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Abstract 

 
This thesis is focused on the calculation of ship motions and on the evaluation of added re-
sistance in waves. A partial desingularized panel method based on potential theory has been 
developed. 
Rankine sources are distributed on the hull and at small distance above the free surface. 
In such way only the free surface is desingularized. This choice allows to consider also thin 
hull shapes at the bow where desingularization could cause numerical problems. 
The main advantage of this approach leads to reduce the computational time, especially when 
non linear effects are considered, provided an adequate source-panel center vertical distance 
is selected. 
The fluid domain boundaries have been represented as a structured grid consisting of flat 
quadrilater panels. 
In the linear case the boundary conditions have been applied on the mean body wetted sur-
face and the free-surface is considered at the calm water level. By using an Eulerian time-
stepping integration scheme the kinematic and dynamic boundary conditions are updated on 
the free-surface at every time-step. After the potential is obtained, the pressure on the mean 
hull surface can be calculated and forces and moments can be determined by integrating the 
pressure on the body surface. 
Therefore in two-dimensional environment an introduction of non-linear effects has been 
analysed. In particular a 2D body exact method has been developed. 
The added resistance is determined by a near field method integrating the second-order pres-
sure on the body surface. Then it is corrected using a semi-empirical method to allow to con-
sider the wave reflection of short waves.  
The adequacy of the results has been verified applying the code to different test cases and 
comparing the numerical output with experimental data available in literature. Furthermore in 
order to discuss the improvements obtained with this present method the results have been 
compared with another numerical method in frequency domain.  
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Chapter 1  Introduction 

 

The study of the ship motions began in the late 19th century and has represented a topic of 

great interest. An impulse to research on this field arose from the technological innovation of 

computers, which considered all the different components that influence the seakeeping anal-

ysis.  

Also the accurate prediction of ship’s resistance in waves is nowadays of increased im-

portance, since it greatly influences the ship’s performance regarding sustainable service 

speed and fuel consumption in seaways. This seakeeping-related characteristic typically plays 

a key role for the performance prediction in operating conditions, as for instance in a weather 

routing perspective or to evaluate ship maneuvers in waves. Its relevance is rising also at a 

design phase. In fact it can be related e.g. to Energy Efficiency Index (EEI) evaluations or in 

designing new fleets for real scenarios since it possibly affects the choices on the power in-

stalled on board. 

In this chapter the various analytical methodologies to evaluate motions and added resistance 

in waves, developed in the recent years will be presented and also a summary of the thesis 

will be provided. 

 Overview 1.1

In Chapter 2 an overview of the theoretical methods relating to the evaluation of the added 
resistance due to ship motions in regular waves is provided.  
Chapter 3 examines the evaluation of added resistance due to ship motions considering near 
field methods in frequency domain and the calculation of the added resistance due to wave 
reflected at the bow using Kuroda’s semi-empirical formulation. 



 

2 

  

In Chapter 4, a quick outline of the Boundary Value Problem (BVP) is presented for the 
study of a ship advancing in sea waves. The numerical solutions of this approach are de-
scribed both for the two-dimensional and for the three-dimensional case. Furthermore the 
near field method in time domain approach is presented. 
Chapter 5 discusses in detail the partial desingularization approach for the 3D linear problem 
and 2D body exact problem. The advantages of this solution procedure compared to the linear 
methods are underlined. Moreover other relevant aspects in time formulation are analysed as 
the mesh size, the values of the distance of desingularization, the time stepping for both 3D 
and 2D body exact method. 
In Chapter 6, the applicability of the near field method is presented and in order to validate 
this methodology the numerical results are compared with the experimental data; then, the 
three-dimensional approaches, partially desingularized, have been applied to the different 
hulls and results have been checked with experimental data and with another methodology in 
frequency domain.  
At last the application of the partial desingularized body-exact approach to the two-
dimensional sections is shown and the results have been compared with the experimental data 
freely available in literature and with the two-dimensional linear results. 
Finally in Chapter 7 the conclusions, the recommendations and the suggestions for the future 
research are shown. 

 Background 1.2

A ship in waves is affected by a higher resistance than that in still water. The difference is 

known as added resistance, and it is generated by energy dissipation due to ship motion and 

to reflection of incident waves. 

An accurate prediction of added resistance is therefore important for the evaluation of the in-

creased propulsion power to maintain the speed and in view of the related higher emissions. 

This is the reason why the added resistance problem has been widely studied by many re-

searchers and it is in the focus of a further recent increase of interest. Added resistance may 

be viewed as the longitudinal component of the steady second-order force so proportional to 

squared incident wave’s amplitude (Storm Tejsen, 1973). Experimentally, added resistances 

on Series 60 hull and Wigley hull have been measured by Gerritsma and Beukelman (1972), 

Storm-Tejsen et al. (1973) and Journee (1992), respectively. Two major analytical approach-
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es can be used to analyze the problem: far field and near field methods. The far field methods 

are based on the momentum-conservation theory proposed by Maruo (1960). This approach 

is not complex and efficacious because there is no necessity to solve a complete boundary 

value problem to obtain the body pressure, thus the far-field method has been widely used to 

evaluate the added resistance in real applications. These analysis are well described in ITTC 

Report (1981). However, in this method there is a limitation in finding a proper control sur-

face, and it is not simple to apply for oblique sea case. Moreover, it is difficult to estimate the 

added resistances of multiple bodies using the far-field method. Instead the near field method 

obtains the added resistance by direct integration of the hydrodynamic second-order pressure 

acting on the wetted ship surface (e.g. Faltinsen (1980), Bertram (1996), Bruzzone & Gualeni 

(2004), Kim & Kim (2011), Joncquez et al. (2012). Thanks to the significant development of 

computer power, the near- field method has been acclaimed recently as well as the far-field 

method. An advantage of the near-field method is that it makes it easier to understand physi-

cal phenomena and also it is extendable to the multi-body and nonlinear problems. For exam-

ple, wave Green function method has been generally applied to the added resistance problem 

(Grue and Biberg, 1993; Ye and Hsiung, 1997; Choi et al., 2000; Fang and Chen, 2006). The-

se applications are mainly based on three-dimensional frequency-domain approaches. Very 

recently, Joncquez et al. (2008) analyzed the added resistance problem by using a ship motion 

program, called AEGIR, which is based on a higher- order Rankine panel method. They 

compared their computational results with those of momentum-conservation approach. Com-

parison between computational results based on Neumann–Kelvin and double-body lineariza-

tion schemes were also realized by Joncquez et al. (2009). Altought the success of foregoing 

studies on the added resistance problem, limited researches can be found that are based on 

Rankine panel method, with the exception of Joncquez et al. (2008, 2009). However, nowa-

days, Rankine panel method is widely applied to seakeeping analysis including linear and 

nonlinear problems.  

In this thesis a methodology for the prediction of motions and added resistance by a three-

dimensional panel method is presented and its results against experimental data are validated. 

Furthermore it is known that calculated results of added resistance in short wave frequency 

range give poor agreement with experimental data. Then a semi empirical procedure by Ku-
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roda et al. (2008) for the added resistance in short waves, due to wave reflection at a bow, is 

applied. Adding this component to the component due to ship motions, the total resistance 

can be obtained and compared with experimental data. 

In order to calculate the added resistance, previously obtained, the ship motions are neces-

sary. 

Non-linear effects highly biasing the final output precision mainly cause the complexity re-

garding the numerical aspects of a ship advancing in waves.  

Considering the general formulation of the hydrodynamic problem, the boundary conditions 

are non linear and the free-surface boundary is unknown a priori. 

Several methodologies can be found in literature in order to solve the ship motions issue. 

They may present various degrees of complexity.  
Certainly, attempts in the past were affected by several limitations in computer technology. 
In order to simplify the problem different hypothesis were made. An initial two-dimensional 
boundary value problem was formulated on the base of the strip theory of Korvin-
Kroukovsky and Jacobs (1957), valid only for restricted assumptions, and the solution was 
obtained using a boundary element method such as the one developed by Frank (1967). 
For instance, since 1960s in the field of seakeeping computations inviscid methods were de-
veloped considering the hypothesis of perfect fluid and irrotational flow. These methods, 
originally developed in the frequency domain, assumed infinite depth, time harmonic small 
motions in order to obtain a linear solution of the problem. In the first years of development 
of this topic, vertical motions were studied using a linear strip theory and the comparison 
with experimental data, as reported for example in Gerritsma and Beukelman (1967), showed 
the good accuracy for pitch motions of a slender body results, with an acceptable computa-
tional effort. 
The early strip theory approach lead to a rational analysis of the method developed by 
Ogilvie and Tuck (1969) and Sclavounos (1984) and Newman (1978) continued the slender 
theory standardising the work of Salvesen et al. (1970), who extended the strip method to five 
degrees of freedom including forward speed effects. 
During the years, the development of computer capabilities increased the interest on the prac-
tical application of the hydrodynamic methods in order to obtain a realistic simulation of the 
ship motions in a regular sea state; an initial three-dimensional application was studied and 
approximated by solving a series of two-dimensional problems in the cross-flow plane. 
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Successively, in order to evaluate the ship motions the panel methods were developed using 
Green function technique and assuming the linearized problem. To solve the 3D hydrody-
namic boundary value problems with the boundary conditions on the mean wetted body sur-
face and on the calm water surface the Neumann-Kelvin approach was introduced. 
In this case, the free-surface and the mean wetted body surface are geometrically described 
and Green functions are used to solve the boundary value problem. In general, the Green 
functions are usually used for the solution of inhomogeneous differential equations with spe-
cific initial and boundary conditions. In particular, for perturbative methods this approach 
permits to obtain an approximate solution of the differential equation to solve, but introduc-
ing the non-linear effects this method showed some limitations mainly due to the increased 
computational difficulties. Applications of this method can be found in Inglis and Price 
(1981), Guevel and Gougis (1982) and Chang and Dean (1986), where, by using a singularity 
distribution method in frequency domain, numerical results for the motion coefficients, wave 
resistance and wave forces with forward speed are presented. 
Successively Rankine sources Green functions represented a solution to decrease the numeri-
cal complexity of the problem, by introduction of the panelization of the fluid domain bound-
ary surfaces and of the distribution of simple sources on which more general free-surfaces 
conditions may be considered.  
In an initial application of this method the body surface and the free-surface remain fixed, so 
no re-panellization is needed; some examples can be found in Nakos and Sclavounos (1990) 
and in Bertram (1990), where a Rankine source method is successfully applied to the steady 
wave problem and in Bruzzone (2003), where a 3D Rankine panel method has been devel-
oped and used for the evaluation of motions of high speed marine vehicles. 
One of the main aim of the seakeeping analysis is the improvement of the analytical and nu-
merical methods to try to consider as much as possible non linear effects, in order to solve the 
fully non linear problem. Then due to the complexity of the problem, intermediate methods, 
where nonlinearities were partially introduced, were developed. 
The consideration of non-linear effects directly in the frequency domain results difficult and 
limited. However, Cummins (1962) introduced the so called 'hybrid or blended methods', 
based on the impulse functions and on the relation between frequency and time domain 
through the Fourier transform. Then some results from frequency domain derived. This is an 
solution that consider the non linearities related to the Froude-Krilov forces and the non line-
ar hydrostatic forces.  
An example of a blended approach can be found in Bruzzone et al. (2011), where radiation 
and diffraction forces are calculated in the frequency domain, while non linear Froude-
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Krylov and hydrostatic forces are evaluated in the time domain. This solution permits to 
evaluate some sources of nonlinearity without increasing very significantly the computational 
time. 
In order to go so far as to consider a fully non-linear approach, a linear panel method com-
pletely based in the time domain should be considered rather than in the frequency domain. 
This is due to the fact that the introduction of non-linear effects in the frequency domain is 
difficult and doesn't bring particular advantages in the computational effort.  
A three-dimensional application of this method in time domain can be found in Beck and Li-
apis (1987), where, by using time-dependent Green functions on a linearized free-surface, a 
time domain model for arbitrary shaped slender bodies with forward speed was developed. 
In order to introduce the non-linear aspects, the following step was the evaluation of wetted 
body surface at every time step.  
These methodologies were called 'body-exact approaches' and the body boundary condition 
was satisfied on the instantaneous wetted surface of the body while the free-surface boundary 
conditions remained linearized. In this case, a new panellization of the body at every time-
step should be used in order to update the body surface respect to the wave elevation. Exam-
ples can be found also for the two-dimensional case Zhang and Beck (2007). 
The first approach to a fully non-linear hydrodynamic problem was developed by Longuet-
Higgins and Cokelet (1976), that first introduced the mixed Euler-Lagrange time-stepping 
scheme for solving two-dimensional fully non linear water wave problems. This method 
overcame the higher approximations typical of the small amplitude theories, in particular for 
the study of breaking waves. In this approach, the normal component of the fluid particle ve-
locity is updated at every time-step and the integral equation is solved for this new compo-
nent of normal velocity. Considering the body boundary condition on the exact wetted sur-
face of the body and the fully non-linear free surface boundary conditions on the deformed 
surface of the fluid domain a method faster and more accurate than the previous methods, 
based on the two-dimensional grid, was developed. 
In this case, the study of the three-dimensional non-linear problem of the wave generated by a 
pressure distribution on the free-surface caused by the motions of a submerged or semi-
submerged body was solved using MEL methods applied with the boundary integral equation 
approach. Transient Green singularities were imposed on the hull, as for inst. in Lin and Yue 
(1990) and in Singh and Sen. (2007), or Rankine singularities on both the hull and on a por-
tion of the free-surface, as for inst. Nakos et al. (1993) or Zhang et al. (2010b). The distribu-
tion of the sources on the surfaces determines the methodology used, singular or desingular-
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ized. For example, Cao et al (1990, Cao et al. (1991a), and Cao et al. (1991b), used a des-
ingularized boundary integral technique in time domain to study non linear waves. 
The use of the desingularized method was principally introduced to reduce computational 
time, since it simplifies the solution of the influence coefficient matrix, that represents the 
major computational effort. In fact, in the conventional boundary integral formulations, the 
singularity of the fundamental solution is placed on the domain boundary. This resulted in the 
evaluation of singular integrands, which may result in an increased time computations. 
Instead, by considering the singularity of the fundamental solution away from the boundary 
and outside the domain of the problem, the computational effort required for the evaluation of 
the integrals is reduced. However, it is important to select a proper desingularization distance.  
Another important difficult to overcome in the solution of desingularized problems is the in-
stability of the free-surface. If the problem is linear and the body surface is considered as the 
mean body surface, the initial grid is the same for all the time-steps and no regridding is nec-
essary. When an exact-body method is applied, see Zhang et al. (2010b), the body surface 
change at every time step so a regridding is necessary, with a new distribution of the sources 
upon the surfaces.  
In this thesis, the partial desingularized boundary integral method is examined and an initial 
linear code has been developed in 3D case, to move forward a non-linear approach. In 2D 
case a body exact method has been developed as a basis for future development in three-
dimensional version. 
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Chapter 2  Mathematical formulation and out-
lines of numerical method in FD 

 The physical origin of added resistance 2.1

The resistance of a ship sailing in still water is composed of a potential part and a viscous 
part, the magnitudes of which depend on hull form and ship speed. It can be said that they are 
of equal importance. While the added resistance in the field wave is generally considered to 
be of potential origin and therefore can neglect the viscous effect. Block (1993) describes this 
phenomenon in a simple but effective manner. 
He derived an approximate expression for the viscous component of the added resistance. He 
assumes that, considering the same coefficient of viscous resistance, it can be calculated with 
the same formula that in the stationary case. This is an approximation, since in reality the 
boundary layer also becomes unstationary, as well as the point of separation of the flow. 
The formulation becomes: 
 

𝑅 = 2𝜋𝜌𝑔𝐶!𝜁!!
𝐿
𝜆
𝑇
2 +

𝑉
𝜔 (2.1) 

 
 
  

where: 

𝐶! = Coefficient of viscous resistance ITTC 

𝑇 = Immersion of ship 

𝜁! = Elevation wave 

The values so calculated are compared with the values of added resistance measured experi-

mentally. The result of this comparison is shown in fig. 2.1. 
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Figure 2.1: Comparison between total added resistance and viscous component (from Block,1993) 

 

Even taking the approximation nature of the formula into account it follows that the mean 

wave added resistance contains only a small contribution from viscous effects and it is mostly 

of potential origin. This also means that the results obtained from scale models must follow 

the Froude scaling law, as for the wave resistance in still water. 

Assumed that the added resistance is of potential origin, exactly as the wave resistance in still 

water also the added resistance is a resistance due to the formation of wave. 

In this case the wave field is created by the overlap of the fields generated by the ship mo-

tions and the diffraction’s waves.  All these wave fields are generated by the interaction be-

tween the hull and the incident wave field, this phenomenon is already been studied exten-

sively in predict the motions of the ship and this constitutes a solid basis on which to develop 

techniques for predicting the added resistance. 
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The wave field in the examination is non-stationary, therefore, when we speak of values for 

added resistance we make reference to the average value of the resistance added during a pe-

riod of encounter. 

The added resistance is therefore strongly influenced by the ship motions and the experi-

mental data and the numerical calculations confirm this phenomenon. In fact it is possible to 

find a strong dependence of the added resistance’s operator by the transfer functions of the 

motions. An example is presented in fig. 2.2. This dependence is even more powerful when 

the wave field generated by motion is responsible of added resistance; for example it is be-

lieved that, in case of bow incident waves, the motions responsible for the added resistance  

 

 

 

Figure 2.2: Transfer functions of pitch and added resistance (from Block, 1996) 

 
 

are heave and pitch while all other motions are neglected. 
The added resistance is a function of wave length or wave frequency, and attains a maximum 
value where a dominant ship motion is also maximum. 
The ship pitches heavily when the length of waves is equal to the ship’s length. The result is 
large added resistance, as indicated in fig. 2.2 
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Figure 2.3: Transfer function of added resistance indicating region of large extra resistance (from Block, 1996) 

The added resistance is approximately proportional to the square of the wave height. If the 

wave height increases, then also the water pressure and the surface area on which this pres-

sure acts increase. Their combined integrated effect results in a mean force that increases 

with the square of the wave height. 

 State of the art  of added resistance 2.2

This section provides an overview of the theoretical methods designed to predict the added 
resistance due to ship motions in regular waves. Then in section 3.2 methods for estimating 
the added resistance in short waves due to the reflected wave at the blunt bow, which is not 
included in theoretical calculation, are presented. In fact it was shown that the total resistance 
increase of a ship in waves can be evaluated approximately as the sum of the resistance in-
crease due to wave reflection at the bow and the component due to ship motions, as in shown 
in fig. 2.4. 

In general we can distinguish methods called far field and near field, the first calculate the 

characteristics of the motion at a distance from the ship at least equal to its length while oth-

ers focus on the motion of the fluid in correspondence of the hull. 
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Figure 2.4: Components of added resistance (from Bertram, 1996) 

All these methods require knowledge of the motions of the ship and the potential velocity. 

These quantities can be assessed using 2-D methods, such as strip-theory, still widely used. 

Currently 3-D methods are spreading, mainly panel methods. In recent years several methods 

based on non-linear theories have been proposed, which take account of the hull even above 

the waterline. 

2.2.1  Far Field method 

The basic idea of this method is to derive the added resistance by applying the laws of con-
servation of energy and momentum. It was developed in one of the first added resistance the-
oretical studies by H. Maruo. 
When H. Maruo wrote his article (Maruo,1963) no theory was able to describe convincingly 
the origin of the increase of resistance because the nature of the motion of the fluid around 
the hull was too complex to allow rigorous mathematical analysis. However, the motion of 
the fluid away from the hull has characteristics relatively more simple, this allows to apply 
analytically the equations of conservation of energy and from these relations it can be ob-
tained a formula for calculation of the added resistance. 
An analysis of this type has already been applied by Havelock to study the wave resistance of 
ships in still water. In this case two vertical planes are considered, one in front of the ship that 
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advances at constant velocity in still water and one behind, farther away. The wave resistance 
is obtained by the variation of energy of the fluid contained between the two planes. 

A similar concept can be applied in the case of a ship that advances in the field of wave, in 

fact, the added resistance is primarily intended as wave resistance; but in this case the waves 

generated are also linked to the frequency of the incident wave and the frequency of encoun-

ter, therefore, as a control surface it is appropriate to consider a cylindrical surface, with ver-

tical axis, that surrounds the ship. 

 

Figure 2.5: Energy control surface (from Maruo, 1963) 

Firstly, the case of a ship that advances in still water is considered. The cylindrical surface is 
assumed fixed in space and the ship moves from left to right with uniform velocity U. After 
an interval of unit time the ship is at a distance U from its initial position. The change of en-
ergy within the cylinder between the initial instant and the final instant, considering the sta-
tionary motion of the fluid, is due solely to change of position of the ship. 
If instead the cylindrical surface moves with the same speed of the ship, it will be in the C2 
position after a interval of unit time (see fig. 2.5) and since the motion is stationary the ener-
gy contained in C1 and C2 is identical. The volume indicated as I contains a quantity E1 and 
E2 and E3 are equally identified. 
Then the energy variation in the fixed cylinder during a unit time is expressed as: 
 
 𝜕𝐸

𝜕𝑡 = 𝐸! + 𝐸!!! − 𝐸!! + 𝐸!!! = 𝐸! − 𝐸!! (2.2) 

 
In accordance with the principle of conservation of energy, the energy variation in the fixed 
cylinder must be supplied from external source. The energy is in part transmitted by the fluid 
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𝜕𝑊 𝜕𝑡, while the remaining part is given by the ship. When a ship is inclined to a constant 
velocity U from a drive that overcomes a resistance R, the actual work in a unit time is RU. 
Therefore the following relation is obtained: 
 
 

𝑅 =
1
𝑈
𝜕𝐸
𝜕𝑡 −

𝜕𝑊
𝜕𝑡  (2.3) 

 

Where 𝜕𝐸 𝜕𝑡 e 𝜕𝑊 𝜕𝑡 are determined by the motion of the fluid to the cylindrical surface.  

In the case where a ship is moving in the wave field motions of the ship and of the fluid are 

not stationary. The relation just obtained is still valid but the term 𝜕𝐸 𝜕𝑡 can not be comput-

ed only on the cylindrical surface, also all the terms must be considered as average values in 

time.  
Firstly the situation shown in fig. 2.6 is analysed, where a ship is held in place by a horizontal 
force, and she is hit by a uniform flow of velocity U at which a train of regular waves is su-
perimposed. 

 
 

 

 

          

Figure 2.6 

          
From this analysis, a relation that subsequently serves to analyse the real case of a ship that is 
moving in regular waves, is obtained. 
It is assumed that the viscosity of the fluid is zero and the motion is irrotational, then the po-

tential velocity Φ exists and satisfies the Laplace equation.  
The Cartesian co-ordinates are taken with the origin on the mean level of water surface, the 
x-axis is taken in the direction opposite to the velocity of the uniform flow, the z-axis is taken 
vertically upwards and the y-axis is perpendicular to other axes. 
The control surface is the cylindrical surface S1 of large radius with a vertical axis through 
the origin of the co-ordinates, the surface of the hull S and a portion of free surface. 
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The total energy contained in the domain bounded by the control surfaces is the sum of kinet-
ic and potential energy: 
 
 

𝐸 = 𝜚
1
2 ∇Φ ! + 𝑔𝑧 𝑑𝑉 (2.4) 

 

When the control surfaces move and 𝑣! is the component of velocity in the direction of inter-

nal normal the energy variation is given, by transport theorem, as: 

 

 𝑑𝐸
𝑑𝑡 =

𝜌
2

𝜕
𝜕𝑡 ∇Φ ! 𝑑𝑉 − 𝜚

1
2 ∇Φ ! + 𝑔𝑧 𝑣!𝑑𝑆 (2.5) 

 

Using Green’s theorem and Bernoulli’s equation 2.5 can be written: 

 

 𝑑𝐸
𝑑𝑡 = −𝜚

𝜕Φ
𝜕𝑛

𝜕Φ
𝜕𝑡 +

𝜕Φ
𝜕𝑡 −

𝑝
𝜌 𝑣! 𝑑𝑆 (2.6) 

 

The boundary conditions are: 𝑣! = 𝜕Φ 𝜕𝑛 on S and 𝑆!, p=0 on 𝑆! and 𝑣! = 0 on 𝑆! because 

the cylinder is considered fixed in space. Then: 

 

 𝑑𝐸
𝑑𝑡 = ∬!𝑝𝑣!𝑑𝑆 − 𝜚∬!!

𝜕Φ
𝜕𝑛

𝜕Φ
𝜕𝑡 𝑑𝑆 (2.7) 

 

Taking the mean values in time: 𝜕𝐸 𝜕𝑡 = 0 because the motion is periodic; ∬!𝑝𝑣!𝑑𝑆 is the 

work done by the ship and since average position of the ship is fixed in space this is also zero. 

Then the following relation is found: 

 

 
∬!!

𝜕Φ
𝜕𝑛

𝜕Φ
𝜕𝑛 𝑑𝑆 = 0 (2.8) 

 

The velocity potential is decomposed as Φ = 𝑈𝑥 + 𝜑 and using the coordinates cylindrical   

(R, ) the previous relation becomes: θ
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 𝜕φ
𝜕𝑡

𝜕φ
𝜕𝑅 + 𝑈 cos𝜃

!

!!

!!

!
𝑑𝑧 = 0 (2.9) 

 

Where 𝜁 is the elevation of the free surface. 

Now, the real situation of a ship that moves with mean velocity U in regular waves, as shown 

in Fig. 2.7, is analysed. The coordinate system moves with the ship, the velocity potential in 

mobile reference is identical to 𝜑. The cylinder 𝑆! moves with the origin of coordinates and 

then 𝑣! = −𝑈 cos𝜃 in 𝑆!. 

 

 

 

 

Figure 2.7 

 

In this case the energy variation is: 

 

 𝑑𝐸
𝑑𝑡 = ∬!𝑝𝑣!𝑑𝑆 −∬!!

𝜌
𝜕𝜑
𝜕𝑡 − 𝑈

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑛 − 𝑈 cos𝜃 + 𝜌𝑈 cos𝜃 𝑑𝑆 (2.10) 

 
 
Taking the average value in time and using the relation (2.8): 
 
 

∬!𝑝𝑣!𝑑𝑆 = −∬!!
𝜌𝑈

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑛 − 𝑈 cos𝜃 − 𝜌𝑈 cos𝜃 𝑑𝑆

= 𝜌𝑈 𝑅𝑑𝜃
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅 +

𝜕𝜑
𝜕𝑡 −

1
2 ∇Φ ! − 𝑔𝑧 cos𝜃𝑑𝑧

!

!!

!!

!
 

 

(2.11) 

The term on the left of the equal is the work done by the ship. The only force that supply this 

work is the thrust of the ship then the principle of conservation of energy leads to this expres-

sion: 

Ship velocity=U+C 
	

Stream velocity=C 
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 ∬!𝑝𝑣!𝑑𝑆 = 𝑅𝑈 (2.12) 

 

Where 𝑅 is the average resistance in the wave field. Using cylindrical coordinates, by (2.11), 

the average resistance can be expressed as follows: 

 

 
𝑅 = 𝜌𝑈 𝑅𝑑𝜃

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅 +

𝜕𝜑
𝜕𝑡 −

1
2 ∇Φ ! − 𝑔𝑧 cos𝜃𝑑𝑧

!

!!

!!

!
 (2.13) 

 

Since the motion is periodic: 

 
𝑅𝑑𝜃

𝜕𝜑
𝜕𝑡 − 𝑔𝑧 cos𝜃𝑑𝑧

!

!!

!!

!
= 0 (2.14) 

 

Then the equation (2.14) can be rewritten as: 

 
𝑅 = 𝜌 𝑅𝑑𝜃

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅 −

1
2 ∇Φ ! cos𝜃𝑑𝑧

!

!!

!!

!

+ 𝜌 𝑅𝑑𝜃
𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅 −

1
2 ∇Φ ! cos𝜃𝑑𝑧

!

!

!!

!

+ 𝜌 𝑅𝑑𝜃
𝜕𝜑
𝜕𝑡 cos𝜃𝑑𝑧

!

!

!!

!

−
1
2𝜌𝑔 𝜁!

!!

!
𝑅 cos𝜃 𝑑𝜃 

(2.15) 

 

 

 

           

The integrals contained in equation (2.15) are developed in power series compared to 𝜁 of 

lower order, which is a term quadratic of derivative of 𝜑 
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𝑅 = 𝜌 𝑅𝑑𝜃

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅

!!

!

!!

!
−
1
2 ∇Φ ! cos𝜃𝑑𝑧

+ 𝜚
𝜕𝜑
𝜕𝑡 𝜁 −

1
2𝑔𝜁

!

!!!

!!

!
𝑅 cos𝜃 𝑑𝜃 

(2.16) 

                                            

The elevation of the free surface is approximated to first order as: 

 

 
𝜁 =

1
𝑔
𝜕𝜑
𝜕𝑡 − 𝑈

𝜕𝜑
𝜕𝑡 !!!

 (2.17) 

 

Substituting 2.17 in equation 2.16, the following expression derives: 

 

 
𝑅 = 𝜌 𝑅𝑑𝜃

𝜕𝜑
𝜕𝑥

𝜕𝜑
𝜕𝑅

!!

!

!!

!
−
1
2 ∇Φ ! cos𝜃𝑑𝑧

+
1
2𝑔 𝜚

𝜕𝜑
𝜕𝑡 − 𝑈

𝜕𝜑
𝜕𝑥

!!!

!!

!

𝜕𝜑
𝜕𝑡 + 𝑈

𝜕𝜑
𝜕𝑥

!!!
cos𝜃 𝑅𝑑𝜃 

(2.18) 

 

To solve this equation the potential 𝜑 must be known, the boundary conditions for the La-

place equation are the conditions on the free surface and the condition on the rigid surface. 

These conditions are nonlinear and it’s very difficult to find a solution. The solution is ap-

proximated solving a linearized problem. 

The linearized potential velocity is the sum of 𝜑!  - the potential of the incident regular waves 

- and 𝜑! - the potential of disturbance - . 

The potential of disturbance is harmonic in external space to the hull so there must be singu-

larities on the surface or inside the ship. The singularities are considered as a source distribu-

tion on the surface S. 

The following function is considered: 

 

 𝐻 𝐾,𝛼, 𝑡 = ∬!𝜎(𝑡, 𝑥
!,𝑦!, 𝑧!)𝑒𝑥𝑝𝑘(𝑧! + 𝑖𝑥! cos𝛼 + 𝑖𝑦! sin𝛼)𝑑𝑆(𝑥!,𝑦!, 𝑧!) (2.19) 
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𝜎(𝑡, 𝑥!,𝑦!, 𝑧!) where is the density of the sources. 

After the oscillations of the ship are damped, the period of the oscillations is the period of en-

counter. Then 𝐻 𝑘,𝛼, 𝑡  is a periodic function: 

 

 𝐻 𝐾,𝛼, 𝑡 = 𝐻! 𝑘,𝛼 + 𝑃! 𝑘,𝛼 cos𝜔! + 𝑄! 𝑘,𝛼 sin𝜔! +⋯ (2.20) 

 

Using conjugate complex numbers it can be written: 

 

 𝑃! 𝑘,𝛼 + 𝑃!∗ 𝑘,𝛼 + 𝜋 − 𝑖 𝑄! 𝑘,𝛼 + 𝑄!∗ 𝑘,𝛼 + 𝜋 = 2𝐻! 𝑘,𝛼  (2.21) 

 

With a few calculations the potential velocity 𝜑! is expressed as a function of: 

𝐻! 𝑘,𝛼 ,𝐻! 𝑘!,𝛼  and 𝐻! 𝑘!,𝛼  

Where: 

 
𝑘!,! = 𝑘!

1− 2Ω cos𝛼 ± 1− 4Ω cos𝛼
2 cos𝛼!       Ω =

𝑈𝜔!
𝑔  (2.22) 

 

The potential of disturbance is written as 𝜑! = 𝑅𝑒 𝜑! + 𝜑!𝑒!!!!! . 𝜑! is the time-

independent part and 𝜑!𝑒!!!!! is periodic part. Likewise: 𝜑! = 𝑅𝑒 𝜑!𝑒!!!!! . 

Considering large-distance asymptotic expression for 𝜑! and 𝜑! and substituting in 2.18 the 

following formulation of wave resistance in still water is obtained: 

 
𝑅! = 𝜌 𝑅𝑑𝜃

𝜕𝜑!
𝜕𝑥

𝜕𝜑!
𝜕𝑅 −

1
2 ∇Φ !cos𝜃

!!

!

!!

!
𝑑𝑧 (2.23) 

 

Then the increased resistance in the field wave is: 

 

 
∆𝑅 = 2𝜋𝜌 [ + −

! !

!!

!!!!!

!! !
]

!! !

! !
𝐻! 𝑘!,𝛼 ! 𝑘!(𝑘! cos𝛼 − 𝑘 cos𝜒

1− 4Ω cos𝛼
𝑑𝛼

+ 2𝜋𝜌 𝐻! 𝑘!,𝛼 ! 𝑘!(𝑘! cos𝛼 − 𝑘 cos𝜒
1− 4Ω cos𝛼

!!!!!

!!
𝑑𝛼  

(2.24) 
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The determination of the function 𝐻! 𝑘!,𝛼  is essential in this calculation of added re-

sistance. H. Maruo uses an approximate method using the source distribution. 

2.2.1.1  Method of energy radiated 

This method has been developed by J. Gerritsma and W.Beukelman. On the basis of past 
studies on the added resistance, such as the formula of Havelock or a simplified version of 
the formula 2.24, the authors have considered the added resistance to be the result of the en-
ergy dissipated by the ship through the radiated waves of damping. 
The following procedure shows how to calculate the radiated energy P during a period of en-
counter from a ship which oscillates. 
 

𝑃 = 𝑏!
!

!

!

!
𝑉!!𝑑𝑥!𝑑𝑡 (2.24) 

 

where: 

𝑏! = 𝑏!! − 𝑉
!!!!
!!!

 is the sectional damping coefficient 

 𝑉! = 𝑧 − 𝑥!𝜃 + 𝑉𝜃 − 𝜁∗ is the relative vertical velocity of water 

 𝜁∗ is the effective wave elevation for the section b, in fact for each section wave height is 
different due to the shape of the itself section, this is a correction to the Froude-Kryloff ’s hy-
pothesis who assumes that incident wave field is not affected by the presence of the ship. 
It is expressed as follows: 
 

𝜁∗ = 𝜁 1−
𝑘
𝑦!

𝑦!𝑒!!!𝑑𝑧!
!

!!
 (2.25) 

𝑦! , 𝑧!  are the points of the section and 𝑦! is the half width at the waterline of the section 

𝑥!. 

𝑉! is a harmonic function with amplitude 𝑉!" and frequency 𝑤!. Then this following expres-

sion is obtained: 

 
𝑃 =

𝜋
𝑤!

𝑏!𝑉!"! 𝑑𝑥!
!

!
 (2.26) 
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From energy considerations (Maruo,1963): 

 

 𝑃 = 𝑅!" 𝑉 + 𝐶 𝑇! = 𝑅!"𝜆 (2.27) 
 
Then the added resistance is found as: 
 

𝑅!" =
𝑘
2𝑤!

𝑏!𝑉!"! 𝑑𝑥!
!

!
 (2.28) 

 

This method emphasizes the close relation between vertical motions and added resistance, 

therefore an accurate prediction of added resistance depends on the goodness of calculation 

of the ship’s motions. 

2.2.2  Near Field method 

These methods, on the other side, leads to the added resistance as the steady second-order 
force obtained by direct integration of the hydrodynamic, steady second-order pressure acting 
on the wetted ship surface. 
As example of this method is presented in the work done by V. Bertram (1996). This is the 
frequency domain approach used in this thesis. 

A ship that advances with an average velocity U in the harmonic wave of small amplitude is 

considered. Firstly the motions of the ship are determined using 3-D panel methods, in par-

ticular Rankine source methods (RSM). RSM describe the velocity potential by distributing 

Rankine source over the body and the part of the surrounding free surface. 

The total velocity potential is decomposes into the steady potential due to forward motion of 

the ship in still water, the incoming wave potential, the diffraction potential due to the inter-

action of the motionless ship with incoming waves and the radiation potentials due to forced 

motions of the ship. Then the total potential velocity Φ is expressed as: 

 

 Φ = Φ! +Φ!" = Φ! + 𝜙! + 𝜙! + 𝜙! 𝑢! (2.29) 
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This decomposition is justified by the linearization of the problem assuming small wave am-

plitudes. 

Besides the Laplace equation into the flow field, the total potential Φ must satisfy the body 

and the free surface boundary conditions. 

The added resistance is the negative value of the longitudinal component of the forces of the 

second order: 

 

Figure 2.8 

 

 
𝐹! = ∫!𝑝𝑛𝑑𝑆 !

= ∫! 𝑝𝑛𝑑𝐶𝑑𝑍
!

!
= ∫! 𝑝𝑛𝑑𝐶𝑑𝑍

!

!
+ ∫! 𝑝𝑛𝑑𝐶𝑑𝑍

!

!
 2.30 

 

In the first integral the integral on the surface can be replaced by one on the undisturbed sur-

face S(0). Then the following expression is derived: 

 𝐹! = ∫!!𝑝𝑛𝑑𝑆! + ∫!∫!
!𝑝𝑛𝑑𝐶𝑑𝑍 (2.31) 

To capture the effects of forces of second order it must pass from inertial system () to body 

fixed (𝑥). (The inertial 0xyz system moves uniformly with velocity U. x points in the direction 

of the body’s mean velocity U. z points vertically downwards; The 𝑜𝑥𝑦𝑧 is fixed at the body 

and follows its motions.) 

 

 𝑥 = 𝑥 + 𝛼×𝑥 + 𝑢 (2.32) 

 

 𝑛 𝑥 = 𝑛 𝑥 + 𝛼×𝑛(𝑥) (2.33) 
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where 𝛼 is the rotational motion vector and 𝑢 is the motion vector. 

Considering a Taylor expansion of p and making the variation of reference system: 

 

 𝐹! = ∫ 𝑝 + ∇𝑝(𝑥 + 𝛼×𝑥 + 𝑢)(𝑛 + 𝛼×𝑛)𝑑𝑆
!

= ∫ 𝑝𝑛 + 𝑝(𝛼×𝑛)+ ∇𝑝 𝛼×𝑥 + 𝑢 𝑛 + ∇𝑝 𝛼×𝑥 + 𝑢 𝛼×𝑛
!
 

(2.34) 

 

This expression can be rewritten as follows: 

 

 𝐹! = ∫ 𝑝 + ∇𝑝 𝛼×𝑥 + 𝑢 𝑛𝑑𝑆 + ∫ 𝑝 + ∇𝑝 𝛼×𝑥 + 𝑢 𝛼×𝑛 𝑑𝑆
!
 (2.35) 

The terms that represent the pressure are replaced as follows to secure the second-order 

terms. 

 

 𝐹! = ∫ 𝑝! + ∇𝑝! 𝛼×𝑥 + 𝑢 𝑛𝑑𝑆 + ∫ 𝑝! + ∇𝑝! 𝛼×𝑥 + 𝑢 𝛼×𝑛 𝑑𝑆
!
 (2.36) 

Where: 

𝑝!  represents a second order pressure term. 

𝑝! represents a first order pressure term, which combined with the first order terms of the 

normal or of the movement shall provide second order elements. 

𝑝! are the zero order elements that however multiply the second order elements due to normal 

or the movement. 
 

By using Bernoulli equation, Taylor’s expansion and the perturbation formulation for the po-

tential: 

 𝑝 = −𝜌 Φ! +
1
2∇Φ ∙ ∇Φ+ gz−

1
2𝑈

!  (2.37) 

   

 𝑝 𝜂 = 𝑝 0 + 𝑝! 0 𝜂 +
1
2𝑝

!! 0 𝜂! (2.38) 

 


