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Abstract. Extensions of linear cryptanalysis making use of multiple approximations,
such as multiple and multidimensional linear cryptanalysis, are an important tool
in symmetric-key cryptanalysis, among others being responsible for the best known
attacks on ciphers such as Serpent and present. At CRYPTO 2015, Huang et
al. provided a refined analysis of the key-dependent capacity leading to a refined
key equivalence hypothesis, however at the cost of additional assumptions. Their
analysis was extended by Blondeau and Nyberg to also cover an updated wrong key
randomization hypothesis, using similar assumptions. However, a recent result by
Nyberg shows the equivalence of linear dependence and statistical dependence of
linear approximations, which essentially invalidates a crucial assumption on which all
these multidimensional models are based.
In this paper, we develop a model for linear cryptanalysis using multiple linearly
independent approximations which takes key-dependence into account and complies
with Nyberg’s result. Our model considers an arbitrary multivariate joint distribution
of the correlations, and in particular avoids any assumptions regarding normality.
The analysis of this distribution is then tailored to concrete ciphers in a practically
feasible way by combining a signal/noise decomposition approach for the linear hulls
with a profiling of the actual multivariate distribution of the signal correlations for a
large number of keys, thereby entirely avoiding assumptions regarding the shape of
this distribution.
As an application of our model, we provide an attack on 26 rounds of present
which is faster and requires less data than previous attacks, while using more realistic
assumptions and far fewer approximations. We successfully extend the attack to
present the first 27-round attack which takes key-dependence into account.
Keywords: linear cryptanalysis · multivariate · multidimensional cryptanalysis ·
key-dependence · PRESENT · key recovery · statistical attack

1 Introduction
Proposed by Matsui [Mat93, Mat94b] in the early 1990s, linear cryptanalysis has proven to
be a seminal cryptanalytic technique for symmetric-key cryptography. Most prominently,
linear cryptanalysis was successfully applied to the former U.S. encryption standard DES,
breaking it experimentally for the first time. Influential cipher design paradigms, such
as the wide-trail strategy [DR02], were specifically developed as a response to the advert
of linear and differential cryptanalysis. Today, every newly proposed keyed symmetric
primitive is expected to be accompanied by strong evidence of resistance against this
attack.

In the last two decades, a number of advanced variants of linear cryptanalysis have been
developed, among others differential-linear cryptanalysis [LH94], multiple linear crypt-
analysis [JR94, BCQ04], multidimensional linear cryptanalysis [HCN08, HCN09, HN12],
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zero-correlation linear cryptanalysis [BR14], and key-invariant bias attacks [BBR+13].
These extensions of linear cryptanalysis have provided the best single-key cryptanalytic
results on ciphers such as Serpent [NWW11], present [Cho10, ZZ15], CLEFIA [BGW+13],
CAST-256 [ZWW14], and LBlock-s [XJHL15].

Parallel to the development of these cryptanalytic results, extensive research has
been carried out to deepen our understanding of linear cryptanalysis [AÅBL12] and its
extensions [BLN14], e.g. concerning links between differential and linear cryptanaly-
sis [BN13] and truncated differential and multidimensional linear techniques [BN14]. How
to provide resistance against these advanced cryptanalysis techniques has been studied
in [BBV15, SLG+16].

Key-dependence in Linear Cryptanalysis. Linear cryptanalysis relies on identifying
linear relations between the input and output bits of a cipher which exhibit large linear
correlations. The correlation can be viewed as a random variable over the space of inputs
as well as over the space of encryption keys. A central question in linear cryptanalysis is
therefore this: What is the stochastic behaviour of the linear correlation?

While early analysis assumed that this behaviour was largely identical for all keys
[Mat93, Mat94b, Jun01, Sel08, Bih94, ZWW14], and so only depends on the randomness
of the plaintexts, several works have demonstrated that this is not true in general [AÅBL12,
Lea11], and models have been developed for the key-dependent behaviour of the correlation
of a single linear approximation [DR07, BT13]. These models assert that the linear
correlation follows a normal distribution, both in the case of a random permutation and
specific block ciphers.

Even though we have a good understanding of the key-dependent behaviour of single
approximations, it is only recently that the key-dependent behaviour of multiple approxima-
tions has been studied, despite the relatively large number of multiple and multidimensional
linear attacks in the literature. In this work, we consider the three principal papers on
this topic and reflect on the precise assumptions used by the models developed by them.
We then develop a new model which aims to remove many of these assumptions in order
to obtain more accurate estimates of the power of linear attacks.

State of the Art and Problems. There are three principal works considering key-
dependence in the context of multiple and multidimensional linear cryptanalysis. First,
[HVLN15] by Huang et al. considers the key-dependent behaviour of the multiple and
multidimensional capacity and develops a model in which this follows a gamma distribution
under the assumption that the individual correlations are independently and identically
distributed. Second, [BN17] by Blondeau and Nyberg relaxes the assumptions of [HVLN15]
such that the correlation distributions need not have identical means, which results in a
model that describes the capacity as a scaled, non-central χ2-distribution. However, this
model assumes an accurate estimate of the parameters of the correlation distributions.
Blondeau and Nyberg relaxed this assumption in [BN16] by incorporating the signal/noise
decomposition from [BT13] into the model. Although the models developed in these works
are a step on the way towards accurate assessments for multiple and multidimensional
attacks, we identify the following main problems with the approaches:

• Independence assumptions: Multidimensional linear cryptanalysis was originally
introduced to solve the requirement for statistically independent approximations,
but recently Nyberg showed [Nyb17] that under reasonable assumptions about pair-
wise statistical independence, linear independence and statistical independence of
approximations are equivalent concepts. Multidimensional linear cryptanalysis uses
many linearly dependent approximations, but the models described above often
assume these to be statistically independent for a random permutation. Moreover,
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the models are typically derived in a setting with independent round keys – a setting
that does not strictly reflect most actual ciphers.

• Restricted approximation choice: The models described above restrict which
approximations can be used. In the case of multiple linear cryptanalysis, equal
correlation variances are required, and so we cannot necessarily freely choose the
approximations that best facilitate an attack, as they might have different distri-
butions. Ideally, a cryptanalyst would like to be able to pick the best trade-off
between strong approximations and approximations that make the attack efficient
to perform. For multidimensional linear cryptanalysis, models are given in which a
set of dominant approximations are present and the rest of the approximations are
treated as noise. The advantage of the multidimensional approach then seems to
stem from the fact that the attacker can sometimes get a few rounds for free, if the
resulting approximations still allow for efficient key guessing.

• Parameter estimation: As mentioned, the models of [HVLN15, BN17] require an
accurate knowledge of the correlation distributions or multidimensional probability
distributions. Obtaining this is extremely difficult for most reasonable block and
key sizes. This problem is mostly solved in [BN16] by applying the signal/noise
decomposition, but this approach is still quite computationally expensive if simplifying
assumptions, such as independent round keys, are not used. In general, this problem
seems to be quite difficult to avoid.

Our Results. The results of [Nyb17] poses a problem for any model of linear cryptanalysis
with multiple approximations that uses linearly dependent approximations, including
multidimensional linear attacks. This paper therefore revisits multiple linear cryptanalysis
in the case where all approximations are linearly independent.

We first investigate the joint correlation distribution of such a set of approximations.
We find that this distribution can be assumed to be jointly normal for a long-key cipher, in
accordance with theory, but that this is not the case for other key-schedules. We therefore
propose multivariate linear cryptanalysis. This model:

• Does not assume a specific key-schedule,

• Does not assume statistical independence of the correlations,

• Is able to model any arbitrary (not necessarily normal) joint correlation distribution,

• Uses signal/noise decomposition to practically obtain accurate attack estimates.

The model expresses the joint correlation distribution ofM approximations as a generalM -
variate probability distribution. While the multivariate model relaxes many assumptions
used by previous models, it comes at the cost of a larger effort during the off-line analysis
of the cipher. In particular, the more accurate an estimate of the signal distribution the
cryptanalyst can obtain the better. This only affects the amount of effort she has to put
into the analysis, and not the effectiveness of the resulting attack. We confirm the accuracy
of our model through experiments on 32-bit SmallPresent.

As a result, we are able to present new attacks on present (with an 80-bit key), which
at the same time avoid the above modeling problems. Crucially, our analysis model is in
accordance with [Nyb17]. We identify a very sparse set of 135 approximations over 22
rounds, and use these to attack 26 rounds of present. The computational complexity of
this attack is 268.6, while the data complexity is 263.0. Interestingly, this attack is about
11 times faster than Cho’s original attack on the same number of rounds, and uses half
the data, all the while using far fewer approximations and more realistic assumptions.
This demonstrates that a multidimensional linear attack is not necessarily stronger than a
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Table 1: Comparison of attacks on present. The attacks of [Cho10] and [ZZ15] do not
take the key-dependence into account. All models, except the one presented in this work,
use assumptions that contradict the equivalence of linear independence and statistical
independence of linear correlations shown in [Nyb17].
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25
95% 2295 265.0 262.4 234.0 n/a [Cho10]
95% 2295 265.0 261.6 234.0 3 [HVLN15]
74% 2295 272.0 261.0 234.0 3 [BN16]

26

95% 2295 272.0 264.0 234.0 n/a [Cho10]
80% 2295 276.0 262.5 234.0 3 [HVLN15]a

51% 2295 272.0 263.8 234.0 3 3 [BN16]
95% 135 268.6 263.0 248.0 3 3 3 3 Section 6.2

27 95% 405 274.0 264.0 270.0 n/a [ZZ15]
95% 135 277.3 263.8 248.0 3 3 3 3 Section 6.3b

Feature/Technique Explanation

F1: Key-dependent The model accounts for the fact that the linear correlation of
an approximation varies over the key space.

F2: Complies with
[Nyb17]

The model does not assume that linearly dependent approxi-
mations of a random permutation are statistically independent.
Doing so contradicts [Nyb17].

T1: Signal/noise The model uses the signal/noise decomposition of [BT13] to
obtain accurate estimates of the correlation distributions.

T2: Profiling The model measures the actual multivariate distribution of the
signal for a large number of keys to avoid assumptions of the
shape of this distribution.

aFor 3.7% of the key space.
bUses distinct texts. All other attacks use non-distinct texts.

multiple linear attack. We extend the attack to 27 rounds, resulting in a computational
complexity of 277.3 and a data complexity of 263.8. This is the first attack on 27 rounds
of present in a model that accounts for key-dependence. Our attacks are compared to
previous attacks on present in Table 1.

2 Preliminaries
We consider a block cipher E(P,K) : Fn2 × Fκ2 → Fn2 with a block size of n bits and key
length of κ bits. For each key K ∈ Fκ2 , EK := E(·,K) is a permutation on Fn2 . If a block
cipher picks a permutation uniformly at random from the space of all (2n)! permutations
for each key, we say that it is ideal.

Most modern block ciphers are iterative block ciphers where the encryption function is
a composition of r key-dependent round functions. If each round function can be described
as a key-independent transformation followed by an XOR of the round key, we call the
cipher a key-alternating cipher. Additionally, an initial key is XOR’ed to the input before
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the first round. Usually, a key-schedule is used to expand the κ-bit master key K into
the required r + 1 n-bit round keys. We denote the expanded key by K̄ = k0‖k1‖ . . . ‖kr,
i.e. the concatenation of the round keys. If all round keys are chosen uniformly and
independently, i.e. κ = (r + 1)n and K = K̄, we call the cipher a long-key cipher.

2.1 Linear Cryptanalysis
Linear cryptanalysis was introduced by Matsui in 1993 [Mat93] and considers one or more
linear approximations of a cipher. A linear approximation is a pair (α, β) ∈ Fn2 × Fn2\(0, 0),
where α is called the input mask and β the output mask. The key-dependent linear
correlation of the approximation is defined as CKα,β = 2Pr(α · x = β ·EK(x))− 1, where “·”
denotes the canonical inner product on Fn2 , and the probability is taken over all x ∈ Fn2 .
Assuming that K is drawn uniformly at random, CKα,β is a random variable over the key
space. If an estimate of CKα,β is calculated using N plaintext-ciphertext pairs, we denote
this value by CK,Nα,β , which is a random variable over both the key and text space, where
the latter is of size N . The goal of linear cryptanalysis is to find pairs (α, β) such that the
probability distribution of the correlation for the block cipher in question is distinguishable
from the correlation distribution of an ideal cipher.

Let (ui, ui+1), i = 0, . . . , r − 1, be a series of one round linear approximations of an
iterative block cipher. Such a series of approximations is called a linear trail. We can
also denote the trail by the concatenation of its masks, i.e. U = u0‖ . . . ‖ur. Then the
correlation contribution of trail is defined by CKU =

∏r−1
i=0 C

K
ui,ui+1

. The collection of all
trails with u0 = α and ur = β is called the linear hull of (α, β). Moreover, the correlation
of (α, β) is the sum of the correlation contributions of all trails in the hull [Dae95, DR02]:

CKα,β =
∑

u0=α,ur=β
CKU . (1)

A useful concept is that of the expected linear potential (ELP), defined by E((CKα,β)2). For
a long-key cipher, it can be shown that ELP =

∑
(CKU )2, and that (CKU )2 is independent

of the key [DR02].

2.2 Statistical Distinguishing
In cryptanalysis of block ciphers, a first step towards more powerful attacks is often to
build a distinguisher. A distinguisher aims to determine whether some observed data
is the output of a specific block cipher or an ideal cipher. In statistical cryptanalysis,
a distinguisher consists of performing a statistical test which distinguishes between two
probability distributions. Typically, the test computes a value from the data, which we
refer to as the test statistic T . Note that the test statistic is a random variable. Let TI
be the random variable if the observed data was produced by an ideal cipher, and let
TN be the random variable if the observed data was produced by a specific block cipher.
Assume that TI and TN follow univariate distributions. Then a simple and often used
statistical test is to check the value of T against some threshold value τ . Without loss of
generality, assume that E(TI) ≤ τ ≤ E(TN ). If T ≥ τ , we conclude that T was drawn from
the distribution of TN , otherwise we conclude that T was drawn from the distribution of
TI . It may be the case that we need to compare against multiple threshold values – for a
discussion of this case, we refer to [BN17]. Note that we can define several different tests
of the type described above, namely by calculating the test statistic T in different ways.
We consider a commonly used test statistic in Section 6.1, namely the χ2 test statistics.

When assessing the efficiency of a threshold test, we are mainly interested in two
parameters: the success probability and the advantage. Let FX denote the cumulative
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distribution function of the random variable X. We define the probability of success as

PS = 1− FTN
(τ),

i.e. the probability that TN ≥ τ . The advantage, a notion first introduced by Selçuk in
[Sel08, SB02] in the context of key-ranking, is in turn defined by

a = − log2(1− FTI
(τ)),

and relates to the number of false successes that arises from the threshold test. This
number is important when we want to use a distinguisher as part of a key recovery attack.
In order to assess these quantities, we need to know the distributions of TI and TN , and
the question of determining these is therefore central to the study of linear cryptanalysis.

2.2.1 From Distinguishing to Key Recovery.

It is possible to turn a distinguisher over r rounds of an iterative block cipher into a key
recovery attack over r′ > r rounds in a generic way. Consider the case r′ = r + 1 as an
example. Denote by Er the r-round encryption function, and let Fk denote the last round
function such that Er′ = Fk ◦ Er. Let Ēr be the truncation of Er such that only the bits
required to calculate the test statistic T are output.

The attacker obtains some data from Er
′ , and guesses the parts of k required to

partially invert Fk and calculate the output of Ēr. The attacker then calculates the test
statistic T and runs the distinguisher. If the attacker guessed the partial key k correctly,
the distinguisher should indicate that T was drawn from the distribution of TN with
probability PS . If not, the hypothesis is that the distinguisher will behave as if T was
drawn from the distribution of TI . The reasoning here is that for a wrong key guess,
the attacker is basically observing data from a cipher with r + 2 rounds, which should
behave more like an ideal cipher than a cipher with r rounds. This idea was first formally
stated by Harpes et al. [HKM95] and later stated in the context of linear cryptanalysis by
Junod [Jun01]. Once all candidates for the partial key k have been tested, the attacker
has to guess the remaining bits of the master key K, discarding any wrong guesses by trial
encryption. By definition of the advantage, the attacker has to try 2κ−a candidates.

2.3 PRESENT
present is an ultra-lightweight, key-alternating, block cipher. It is an SPN cipher with 31
rounds, a block size of 64-bit, and a key size of either 80 bit or 128 bit. Each round consists
of an XOR with a round key, a layer of 16 parallel 4-bit S-boxes, and bit permutation.
An additional round key is added after the last round. The 32 round keys are derived
through a key-schedule. For details on the bit permutation and the key-schedule, we
refer to [BKL+07]. Due to the choice of S-box, present exhibits some interesting linear
properties [Ohk09]. It is therefore a common target for new linear cryptanalysis techniques.
We consider new attacks on present in Section 6.

3 Survey of Previous Work
As discussed in Section 2.2, it is of primary interest to determine the distributions of TI and
TN for a given statistical test. For linear cryptanalysis, the test statistic is derived from the
observed correlation of one or more linear approximations. An equivalent question in this
context is therefore what the distribution of the correlation CNα,β , for a given approximation
or set of approximations, looks like, both for a specific block cipher and for an ideal cipher.
Starting with [Nyb94], this topic has been extensively investigated in the literature. In the
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following, we consider a series of models that have been proposed since the introduction of
linear cryptanalysis, and reflect on their assumptions and requirements. We divide the
models into two main categories: models that assume that CKα,β is approximately equal for
all keys, and models that include the influence of the key.

3.1 Models Without Key Influence
Matsui introduced linear cryptanalysis in [Mat93, Mat94b] as a means to attack DES. The
approximations used for this attack exhibit a single dominant trail each, i.e. there exists a
trail U such that |CKU | � |CKU ′ | for any U ′ 6= U . Then by Equation 1, CKα,β ≈ CKU for all keys.
Moreover, it can be shown that for key-alternating ciphers (or ciphers that can be expressed
as such, e.g. DES) the correlation contribution is given by CKU = (−1)U ·K̄ |CKU |, where
|CKU | is independent of the key [DR02]. Thus, Matsui asserts that for DES, CKα,β ≈ ±|CKU |
for all keys. This leads to the concept of right-key equivalence:

Hypothesis 1 (Right-Key Equivalence – Matsui). If a linear approximation (α, β) has a
single dominant trail U , then the absolute value of the linear correlation is approximately
equal for all keys, with |CKα,β | ≈ |CKU |.

Similarly, Matsui assumed that for a wrong key guess, the correlation would be
approximately zero for all keys, leading to the concept of wrong-key randomisation:

Hypothesis 2 (Wrong-Key Randomisation – Matsui). During a key recovery attack, the
linear correlation of a linear approximation (α, β) is approximately equal to zero for all
wrong keys, i.e. CKα,β = 0.

Under Hypotheses 1 and 2 the distribution of CK,Nα,β only depends on the number N
of observed plaintext-ciphertext pairs. Using a normal approximation to the binomial
distribution, it can be shown that

CKR,N
α,β ∼ N (±|CKU |, N−1) and CKW ,N

α,β ∼ N (0, N−1) (2)

where KR and KW represents a right and wrong key guess, respectively. This and similar
models have been used extensively in the literature, first in classical linear cryptanalysis
[Mat93, Mat94b, Jun01, Sel08, Bih94, ZWW14], and later in its extensions multiple linear
cryptanalysis [JR94, BCQ04] and multidimensional linear cryptanalysis [HCN08, HCN09,
Ohk09, Cho10, HN12, ZZ15]. Notably, the best attacks on the block cipher present (both
multidimensional), the 26-round attack by Cho [Cho10] and the 27-round attack by Zheng
and Zhang [ZZ15], both use this model.

3.2 Models Incorporating the Key
3.2.1 Single Approximations

While the idea of identical behaviour for all keys simplifies analysis, it does not reflect
the behaviour of most modern ciphers. Indeed, if the number of trails with a significant
correlation contribution is large, then by Equation 1 the correlation CKα,β will take on
many values over the key space. Dubbed the linear hull effect, this phenomenon was first
discussed by Nyberg in [Nyb94]. Ohkuma later pointed out that for present this effect is
very strong, as the number of trails with the same best correlation contribution is large
[Ohk09]. The situation is similar for most other modern ciphers designed with resistance
to linear cryptanalysis in mind. Thus, Hypothesis 1 is not true for most ciphers of interest.

Although the correlation CKα,β is a random variable over the key space, it is not
immediately clear what distribution it follows. For a long-key cipher, it can be shown that
the distribution is normal with mean zero and variance equal to ELP [DR05]. For other
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key-schedules, the distribution has been studied in several works [BT13, Lea11, AÅBL12],
and have been found to be close to normal – however, the key-schedule can have an impact
on the parameters of the distribution, invalidating the veracity of Hypothesis 1. This leads
to the following revised right-key hypothesis, which has been used several times in the
literature [HVLN15, BN17, BN16].

Hypothesis 3 (Right-Key Randomisation – Single [DR07, BT13]). The linear correlation
CKα,β of a linear approximation (α, β) of a block cipher, which does not have a single
dominant trail, is a random variable over the key space with distribution CKα,β ∼ N (µ, σ2).

Note that by the definition of ELP and variance, we can write σ2 = ELP − µ2.
Moreover, for a long-key cipher, µ = 0 [DR07, DR02]. For the wrong-key, the situation is
a little simpler. In [DR07], Daemen and Rijmen show that the correlation distribution of
an ideal cipher is normal with mean zero and variance 2−n. Thus, we obtain the following
hypothesis in this case.

Hypothesis 4 (Wrong-Key Randomisation – Single). During a key recovery attack, for a
wrong key guess, the linear correlation CKα,β of a linear approximation (α, β) is a random
variable with distribution CKα,β ∼ N (0, 2−n).

While the picture seems clear in the case of a single approximation, moving to extensions
that use multiple approximations simultaneously in order to extract more information
seems to complicate matters considerably.

3.2.2 Multiple Linear Cryptanalysis

Kaliski and Robshaw first proposed the use of multiple approximations simultaneously in
[JR94]. The idea was extended by Biryukov et al. in [BCQ04], where they also defined
the capacity of a set of linear approximations as a measure of the strength of this set. For
a set of M approximations (α1, β1), . . . , (αM , βM ), the capacity is defined as

CK =
M∑
i=1

(CKαi,βi
)2. (3)

Similar to the correlations, we denote an estimate of the capacity based on N plaintext-
ciphertext pairs by CK,N . The main problem with this approach is that the linear
approximations are not in general statistically independent, making the analysis of the
capacity very difficult. Indeed, statistical independence was assumed in [JR94, BCQ04].
This approach is commonly referred to as multiple linear cryptanalysis.

3.2.3 Multidimensional Linear Cryptanalysis

To avoid the problem of independence, Hermelin et al. proposed multidimensional linear
cryptanalysis in [HCN08, HCN09], based on the work done by Baignères et al. in [BJV04].
It considers an m-dimensional subspace of Fn2 × Fn2 and studies the distribution of a
plaintext-ciphertext pair (x̄, ĒK(x)) restricted to this subspace, which can be described by
the vector ηK = (ηK0 , . . . , ηK2m−1), where ηKi = Pr(x̄‖ĒK(x) = i). ηK is a key-dependent,
2m-dimensional, discrete probability distribution. It can then be shown that the capacity
of the set of all linear approximations in the subspace can be calculated from ηK .

Theorem 1. [HCN08] Consider an m-dimensional subspace of Fn2 × Fn2 , and denote the
multidimensional probabilities by ηKi . The capacity of all linear approximations in this
subspace can be calculated as

CK =
2m−1∑
i=1

(CKαi,βi
)2 =

2m−1∑
i=0

(ηKi − 2−m)2

2−m ,
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The main advantage of multidimensional linear cryptanalysis is that it can be shown
that the amount of data needed for a multidimensional distinguisher (with a fixed success
probability) is inversely proportional to the capacity, regardless of statistical dependence
of the associated approximations [BJV04].

While the influence of the key on the correlation of a single approximation has been
studied for some time, it is only recently that versions of Hypotheses 3 and 4 have been
developed for multiple and multidimensional linear cryptanalysis. In the following, we
give a short summary of the contributions of the three main works in this area, and in
Section 4 we consider their results in depth.

Huang et al., CRYPTO’15 [HVLN15] To the best of our knowledge, this is the first
work to study the key-dependent distribution of the multidimensional capacity, although
the wrong-key capacity is not considered. Under some assumptions on the one-dimensional
approximations, it is shown that the capacity follows a gamma distribution. Two cases are
considered giving the following results.

Result 1 ([HVLN15], Proposition 2). Consider an m-dimensional linear approximation
where m linearly independent base approximations have dominant ELPs. Moreover, let
the correlations of these base approximations, CKα1,β1

, . . . , CKαm,βm
, be i.i.d as N (0, ELP ).

Then CK ∼ Γ(m2 , 2ELP ) = ELP · χ2
m.

Result 2 ([HVLN15], Proposition 3). Consider an m-dimensional linear approximation
with probability distribution ηK = (ηK0 , . . . , ηK2m−1). Assume that the multidimensional
probabilities ηKi are i.i.d as N (2−m, σ2). Then CK ∼ Γ( 2m−1

2 , 2m+1σ2) = 2mσ2 · χ2
2m−1.

Blondeau and Nyberg, DCC’17 [BN17] This work improves upon [HVLN15] in several
ways. First, both the key and data dependence are included in the models, as opposed to
[HVLN15] that only consideres the exact distribution of capacity. Moreover, both sampling
of the texts with and without replacement is considered; here, we will only cover the case
without replacement, and refer to [BN17] and [BN15] for further details.

A model for the wrong-key is derived by using Hypothesis 4 and Theorem 1, under the
assumption that approximations of ideal ciphers are statistically independent.

Result 3 ([BN17], Theorem 6). Consider a multiple or multidimensional attack using M
approximations and N text pairs. Then, for a wrong key guess, CK,N ∼ (N−1 + 2−n)χ2

M .

For the right-key, [BN17] considers a more general case where the mean of the correla-
tions is not necessarily zero. Let χ2

`(k) be the non-central χ2-distribution with ` degrees
of freedom and non-centrality parameter k. The following result is given.

Result 4 ([BN17], Theorem 7 and 8). Consider a multiple or multidimensional attack
using M approximations and N text pairs. For a multiple attack, assume that the linear
correlations of the approximations, CKαi,βi

, are independently distributed as N (µi, σ2),
i = 1, . . . ,M . For a multidimensional attack, assume that the multidimensional probabilities
ηKi are normally distributed with equal variances and that each set of M probabilities are
statistically independent. Let µi be the mean of the correlation of the related approximation,
i = 1, . . . ,M . Then

CK,N ∼ ∆χ2
M

(
N
∑
µ2
i

N∆

)
where ∆ = N−1 +M−1

∑
(ELPi − µ2

i ).

For the multidimensional probabilities, note that the assumption of statistical indepe-
dence of sets of size M arises since

∑
ηKi = 1.
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Blondeau and Nyberg, ToSC’16 [BN16] While [BN17] derives the capacity distributions
under some assumptions, Result 4 requires that the cryptanalyst can get accurate estimates
of the distribution parameters of the one-dimensional correlations or the multidimensional
probabilities. Obtaining these is left as an open problem. [BN16] aims to solve this problem
by utilising the signal/noise decomposition technique developed in [BT13].

The idea of the signal/noise decomposition is to first get an estimate of the correlation
distribution by computing a part of the linear hull, i.e. some (significant) terms of
Equation 1. We call this set of known trails the signal, denoted by S. Then, the unknown
part of the hull, i.e. the trails not in S, are modeled as noise with the distribution
N (0, 2−n). We will take a closer look at this method in Section 5.2. Using the signal/noise
decomposition, the following result is given for the right-key distribution of capacity. Note
that [BN16] uses the wrong-key result given in Result 3.

Result 5 ([BN16], Theorem 4). Given M linear approximations, assume that a signal S
is known for ` approximations, and that the noise of these ` approximations, as well as
the correlations of the remaining M − ` approximations, are statistically independent. Let
CS =

∑`
i=1
∑
U∈Si

(CKU )2 be the signal capacity. Then, for a long-key cipher,

E(CK) = CS +M2−n, and Var(CK) = 2
∑̀
i=1

(∑
U∈Si

(CKU )2

)2

+ CS22−n +M21−2n.

4 Limitations of Current Models
The results described in Section 3 use one or more assumptions about the linear correlation
distributions. Moreover, the results are not as general as a cryptanalyst might want, i.e,
the situations in which they can be used are restricted in some way. In the following, we
consider the validity of these assumptions and describe some of these restrictions.

4.1 Independence Assumptions
Dealing with statistical independence has long been a problem for linear cryptanalysis.
Indeed, the very reason for the introduction of multidimensional linear cryptanalysis was
to avoid this issue. When trying to incorporate the key-dependence in the models, however,
it seems difficult to avoid assumptions on the statistical behaviour of the approximations.
We note that Results 1 to 5 all use some assumptions on the statistical independence of
(some of) the approximations. Recently, Nyberg proved the following theorem:

Theorem 2 ([Nyb17]). Let A be a set of pair-wise statistically independent linear ap-
proximations. Then the correlations of the linear approximations in A are statistically
independent if and only if they are linearly independent.

While it is an open problem to formally prove when two approximations are statisti-
cally independent, for all practical intents and purposes, assuming pair-wise statistical
independence seems reasonable in the case of random permutations of the block size
used in practice. With this assumption in mind, let us consider a general set of M
linear approximations, (αi, βi), i = 1, . . . ,M . We denote the vector of their correla-
tions by CK = (CKα1,β1

· · ·CKαM ,βM
)>. Under the wrong-key hypothesis, Hypothesis 4,

CKαi,βi
∼ N (0, 2−n), i = 1, . . . ,M . In this case, if the approximations are linearly inde-

pendent, Theorem 2 asserts that CK ∼ NM (0,diag(2−n)). But this is not the case if the
linear approximations are linearly dependent, which poses an interesting problem for the
multidimensional models. In particular, not all the one-dimensional approximations are
linearly independent, and so by Theorem 2, they cannot be statistically independent. The
consequence for Result 3 is that it is unknown whether the capacity is χ2-distributed in a
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Figure 1: The densities of the squared Mahalanobis distance of the joint correlation
distribution for 18 approximations over 9 rounds of 32-bit SmallPresent for three
different key-schedules. The plot show a connection between dependence between the
round keys, and how much the correlation distribution deviates from joint normality.

multidimensional linear attack. For a multiple linear attack the result still holds if the
approximations are linearly independent.

For the right-key models, Theorem 2 has the biggest impact on Result 5. When adding
noise to the model, the assumption is that the noise distributions behave as for a random
permutation and are independent, but this cannot be the case for a multidimensional
approximation. For Results 2 and 4, it is assumed that the multidimensional probabilities
are independent, and thus Theorem 2 does not affect these models. Whether this assumption
is sound is an open problem.

Finally, we note that an often used assumption when deriving these models is that
the cipher is a long-key cipher, where pair-wise statistical independence might also be
a reasonable assumption in practice. In this case, we could choose linearly independent
approximations, and then by Theorem 2 and [DR05], CK ∼ NM (0,diag(ELPi)). However,
most ciphers do not actually have independent round keys. If a key-schedule is used, we
can no longer use Theorem 2 to equate linear independence with statistical independence.
Moreover, we cannot even guarantee that the distribution is jointly normal. We take a
close look at the key-schedule influence in the following.

4.1.1 Non-Normality of Linearly Independent Approximations

In light of Theorem 2, the joint correlation distribution of multiple linear approximations
of an ideal cipher is currently unknown. Since knowledge of this distribution is crucial to
linear cryptanalysis, it seems safer to consider sets of linearly independent approximations.
But how do these behave for a specific block cipher that does not have independent round
keys? To investigate this, we consider a set of 18 linearly independent approximations over
9 rounds of 32-bit SmallPresent [Lea10]. The input and output masks are given by

α = 24i+3, i ∈ 5, 6, 7, and β = 24i+j , i ∈ 5, 6, 7, j ∈ 2, 3.

We note that these approximations have the same form as those we will later use to
attack present in Section 6. We consider three different key-schedules: long-key, identical
round keys, and a 40-bit key-schedule described in Appendix A. For each key-schedule, we
calculated the linear correlation of each approximation for the full code-book and 2 000 000
randomly chosen keys. Let µ and Σ be the mean vector and covariance matrix of each of
the data sets, respectively. To assess how much the distribution of CK deviates from joint
normality, we consider the squared Mahalanobis distance, defined by

d2 = (CK − µ)>Σ−1(CK − µ).

Note that if CK ∼ N18(µ,Σ), then d2 ∼ χ2
18. Figure 1 shows the density of d2 for the

three data sets against the density of the χ2-distribution.



112 Multivariate Profiling of Hulls for Linear Cryptanalysis

We make the following observations: For the long-key, the joint distribution of CK

is very close to the multivariate normal distribution N18(µ,Σ). When we switch to a
key-schedule with dependent round keys, we observe a deviation from normality. The most
drastic effect is seen in case of the strongest dependence between the round keys, namely
for identical round keys. Here, the distribution of d2 is heavier towards zero, but also has a
heavier tail towards infinity, compared to the χ2

18-distribution. For such a key-schedule, it
does not seem reasonable to approximate the distribution of CK by a multivariate normal
distribution. For the 40-bit key-schedule, the distribution of d2 also deviates somewhat
from χ2

18. The 40-bit key-schedule we have used here is a scaled down version of the
80-bit key-schedule used in present, and so it might be natural to assume that the cipher
behaves as a long-key cipher, in order to simplify analysis. However, there is still quite
some overlap of the bits in consecutive round keys, which seems to have a non-negligible
influence on the shape of the joint correlation distribution. It would then seem that,
strictly speaking, joint normality is not a fair assumption, even for good key-schedules.

4.2 Restricted Approximation Choices
The right-key models of [HVLN15, BN17] set certain requirements for the set of approxi-
mations used. The primary requirement is on the parameters of either the correlation or
multidimensional probability distributions. For Results 1 and 2, the assumption is that
all the distributions are identical. For Result 4, the assumption is that the distributions
have identical variances. Although it might be possible to find sets of approximations
such that these assumptions are satisfied, it does restrict the ability of the cryptanalyst to
freely choose a set of approximations that can optimally facilitate an attack. This can for
example make it hard to do efficient key-guessing, and so would result in a worse attack
than if the cryptanalyst could choose approximations freely.

While the use of the multidimensional probability distribution in Result 2 is promising,
it seems that there are more works that analyse the correlation distributions directly –
perhaps because the distribution of these is more well understood. For models that use the
correlation distributions directly, it seems that these are currently either multiple (Result 4)
or multidimensional with similar restrictions to the multiple case (Results 1 and 5). For
Result 1, a set of (linearly independent) dominant base approximations are required, and
so the combined approximations derived from these cannot by assumption contribute
significantly to the attack. For Result 5, the noise part of the ` known approximations
are modelled as approximations of a random permutation and must be independent, and
so by Theorem 2 and Appendix B, they must be linearly independent. Additionally, the
remaining approximations only contribute with noise.

4.3 Parameter Estimation
As noted by [BN16], one major challenge when trying to apply Results 1, 2 and 4 is to get
an accurate estimate of the various distribution parameters. For single approximations,
this problem was identified in [BT13] and the signal/noise decomposition was proposed.
This approach was nicely applied in [BN16], and was shown to give more accurate results.
However, [BN16] uses the long-key assumption to avoid considering the actual distribution of
the signal, instead only considering the signal ELP. Extending the discussion of Section 4.1.1,
this might not be accurate for other key-schedules. In this case, the cryptanalyst would
have to get an estimate of the actual signal distribution.

To estimate the parameters of the signal, one could find a set of trails with large
correlation contribution, and calculate part of the sum in Equation 1 for a significant
number of randomly chosen keys. Doing this can be a significant challenge, especially
for present-like ciphers where the number of good trails is extremely large. Various
methods for finding good trails of a cipher have been proposed, e.g. the branch-and-bound
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method [Mat94a] and sparse correlation matrices [Abd12], but it can still be quite the
computational challenge to obtain good parameters for the signal. In Section 6, we use a
method similar to that of [Abd12] and significant computational power to obtain estimates
for a set of present approximation.

While it might be possible to avoid the other issues discussed in this section, if we
abandon the long-key assumption, parameter estimation seems like a challenge that is
difficult to avoid. Indeed, the model we propose in Section 5 in some sense trades assump-
tions for increased computational effort. As such, efficient algorithms for computation
of the signal trails seems like an increasingly important research topic. In connection to
this, note that while an estimate of the parameters of the correlation distributions can
be obtained by the above method, we are not aware of any such method to estimate the
parameters of the multidimensional probability distributions.

5 Multivariate Linear Cryptanalysis
As argued in Section 4.1, when a cipher uses round keys that exhibit some dependence
between them, the joint distribution CK of linear correlations for a set of linearly indepen-
dent approximations can deviate from the joint normality we would expect from a long-key
cipher. Indeed, it seems very difficult to describe the exact joint distribution in this case.
On a lower level, the marginal distributions do not necessarily have identical variances, as
was assumed in [HVLN15, BN17]. Additionally, as discussed in Section 4.2, the current
models for multidimensional linear cryptanalysis do not seem to fully use most of the
approximations in the chosen subspace of Fn2 × Fn2 , and so by using the multidimensional
approach, the attacker has to consider approximations that only add noise. What is worse,
it seems that we are not able to formulate a wrong-key hypothesis in the multidimensional
case that fully agrees with Theorem 2. Thus, the need for a wrong-key model forces us
to consider the case of multiple, linearly independent approximations. It is therefore our
aim to create a more powerful model for this setting which: models the behaviour of
any set of linearly independent approximations; does not assume statistical independence
of approximations or round keys; does not assume the shape of the joint correlation
distribution; and takes into account the unknown part of the linear hull.

In the following we propose multivariate linear cryptanalysis. In Section 5.1 we present
the main right- and wrong-key hypotheses the model relies on. This model in some sense
trades assumptions for computational effort during the off-line analysis. In Section 5.2 we
incorporate the signal/noise decomposition of [BT13] into the model, similar to [BN16], in
order to make the model practically usable. In Section 5.3 we describe the model as used
in a key-recovery attack where the attacker does not have access to the full codebook.

5.1 The Main Model: Arbitrary Right-Key Distribution
The first part of our model is very general, and simply expresses the fact that the correlations
of a set of M linear approximations follow some multivariate probability distribution.
Consider the vector CK containing the correlations of M linear approximations with
linearly independent masks. We propose the following right-key and wrong-key models.

Model 1 (Right-key – Multiple). Let (αi, βi), i = 1, . . . ,M , be M different linear
approximations of a block cipher with linearly independent masks, and let CK =
(CKα1,β1

· · ·CKαM ,βM
)> be a vector containing the linear correlations. Then CK ∼ DM over

the key space, for some M -variate probability distribution DM .

Hypothesis 5 (Wrong-key – Multiple). Let Σδ = diag(2−n). During a key recovery
attack, for a wrong key guess, the linear correlation vector CK of M linear approximations
with linearly independent masks is a random vector with distribution CK ∼ NM (0,Σδ).
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The wrong-key hypothesis is inspired by Theorem 2 and the result of [DR07], and
the veracity of the hypothesis therefore relies on the assumption of pair-wise statistical
independence of linear approximations of a random permutation. We take some steps
towards validating Hypothesis 5 in Appendix B. For the right-key, this model allows
the attacker to pick any set of linearly independent approximations, but requires that
she can somehow estimate the shape of the distribution DM . While this at first does
not seem very useful, as determining this distribution seems like a very hard problem
in general, we propose a way to do this in the following by applying the signal/noise
decomposition. We note that, interestingly, Model 1 could be extended to any arbitrary
set of approximations, but it is currently unknown how to express Hypothesis 5 in this
setting. It is therefore a very interesting open problem to derive the distribution of linearly
dependent approximations of an ideal cipher.

5.2 The Practical Model: Signal/Noise Decomposition
The model presented requires the cryptanalyst to somehow obtain the distribution DM
for the right-key distribution. In most cases, we will be unable to calculate the exact
distribution of CKα,β for any single approximation, and we therefore have to estimate DM .
In order to do this, we take a similar approach to [BT13, BN16]. Let S be the set of known
signal trails for an approximation (α, β). Then we define the signal correlation as

CK?α,β =
∑
U∈S

CKU . (4)

The signal correlation CK?α,β will itself follow some probability distribution – we denote this
by D?α,β . We then assume that the unknown trails, the noise, behave as for a random
permutation, i.e. their correlation is distributed as N (0, 2−n). Then we can approximate
the full correlation with the distribution

CKα,β ∼ D?α,β +N (0, 2−n)

However, we still have the problem that D?α,β is unknown. This problem can be solved
computationally. By computing Equation 4 for a large number of keys, we obtain a set of
values drawn from D?α,β . Whenever we need to randomly sample from D?α,β , as we will
need to do to estimate the strength of an attack, we simply sample from this data set.
The same can be done for multiple approximations by calculating the signal correlations
simultaneously for all M approximations for a randomly chosen set of keys. In this way,
we trade any assumptions on the shape of the distribution D?M for a potentially large
computational effort. However, this computational effort is only required during the off-line
analysis, and so has no influence on the computational complexity of an attack.

Under the assumption that the noise behaves as for a random permutation, the
noise of linearly independent approximations will also be statistically independent, by
Theorem 2 and Appendix B. Then we can make the following generalisation of the
signal/noise decomposition to several approximations. Note that compared to [BN16], we
here consider the distribution of the signal over the keys, as opposed to only the ELP of
the approximations.

Model 2. Let Σδ = diag(2−n). If the distribution, D?M , of the signal CK? is known, then
the distribution of CK in Model 1 is closely approximated by CK ∼ D?M +NM (0,Σδ).

5.2.1 Experimental Verification.

In order to verify Model 2, we again consider the set of 18 approximation over 9 rounds
of 32-bit SmallPresent defined in Section 4.1.1. We considered the version with the
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Figure 2: A density of the squared Mahalanobis distance for the joint distribution of
linear correlation for 18 approximations over 9 rounds of 32-bit SmallPresent using a
40-bit key-schedule. The plot compares the density measured using the full codebook to a
prediction made using Model 2.

40-bit key-schedule, and enumerated part of the hull of each approximation, by using
an approach very similar to the sparse correlation matrix method in [Abd12]. In this
way, we obtain a set of signal trails that includes all trails having intermediate masks
with hamming weight at most four in each round. We did this simultaneously for all 18
approximations and 500 000 randomly chosen keys, in order to get an estimate of the
distribution D?18. Furthermore, we measured the actual correlation values of the cipher
for 2 000 000 randomly chosen keys. We then applied Model 2 to our signal estimate, and
calculated the squared Mahalanobis distance of the two resulting data sets. The result is
shown in Figure 2. The figure shows that Model 2 gives us a very close estimate of the
actual distribution.

5.3 The Attack Model: Dealing with Undersampling
Even though Model 2 provides a way to get a good estimate of the multivariate correlation
distribution, we would often like to avoid using the full codebook in a key-recovery attack.
Thus, we also need to be able to express the distribution of the undersampled correlation,
CK,N . Using a result due to Murphy, we develop such a model next.

Murphy showed [Mur06] that the joint distribution over the text space of the empirical
correlations, measured using N randomly drawn text pairs for a fixed key K0, has a
multivariate normal distribution, CK0,N ∼ NM (µK0 ,ΣK0,N ), where µK0

i = CK0
αi,βi

and

ΣK0,N
i,j =

{
N−1CK0

αi⊕αj ,βi⊕βj
for i 6= j,

N−1 for i = j.

When taken as a random variable over the key space, we note that µK0 = CK and therefore
has distribution DM . Indeed, ΣK0,N also has a distribution over the key space, making the
distribution over both the key and text space extremely difficult to analyse. However, as
Murphy notes, it is often the case that the combined approximations (αi ⊕αj , βi ⊕ βj) are
extremely weak, e.g. in the case where (αi, βi) and (αj , βj) activate different S-boxes at the
input and output. In this case, N−1CK0

αi⊕αj ,βi⊕βj
� N−1, and we can set these covariances

to zero. As Murphy says, in this case the fixed-key correlations are “approximately
statistically independent” over the text space, in the sense that any contribution by the
covariances is negligible. Under this assumption, we obtain the following theorem.

Theorem 3. Let ΣN = diag(N−1). Consider a set of M approximations as given in
Model 1. Assume that the correlation of any combination of two such approximations is
zero. Then the empirical correlation vector of these approximations, measured with N
randomly drawn plaintext-ciphertext pairs, has distribution CK,N ∼ DM + NM (0,ΣN ).
For the wrong-key scenario of Hypothesis 5, CK,N ∼ NM (0,Σδ + ΣN ).
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Proof. From [Mur06] we have that CK0,N ∼ NM (µK0 ,ΣK0,N ) for a fixed key K0. By
assumption, we further have that ΣK0,N = ΣN = diag(N−1), and so is independent of the
key. The distribution of CK0,N over keys is therefore NM (DM ,ΣN ) = DM +NM (0,ΣN ).
For the wrong-key, DM = NM (0,Σδ), finishing the proof.

By applying Model 2 to this theorem, we obtain the following corollary.

Corollary 1. For a set of M approximations as in Theorem 3, if the distribution, D?M ,
of the signal CK? is known, then the distribution of CK,N is closely approximated by
CK,N ∼ D?M +NM (0,ΣN + Σδ).

As an interesting observation, this result shows how the original model by Matsui,
Equation 2, can misleadingly give accurate results when N is relatively small, as is the
case for the attack on DES. In this case, and as long as DM does not deviate too much
from joint normal distribution, N−1 will dominate the variance terms of Cov(DM ) and
Σδ, making the key-variance undetectable. This also shows that conducting experiments
for a low number of rounds with low data complexity can not necessarily confirm a model.

Corollary 1 gives us a way to estimate the distribution of the correlation vector over
the keys for a set of linearly independent approximations. In contrast to Results 1, 2, 4
and 5, no assumptions about independence or the parameters of the involved distributions
are required, and we do not assume independent round keys. This generality of course
comes with a cost: the approximations have to be linearly independent (although we are
not forced to consider weak approximations), and we have to estimate the distribution
D?M . We have partially discussed the latter issue in Section 5.2, and we will discuss how
we have done this for present in Section 6.

6 Multivariate Linear Attacks on PRESENT
Different methods for distinguishing when using many approximations have been proposed.
The LLR method was proposed by Baignères et al. in [BJV04] as an optimal distinguisher
and used in [HCN08] in a multidimensional attack against the block cipher Serpent. Both
the LLR method and the χ2 method were studied in [HCN09], where the LLR method
was concluded to have better performance. However, as noted by Cho in [Cho10], the
LLR method is often not practical to use, as it requires an accurate knowledge of the
key-dependent behaviour of the multidimensional probability distribution. For this reason,
the χ2 method is more commonly used. We now present a new attack on 26 and 27 rounds
of present using this method and the improved multiple linear model of Section 5.

6.1 Determining the Advantage
The χ2 method has been widely used as a distinguisher in various attacks. For this method,
the test statistic is defined as

Tχ2 = N

M∑
i=1

(CK,Nαi,βi
)2.

In the following, we describe how to determine the advantage of the χ2 distinguisher using
the theory developed in this paper. The approximations used are chosen based on the
observations made by Ohkuma in [Ohk09]: the best approximations of present are those
that start and end with the S-boxes Si with i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15}. For our attack,
we consider the input and output masks

α = 24i+3, i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15},
β1 = 24i+3, i ∈ {5, 6, 7, 9, 10, 11, 13, 14, 15}, β2 = 24i+2, i ∈ {5, 6, 7, 9, 10, 11}.
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Figure 3: Advantage of the χ2 distinguisher using 135 approximations of 22-round present,
with PS = 0.95. At half the codebook, N = 263, the advantage is 14.5 bits.

Taking all possible combinations of these input and output masks gives us M = 135
approximations. These approximations are chosen to facilitate efficient key-guessing over a
large number of rounds, as will become evident in Section 6.2. We note that due to the
structure of the approximations, it can be assumed that the undersampling matrix ΣN is
a diagonal matrix, as discussed in Section 5.3. This does not imply independence of the
approximations, but simplifies our analysis considerably.

With this choice, we obtain the advantage in the following way. By using a signal that
includes all trails having intermediate masks with hamming weight at most four in each
round, and a technique similar to that of [Abd12], we obtain a data set of observations
from the signal distribution D?135. We used 217 100 random master keys to generate these
observations. We now simulate observations from CK,N in the following way: We fix a
sample size for the simulation, say k. For the right key, we randomly sample k observations
of D?135 (with replacement, if k is larger than the number of observations we have collected)
from our data set. We then sample k random observations from the normal distribution
NM (0,ΣN + Σδ). These two samples are then added together, following Corollary 1.
The wrong-key distribution is simulated by randomly sampling k times from the normal
distribution NM (0,ΣN + Σδ), according to Theorem 3.

We note for comparison to previous works that the expected right-key capacity obtained
from these simulations is E(CK) = 2−55.01 with a variance of Var(CK) = 2−115.59, whereas
the wrong-key capacity has E(CK) = 2−56.92 and Var(CK) = 2−119.92.

We can now calculate the empirical CDFs of the simulated right-key and wrong-key
distributions. For a fixed success probability PS , we use the right-key CDF to obtain a
threshold τ , as described in Section 2.2. The advantage is finally calculated using the
wrong-key CDF and τ , as defined in Section 2.2. Figure 3 shows the result of applying
this procedure for k = 222, PS = 0.95, and varying values of N . We note that we need to
set k fairly high to obtain sufficient resolution of the empirical CDFs. For the chosen k,
we can detect probabilities down to 2−22, allowing us in turn to detect advantages of up
to 22 bits. At half the codebook, N = 263 we obtain an advantage of 14.5 bits.

6.2 Attacking 26 rounds
Under the wrong key randomisation hypothesis, Hypothesis 5, we can turn our multivariate
linear distinguisher into a key-recovery attack, as described in Section 2.2.1. That is, the
attack proceeds as follows: Collect N plaintext-ciphertext pairs. Guess the bits of the
outer round keys required to (partially) encrypt/decrypt the desired number of rounds.
Apply the χ2 distinguisher to the resulting correlations, and save the key guess if the
distinguisher indicates a non-ideal cipher. Repeat for all guesses of the round key bits. For
each saved key we can find the master key by exhaustively guessing the remaining bits
and verifying by trial encryption.

We aim to recover the master key for r rounds of present-80 by using a multiple linear
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Figure 4: An outline of the 26-round attack using 22 round approximations. The in-
put/output mask bits are indicated by bold lines. The dark grey squares indicate the
round key bits obtained by guessing 24 bits of the master key. The light grey squares
indicate the round key bits obtained by guessing 23 bits of the last round key. The squares
indicated by ? are extra bits of the second to last round key that need to be guessed.

approximation over r − 4 rounds. Because of the large number of outer rounds we need to
bypass, the approximations are chosen such that the involved round key bits are sparse.
We consider the set of 135 approximations described above. The bit positions of the input
and output masks are highlighted in Figure 4. Figure 4 shows the S-box positions we
need to encrypt/decrypt to calculate the linear correlations of these approximations. The
straightforward approach to partially encrypting/decrypting these positions would require
guessing 80 key bits across the four round keys. By considering the key-schedule, we can
dramatically improve this. We first guess the following 24 bits of the master key:

ki, i ∈ [0, 2] ∪ [15, 18] ∪ [63, 79]. (5)

The round key bits we obtain from this guess are marked in dark grey in Figure 4, as well
as 42 additional bits needed by the attack. By guessing the missing 23 bits of K26, we also
obtain 13 bits of K25. Finally, we only need to guess an additional 7 bits of K25. In total,
we need to guess 54 key bits. Note that each approximation only depends on 4 bits of K25
and 16 bits of K26. With these considerations in mind, the attack proceeds as follows.

Distillation phase

1. Obtain N partial text pairs (pi, ci), where pi is 16 bits and ci is 32 bits.

2. Generate a vector t of size 248 where t[s‖t] = #{i | pi = s and ci = t}.

Analysis phase

1. For each 24-bit guess of the partial master key, KM , perform these steps:

(a) For each input mask α, calculate two vectors tKM
α1

and tKM
α2

of size 216, where

tKM
αx

[j] = #{(pi, ci)|Gx(ci) = j and α · EKM
(pi) = 0},
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where EKM
(p) is the partial two-round encryption of p under key KM , and Gx

selects the bits of ci required to calculate the output masks of βx, x ∈ {1, 2}.
(b) For each output mask β, fix a guess of the relevant 4 bits of K25. Denote the

guess KI . Then calculate the 216 × 216 matrix AKI

β , where

AKI

β [i, j] = β · DKI
(i⊕ j),

and DKI
(c) is the partial two-round decryption of the 16-bit value c using KI ,

but excluding the first key XOR.
(c) Calculate the correlations of all 135 approximations and 216 guesses of the

partial K26 by calculating the matrix-vector products

Cα,β = 2
NAKI

β tKM
αx
− 1.

(d) Repeat steps (b) and (c) for all values of KI , resulting in correlation values for
all approximations for at most 236 guesses of the last two round keys.

(e) Extract the correlations of at most 230 guesses that agree with KM .
(f) Calculate the χ2 test statistic Tχ2 for each surviving key guess. Save all keys

(of 54 bits) with τ < Tχ2 .

Search phase

1. For each key candidate, perform trial encryption to find the remaining 80− 54 = 26
bits of the master key.

6.2.1 Attack Complexity.

We now consider the computational complexity of the attack. We consider the number of
single round encryption equivalent operations performed.

• The distillation phase requires N operations.

• For the analysis phase:

– Step 1a can be done by iterating over t once and encrypting two rounds, using
2 · 248 operations.

– Steps 1b and 1c can be performed using the FFT technique given in [CSQ07].
Using this technique, we only need to compute the first column of each AKI

β , at
a cost of 2 · 216 operations, and then calculate Cα,β for a fixed β and all α in
time (2 · 9 + 1) · 16 · 216.

– There are 24 values of KI and 15 output masks. Thus, steps 1d needs a total
of 15 · 24 · (2 · 216 + (2 · 9 + 1) · 16 · 216) ≈ 232.16 operations.

– Step 1e uses 230 operations.
– Step 1f takes roughly 2 · 135 · 230 = 238.08 operations.
– In total, this phase uses 224 · (249 + 232.16 + 230 + 238.08) ≈ 273.00 operations.

• Finally, the search phase requires 2κ−54 full encryptions of 254−a candidate keys,
using a total of 26 · 2κ−a operations.

From Figure 3, we obtain a plot of the computational complexity of the 26-round attack,
given in Figure 5. Here, we have fixed the success probability at 95%. As long as the
search phase dominates, we can increase the number of texts to decrease to computational
complexity. We can highlight two 26 round attacks with different trade-offs. For N =
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Figure 5: Our 26 round attack: Computational complexity as a function of data complexity
for the 26-round attack on present using 135 approximations over 22 rounds. Non-distinct
random texts were used, and PS = 0.95. Note that the complexity reaches a lower limit
close to N = 263 when the advantage becomes sufficiently large.
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Figure 6: Our 27 round attack: Computational complexity as a function of data complexity
for the 27-round attack on present using 135 approximations over 23 rounds. Distinct
random texts were used, and PS = 0.95.

263.0, the advantage is 14.0 bits, and the computational complexity is 273.27/26 = 268.57

encryptions. Interestingly, this multiple attack uses far fewer approximations than Cho’s
multidimensional attack [Cho10], but at half the data complexity and a computational
complexity that is 11 times smaller, all the while needing far fewer assumptions. Compared
to the reevaluation of Cho’s attack in [BN16] (which has the same computational complexity
as the original attack), our attack uses less data, and has a higher success probability.
Alternatively, we can decrease the data complexity to N = 261.9, giving an advantage of
4.7 bits, and a computational complexity of 280.00/26 = 275.30 encryptions. While being
slower than Cho’s attack, to the best of our knowledge, this attack has the lowest data
complexity of any 26-round attack on present presented in the literature.

6.3 Attacking 27 rounds
The attack can be extended to 27 rounds by using the same approximations over 23 rounds.
By guessing the bits of the master key given in Equation 5, we determine 41 required bits
of the round keys. We then have to guess 25 bits of K27 and 6 bits of K26, for a total of 55
bits of key material. Due to the way we carry out the attack, the complexity calculation
is not affected by this – only the lower advantage has an influence. However, if we use
non-distinct random texts for the attack, the advantage is too low. If we instead use distinct
random texts, we obtain a better advantage. This scenario is in some sense a chosen
plaintext attack, and has been studied in [BN15, BN17]. The only change to our model is
that ΣN = diag( 2n−N

N ·(2n−1) ) in Corollary 1. The distribution of CK? was again estimated
using 217 100 random keys as for the 26 round attack, and we obtain E(CK) = 2−56.38

and Var(CK) = 2−118.73 for the right-key. The resulting attack complexities are shown
in Figure 6. Using the χ2 distinguisher with PS = 0.95 and N = 263.83, we obtain an
advantage of 2.73 bits and a computational complexity of 277.27 encryptions.
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A 40-bit Key-Schedule for SmallPresent
We define a 40-bit key-schedule for 32-bit SmallPresent, which is a scaled down version
of the 80-bit PRESENT key-schedule. Let K = k39k38 . . . k1k0 be a 40-bit key register,
initialised to the master key. At round i, the round key is extracted as the 32 most
significant bits of K, i.e.

Ki = k39k38 . . . k9k8. (6)

Then, K is updated as follows:

• K is rotated 9 bits to the right,

• The PRESENT S-box is applied to k39k38k37k36,

• A round counter is xor’ed to the least significant bits.

The round counter starts at 1 and is incremented by 1 for each round.
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B Pair-Wise Independence of Linear Correlations
The wrong-key hypothesis presented here, Hypothesis 5, follows from Theorem 2 and
[DR07], assuming that linear approximations of random permutations can be considered
pair-wise independent. While it seems difficult to show when this assumption is true, we
here take some steps towards verifying Hypothesis 5 experimentally. We first note that
the normality of the marginal distributions of CK for a random permutation is proven
in [DR07]. Moreover, it seems unlikely that the joint distribution would deviate much
from a multivariate normal distribution for most sets of approximations. Thus, if we can
demonstrate that pairs of correlation distributions are independent, we can be confident
that Hypothesis 5 is reasonable. To this end, we performed the following experiment:

• Fix a size of the permutation, say 2n,

• Pick two random linear approximations,

• Generate 10 000 random permutations of the given size and measure the exact
correlation of both approximations for each permutation using the full code-books,

• Perform Pearson’s χ2 test of independence between the two correlation distributions
and record the p-value,

• Repeat the above process the desired number of times.

We note that when performing Pearson’s χ2 test of independence, the null hypothesis is
that the two observed distributions are independent, and thus a p-value larger than e.g.
0.05 would indicate independence at the 95% significance level.

We performed the above experiment for varying sizes of the permutations, and the
results are shown in Table 2. Here, we observe that for a 16-bit permutation, one out of
20 000 pairs of permutations had a significant p-value of 0.021. However, already for the
slightly larger 20-bit permutation, the lowest p-value was 0.975; in other words, even in
the worst case, there was only 2.5% chance that the two correlation distributions were
dependent. For a 24-bit permutation, this results are even clearer, with the lowest p-value
being extremely close to 1.

Additionally, we repeated the experiments for the 20-bit permutations, but this time
using approximations that only differed in a single bit. Even for these very similar
approximations, we observed the exact same results as for randomly chosen pairs of
approximations. In light of these experimental results, it thus seems quite reasonable that
correlations of 64- or 128-bit permutations would be independent for all practical intents
and purposes.

Table 2: Results of the Pearson χ2 test of independence for various permutation sizes. A
p-value larger than 0.05 indicates that the correlations of two linear approximations are
statistically independent at the 95% significance level.

Size Experiments % of Experiments with
p-value > 0.05

Smallest observed
p-value

216 20000 99.995 0.021
220 20160 100.00 0.975
224 15342 100.00 1.000
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