different hydrothermal 

alteration processes develop in the convection zone with formation of minerals such as epidote, 

quartz, albite, adularia e chlorite, as well as of clay in the form of illite. 

The outflow of the system is supposed to take place mostly along the main faults intersecting the 

geothermal system, as expressed by the distribution of the thermal manifestations, which consist 

with one exception of fumaroles and steaming ground. In fact, it is observed that these 

manifestations are located, in the surroundings of the inferred reservoir, along NNW-SSE trending 

faults, whereas, moving further away to the south, they tend to align along NNE-SSW structures. 
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Based on the gas composition, vapors of the fumaroles appear to have separated at T, P close to 

100 °C, 1 bar. The only hot spring situated outside of the main manifestations, approximately 

700 m to the NNW, consists on its side of natural steam condensate, possibly affected by mixing 

with local rainwaters. 

The frequency of the manifestations suggests that outflow is more pronounced in the Graben 

plain, this situation not necessarily means that no outflow is taking place to the east, since it may 

be related to the presence of impervious sedimentary products on surface, hindering the 

emergence of geothermal fluids from depth. 

e. Thermodynamic and Chemical Conditions. The reservoir is expected to be liquid-dominated 

with a temperature of 200-220 °C. Fluids have a Na-Cl composition with relatively high 

content of SO4 are rather diluted (TDS around 1,400 ppm) and may exhibit some calcite 

scaling tendency. Nothing can be said at this stage on their possible content of NCG owing 

to the strong uncertainty on the CO2 partial pressure of reservoir fluids. 

5.4.2. The Menengai geothermal field 

The Menengai geothermal field has been the object of geoscientific investigations since the ’60s, 

while underground exploration started in 2011 through drilling of deep wells. Since that time until the 

end of December 2013, 20 wells have been drilled (out of which three were abandoned before reaching 

their final depth) and additional wells are being drilled (see Figure 5-19). 

Considering the regional importance of the Menengai geothermal field, and the available huge 

quantity of direct data (deriving from the drilled wells), during the elaboration of the present study was 

decided to perform a 3D Natural State Model. 

5.4.2.1. Geological setting 

The huge volume of pyroclastic flows (see Figure 5-20) that brought about the formation of the 

Menengai caldera is likely related to the presence of a magmatic chamber, which may act as the main 

heat source of the geothermal system (Geotermica Italiana, 1987a,b). The occurrence of very recent 

volcanic products (lavas and tuffs) within the caldera indicates that such chamber is still active and its 

top is found at a very shallow depth, presumably in the 5 to 10 km range. Based on the temperatures 

registered in the wells (see Figures 5-23, 5-24 and 5-25), the most shallow portion of the magmatic 

chamber is situated in the western part of the caldera, in correspondence of wells MW-04 and MW-06. 

The formations outcropping within the caldera and those intersected by the wells are of 

peralkaline trachytic composition, presumably derived from fractionation of basaltic magmas, and 

consist predominantly of lavas, with subordinate pyroclastic intercalations (Omondi, 2011) and with a 

progressive increase of intrusive products towards the wells bottom and in the central portion of the 

investigated sector (Lagat et al., 2010, 2011). 

The structure at a regional level (see Figure 5-20) is controlled by the family of N-S faults of 

tensional type, which extend along the Rift and constitute the main Tectono-Volcanic Axes (TVA) 

recognized in the area, that is the Molo and Solai systems presumed to form a complex graben & horst 

system (Leat, 1984). However, within the Menengai caldera other fault systems become predominant, in 

particular the NNW-SSE structures, which are highlighted by the occurrence of well aligned eruption 

centres and fumarolic activity. Another important system corresponds to the E-W direction expressed by 

a long-liner extending between MW-01 and MW-03 and by other parallel faults, which seem to partly 

control the areal extent of the reservoir. 
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Figure 5-19 Structural Scheme of the Menengai Caldera and Wells Location (green dots). Yellow color: 

scoriaceous lava. Red line: faults. Red trianlges: volcanic vents 

Two structures of the NNW-SSE system (trending N.7W and N.30W, see Figure 5-19) appear to 

be of major importance (Mibei et al., 2011), as indicated by their pronounced surface expression, their 

control over the volcanic emission centres and the association with high intensity of the linear features. 

These structures, also clearly expressed by the distribution of the micro-seismic events, define a block 4 

to 6 km wide (see Figure 5-19), which extends throughout the caldera and where all the deep wells 

drilled to date are located, except MW-07, which falls at the western margin of this block. 

As refers to secondary mineralogy (data deriving from drilled wells’ the completion reports), it 

is observed that the minerals indicative of high formation temperature, that is quartz, pyrite and epidote, 

appear in general at an average depth of 600-800 m, corresponding to an approximate elevation of 

1400 m asl. The only exceptions to this refer to wells MW-05A and partly MW-07, 08 and 12, where 

the high temperature minerals, which characterize the propylitic zone, are found below elevation 

1000 m asl. 

A pronounced dome-like shape of the top of the propylitic zone, as expressed by the first 

appearance of epidote, was recognized, being the upper portion in correspondence of a W-E oriented 

belt, which extends between MW-07 and MW-03. Such configuration might reflect the location of the 

main upflow sector of the geothermal system. 

1 km 
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Figure 5-20 Simplified geological map of the Menengai caldera region 

From the stratigraphic point of view, no specific geological units can be singled out as playing 

the role of cap-rock or reservoir. In fact, the whole stratigraphic sequence consists predominantly of 

trachytic lava, wherefore its permeability conditions depend essentially on the type and degree of 

hydrothermal alteration and on the extent and age of tectonic activity. 

From the structural point of view (Figure 5-19), an intense neo-tectonic activity has taken place 

within the Menengai caldera, as expressed by the high density of the linear features. The above 

mentioned structural block delimited by the N.7W and N.30W faults is deemed to control the lateral 
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extent of the geothermal system and to host the most shallow and active portion of the magmatic 

chamber. 

5.4.2.2. Geophysical data 

The geophysical dataset available for the Menengai caldera and surrounding area includes 

gravity stations fairly regularly distributed throughout the Menengai caldera and in the northern region; 

ii) 80 time-domain electromagnetic (TDEM) stations and about 100 magnetotelluric (MT) stations 

distributed in an irregular way (see Figure 5-21) within the Menengai caldera (Saitet, 2012). 

 

Figure 5-21 Location of TDEM (blue dots) and MT (green dots) station at the Menengai geothermal field 

The analysis of gravity data puts into evidence a well-pronounced positive anomaly in 

correspondence of the Menengai caldera, which extends to the north, encompassing the Ol Rongai 

sector to the NNW. The anomaly can be modelled with a body, below the caldera, with a density of 

2,900 kg m-3 enclosed in a surrounding medium of about 2,740 kg m-3. The high-density body below the 

Menengai caldera could be interpreted as belonging to a magma chamber, although it is deemed that 

such interpretation should be further evaluated. In fact, recent literature suggests that the northward 

continuation of the gravity high in the Ol Rongai sector is due to a gabbroic intrusion associated with 

differentiation of a mafic (basaltic) magma (Simiyu, 2001). The presence of a less acid and therefore 

denser magma chamber beneath the caldera area and its surroundings, where generally a sequence of 

trachytic lavas crops out, is compatible with a possible path of magma differentiation. However, a 

density increase could also be related to secondary factors, such as the occurrence of high temperature 

hydrothermal alteration. 

Inversion of MT data generally showed that four electrostratigraphic units can be recognized: 

- An uppermost resistive unit, with a thickness of 100-300 m and a resistivity of 50-100 Ω m; 

- An underlying upper conductive unit, with an average thickness of 600-800 m; and a resistivity 

usually ranging between 2 and 15 Ω m; 

- A resistive basement with a resistivity is of the order of 100 Ω m, whose top may correspond to 

the top of the geothermal reservoir; 
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- A deep conductive unit, whose top is normally at a depth of some 10 km. Only in a few 

soundings, located around the major NNW-SSE fault in the eastern part of the caldera, the top of 

the conductive unit occurs at a depth in excess of 15 km. This unit has an average resistivity value 

of 5 Ω m and could be related to deeper magmatism (underplating). 

The micro-seismic monitoring (Simiyu, 2009), conducted over a zone about 600 km2 large 

centered around the Menengai caldera, identified the presence of three anomalies all characterized by a 

concentration of seismic events, shallow depth of the events themselves and low value of the Vp/Vs 

ratio, pointing to specific sectors with neo-tectonic activity and shallow depth of high temperature 

bodies. Two of the above anomalies occur in correspondence of the Molo and Solai TVA. The third and 

major one, under vapor dominated conditions, extends in the central portion of the Menengai caldera, 

encompassing a SW zone not yet tested by deep drilling. 

5.4.2.3. Geochemical data 

All the available geochemical data from deep geothermal wells (MW-01, 03, 04, 06, 09, 12 and 

13; see Figure 5-22), surface manifestations, shallow aquifers and soil gases have been reviewed with 

the aim to reconstruct the geochemical model of the Menengai prospect (Clarke et al., 1990 and Leat et 

al., 1984). The main results of the review are summarized hereafter. On the basis of available 

geochemical data (GDC, 2012a,d), the Geothermal Reservoir present at depth inside the Menengai 

caldera comprises (see Figure 5-22): 

(i) A shallow liquid dominated reservoir, at temperatures of 150-190 °C, as suggested by water 

geothermometers (solubility of the Quartz, Na-K e K-Mg), crossed by the wells MW-01, MW-03, 

MW-04, MW-12. 

(ii) An intermediate reservoir, also crossed by a few wells, where temperatures inferred based on 

water geothermometers are 250-270 °C for wells MW-01, MW-04, and MW-12, but 230 °C only 

for well MW-03. It is possible that this intermediate reservoir is hydraulically connected with the 

deep one, at least in the sectors of wells MW-01, MW-04, and MW-12. 

(iii) A comparatively deep reservoir, at temperatures from 280 to >340 °C, hosting fluids at different 

vapor/(vapor+liquid) mass ratios, y, as indicated by gas equilibria in the H2O-CO2-CH4-H2 

system. In particular: (a) the central wells MW-06, MW-09, and MW-13, discharging superheated 

steam, as well as borehole MW-12 are connected with a deep vapor-dominated zone, where y is 

close to 1; (b) wells MW-04 and MW-01 (after the work over) intersect a deep two-phase zone 

where y is in the range 0.1 to 0.5; (c) wells MW-03 and well MW-01 (before the work over) 

seems to be in connection with a liquid-dominated deep zone, where y is close to 0. Well MW-01 

has a very peculiar behavior since its deepest section has been connected with two deep feed 

zones with distinct vapor/(vapor+liquid) mass ratios. This fact is highlighted in the schematic 

cross-section of Figure 5-11 by the position of the well on the limit between the y0 and the 

y0.1-0.5 zones. 

Irrespective of the provenance from the shallow or intermediate aquifers, all reservoir liquids 

belong to the Na-HCO3 facies as Na (2441 to 3513 mg/kg) and total ionic carbonates (4786 to 8408 mg 

HCO3/kg, with HCO3
- >> CO3

2-) largely prevail over other cationic constituents (K from 73.8 to 

218 mg/kg, Ca from 0.11 to 0.89 mg/kg, and Mg from 0.05 to 2.37 mg/kg) and anionic ones. Average 

total dissolved solids range from 8659 to 13196 mg/kg (see Table 5-6). 
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Table 5-6 Chemical analyses of Lake Nakuru waters (data from Hecky and Kilham, 1973 and Melack and 

Kilham, 1974) and average composition of geothermal liquids (this report); contents in mg/kg 

Well/Lake 
T(°

C) 
pH Na K Mg Ca 

Alk(HCO3

) 
SO4 Cl F SiO2 TDS 

MW-01 before w.o. 192 7.09 3513 218 0.05 0.80 8408 192 513 98.1 253 13196 

MW-01 after w.o. 243 6.73 2965 136 0.18 0.16 6872 187 594 79.0 418 11251 

MW-03 168 7.47 2441 73.8 2.37 0.11 5184 342 855 86.4 193 9177 

MW-04 202 7.10 2740 122 0.05 0.89 6286 259 919 125 262 10714 

MW-12 222 6.98 2486 87.4 1.62 0.20 4786 251 645 59.8 342 8659 

Lake Nakuru 22 10.15 3305 236 0.88 <DL 7432 55 1024 130 208 12261 

 
 

Regarding the pH determination, since the equations of Chiodini et al. (1991) cannot be applied 

to the Na-HCO3 liquids of the Menengai geothermal field, the chemistry of the aqueous solution in 

equilibrium with paragonite, muscovite, clinochlore, calcite, K-feldspar, quartz, and fluorite at variable 

temperature (175, 200, 225, 250, 275 °C), variable PCO2 (1, 3, 10, 30, and 100 bar), and fixed Cl and SO4 

concentrations (700 and 200 mg/kg, respectively) was computed by means of the computer code EQ3, 

which is part of the software package EQ3/6, version 8 (Wolery and Jarek, 2003), using the most recent 

thermodynamic database (Wolery and Jove-Colon, 2007). Results were then processed through multiple 

regression analysis, obtaining the following relations (concentrations in mg/kg; temperature in K): 

)Nalog()01395.0(88024.0
T

)6.37(9.1998
)0511.0(9133.5pH −


+=     (1) 

)Nalog()09295.0(1641.2
T

)8.250(1.4381
)3405.0(6126.2Plog

2CO +


−= .  (2) 

The squared regression coefficients are 0.9958 for equation (1) and 0.9696 for equation (2). 

Equations (1) and (2) were then used to compute pH and PCO2 for all the available samples of reservoir 

liquids. Therefore, pH values, calculated through the above-mentioned mineral-solution equilibrium 

model, vary from 6.7 to 7.5. 

With reference to gas geochemistry, it was observed that gas equilibrium temperatures of fluids 

from wells MW-01, MW-04, MW-09, MW-12, and MW-13 were generally > 340 °C, whereas lower 

equilibrium temperatures are indicated by fluids from wells MW-03 (280-300 °C) and MW-06 (from 

280 to >340 °C). These equilibrium temperatures are similar to or somewhat higher than those measured 

in the deepest portions of Menengai wells, suggesting that gases are chiefly contributed by the deepest 

high-temperature zones of the geothermal reservoir. 

The analysis of the gas equilibrium (CH4/CO2, H2/H2O and H2/N2, under redox conditions fixed 

by the FeO-FeO1.5 redox buffer of Giggenbach, 1987 and CH4, CO2, H2, and H2O without any constraint 

on redox potential) suggests that there is an increase in y, that is in vapor/(vapor + liquid) mass ratio, 

moving not only towards the central zone (where the vapor-discharging wells MW-06, MW-09, and 

MW-13 are located), but also at greater depths. 
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Figure 5-22 Schematic cross-section through the central area of the Menengai caldera showing the geothermal 

reservoirs encountered by the deep boreholes MW-01, MW-03, MW-04, MW-06, MW-09, MW-12, 

and MW-13 

5.4.2.4. Borehole data 

The reservoir engineering evaluation was performed by reviewing the data collected during 

drilling and testing of 16 wells completed at the date this study was finalized, while 4 additional wells 

were abandoned because of drilling problems (MW-05, 10, 14 and 18). Available data consisted in wells 

stratigraphy and completion, record of partial and total circulation losses (GDC, 2011-2013); completion 

tests on 3 wells (MW-01, 02 and 19: water loss, step rate injection and falloff); pressure and temperature 

(P&T) surveys collected at well completion, during warm-up and production testing; spinner surveys on 

3 wells (MW-02, 16 and 17); production tests on 7 wells (MW-01, 03, 04, 06, 09, 12, 13); composition 

of discharged fluids. Measurements performance in Menengai wells and data interpretation were 

complicated due to the challenging conditions encountered: extremely high temperatures, often above 

300 °C up to supercritical values (≈ 390 °C) at bottom hole; presence of multiple feed zones over 

extended wellbore sections at rather different thermodynamic conditions, which were promoting 

important interzonal flows affecting both the recording of stabilized wellbore conditions and the well 

performance under production; presence of downhole scaling phenomena (mainly calcite and silica 

sinter) during production of some wells discharging two-phase fluids; contemporaneous operation of 4 

drilling rigs requiring strong efforts in terms of personnel and equipment availability to implement all 

the necessary measurement and testing activities. 

5.4.2.5. Reservoir engineering 

Few pressure and temperature (P&T) logs and temperature build-ups were ran during drilling to 

minimize the associated risks. P&T logs were recorded during warm-up on all wells, while water loss 

tests and step rate injectivity tests were performed in 3 wells only (MW-01, 02, 19). P&T logs under 

flowing conditions were recorded in 4 wells (MW-01, 04, 12 and 13). Downhole logs were mostly ran 

using conventional mechanical instruments with calibration curves available up to 300 °C. As in several 

wells the downhole temperature exceeds 300 °C, reaching a maximum of 392 °C recorded in well MW-
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04, the correction of pressure deflections for temperature effects above 300 °C was not always reliable 

(GDC, 2011-2013 and Suwai, 2011 and 2012). 

Most of the wells encountered a liquid dominated shallow reservoir with temperatures ranging 

from 130 to 210 °C depending on well location distance with respect to the central area in 

correspondence of wells MW-06, 09 and 13, where the shallow reservoir was of reduced thickness or 

almost absent. Thanks to the wellbore cooling during drilling operations and cold-water circulation 

losses encountered, most of the wells exhibited a column of liquid water during the initial warm-up. 

Wells drilled in the hottest area experienced a faster warm-up with the evolution of boiling conditions 

downhole (MW-06, 08, 09, 12, 13). Figure 5-23 shows the P&T logs recorded in well MW-08 after 3 

months of warm-up: boiling conditions were present from about 1200 to 1900 m depth along a column 

of liquid water. Other wells, generally located at the boundary of the present well field and crossing both 

the shallow and deep reservoirs, developed strong interzonal flows from upper cold liquid dominated 

feeds towards the deep ones, preventing the warm-up of the latter (well MW-01, 02, 05A, 16, 17). A 

good example of interzonal flows was given by well MW-05A drilled to the S of developed area. Figure 

5-24 shows the progressive warm-up with an almost vertical T profile between 1000 m and bottom hole 

at 2080 m. Liquid conditions prevail everywhere downhole with a pressure pivot point of 62 bara at a 

depth of 1200 m. 

Useful indications about the pressure distribution with depth in the central developed area can be 

obtained looking at Figure 5-25 (left) showing the pressure profiles recorded in well MW-01 during 

drilling and warm-up. Log P1 was recorded in the 17 ½” open hole (OH); logs P4 and P5 in the 12 ¼” 

OH; logs P6 and P9 were recorded during the initial warm-up, while logs P24 and P25 were obtained 

after the work-over performed to remove the obstruction found at 1780 m depth. During drilling of 

17 ½” OH the static level was at about 1965 m asl, while it fell down to 1675 m asl in the subsequent 

section, indicating a hydraulic barrier between 1700 and 1600 m asl, which separated ground water 

circulation from deeper thermal aquifers. During the initial well warm-up after the final depth was 

reached, the static level was approximately the same as in the section above with a pivot point at about 

1100 m asl. This suggests that the pressure was controlled by upper liquid dominated feeds belonging to 

the shallow reservoir which are locally close to hydrostatic equilibrium with colder thermal aquifers 

above. Logs P24 and P25 were ran during the warm-up after the well work-over performed to remove 

an obstruction found at approximately 1780 m depth during a long-term production test conducted in 

2011. 

These two logs showed a completely different pressure distribution now dominated by deep 

feeds whose temperature exceeds 310 °C. Figure 5-25 (center) presents the analysis of pressure 

gradients and fluid composition when the P24 and T24 logs were ran. A column of two-phase fluids was 

present at elevations of 1330-330 m asl, between two sections with gas static pressure gradient. The 

two-phase section was likely supported by a boiling column of fluid with an interzonal flow from deep 

feeds at about 400 m asl to the upper shallow reservoir feeds at 1050 m asl. Boiling promoted the 

exsolution of NCG (non-condensable gases), which accumulated in the colder upper well section, as 

clearly shown in the PT plot of Figure 5-25 (right). NCG content in boiling fluids was supporting the 

two-phase conditions with high local partial pressures, which can be estimated as large as 20-40 bar. 

These NCG pressure did not reflect the actual NCG reservoir content, which was much smaller, but 

were due to the accumulation of NCG within the wellbore because of boiling. The lower gas section 

contained saturated steam (SS) and superheated steam (SH) at about 370 °C, close to the critical 

temperature of water. This lower section at bottom hole was likely controlled by the extremely high 

temperature present in an impervious basement where heat conduction. 
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Figure 5-23 Temperature & pressure logs (left) and P&T measurements against the pure water saturation line 

(right) recorded in well MW-08 after 3 months warm up 

 

  

Figure 5-24 Temperature (left) and pressure (right) profiles recorded in well MW-05A during the warm up 

from March 26 to June 6, 2013 
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Logging and testing results proved that the shallow reservoir had a negative effect on both 

wellbore evolution during warm-up, with interzonal flows preventing the heating of deep well section 

due to the continuous down flow of cold brine, and on production capabilities. In fact, despite of a 

possible increment of total mass discharge, the mixture enthalpy was reduced and this also had an 

impact on the flowing well head pressure (WHP). Well MW-01 represented an exception to this general 

behaviour, with about 80 % of total mass coming from the shallow reservoir as estimated from 

geochemical data processing and heat and mass balance calculations, as specified here below. 

During the first three horizontal discharge tests of well MW-01, that is until May 2012, silica 

temperature, 190 ± 11 (1s) °C, compares with Na-K temperature (197 ± 9 °C), whereas enthalpy 

temperature is significantly higher, with an average of 262 ± 19 °C. This spread of temperatures 

suggests the involvement of both: (i) shallow feed zones at temperatures of 190-200 °C, contributing a 

liquid phase with average enthalpy of 790 ± 124 kJ/kg, and (ii) deep feed zones at higher temperatures, 

probably contributing steam, as already recognized by GDC (2012a). Assuming that these deep feed 

zones are located at 1800-2000 m depth and have temperatures close to 320 °C, as hinted by the 

temperature log T25 recorded during the warm-up after the work over operation, the enthalpy of 

saturated steam from these zones is expected to be 2701 kJ/kg. A simple enthalpy balance indicates that 

the mass contribution of the shallow feed zones to total discharge corresponded to 81 % whereas that of 

the deep feed zones was of 19 %, with an uncertainty of 7 % on both terms. 

But the steam supplied by shallow reservoir feeds amounts at separation pressure to less than 

30 % of total steam production. The above considerations suggest to complete future wells by avoiding 

the negative effects of shallow reservoir feeds. Running of deeper production casing (CSG) shoes is 

deemed necessary and should be decided on a “well-by-well” basis as function of local encountered 

conditions, which need to be carefully evaluated during well drilling. 

   

Figure 5-25 Pressure logs recorded during drilling and warm-up (left) P24-T24 logs recorded after the work-

over (center), and P24-T24 logs plotted on the PT space against the water saturation curve and 

boiling curves of mixtures of water and CO2 at fixed partial pressure(right) 

The evaluation of hydraulic parameters of deep reservoir was attempted by using the pressure 

transients recorded during step-rate injection tests and subsequent fall-off. Figure 5-26 shows the step-

rate injection test recorded at 1800 m in well MW-01 and the evaluation of the Injectivity Index (II). 
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Due to the presence of permeable zones below the instrument setting depth, cold water was also flowing 

beneath the P&T tools as clearly shown by the temperature reduction during injection from 180 °C 

down to 55 °C, with effects on recorded flowing pressure. Figure 5-27 shows the P&T recorded during 

the fall-off and the semi-log plot of pressure vs time for the evaluation of hydraulic transmissivity. After 

about 4 hours from injection shut-in, the temperature showed a sudden increment corresponding to a 

stabilization of pressure, suggesting that interzonal flows were likely to affect the pressure transient. The 

drawdown regression line was then evaluated using data recorded in the first 4 hours. The overall kh 

product was estimated in 12.3 Dm with a skin factor of -5. The II, kh product and skin factor estimated 

for wells MW-02 and MW-19 were 270 and 150 LPM/bar, 7.6 and 1.9 Dm, -4.4 and -5.5, respectively. 

    

Figure 5-26 P&T at 1800 m depth and injection rate history during the step rate injection test performed in 

well MW-01 (left) and bottom hole P vs rate for the evaluation of II (right) 

     

Figure 5-27 P&T at 1800 m depth recorded during the fall-off in well MW-01 (left) and the semilog plot of P vs 

Horner time for the evaluation of hydraulic transmissivity (right) 

5.4.2.6. Production tests 

Production tests were performed on 7 wells, out of which one, well MW-03, is a marginal two-

phase producer discharging low enthalpy fluids from the shallow reservoir. Production tests were 

conducted using horizontal lines equipped with a lip pipe and discharging into one or two vertical twin-

pipe atmospheric pressure separators (silencers). Brine rate was measured using sharp edged weir boxes. 

Total rate and enthalpy for two-phase discharge were computed using the R. James’ approach by 
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combining the lip pressure and the weir box level readings (James, 1962 and 1970). Dry steam 

discharge rates were computed using lip pressure readings and the enthalpy estimated at local 

thermodynamic conditions. 

Production enthalpy depends strongly on the contribution of low temperature shallow reservoir. 

When this contribution was remarkable, as in wells MW-01, 04 and 12 (Kipyego, 2012 and 2013), two-

phase discharge was present with enthalpies ranging from 1200 up to 1600 kJ/kg. Wells MW-06, 09 and 

13, all located in the middle of field developed area, were characterized by dry steam discharge after 

few days of initial two-phase production (Ofwona, 2002 and 2011 and Ofwona et al., 2011). Two-phase 

wells MW-01 and MW-04 were characterized by the decline of discharge potential linked to scaling 

phenomena downhole, clearly detected by obstructions found at depths of 1790 and 1560 m, 

respectively. Work over operations conducted in well MW-01 were able to restore well production at 

rates, enthalpies and WHP even higher than those recorded at well start-up. An obstruction was also 

detected after only two-weeks in well MW-12 at a depth of 1588 m, after an important initial rate 

decline. Well MW-06 was also showing a remarkable production decline, which was likely to be due to 

a combination of low reservoir permeability and scaling phenomena downhole. When production 

through 5” lip pipe started, a cycling discharge was recorded with sharp changes of WHP and total rate. 

Spot two-phase discharge was recorded during WHP surges, further indicating that cycling was 

probably linked to competing effects among multiple feeds with high enthalpy contrast. Cycling was 

followed by two-phase discharge. A few days after, a rather fast drop of WHP was recorded, partially 

recovered reducing the rate with 4” lip pipe. The relatively high CO2 partial pressure and the processing 

of geochemical data with calculation of fluid chemical equilibrium suggested that the scaling was due to 

calcium carbonate precipitation. 

The output curve in terms of mass rate and enthalpy vs WHP is shown for the two-phase wells 

MW-01 and MW-04 in Figure 5-28, and for the dry steam wells MW-09 and MW-13 in Figure 5-29. 

Both two-phase wells showed the decline of discharge rate in time, which can be interpreted as the 

result of scaling downhole. Both wells showed the dependency of enthalpy with WHP, with higher 

enthalpies recorded at high WHP (and low rates), in particular for well MW-04. This can be interpreted 

as the result of a lower contribution from the shallow reservoir when higher flowing pressures were 

present downhole. 

  
Figure 5-28 Output curves of wells MW-01 (production tests in 2011) andMW-04 (three subsequent steps #A, 

#B and #C). Both wells discharge a two-phase mixture 
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Figure 5-29 Output curves of wells MW-09 (left) and MW-13 (right), both discharging dry steam 

 

The output curve of dry steam wells MW-09 and 13 was almost flat within the tested WHP 

range, with rates only gently increasing when WHP was reduced. Flat output curves suggest strong 

incremental pressure drops for limited rate increments, as occurring when flowing conditions were close 

to chocking. Combined wellbore and reservoir simulation at a well sector scale for MW-09, calibrated to 

reproduce the output curve, showed that the flat curve was due to two distinct factors: i) the down-hole 

drawdown, which is not linear as function of rate but characterized by additional losses proportional to 

the square of mass rate; ii) the discharge conditions approaching choking at wellhead for WHP lower 

than 20-30 bara. When choked flow conditions were approached (speed close to that of sound at local 

conditions) marginal increments of rate were obtained by further opening the well. The numerical 

simulations allowed also to estimate a possible increment of production rate for a well with reservoir 

conditions similar to that encountered by MW-09, but completed with a larger production CSG of 13 

3/8 “, of about 30 %. 

5.4.2.7. Conceptual model 

The conceptual model of a geothermal field represents the synthesis of all the information 

obtained by the analysis and interpretation of the available data (see Figure 5-30a,b), both from surface 

studies and from deep exploratory wells, and is used as the basis for the resource assessment and the 

study of the reservoir behaviour under exploitation, as well as for the evaluation of the field potential 

and the definition of the optimum development strategy. As far as the Menengai reservoir is concenrned, 

the essential features can be summarized, as follows: 

a. Heat Source. All available elements point to the extremely positive setting of the Menengai area 

in terms of heat source, in consideration of: (i) the post-calderic, very recent age of the eruptions, 

witnessing the active nature of the magmatic chamber/s, still in a molten stage with temperatures 

in excess of 700 °C (ELC-GDC, 2015); (ii) the acidic nature of the erupted products, reflecting 

phenomena of differentiation which are generally accompanied by an uprising of the magma to 

depth lower than about 8 km (Lagat et al., 2010); (iii) the widespread distribution of the recent 

eruptive centres, suggesting the large volume of the magmatic chamber/s (Lagat et al., 2010). 
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b. Geological Setting. The permeability distribution within the Menengai geothermal system is 

attributable to two specific elements, namely the type of hydrothermal alteration and the degree of 

tectonic stresses, which affect the geological formations. The propylitic zone, reflecting high 

temperatures and competent nature of the rocks, exhibits a dome-shaped configuration, with the 

top located in correspondence of a W-E oriented belt extending between MW-07 to the west and 

MW-03 to the east. With reference to the degree of tectonic stresses, it is observed that an intense 

neo-tectonic activity has taken place in the interior of the caldera. Within this general structural 

pattern, two major features were identified, corresponding to two faults running NNW-SSE and 

N.7W-S.7E, which delimit a 4 to 6 km wide block, which is likely to be associated with a higher 

than average fracture density. 

c. Reservoir Geometry. Two distinct geothermal reservoirs, hereinafter called shallow and deep 

reservoir, were recognized. 

The top of the shallow reservoir occurs at an elevation included between 900 and 1300 m asl 

(except in MW-02, where it was not recognizable), corresponding to a depth bgl of 700-1100 m 

and being expressed in the temperature profiles by a short stretch of iso-temperature indicative of 

a convective cycle. Such depth approximately coincides with the start of the important circulation 

losses registered in the wells of the central part of the field below the cap-rock and, in terms of 

alteration mineralogy, with the top of the secondary quartz zone. The bottom of the shallow 

reservoir is accordingly inferred to occur at an elevation included between 600 and 1000 m asl. 

Evidences for the existence of a shallow reservoir were recognized in all the wells drilled to date 

except for MW-02. This reservoir is therefore deemed to extend throughout most of the sector 

investigated by drilling, being probably delimited to the west and east by the two major structures 

running N.7W-S.7E and NNW-SSE, to the north by a line between MW-02 and MW-11 and to 

the south by a line just south of MW-5A. These boundaries would indicate an areal extent of the 

shallow reservoir of approximately 20 km2. 

The top of the deep reservoir exhibits a pronounced dome-shaped configuration, with the upper 

sector, at elevation of 600-900 m asl, extending in a W-E direction between MW-01 and MW-

04/MW-12 and in a N-S direction between MW-08 and MW-10/MW-12. Beyond these points, a 

sharp drop appears to take place in all directions (see wells MW-5A, MW-11, MW-14, MW-15 

and MW-17). The above described configuration is similar to that of the top of the epidote, except 

for the larger W-E continuation of the latter parameter, which extends between MW-07 and MW-

03. The bottom of the deep reservoir, expressed by the start of the conductive regime which may 

reflect impervious conditions of the rocks, is found at elevation in the range of 0 / -200 m asl with 

local uprising, indicating an average thickness of the deep reservoir of 600-1,000 m in the central 

sector, dropping to <500 m in the peripheral one. The Menengai geothermal field resources have 

been classified into three distinct categories (see Figure 5-30a): 

➢ Developed Area: it corresponds to the sector where all the present producing wells are 

concentrated, extending over a length of about 3 km in a W-E direction and of about 2.5 km 

in a N-S one and covering a total surface of approximately 7 km2. 

➢ Development Area: it encompasses a sector, located to the SW of the former area, defined 

from the structural and micro-seismic monitoring data, covering a total surface of about 

3 km2. The reservoir thickness in this category is interpreted to be in the order of several 

hundred meters. 
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➢ Expansion Area: it exhibits an oval shape, forming a sort of a halo around the above-

mentioned categories; it is on the whole characterized by wells where adequate temperature 

conditions have been encountered, not accompanied by favourable hydrogeological 

conditions (MW-11, MW-15 and MW-17). These potential resources cover accordingly a 

surface of about 10 km2. The reservoir thickness within the expansion area is interpreted to 

be in the order of few hundred meters. The total surface of the geothermal resources, 

combining these three categories, can be accordingly estimated in about 20 km2. 

d. Natural Fluid Flow Pattern. Due to lack of determination of the isotopic content in the fluids of 

the deep wells, no direct information is available on the nature of the main recharge of the deep 

reservoir. Possibly such recharge takes place along the borders of the caldera, associated with the 

presence of major structures, which may favour the deep infiltration of meteoric water, with minor 

contribution from the magmatic system in the form of steam and gas transfer. 

Upon getting in the proximity of the heat source corresponding to the active and rather shallow 

magmatic chamber, waters heat up and start to rise, following deep seated faults and crossing the 

whole sequence of geological formations (from Tertiary to recent times). In the course of their 

upraise the hot fluids tend to boil and to expand laterally along horizons associated with 

widespread fracturing. 

The main upflow zone is situated in the central part of the Developed Area, in correspondence of 

the sector where the magmatic chamber forms a plume-like structure, getting closer to surface. 

The two major faults running NNW-SSE and N.7W-S.7E seem to constitute a hydrogeological 

barrier to the eastern and western expansion of these fluids. No important escapes from the deep 

reservoir to the surface were identified. Its areal configuration suggests that the main outflow 

takes place along this W-E axis, possibly reflected by the geoelectrical anomaly recognized west 

of the caldera rim. 

The recharge of the shallow aquifer appears to take place from the SSW of the sector under 

development. The fluids, upon getting above the deep reservoir, tend to heat up mostly as a result 

of conductive heat transfer and to reach their maximum temperature in coincidence with the main 

upflow zone of the deep reservoir. The main outflow of the shallow aquifer is likely to take place 

in an E to NE direction, moving then along a preferential N-S trend upon reaching the Solai 

Graben. 
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Figure 5-30a The figure shows the main structural features of the Menengai caldera with the presumed deep 

reservoir extension (colored area), the presumed shallow reservoir recharge direction and the 

numerical model extension 

 

Figure 5-30b Conceptual model of the Menengai geothermal field, along SS1 cross section 
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5.4.2.8. 3D numerical thermal model 

For the simulation of natural state and exploitation scenarios calculations were carried out with 

TOUGH2 V.2.0 (Pruess et al., 1999) numerical reservoir simulator, managed using Petrasim V.5.2 pre- 

and post-processing software package. Among the equation of state (EOS) modules available within 

TOUGH2 V.2.0, considering the non-negligible NCG content in Menengai field (represented mainly by 

CO2), the EOS2 module for mixtures of water and CO2 was employed. 

Considering the 3D geometry of Menengai prospect and its relevant features, an unstructured 

Voronoi grid approach was chosen, with upper grid layers following the DTM (digital terrain model) 

elevations, and the reconstructed top and bottom of shallow and deep reservoirs. Petrasim allows as a 

first step to build a model at a conceptual level by defining the model geometry, layering, internal 

regions, boundary and initial conditions, sink and sources and petrophysical properties distribution, and 

in a second step to build the discretization grid. The numerical model was constructed on the basis of 

the conceptual model, including the two main faults, and the deep and shallow reservoirs structure. 

Rock types and properties were defined according to the results of well logging and testing data (see 

Tables 5-7). An unstructured grid is chosen according to the IFDM (Integral Finite Difference Model) 

spatial discretization approach on the horizontal plane with 1,398 elements per grid layer (Figure 5-31). 

For the construction of the Voronoi grid, the settings were: a maximum element area of 2E6 m2; a 

maximum area of 1400 m2 for refinement elements; a minimum refinement angle of 30.2°. On the 

vertical direction 24 layers were used, for a total of 33552 grid elements. 

Initial and boundary conditions included the location of inflow and lateral outflow zones of the 

shallow reservoir, and the upflow in the deep reservoir. The reservoir is limited by the faults on the 

Eastern and Western sides, but the model domain extends outside these faults. The deep reservoir 

extends down to -300 m asl, with a profile obtained from wells log data. The hot intrusion located below 

is taken as the bottom thermal boundary, set at 330 °C, according to temperature measurements showing 

a conductive heat flow section at the reservoir bottom. The top boundary layer was at fixed conditions 

of 85 °C, according to borehole and steam vents temperatures. 

The deep reservoir also has a ‘rim’ with the same porosity value, but lower permeability, that is 

not directly heated up by the bottom hot intrusion and which might represent the lower temperature 

section (at nearly 270 °C) of the reservoir evidenced by the geochemical findings, as well as the 

extension of the two-phase zone evidenced by the Vp/Vs distribution inferred by the seismic 

investigations (Simiyu, 2009). Major layers in the conceptual Petrasim model, to be distinguished from 

grid layers, were (from top to bottom): 

Petrasim layers Description

Top A 300 m thick layer used to assign top thermal boundary conditions, followed by host rock down to the shallow reservoir

ShallRes The shallow reservoir

Bulk The host-rock

DeepRes The deep reservoir, outcropping from the bottom, divided in two units.

Bottom The bottom layer, used to set the thermal bottom conditions and containing the ‘hot intrusion’.  
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Figure 5-31 Menengai model structure, with the Shallow Reservoir in blue, the deep reservoir in orange, the hot 

intrusion in red and the external part of the deep reservoir in dark-yellow 
 

According to the conceptual model, the deep reservoir is surrounded by very low permeability 

rocks, and is recharged by an up-flow of a 320 °C fluid with a CO2 of 5% by weight. The shallow 

reservoir has a 12000 mg/kg salinity, with an inflow roughly corresponding to the rainfall inflow and an 

outflow to the W and N controlled by a constant pressure boundary set at 70 bar. While any possible 

effort was done to incorporate the major features of conceptual model (see Figure 5-30a,b) developed 

for the Menengai prospect, several assumptions were needed to develop the numerical natural state 

model. The calibration process allows reducing the uncertainties related to some of these assumptions. 

For others, the uncertainty remains high, in particular outside the area drilled so far. In Table 5-7 the 

properties of the main rock units assigned to the final 3D numerical model are reported. 

Table 5-7 Main properties of rock domains used in the final 3D natural state model. The huge rock specific 

heat assigned to the bottom intrusion is used to maintain a constant temperature throughout the 

simulation. kx,ky: horizontal permeability; kz: vertical permeability; φ: porosity; CR: Heat Capacity 

of dry rock kJ/kg; λR: thermal conductivity; ρR: rock density kg/m3 

DOMAIN DESCRIPTION 
kx, ky  

(m2) 

kz 

(m2) 

φ cR 

(kJ/kg) 

λR 

(W/(m °C) 

ρR 

(kg/m3) 

TOP Top structure 1.E-22 1.E-22 0.02 1400 2.0 2600 

SHALL Shallow reservoir 2.E-14 2.E-15 0.06 1400 2.0 2600 

BULK Host Rock 1.E-22 1.E-22 0.02 1400 2.0 2600 

RES Deep Res. central part 2.E-14 1.2E-14 0.06 1400 2.0 2600 

RESEX 
Deep Res. external 

part 
1.E-14 1.2E-15 0.06 1400 2.0 2600 

BOTHH Botton hot intrusion 1.E-22 1.E-22 0.02 1.E+50 2.0 2600 

 

A series of simulations were performed trying to obtain a stable steady-state with pressure and 

temperature distributions reproducing those observed in drilled wells. During this iterative process, main 

changes applied were relative to the inflow of the shallow reservoir, the temperature at the model 
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bottom beneath the deep reservoir, the permeability of rock domains, and to the features of the upflow 

recharging the deep reservoir. 

The results of the steady-state then were compared with the measured temperature profiles to 

check their reliability. Figure 5-32 reports the comparison between simulated and measured temperature 

in wells MW-01, MW-03, MW-06, MW-08, MW-09, and MW-12. 

Simulated and measured temperature profiles are in reasonable agreement, considering that 

stable conditions were difficult to be observed in most of drilled wells because of inter-zonal flows and 

boiling process within the wellbore. The comparison suggests that the simulated natural state is able to 

reproduce both the deep and shallow reservoir temperature distributions, but is not accurate in the 

topmost part, mostly due to the thick layer used and to the shallow ground water aquifers crossed by the 

wells but not included in the model. Wells MW-06, MW-09, and MW-13 show a similar profile, being 

located in the main structure of the deep-reservoir not far from each other. MW-06 shows a clear feed at 

nearly 300 m asl that supplies dry steam and generate an upward heating of the borehole. 

The simulated natural state is presented using the distribution of main thermodynamic 

parameters along vertical and horizontal sections. Liquid dominated and two-phase vapor dominated 

conditions are obtained for the shallow and deep reservoirs, respectively. Figure 5-33 shows (from a S 

view) the temperature distribution in a E-W section intermediate to Well MW-13, 9, and 3 with the 

major up-flow on the left (Western) side of the deep reservoir and a minor upflow in the other deep 

reservoir culmination. The N-S section of the deep reservoir with temperature distribution and total fluid 

flow, cut across well MW-09, is shown in Figure 5-34, where we can recognize the two up-flows. The 

figure shows the relationship between the inner, hotter volume of the reservoir and its morphology. The 

deep reservoir outflow, mainly represented by the fluids escaping upwards into the shallow reservoir 

and feeding the fumarolic field, is evidenced by the total flow vector. The pressure in the deep reservoir 

follows the same behaviour, as shown in Figure 5-37. 

   
Figure 5-32 Simulated temperature profiles of selected wells (lines), compared to measured profiles (circles) 
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Figure 5-32 Continued 

The simulated gas saturation distribution in Figure 5-35 shows that high values are present 

within the deep reservoir, whereas at its border the gas saturation is reduced to values as low as 0.2. 

Looking at the temperature distribution, the temperature rim at 270-300 °C could be observed. Such 

results are not unexpected, since pressure distribution in the deep reservoir is along a water-CO2 mixture 

boiling curve, and CO2 is concentrated mainly at the top of deep reservoir due to boiling and 

condensation linked to a heat pipe process. 

For having a complete picture of the deep reservoir conditions, in Figure 5-36 the distribution of 

CO2 in the deep reservoir is shown together with NCG flow vectors, evidencing the NCG accumulation 

at the top of the deep reservoir. The NCG flows to the upper culmination in the area within wells MW-

06 and 09 where the highest top of the reservoir is found, and the impact of deep fluid on the shallow 

reservoir is more evident. Due to the consideration of fluids outflow from the deep reservoir towards the 

surface, an outlet for the deep reservoir is located in the structural top close to well MW-09, and 

controlled with a constant outlet pressure. It is evident the lack of a uniform pressure gradient in the 

whole structure. In particular, the deep reservoir shows a pressure lower than expected. Anyway, in 

particular in Figure 5-37, it is evident that the shallow and deep reservoirs are very close, and could 

have some hydraulic connection. 

In summary, the modelled natural state is thus consistent with pressure and temperature 

distributions close to that provided by well logging, despite non well stabilized conditions were present 

down-hole in most of the drilled wells. 

The steady-state modelling results were then used to simulate production and reinjection 

scenarios which are not discussed in the present work. These further modelling activities pointed out 

that some parameters are still poorly constrained, like the effective reservoir extension in the unexplored 

area. 
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Figure 5-33 Reservoir temperature distribution with total fluid flow vectors along a E-W section at 9977400 m 

and a N horizontal section at -300 m asl 

 

 

 

 
Figure 5-34 Reservoir temperature distribution with total fluid flow vectors along a N-S section at 172600 m E 

and horizontal section at -300 m asl 
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Figure 5-35 Gas phase saturation distribution within the deep reservoir with fluid flow vectors. Horizontal 

section at -200 m asl and vertical slices at 1.724E5 m E and 9.9773E6 m N, viewpoint from SE 

 

 

 

 

Figure 5-36 CO2 partial pressure distribution with NCG mass flow vectors along a E-W section at 9977400 m N, 

a N-S section at 172700 m E, and a horizontal section at -300 m asl 
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Figure 5-37 Reservoir pressure distribution with total fluid flow vectors along a E-W section at 9977400 m N, a 

N-S section at 172700 m E, and a horizontal section at -300 m asl 

5.4.3. The Kiejo-Mbaka geothermal field 

The Kiejo-Mbaka geothermal field falls within the Rungwe Volcanic Province (RVP), which is 

situated in the East Africa Rift System at the triple junction of the Rukwa, Usangu and Malawi rift 

basins (see Figure 4-3). Rifting started in the Cenozoic period and evolved until today (Delvaux et al., 

1992, 1993, 2010 and Iranga, 1992). 

5.4.3.1. Geological setting 

The RVP formed during three separate stages: (1) Late Miocene: 9.2-5.4 Ma; (2) Late Pliocene-

Early Pleistocene: 3.0-1.6 Ma; (3) Middle Pleistocene-Recent: since 0.6 Ma (Ebinger et al., 1989). 

Quaternary volcanism, of alkaline nature, is expressed by three still active major eruption centers, 

namely Ngozi, Rungwe and Kiejo, and by several small monogenic volcanic edifices. As result of the 

geological survey performed, the stratigraphic sequence and the geological evolution are summarized in 

Figure 5-38. 

There is a very good agreement between the structural elements mapped in the field on the basis 

of stratigraphic and morphological evidence and the faults and fractures found from the remote sensing 

study. As a matter of fact, the structural trends emerging from the two approaches are (see Figure 5-39): 

- Livingstone rift-related NNW-SSE trend. The main fault of this trend represents the eastern margin 

of the main rift and has a down-throw of as much as 1,000 m. 

- Mbaka fault-related NW-SE trend. It constitutes the most evident structural element in the 

prospect area, being expressed by a series of faults with a SW dip (60-70°), out of which the 

Mbaka fault proper has a pronounced morphological relevance with an estimated down-throw of 

several hundreds of meters and appears to control the old Mbaka monogenic field. 

- Nyasa lake rift-related N-S trend. This trend, responsible for the emission of the young Mbaka 

monogenic field, is interpreted as being of young age (about 1 Ma) and determined a progressive 
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lowering eastwards of the geological formations and the consequent outcropping of the 

metamorphic basement complex along the NE flank of the Mbaka fault. 
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Figure 5-38 Kiejo-Mbaka geothermal field: geological history, resulting from the geological survey performed 

The final combined analysis of the geological data suggests: 

➢ Volcanism in the prospect is dominated by fault-related monogenic events, disproving the 

presence of magma chambers of significant volume and recent age at relatively shallow depth. 

➢ The water recharge for the deep circuits is probably ensured by rainwater infiltrating in the rift 

faults related to the Livingstone system. Under this assumption, the deep groundwater circulation 

would largely be controlled by the Usangu rift-related trend striking ENE-WSW. 

➢ The reservoir formations correspond to the products of the metamorphic basement complex, 

associated with poor primary permeability. The possibility of encountering adequate permeability 

for the formation of a commercial geothermal system must be therefore referred to the existence 

of neo-tectonic activity, which may determine the formation of a widespread network of 

fracturing. 

➢ In this context, the N-S Nyasa lake rift-related trend is probably, in consideration of its young age 

and strong surface expression, the most effective tectonic system guaranteeing good secondary 

permeability. 
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➢ The absence of a clear potential heat source corresponding to a magmatic chamber suggests that 

any geothermal system possibly present in the Kiejo-Mbaka prospect is likely to be of an 

extensional type category. 

 

 

Figure 5-39 Kiejo-Mbaka geothermal field: synthesis map, resulting from the geological survey performed 

5.4.3.2. Geophysical data 

In the interpretation of the gravimetric data, standard processing techniques were applied to 

compute the Free Air and the complete Bouguer anomaly maps (Balmino et al., 2011; Brown et al. 

1980; Nagy, 1966). As reference, the density of the amphibolitic schists of the metamorphic and 

intrusive complex (MIT) were adopted, estimated from both direct laboratory measurements and from 

the Parasnis approach. The adopted reference density resulted 3,000 kg/m3. The final residual Bouguer 

anomaly map was derived by removing the regional field measured by the 25 additional points. The map 

shows an elongated gravimetric high trending NW-SE with values up to 24 mGal, surrounded by 

gravimetric lows as low as -6 mGal. 
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To reveal possible structural lineaments, the horizontal derivative of the residual Bouguer 

anomaly was computed. The highest values of the horizontal gradient were assumed to image areas 

where large horizontal density variations occur and hence to identify important structural lineaments 

(Parker, 1991). A good correlation was recognized between the gravimetric lineaments and structural 

lineaments, in particular with reference to the Mbaka faults and to the existence of important N-S 

trending fractures. 

To enlighten the sources of the detected anomalies, a 2D and 3D modelling was performed. The 

results indicate that the positive residual Bouguer anomaly can be explained by a high-density basement 

of amphibolitic schists of the MIT (see Figure 5-40). In order to fit the gravimetric lows, the existence 

of a thick low-density layer was assumed, affecting the MIT basement below the shallow and thin low 

density layer of the Tukuyu lavas / Katete ignimbrites. This low density layer was modelled assuming a 

density of 2,500 kg/m3 (i.e. -500 kg/m3 of density contrast with respect to the unaltered amphibolitic 

schists), and interpreted as due to hydrothermal alteration of “low” temperature of the MIT. 

The altered low-density region in the MIT basement well corresponds with the low resistivity 

regions imaged by the 3D model of the magnetotelluric data set both SW and NE of the Mbaka fault. 

 

Figure 5-40 Bottom (white contour lines, 100 m) of the low density layer (-500 kg/m3) derived from the 3D 

inversion superimposed on the resistivity slice at elevation 0 m extracted from the 3D resistivity 

model (ELC, 2017). Large magenta square and circle: Lufundo fossil and Kilambo manifestations 

respectively. Gray and light blue lines: main roads and rivers 

The resistivity survey (Magnetotelluric -MT- and Time Domain Electromagnetic -TEM-) carried 

out in the Kiejo-Mbaka field comprises the current 76 MT/TEM stations, covering the RVP area. 

Impedances and tippers were estimated by means of the Remote Reference technique applied to both the 

standard LSQ and robust estimation methods (Sutarno, 2008). When necessary, a coherence rejection 

scheme was applied (Jones, 1984). The static shift effect was corrected by MT/TEM phase joint 
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inversion. From this procedure, three static shift correcting factors for each station were calculated and 

used to correct the average apparent resistivity (used in 1D modelling) and the xy and yx modes (used in 

3D modelling). 

From the geomorphological point of view, Kiejo-Mbaka area can be divided into three domains: 

(i) Rift Basin; (ii) Rift Plateau; iii) Mbaka Fault Escarpment. Such lithological differences were also 

found to be reflected in electromagnetic investigations results. 

It is essential specify that for some stations, given the strong 3D effects over this part of the 

survey area, the xy-mode data instead of the average impedance was inverted. In fact, the average phase 

data were not possible to be satisfactorily fitted. 

The model in Figure 5-41 is an example from the Rift Basin, west of the Mbaka fault, over the 

Neogene volcano-lacustrine sediments. From the top to the bottom, four layers can be pinpointed (see 

the blocky inversion, marked as a blue line): 

i. A shallow resistive layer (~40 Ohm m, thickness ~60 m); 

ii. A conductive layer (~8 Ohm m, thickness ~160 m), centred at a depth of about 120 m; 

iii. A very conductive layer (~2 Ohm m, thickness ~610 m), centred at a depth of about 510 m and an 

extremely conductive layer (1 Ohm m, ~1500 m thick), centred at a depth of about 1400 m; 

iv. A resistive layer (~55 Ohm m) at a depth of about 2300 m. 

 

Figure 5-41 Example of MT 1D smooth inversion (left panel, green line) from the rift basin (station M25 in Fig. 

5-39). The blocky model is shown as a blue line. Note the logarithmic scale for depth and resistivity 

The resistivity value of the first layer was compatible with the soil and the underlying (likely 

altered) Tukuyu lavas (see Figure 5-38). The second layer could be interpreted as the older Neogene 

fluvio-lacustrine deposits; the subsequent two layers underneath, given their high conductivity (2 and 

1 Ohm m, blocky inversion, blu line), were interpreted as a low-temperature alteration zone. The 

thickness of the 1 Ohm m layer seems more compatible with the presence of widespread alteration than 

thick clayey lacustrine deposits. The resistivity rising at depth suggests that the bedrock top could lie at 

about 2300 m; by comparison with the geological cross-section, it is likely that the bedrock is 

constituted by the Mesozoic Red Sandstones and Mudstones (Dinosaur Beds). Given the observed low 

resistivity, a certain degree of high-temperature alteration could affect these rocks. 
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The model in Figure 5-42 is an example from the Rift Plateau, at a site about 4 km far from the 

Mbaka fault escarpment (M36). This site is located over the Katete Ignimbrites. The following five 

electrostratigraphic units were identified: 

i. A shallow moderately resistive layer (~25 Ohm m, thickness ~70 m); 

ii. A conductive layer (~12 Ohm m, thickness ~210 m), centred at a depth of about 160 m and a very 

conductive layer (~2 Ohm m, thickness ~350 m), centred at a depth of about 450 m; 

iii. A resistive layer (~85 Ohm m, thickness ~1,500 m), centred at a depth of about 1250 m; 

iv. A very conductive layer (~6 Ohm m, thickness ~1410 m), centred at a depth of about 2800 m 

v. A resistive layer (~450 Ohm m) at a depth of about 3500 m. 

The moderately resistive surficial layer centred can be correlated with the Katete Ignimbrites, 

while the third conductive layer (2 Ohm m) can be interpreted as a low-temperature alteration horizon in 

the Precambrian Livingstone Gneiss (see Figure 5-38). The second layer (12 Ohm m) could be 

explained as a transition layer between the shallow unaltered rocks and the altered zone centered at 

450 m. The fourth layer likely represents the relatively fresh Gneiss, while the underlying conductive 

layer (6 Ohm m) can represent another low-temperature and thick alteration zone. The unaltered 

Precambrian Gneiss plausibly constitutes the last layer. 

 

Figure 5-42 Example of MT 1D smooth inversion (green line) from the rift plateau (station M36 in Fig. 5-39). 

The blocky model is shown as a blue line. Note the logarithmic scale for depth 

Figure 5-43 shows an example of the Mbaka Fault Escarpment. This site is located over the 

MIT. For this station (M19) the xy apparent resistivity and phase were inverted. The following three 

electrostratigraphic units were identified: 

i. A resistive layer (~170 Ohm m, thickness ~500 m); 

ii. A resistive layer (~230 Ohm m, thickness ~2000 m), centred at a depth of about 1200 m; 

iii. A very resistive layer (~1170 Ohm m) at a depth of about 2500 m. 

The resistivity values of the first two layers are compatible with the slightly altered metamorphic 

basement, while the third one can be interpreted as the unaltered bedrock. 
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Figure 5-43 Example of MT 1D smooth inversion (left panel, green line) from the Mbaka fault escarpment 

(station M19 in Fig. 5-39). The blocky model is shown as a blue line. Note the logarithmic scale for 

depth and resistivity 

The 3D inversion was carried out with several initial models and datasets, namely Tz and Z+Tz 

inversions, both with fine and coarse horizontal gridding (250 and 400 m); lowest misfits were reached 

using the coarse one. All the inversion runs produced models with the same general features, namely a 

resistive central body and conductive regions around it. The model here discussed was obtained from a 

Z+Tz inversion, started from a priori model obtained from the T inversion carried out using a 100 Ohm 

m half space as priori model. 

From the 3D inversion, resistivity cross-sections (see Figure 5-44 for their location) were 

prepared; a selection of these profiles (PT03) is represented in Figures 5-45, while Figure 5-46 

represents horizontal slice at elevations from 800 m asl to -600 m asl. 

The 3D inversion allowed to much better understanding the geometry of the resistivity structures 

present in the Kiejo-Mbaka geothermal area. Though the lithology in the area is dominated by the MIT 

and Livingstone (LIV) metamorphic complexes, several anomalous resistivity zones can be identified. 

This leads to infer that resistivity is not directly related to lithologies. The resistive "core" (R) is well 

associated with the old metamorphic basement, as shown in the resistivity slice -200 m asl (see Figure 

5-46). This resistivity body (R) deepens toward SE, as observed from the modelled 100 Ohm m 

isoresistive surface and from the resistivity cross-sections (Figure 5-45). 

This resistivity body is delimited by two surfaces: one SW-dipping with a high-angle and one 

NE-dipping and less inclined. The first is associated with the Mbaka fault, while the second one has a 

direction compatible with the Livingstone fault system. Moreover, the weak inclination of this latter 

suggests that it could be interpreted as the top surface of a tilted block. This is apparently in accordance 

with the general tectonic setting of the Karonga graben described in Ebinger et al. (1993), who 

hypothesised the presence of NE-tilted blocks between the Mbaka fault and the Livingstone border 

fault. The resistive basement is apparently affected by a relatively conductive zone at shallow depths, in 

the immediate surroundings SW of Lufundo manifestations (see Figure 5-46). This feature could be 

interpreted as a high-T alteration zone. 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 104 of 136 

 

Figure 5-44 Location of the vertical slices of the 3D resistivity model (blue lines) shown in the following figure. 

The > symbol indicate the orientation of the corresponding pseudosections. White circles mark the 

MT sites. Red circle indicates the Kilambo hot springs, and the red square the Lufundo 

manifestations. Dashed yellow lines refer to main roads, while white lines to main rivers 

 

Figure 5-45 Section PT3 (see Fig. 5-44 for its location). The red circle indicates the location of the Kilambo 

manifestations. Red arrow marks the Mbaka fault trace 
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Figure 5-46 Horizontal slices of the 3D model from 800 m asl to -600 m a.s.l. White circles: MT stations. Red 

circle: Kilambo hot springs; red square: Lufundo manifestations. White straight lines: inferred 

lineaments. The main resistivity features are labelled by "R", C1", "C2", “C3” and "C4". White 

lines: main rivers, while yellow lines the main roads. Scale of resistivity is the same of Figure 5-45 

Figure 5-47 shows the main resistivity survey findings superimposed on the geological map, 

together with the recognized faults. Notice that the showed features do not necessarily refer to the same 

depth. 

The AZ1, AZ2, AZ3 alteration zones (Figure 5-47) were inferred by considering the 10 Ohm m 

isoresistive contour line. The AZ4 zone was identified by considering the 50 Ohm m contour line. 

Therefore, while the first three have to be referred as low-T alteration zones, the latter might be 

considered as a high-T one. Based on the geological results, all the alteration zones should affect the 

metamorphic basement. 

Zone AZ1 was delineated from the -600 asl resistivity slice. It is limited toward SE in order to 

avoid possible inclusion of lacustrine sediments. Notice that this zone, being retrieved from a slice that 

lies 1200 m below the ground surface in the plain area, and given the SW-dipping of the Mbaka fault, 

could also affect the foot wall, not only the hanging wall. In fact, observing the trace of the Mbaka fault 
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at surface, it can be easily assessed that at that depth, it would lie within the AZ1 zone. 

 

Figure 5-47 Synthesis map with the main findings superimposed on the geological map. Yellow circle: Kilambo 

hot springs; yellow square: Lufundo manifestations. AZ1, AZ2, AZ3, AZ4: alteration zones, marked 

by different hatches. MF: Mbaka fault trace. For the geological map legend, see Figure 5-38 

The AZ2 zone included the C2 anomalies (see e.g. Figure 5-45), well visible from the 600 and 

200 m asl slices. This zone could be interpreted as a low-T alteration zone related to the Lufundo 

manifestations. 

The AZ3 zone was identified from the -200 asl slice; it is limited toward SE in order to avoid 

possible inclusion of lacustrine sediments. This zone was only partially investigated by MT, and its 

eastern limit is to be regarded as hypothetical. 

Zone AZ4 was pinpointed by observing the 200 asl resistivity slice. It could be correlated with 

the N-S fault passing about 1 km W of Lufundo, and it could represent a high-T alteration zone possibly 

associated with the Lufundo manifestations. 

5.4.3.3. Geochemical data 

Kilambo-Kajala - The hot springs of Kilambo and Kajala (see Figure 5-39) represent the 

discharge of a unique fault-controlled geothermal circuit, but distinct from the Ilwalilo geothermal 

circuit, with outlet temperature up to 64 and 59 °C, respectively, total flowrate in the order of 10 and 

5 L/s, respectively, and natural heat discharge of 2.5 and 1.3 MW thermal, respectively, for a total of 

3.8 MW thermal. 

Reservoir temperature is probably 137 ± 2 °C, as indicated by the silica geothermometer, in 

acceptable agreement with (i) the saturation indices vs. temperature plot (see Figure 5-48), 
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hypothesizing equilibrium with K-feldspar to compute Al concentration, and (ii) the most realistic 

solution of the iso-chemical geothermometric mixing model. Available 13C values of CO2, in the range 

-5.5 to -6.0 ‰, suggest that CO2 is chiefly supplied by deep sources and a continuous flux of CO2 

occurs through the geothermal system of interest. 

The Kilambo-Kajala reservoir liquid has Na-HCO3 chemical composition (see Figure 5-49 and 

Table 5-7), which is acquired through interaction of meteoric waters with basement rocks (mainly 

gneisses) sustained by conversion of CO2 to HCO3. The main anionic constituents are HCO3, Cl, and 

SO4. The major cations are Na and K, whereas Ca reservoir concentration is 2.1 mg/L, assuming calcite 

saturation, and Mg reservoir content is 2.3 mg/L, hypothesizing equality of silica and K-Mg 

temperatures. The 2H and 18O values of H2O indicate that the Kilambo-Kajala hot spring waters are of 

meteoric origin, in spite of their negative oxygen shift, which is probably due to exchange of oxygen 

isotopes between water and CO2. Based on the 2H - elevation relation reconstructed during this work, 

recharging meteoric waters infiltrate at average elevation of about 1,950 m asl, at a distance of 14-

17 km. 

     

Figure 5-48 SI vs. temperature plot for sample KL-1 from Kilambo (Left) and IL-1 (Right) from Ilwalilo, 

obtained considering the initial Mg, Ca, and DIC concentrations in geochemical modelling 

Based on the reservoir temperature of 137 ± 2 °C and the average surface temperature of 25 °C, 

the geothermal reservoir depth is estimated to be 1.70 ± 0.03 km, assuming a local geothermal gradient 

of 66 °C km-1 that is double the normal one. Therefore, the geothermal reservoir is constituted at least 

by the volume of rocks present around the Mbaka fault below the Kilambo and Kajala hot springs at 

average depth of 1.7 ± 0.03 km, although this figure is affected by a high uncertainty and have to be 

substantiated through further exploration. The geothermal reservoir might extends northwards 

underneath the Lufundo gas vent. 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 108 of 136 

   

Figure 5-49 Triangular diagram of major anions (Left) and cations (Right) for the water samples collected in 

the Kiejo-Mbaka prospect area during this work and previous studies (SWECO, 1978; Makundi 

and Kifua 1985; Kraml et al., 2008; Ochmann and Garofalo, 2013; Delalande, 2009; Delalande et 

al. 2011) 

Ilwalilo - The hot springs of Ilwalilo (see Figure 5-39 and Table 5-8) constitute the outflow of a 

fault-controlled geothermal circuit distinct from that of Kilambo-Kajala, with outlet temperature up to 

64 °C, total flowrate of at least 5 L/s and minimum heat discharge of 1.3 MW thermal. 

Reservoir temperature is probably 110-115 °C, as indicated by both silica and K-Mg 

geothermometers, in satisfactory agreement with (i) the saturation indices vs. temperature plot (see 

Figure 5-36), assuming equilibrium with K-feldspar to calculate Al concentration, and (ii) the most 

realistic solution of the iso-chemical geothermometric mixing model. Available 13C values of CO2, in 

the interval -5.6 to -6.4 ‰, indicate that CO2 is mainly contributed by deep sources and a continuous 

flux of CO2 pass through the Ilwalilo geothermal system. 

Similar to Kilambo-Kajala, also the Ilwalilo reservoir liquid has Na-HCO3 chemical composition 

(see Figure 5-37), acquired through CO2-driven interaction of meteoric waters with basement rocks 

(mainly gneisses). 

The Ilwalilo hot spring waters are of meteoric origin, as they are positioned along the local 

meteoric water line in the correlation diagram of 2H vs. 18O. The isotope-elevation relations calibrated 

during this thesis suggest that meteoric waters recharging the Ilwalilo thermal circuit infiltrate at an 

average elevation of about 2,180 m asl, either in the highlands to the NE of the Ilwalilo hot springs, at a 

distance of 19-21 km, or in the southern flanks of Rungwe volcano, at similar distances from Ilwalilo. 

On the basis of reservoir temperature and average surface temperature, 25 °C, by assuming a local 

geothermal gradient of 65 °C km-1. An estimate of the geothermal reservoir depth is 1.5 km. although 

this depth is affected by considerable uncertainty and must be verified through further exploration. the 

geothermal reservoir is likely constituted by the volume of rocks present around the Mbaka fault below 

the Ilwalilo hot springs. 
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Table 5-8 Field data and results of the chemical and isotopic laboratory analyses of the water 

samples collected in the Kiejo-Mbaka area during this work. T is outlet temperature, Q is flow rate, EC is 

electrical conductivity, - = not determined. Type is as follows: HS = Hot Spring (T  30°C); CS = Cold Spring 

(T ≤ 25°C) 

T Q pH EC Eh Na K Ca

°C L/s µS/cm mV mg/L mg/L mg/L

KL1 Kilambo HS 09/10/2016 57.6 6.88 5207 -68.6 1203 62.5 87.2

KL2 Kilambo HS 09/10/2016 63.3 6.81 5213 -55.1 1146 62 88.5

KL3 Kilambo HS 09/10/2016 64 1 6.74 5157 -51 1172 63 91.5

KL4 Kilambo HS 09/10/2016 50.1 0.05 6.92 5360 -62 1208 67.4 94.4

KL5 Kajala HS 10/10/2016 58.9 0.5 6.66 5130 -64.2 1161 65.3 63.1

KL6 Kajala HS 10/10/2016 42.3 0.5 6.36 4060 -92 928 51.9 76.9

KL8 Kajala HS 10/10/2016 55.2 0.3 6.75 4916 -88 1088 62.8 46.2

KL9 Kajala HS 10/10/2016 46.1 1.5 6.51 4625 -107 1045 60.2 64.2

IL1 Ilwalilo HS 11/10/2016 64 0.5-1 6.82 7084 -91.6 1630 74.5 39

IL2 Ilwalilo HS 11/10/2016 51.8 0.5-1 6.55 5139 -99.4 1186 55 49

IL3 Ilwalilo HS 11/10/2016 52.7 0.1-0.15 6.47 6088 -127 1472 63.1 42.5

IL4 Ilwalilo HS 11/10/2016 35.7 Oct-20 6.25 1615 -67.4 292 16 45.5

IL5 Ilwalilo HS 11/10/2016 53.8 01-Mar 6.52 5027 -80 1155 62 47

KJ1 Kiejo CS 07/10/2016 21.2 0.2 4.92 114.8 5.1 14.5 5.9 4.4

KJ2 Kiejo CS 07/10/2016 18.3 1.5 6.26 103.2 -4 12.4 5.6 4.7

KJ3 Kiejo CS 08/10/2016 - - - - - - - -

KJ4 Kiejo CS 08/10/2016 20.8 0.5 4.78 78.73 31.2 8.6 4.2 3.4

SM1 Suma CS 12/10/2016 24 0.05-0.1 7.35 342.8 -49.5 39.3 11.7 14.2

IG1 Igoma CS 13/10/2016 17.6 0.03 6.68 76 -62 8.2 3.3 2.6

IG2 Igoma CS 13/10/2016 14.9 0.3 7.3 83.4 -37 8.5 6.5 2.7

IG3 Igoma CS 13/10/2016 15.1 0.2 6.85 58.7 -73 6.35 3.35 2.7

10

Code Locality Type
Sampling 

date

 

 

 

Table 5-8 Continued 

Code Mg Alk Tot SO4 Cl F NO3 SiO2 Li B Fe As TDS

mg/L mg HCO 3 /L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L

KL1 34.7 2635 236 423 2.71 <0.05 128 0.7 0.89 0.481 0.176 4852

KL2 34.8 2684 234 422 2.77 <0.05 128 0.67 0.89 0.636 0.191 4802

KL3 35.6 2696 238 431 2.8 <0.05 126 0.7 0.92 0.399 0.202 4856

KL4 35 2666 248 444 2.78 <0.05 130 0.71 0.95 0.554 0.201 4895

KL5 40.9 2532 237 430 2.16 <0.05 137 0.7 0.94 0.782 0.211 4668

KL6 29.5 2037 188 342 1.86 <0.05 102 0.55 0.73 0.01 0.135 3758

KL8 30 2324 235 423 2.79 <0.05 117 0.65 0.89 0.042 0.194 4329

KL9 31.9 2342 215 391 2.53 <0.05 113 0.6 0.83 0.01 0.159 4265

IL1 15 3155 274 720 7.7 <0.05 89.2 0.95 1.37 0.047 0.296 6004

IL2 19 2428 197 512 5.54 <0.05 73 0.65 0.98 0.006 0.177 4524

IL3 15.2 2800 245 635 6.7 <0.05 85.3 0.85 1.23 0.02 0.272 5365

IL4 14.2 753 53 122 1.85 <0.05 41.6 0.15 0.28 0.006 0.032 1339

IL5 16 2358 191 506 5.56 <0.05 73.3 0.64 0.97 0.009 0.102 4414

KJ1 1.9 75 0.6 1.1 0.18 1.2 45.7 <0.05 <0.05 0.004 <0.005 150

KJ2 1.85 71 0.33 0.62 0.18 <0.05 53.8 <0.05 <0.05 0.016 <0.005 150

KJ3 - - - - - - - - - - - -

KJ4 1.6 52 0.15 0.73 0.12 <0.05 47.6 <0.05 <0.05 0.004 <0.005 118

SM1 11.2 217 0.5 1.3 0.34 <0.05 61.8 <0.05 <0.05 0.322 <0.005 357

IG1 0.85 35 0.4 1.9 0.12 11.5 25.1 <0.05 <0.05 0.005 <0.005 89

IG2 0.86 43 0.7 1.2 0.13 11.6 27.5 <0.05 <0.05 0.147 0.005 103

IG3 1 42.7 0.3 0.35 0.15 0.3 26.5 <0.05 <0.05 0.006 <0.005 84  
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Table 5-8 Continued 

Code TIS ∑ Cations ∑ Anions DIC CO2 PCO2 
18

O-H2O 
2
H-H2O

meq/L meq/L meq/L mg HCO 3 /L mg/L bar

KL1 121 61.1 60.2 0.8 3130 356 0.496 0.9 -5.7 -27

KL2 119 58.7 60.9 -1.8 3280 432 0.656 0.92 -5.79 -27.2

KL3 121 60.1 61.4 -1.1 3400 511 0.783 0.87 -5.7 -27.4

KL4 123 61.9 61.5 0.3 3120 329 0.403 0.88 -5.76 -27.5

KL5 117 58.7 58.7 0 3330 572 0.816 0.55 -5.73 -27.7

KL6 94.9 48 47 1 3370 964 1.01 0.066 -5.35 -25.3

KL8 109 53.7 55.1 -1.2 2920 432 0.578 0.44 -5.62 -27.2

KL9 107 52.8 54 -1.1 3400 766 0.867 0.23 -5.5 -26.3

IL1 154 76 78.1 -1.4 3830 493 0.755 0.61 -5.58 -30.1

IL2 115 57 58.6 -1.4 3420 713 0.9 0.23 -5.28 -27.4

IL3 138 69 69.3 -0.2 4150 973 1.25 0.13 -5.42 -28.5

IL4 33.4 16.5 17 -1.3 1470 519 0.463 -0.62 - -

IL5 112 55.5 57.2 -1.5 3390 744 0.972 0.21 -5.25 -27.2

KJ1 2.43 1.16 1.28 -5.1 2110 1470 0.874 -3.9 -4.79 -22.8

KJ2 2.26 1.07 1.2 -5.7 163 66 0.036 -2.6 -4.9 -24.1

KJ3 - - - - - - - - -4.47 -20.9

KJ4 1.66 0.783 0.882 -6 2050 1439 0.845 -4.3 -4.61 -21.7

SM1 7.23 3.64 3.61 0.3 237 14.4 9.35E-03 -0.6 -4.77 -22.8

IG1 1.28 0.641 0.642 -0.1 52.6 12.7 6.70E-03 -2.8 -5.82 -32.1

IG2 1.49 0.741 0.76 -1.2 48.4 3.93 1.88E-03 -2.1 -5.75 -32

IG3 1.29 0.579 0.724 -11.1 57.9 11 5.31E-03 -2.5 -6.35 -36.8

%dev SI calcite
‰ vs. VSMOW

 

5.4.3.4. Soil gas data 

The results of the soil gas survey (see Figures 5-50, 5-51, 5-52, 5-53, 5-54) performed in the five 

areas (see Figure 5-39), in which CO2 anomalies are present, can be summarized, as follows: 

- Kilambo-Kajala area (Figure 5-50): high CO2 fluxes were mainly distributed close to the natural 

emissions of thermal waters and gases, explaining why each single maximum was, more or less, 

separated from the others. However, these separated highs defined a general trend elongated in 

NW-SE direction (Mbaka fault). Moreover, some NNE-SSW anomalies seemed to be recognizable 

as well, suggesting the presence of active tectonic structures with this orientation. 

 

Figure 5-50 CO2 isoflux map of Kilambo-Kajala area. Red lines represent faults and fractures as showed in 

the structural map (Figure 5-39). Symbols as in Figure 5-39 
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- Kiejo area (see Figure 5-51): a discontinuous NW-SE trending alignment of high CO2 flux values 

was shown by the isoflux map. This was in agreement with the occurrence of an active fault 

belonging to the Mbaka fault system. 

 

Figure 5-51 CO2 isoflux map of Kiejo area. Red lines represent fault and fractures as showed in the 

structural map (Figure 5-39). Symbols as in Figure 5-39 

- Lufundo area (see Figure 5-52): the isoflux map clearly showed an alignment of CO2 anomalies 

distributed along N-S and NNW-SSE directions, in agreement with evidences from Kilambo-Kajala 

and Kiejo areas. However, separated highs also suggested the correlation between CO2 anomalies 

and NW-SE trending faults/fractures. 

 

Figure 5-52 CO2 isoflux map of Lufundo area. Red lines represent faults and fractures as showed in the 

structural map (Figure 5-39). Symbols as in Figure 5-39 

- Ilwalilo area (see Figure 5-53): the isoflux map showed a few local maxima located just close to 

the natural emissions of thermal waters and gases. The alignment of CO2 fluxes, together with the 

distribution of thermal springs, are evidently controlled by the regional NW-SE trending Mbaka 

fault. 
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Figure 5-53 CO2 isoflux map of Ilwalilo area. Red lines represent faults and fractures as showed in the 

structural map (Figure 5-39). Symbols as in Figure 5-39 

- Itende area (see Figure 5-54): despite the uncertainties in the elaboration of the isoflux map (as the 

pure nugget effect describes the spatial relation between CO2 flux measurements), no significant 

CO2 anomalies were identified and therefore no relation between the geographical distribution of 

the CO2 diffuse flux and the local structural setting was observed. Only a cluster of significantly 

higher values was recorded in a small area located close to the NW corner of the investigated area. 

This high could be related to a local N-S tectonic structure. 

 

Figure –5-54 CO2 isoflux map of Itende area. Red lines represent faults and fractures as showed in 

the structural map (Figure 5-39). Symbols as in Figure 5-39 

Furthermore, the total output of deep CO2 was computed for the investigated areas, obtaining the 

following values: 12.7 tons/day for Kilambo-Kajala, 0.22 tons/day for Ilwalilo, 43.0 tons/day for 

Lufundo, 41.6 tons/day for Kiejo and 8.4 tons/day for Itende. 
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Summing up the geographical distribution of the CO2 flux anomalies is in very good agreement 

with the occurrence of NW-SE trending faults/fractures of the Mbaka system and N-S oriented tectonic 

structures. Moreover, it is important to note that: 

▪ The thermal manifestations of the Kiejo-Mbaka prospect characterized by emission of hot waters 

and gases, that is the Kilambo-Kajala and Ilwalilo areas, showed relatively low soil CO2 fluxes 

and weak highs. 

▪ On the contrary, in Kiejo and Lufundo areas, where focused gas vents and zones with lack of 

vegetation are locally present, but hot springs are absent, CO2 fluxes were higher and anomalies 

were significant, with maximum values of 295 and 221 mol·m-2·day-1, respectively. Also, it must 

be noted that the Lufundo area is characterized by outcrops of rock affected by hydrothermal 

alteration with occurrence of clay minerals, chlorite and silica minerals (based on field 

observation). 

5.4.3.5. Conceptual model 

There is no evidence of the existence of an adequate heat source in the Kiejo-Mbaka geothermal 

field, which might be related to either magmatic or plutonic activity, inasmuch as: 

✓ Recent volcanic activity in the prospects is restricted to the maars and cinder cones dotting both 

the Mbaka plain and ridge and to the products of the Kiejo volcano, located some 15 km north of 

the Kilambo manifestations. 

✓ In the former case, the volcanic products result from monogenic explosions or effusions of very 

small volume, presumably deriving from a very deep magmatic chamber, which can hardly have 

generated a wide and shallow thermal anomaly. 

✓ A similar situation is recognized in the Kiejo volcano, responsible for the emission of basaltic 

products of very limited volumetric extent. 

✓ The maar and Kiejo products do not comply with the favourable indications in terms of time 

persistency, volume and depth, wherefore they are deemed to exclude the existence of an adequate 

heat source in either a magmatic or plutonic form. 

Under this situation, the Kiejo-Mbaka prospect can be classified as extensional domain play, 

wherein the principal source of heat is provided by the elevated mantle, and it can be either fault 

controlled or fault-leakage controlled. 

a. Geological Setting. The undifferentiated sedimentary complex characterized by low permeability, 

due to either primary lithological features or because of low temperature hydrothermal alteration 

and/or weathering, corresponds to the cap-rock of the geothermal system. The reservoir formation 

corresponds to the lower part of the clastic sequence, presumably associated with relatively large 

grain size (e.g. micro-conglomerate), and possibly to the upper level of the metamorphic-intrusive 

basement. 

In terms of geoelectrical features, the cap-rock and reservoir formations can be tentatively 

subdivided based on their resistivity values, classifying as cap-rock the portion of the sequence 

with resistivity <10 Ohm and as reservoir the portion with resistivity included between 10 and 

50 Ohm m. These values have been assumed based on the conditions normally recognized in other 

geothermal fields in the world. 
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The NW-SE striking buried faults interpreted by the remote sensing study, which extend parallel 

to the Mbaka fault at a distance of 2 to 4 km, may constitute limits of structural blocks and hence 

restrain to the west the circulation of deep geothermal fluids brought up by the Mbaka fault itself. 

Moreover, they could have affected the surrounding rocks, enhancing their secondary 

permeability. 

b. Reservoir Geometry. The main spatial features of the Kiejo-Mbaka geothermal reservoir can be 

described, as follows: 

✓ Areal extent of the reservoir: The north-eastern limit of the reservoir clearly coincides with the 

Mbaka fault (see Figure 5-28), with some margins of uncertainty in relation with the actual dip 

angle of the fault and the thickness of the fractured zone around it. The south-western limit is 

tentatively set in correspondence of the fault running parallel to the Mbaka fault at a distance 

of 1.5 to 3 km, interpreted by the remote sensing study. Conventional limits are also 

established north-westwards and south-eastwards, since no indications in this context are 

provided by the MT data. It is only observed that, on the base of the geothermometric 

determinations conducted in the springs along the Mbaka fault, there is apparently an increase 

of temperature moving south-eastwards, although such inference derives from a quite limited 

number of determinations. In consideration of the above, the south-eastern and north-western 

limits of the reservoir are assumed to be somewhat eccentric with reference to the Kilambo 

manifestations, being set 3 km south-east and 2 km north-west of them, respectively. 

The above estimated areal extent is obviously related to the fault-leakage controlled 

hypothesis, assuming that the fluids ascending along the Mbaka fault spread laterally to the 

SW upon encountering a pervious horizon corresponding to the coarse grained sediments. By 

adopting the above mentioned geometric parameters, the first priority zone, represented in 

Figure 5-28, has an areal extent of 10 km2. 

✓ Top of the reservoir: The depth of the top of the fault-leakage controlled reservoir is 

interpreted based on the results of the MT 3D inversion as shown in profiles PT2, PT3, PT4 

and PT5 (see Figure 5-44). Assuming the iso-resistive line of 10 Ohm m as the contact 

between cap-rock and reservoir, the top of the reservoir is deemed to occur at a depth of 1000-

1200 m, with a tendency to dip to the SE, reaching a value of 1800 m in the southernmost 

profile PT5. 

✓ Bottom of the reservoir: The bottom of the reservoir is assumed to correspond to the iso-

resistive line of 50 Ohm m. The bottom of the reservoir is accordingly observed at an average 

depth of 1,500 m, corresponding to a thickness of the reservoir of 300-500 m. In profile PT5 

the 50 Ohm m iso-resistive line drops to 2500 m, corresponding to a thickness of 

approximately 700 m. 

d. Natural Fluid Flow Pattern. As the isotopic composition of the geothermal fluids suggests that 

the average infiltration elevation amounts to approximately 2,000 m asl (section 5.4.3.3), possible 

recharge zones might be located either (i) in the highlands NE of the Livingstone fault, at a 

distance of some 20 km (see hypothesis A, below, representing our preferred scheme of 

hydrothermal circulation) or (ii) in the northern portion of the Kiwira river watershed, at a 

distance of some 50 km (hypothesis B, the less probable). 

Under hypothesis A, waters infiltrating in the Elton plateau penetrate deeply into the ground 

up to depths of several kilometres. The existence in the area of an anomalous thermal gradient 

related to the upwelling of the mantle determines a more pronounced heating of these waters 
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as compared with the “normal” situation. Assuming a gradient 1.5 times the Earth’s average, 

that is 50 °C/km, temperatures of 140 °C would be reached at a depth of 2500 m. Deep 

groundwater flow takes place mostly to the southwest within products of the metamorphic-

intrusive basement, moving preferentially along two systems of fractures, that is the Nyasa 

lake related trend (N-S) and the Usangu rift related trend (NE-SW). Upon reaching the Mbaka 

fault, the heated waters start to rise along it and, on encountering the basal horizon of the 

undifferentiated sedimentary complex characterized by fair permeability, spread laterally 

within this horizon, giving rise to a geothermal system (fault-leakage play). The upper portion 

of the sequence, presumed to consist mainly of fine grained products (e.g. claystone and 

siltstone) would restrict the upwards movement of the fluids, representing the cap-rock of the 

system with very low electrical resistivity values. A small portion of the fluids continues its 

upwards movement along the Mbaka fault, originating the Kilambo and Kajala 

manifestations. 

Hypothesis B envisages a similar circulation scheme with groundwater flow towards the 

Nyasa lake, from NW to SE, but in this case the role of the Mbaka fault is somewhat 

different. The fault might represent the connection between the deep groundwater and the 

surface, but not necessarily constitutes the main pathway for allowing the uprise of the fluids 

to depths of about 1200 m from larger depths. Groundwater circulation would mostly occur in 

the bottom portion of the sedimentary sequence and a higher thermal gradient (100 °C/km) 

would have to be inferred. Under both hypotheses, the outflow of the system is supposed to take 

place mostly along the main SW-NE faults of the Mbaka system, with preferential movement 

towards the Nyasa lake. 

e. Thermodynamic and Chemical Conditions. The thermodynamic and chemical characteristics of 

the Kiejo-Mbaka prospect have been inferred on the base of the nature and composition of the 

Kilambo and Kajala hot springs, extending along the Nugwisi river over lengths of 200 m at 

Kilambo and 500 m at Kajala (see Figure 5-28), whereas the distance between the two thermal 

sites is ~600 m. These hot springs occur along the Mbaka fault at the intersection with N-S 

trending faults and have a maximum temperature of 64 °C. Gas emission is abundant, especially 

at Kilambo. 

The gas manifestations of Lufundo and Kiejo, on the other side, are probably unrelated with the 

fault-controlled or fault-leakage controlled geothermal system discharging at Kilambo and Kajala. 

The application of the geothermometric functions to these water samples indicates a deep 

temperature of about 140 °C, in substantial agreement with the temperatures derived from the H2-

Ar and H2-N2 gas geothermometers. The type of thermal manifestations, their chemical and 

isotopic characteristics and estimated temperatures concur in suggesting the water-dominated 

nature of the geothermal system.  

Figure 5-55 depicts the 3D representation of the conceptual model of the Kiejo-Mbaka field. obtained 

by means of GIS and 3D graphic softwares. 
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Figure 5-55a Snapshot of the 3D model: circle with arrow represents Kiejo manifestations; red surface 

represents faults; light blue solid represents the reservoir 

 

 

Figure 5-55b Snapshot of the 3D model: circle with arrow represents Kiejo manifestations; red surface 

represents faults; light blue solid represents the reservoir; orange to yellow surfaces 

represent the isotherms 

 

 

Figure 5-55c Snapshot of the 3D model: circle with arrow represents Kiejo manifestations; red surface 

represents faults; light blue solid represents the reservoir; green volume represents the 

Basement Complex; yellow volume represents the Sedimentary Complex; violet volume 

represents the Recent Volcanics 
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Figure 5-55d Snapshot of the 3D model: circle with arrow represents Kiejo manifestations; red surface 

represents faults; light blue solid represents the reservoir; green volume represents the 

Basement Complex; yellow volume represents the Sedimentary Complex; violet volume 

represents the Recent Volcanics 

 

 

Figure 5-55e Snapshot of the 3D model: circle with arrow represents Kiejo manifestations; red surface 

represents faults; light blue solid represents the reservoir; green volume represents the 

Basement Complex; yellow volume represents the Sedimentary Complex; violet volume 

represents the Recent Volcanics 

Mbaka 

Fault 
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6. CONCLUSIONS 

In this work, two major topics were basically addressed, namely an updated overview of the 

procedures for the exploration of geothermal resources was provided and how they contributed to 

characterise the different geothermal plays, in particular for the East African Rift System. Among the 

different prospects of the EARS investigated in this PhD study, three of them were studied in detail, 

being characterised by well-distinct, peculiar geological and geothermal features. Making specific 

reference to the geothermal resource, geothermal plays can be broadly separated into two types related 

to the mechanism by which heat is transported into the reservoir, inasmuch as the heat transport is 

dominated by convection (magmatic, plutonic and extensional domain -fault controlled-) or conduction 

(located predominantly at passive tectonic plate settings, where no significant recent tectonism or 

volcanism occurs). All the cases studied fall under the convection play type. 

Alalobeda 

This geothermal prospect is either a fault /fault-leakage controlled or magmatic geothermal 

system, occurring in a region of three superimposed rift zones: the Red Sea (NW-SE), the Main 

Ethiopian Rift (NNE-SSW) and, partly, the Gulf of Aden (ENE-WSW). Gravity anomalies highlighted 

the Tendaho graben configuration and the main fault systems, which in turn well corresponded to 

magnetic anomalies recorded by the basalts of the Afar Stratoid Series.  

Geochemical analyses of water samples identified two water types: i) Sodium-chloride 

(Alalobeda hot springs and the reservoir liquids encountered in the Dubti prospect); ii) Sodium-

bicarbonate type (natural steam condensate, possibly affected by mixing with local rainwaters). Hot 

springs indicate reservoir temperatures of 200-220 °C. Such temperatures are substantially consistent 

with those (185-225 °C) inferred from fumaroles gases. The western highlands of Ethiopia could act as 

the main groundwater recharge zone of the geothermal field. However, both the present-day 

precipitations regime and isotopic data argue that the Alalobeda geothermal reservoir hosts paleo-water 

seeped in early times. Groundwater is expected to flow mostly in the Afar Stratoid Series, reaching a 

depth of 1,500-2,500 m. 

The Alalobeda geothermal field is characterized by a quite continuous seismic activity of low-

energy (magnitude <4.0), consistently with the regional pattern. The seismicity cutoff-depth occurs at 

3.5-5 km depth. The results of the MT survey showed extremely low resistivity values for the basaltic 

rocks of the Afar Stratoid Series registered outside of the Tendaho Graben. This is likely due to intense 

argillification phenomena, which accompany hydrothermal circulation. Along the SW shoulder of the 

Tendaho Graben, a very thick horizon of low-medium conductivity was detected, which can be at least 

partly interpreted as the cap-rock formation. South (of the Tendaho Graben?), an increase in resistivity 

(from 5 to 10 Ω m) of this horizon seems to indicate the end of the cap-rock and consequently could 

mark the limit of the geothermal system. Below the high-conductivity cap-rock, the more resistive 

basement (often in excess of 100 Ω m) can act as the reservoir formation, although its resistivity is 

somewhat higher than that commonly recorded in other geothermal fields. 

Menengai 

This field, occurring in a several km wide caldera, can be classified as convection-dominated 

magmatic play type. It was recognized as a promising geothermal prospect among the many existing 

along the Rift Valley in Kenya. After a series of geophysical investigations (micro-seismic monitoring, 

gravity and MT surveys), geological surveys, geochemical surveys (fumaroles sampling, soil gas 
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surveys) and a soil temperature survey, a first exploratory well MW-01 intercepted a deep reservoir with 

temperatures exceeding 300 °C. The deep reservoir extends beneath a shallower liquid-dominated 

reservoir at temperature of 190-200 °C. Irrespective of the provenance from the shallow aquifer, all 

reservoir liquids belong to the Na-HCO3 facies. However, no presence of a clear cap-rock was 

identified; therefore, self-sealing processes were invoked in order to explain the existence of two distinct 

reservoirs. 

Following the successful results of MW-01, an exploratory and development campaign started 

with the drilling of about twenty deep wells aimed at characterizing the deep reservoir properties, 

delineate the field extension and provide additional steam for power development. On the basis of 

available data, a conceptual model of the Menengai geothermal system was obtained. The system is 

characterized by a liquid dominated shallow reservoir at temperature ranging from 130 to 210 °C, which 

overlays a deeper high temperature, two-phase or vapour-dominated reservoir, with temperatures 

reaching 330 °C. A conceptual model of the entire system was developed incorporating surface 

exploration surveys and the findings derived from drilling, logging and testing of geothermal wells. 

The conceptual model, integrated with production testing results, was used to build a 3D 

numerical model of the geothermal system in order to simulate its thermal structure, check the 

consistency of acquired data, and set up the tool for the subsequent modelling of exploitation scenarios. 

The modelling of the natural state was intended give a better picture of the reservoir thermodynamic 

conditions and simulate the mass and heat flows through the system. A steady-state condition modeling 

was at first carried out and calibrated against data obtained from geochemical investigations, well 

pressure and temperature profiles recorded under warm-up and flowing conditions, as well as available 

production test results. The 3D natural state reasonably reproduces the liquid dominated shallow 

reservoir just on top of the deeper, vapour-dominated high temperature reservoir which is feeding the 

dry steam wells drilled in the central area of the prospect. The deep reservoir is recharged by the up-

flow of a high temperature mixture of steam and CO2. The latter accumulates at the culminations of the 

deep reservoir due to the boiling and condensation processes associated to the heat pipe mechanism 

supported by the strong heat flow. The gas phase saturation declines, moving from the central vapour-

dominated area towards the periphery of the deep reservoir, where the aqueous phase becomes strongly 

mobile. The thermodynamic conditions and rock properties of the lateral extension of the deep reservoir 

are poorly constrained by present drilled wells and need to be better characterized in the future, as they 

are fundamental for the reliable assessment of overall prospect potential. 

Kiejo-Mbaka 

This prospect can be classified as a fault-leakage controlled play (extensional domain play), in 

which convection takes place along the fault and the fluids can leak from the fault into permeable layers 

expanding laterally. It falls within the Rungwe Volcanic Province (RVP), which is situated in the East 

Africa Rift System at the triple junction of the Rukwa, Usangu and Karonga rift basins. Recent 

volcanism in the area is concentrated in the northern sector of the RVP, whereas in the southern sector, 

where the prospect is situated, it is expressed by eruptions of very limited volume and derived from 

deep sources, which can hardly contribute to the thermal anomaly. 

Kiejo-Mbaka is underlain by Pre-Cambrian products of the metamorphic-intrusive complex, 

consisting mostly of biotitic gneisses and schists, amphibolites and metagabbroid bodies. The complex 

is sub-outcropping in the central portion of the focal area (Mbaka ridge) and is covered by a thick 

sequence of clastic sediments westwards and eastwards. Volcanic products (basalts and ignimbrites) 

derived from Pleistocene eruptions cover the area with a thickness never exceeding 200 m. 
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Several fault systems were recognized, among which the most important ones are NW-SE and 

N-S. The Mbaka fault, which controls the hot waters emergences and delimits to the west the Mbaka 

ridge, belongs to the NW-SE system and is associated with a series of vicariate parallel structures 

extending in the plain. The Kisyelo fault, which delimits to the east the Mbaka ridge, trends N-S to 

NNW-SSE. 

Three groups of hot springs (Ilwalilo, Kilambo, and Kajala) are found along the Mbaka fault, 

with a maximum discharge temperature of 64 °C. Geothermometric determinations over these waters 

indicate a temperature of about 140 °C in Kilambo-Kajala and of about 115 °C in Ilwalilo. The reservoir 

fluid has a Na-HCO3 chemical composition. The main zone of recharge of the system corresponds to the 

Elton plateau, which extend to the NE of the Livingstone fault, a major NNW-SSE structure delimiting 

eastwards the East Africa Rift. 

The gravimetric and the electromagnetic surveys concurred to identify the existence of a block 

characterized by a pronounced positive Bouguer anomaly and high resistivity. Such a block corresponds 

to the Mbaka ridge, where the basement is either outcropping or sub-outcropping. In the plain which 

extends west of the Mbaka fault a conductive unit with an average thickness of 1,000 m, a resistivity as 

low as 0.5 Ohm m and a tendency to get thicker moving westward and southward was recognized. In the 

sector that extends east of the Kisyelo fault, two discontinuous conductive units were identified at 

shallow and intermediate depth. In both cases, these anomalies were referred to the sequence of clastic 

sediments and attributed to either primary (fine grained composition) or secondary (moderate 

temperature hydrothermal alteration) causes. 

The reconstruction of the geometry of the reservoir was based on the hypothesis of a fault-

leakage controlled play, assuming that the Mbaka fault represents a hydrogeological boundary to the 

eastern expansion of the heated fluids and taking into consideration the configuration of the conductive 

unit, interpreted as reflecting the cap-rock of the system. The SW limit of the reservoir is likely to 

correspond to a long-liner fault which runs about 2 km west of the Mbaka fault and the NW and SE 

limits have been conventionally set 2 km NW and 3 km SE of the Kilambo manifestations, respectively. 

The comparison of the geothermal plays of EARS with other I had the opportunity to investigate 

in the frame of other international geothermal projects in South-East Asia and Central America, lead to 

some final remarks: 

A. the same geothermal play-types can be found in both compressive (subduction zone) and 

extensional (rifting) stress conditions, although their characteristics could be partially different. 

The plutonic play-type is one typical example. In fore- or back-arc regions of fold-thrust belts 

along subduction zones (like e.g. the Mataloko geothermal field, Indonesia), a well-developed thick 

and continuous cap rock mainly formed by clay minerals (illite, smectite, clorite) is present. On the 

contrary, in a rifting region (EARS), the “classic” cap rock can be missing, like in the plutonic play 

of Menengai. From both geophysical results and direct information deriving from the drilled wells, 

the presence of any particular clay-rich layer was not revealed. The definition of cap rocks 

geometry (top/bottom) was inferred analysing the thermodynamic conditions (pressure and 

temperature distribution) recorded during the well testing activities. 

B. in a given geodynamic context a “zonation” of the play-types can be recognized; this is well 

evident in the EARS. The Western Branch is dominated by the presence of fault/fault leakage 

controlled type. The presence of persistent volcanic activities is limited to two cases, namely: 

Virunga (DRC and Uganda) and Rungwe (Tanzania) Volcanic Provinces. On the other hand, in the 

Eastern Branch the volcanic activities are well represented by the presence of tens of volcanic 



“Advances in the Exploration of Geothermal Resources of the East Africa Rift System (EARS)”  Claudio Pasqua 

Page 121 of 136 

edifices (considering Eritrea, Djibouti, Ethiopia and Kenya). In these countries, magmatic and 

plutonic play-types are common, although also some cases of fault controlled geothermal systems 

are present, but to date they have not been studied in detail, due to their low temperature which 

renders these geothermal prospects of relatively low commercial interest. 

C. a different approach should be followed in order to characterize properly the geothermal fields 

present in the EARS; we have to note that the common approach to investigate and study a 

geothermal prospect is to conduct geoscientific investigations, namely: geological, geochemical and 

geophysical (MT/TEM, gravity and seismic) surveys. In a subduction context the experts tend to 

believe primarily in the geophysical model derived from the resistivity survey, even because the 

values of ρ (ohm m), reported in literature, were calibrated in such environment. As mentioned in 

the Alalobeda (as well as in the Aluto-Langano) case study, unexpectedly low resistivity values 

were encountered in the basaltic rocks of the Afar Stratoid Series. Then, if the interpreted values of 

resistivity are simply associated with the standard values of cap rock and reservoir formations, the 

inferred geophysical conceptual model may be grossly incorrect. Therefore, it is essential to 

perform an accurate integrated interpretation of all the geoscientific results. 

D. a detailed structural survey is of primary importance especially in the fault-controlled plays, 

whereas its importance is often under-estimated; it is important to stress that in the EARS, and 

especially in the case of fault-controlled play-types, more attention should be focused on the 

distribution and type of lineaments and faults systems. A high-resolution structural survey allows to 

define a detailed configuration of fractures and faults that may control the fluid upflow from the 

reservoir. This information collected at surface may then be linked to the information at depth 

derived from the geophysical models, strongly reducing the ambiguities of the geophysical 

interpretation. 

E. a more comprehensive approach to water classification is needed to distinguish mature waters 

from immature waters. Some typical approaches and models developed in the subduction 

geothermal systems should be re-addressed. The geochemical framework of geothermal systems 

situated along Subduction Zones has been established long ago through extensive exploration, at 

the surface and at depth. Mature chloride waters hosted in geothermal reservoir migrate laterally 

and discharge at the surface at considerable distance from the geothermal field. Fumarole activity 

and steam-heated acid-sulfate waters mark the upflow zones. Peripheral bicarbonate waters occur at 

relatively shallow depths at some distance from the geothermal field. Acid chloride-sulfate volcanic 

waters are found in crater lakes. Consequently, the terms mature chloride waters, steam-heated 

acid-sulfate waters, peripheral bicarbonate waters, acid chloride-sulfate volcanic waters have been 

suggested by Giggenbach (1997). Only the Giggenbach’s triangular diagram of major anions is 

often used for water classification in geochemical investigations performed in convergent-plate 

settings (although it is preferable a more comprehensive approach). On the contrary, the high-

temperature geothermal reservoirs of the Eastern branch of the EARS (e.g., Olkaria and Menengai 

in Kenya, and Aluto-Langano in Ethiopia) host not only mature chloride waters but also mature 

bicarbonate-chloride and mature bicarbonate waters. Why? 

In volcanic-magmatic regions, deep geothermal liquids are assumed to be produced through 

neutralization of initially acidic meteoric-magmatic aqueous solutions (e.g. Giggenbach, 1997). The 

few available data for volcanic gases indicate that subduction zones volcanic gases are enriched in 

Cl relative to hot-spot and divergent-plate volcanic gases (e.g. Symonds et al., 1994; Sawyer et 

al., 2008). Therefore, the comparatively small supply of Cl-bearing magmatic gas species (chiefly 

HCl) in the root of the Eastern EARS geothermal systems might be responsible of the 
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comparatively low Cl contents of related geothermal liquids (Marini and Pasqua, 2014). 

Irrespective of the reasons controlling the presence not only of mature chloride waters but also of 

mature bicarbonate-chloride and mature bicarbonate waters in the eastern EARS, it is evident that 

the terminology of subduction-zone geothermal systems cannot be used in other frameworks. The 

situation might be even more complicated in the western EARS. Therefore, a more comprehensive 

approach to water classification is needed to distinguish mature waters from immature waters. 

In view of the foregoing final remarks (points A-E), the main aspects to be considered in the 

course of exploration and development of geothermal resources within the EARS, in comparison with 

the systems hosted in subduction zone environments, can be summarized, as follows: 

✓ Hundreds of thermal manifestations occur within the EARS, which extends over a length of some 

5000 km. 

✓ In spite of such widespread and intense evidence of thermal anomaly, the present exploitation of 

geothermal resources for power generation is quite limited, if compared, for example, with the 

production registered along the Belt of Fire of Indonesia. 

✓ Such somewhat disappointing situation can be related to two different causes: (1) Thermal 

manifestations are often not due to the presence of a hot magmatic source, but rather to the 

thinning of the earth crust, which determines a thermal anomaly of moderate intensity; (2) 

Numerous and extensive geoscientific investigations have been conducted, but only very few 

prospects have been directly tested so far through deep drilling. 

✓ The planned program of drilling in several prospects of Ethiopia and Tanzania, to be carried out in 

the next few years, might on one side enhance the “geothermal performance” and on the other 

side provide basic information which can improve the overall understanding of the EARS 

characteristics. 

✓ It is in particular very important to define the reasons why, in many instances, favorable thermal 

conditions are not accompanied by an adequate hydrogeological setting: it is in fact surprising that 

lithological units with brittle behavior (e.g. basalts) result to be almost impervious in an 

extensional environment characterized by neo-tectonic activity. 

✓ Under this situation, it is essential, as mentioned above, to pay specific attention to the structural 

setting, in order to design the wells in such a way as to increase the chances of intersecting 

tectonic features. In fact, it is worth reminding that, while in most Indonesian fields permeability 

tends to be widespread throughout extensive structural blocks, in the EARS environment 

permeability itself appears in many cases to be limited to major faults. 

✓ As refers to extensional plays, which represent the most common type especially in the western 

branch of the EARS, the corresponding systems tend to be partly overlooked due to their 

relatively low temperature (in principle in the order of 130-180 °C). 

✓ Actually, as shown by the results of geothermal development in the Great Basin of Western USA 

and in Turkey, the exploitation of medium enthalpy resources tends to be more and more viable 

from the technical and economic viewpoints, thanks to the progress in the realm of combined 

cycle processing, and it now constitutes close to 10 % of the global geothermoelectric generation 

in the world. 

✓ Similarly, direct use of geothermal resources is presently poorly applicable in the African socio-

economic context, but it might become soon of paramount importance within the framework of 

enhanced exploitation of renewable energy sources. 
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✓ In conclusion, although the estimates of geothermoelectric potential reported in the country 

updates of paragraph 5.2 appear surely over-optimistic, it can be confidently stated that the 

geothermal resources hosted in the EARS are due to represent in the future, in one form or 

another, an invaluable asset for energy generation. 
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