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Atrial fibrillation (AF) is the most common cardiac arrhythmias causing morbidity and
mortality. AF may appear as episodes of very short (i.e., proximal AF) or sustained
duration (i.e., persistent AF), either form of which causes irregular ventricular excitations
that affect the global function of the heart. It is an unmet challenge for early and
automatic detection of AF, limiting efficient treatment strategies for AF. In this study, we
developed a new method based on continuous wavelet transform and 2D convolutional
neural networks (CNNs) to detect AF episodes. The proposed method analyzed
the time-frequency features of the electrocardiogram (ECG), thus being different
to conventional AF detecting methods that implement isolating atrial or ventricular
activities. Then a 2D CNN was trained to improve AF detection performance. The
MIT-BIH Atrial Fibrillation Database was used for evaluating the algorithm. The efficacy
of the proposed method was compared with those of some existing methods, most
of which implemented the same dataset. The newly developed algorithm using CNNs
achieved 99.41, 98.91, 99.39, and 99.23% for the sensitivity, specificity, positive
predictive value, and overall accuracy (ACC) respectively. As the proposed algorithm
targets the time-frequency feature of ECG signals rather than isolated atrial or ventricular
activity, it has the ability to detect AF episodes for using just five beats, suggesting
practical applications in the future.

Keywords: atrial fibrillation, continuous wavelet transform, 2D convolutional neural networks, time-frequency
features, practical applications

INTRODUCTION

Atrial fibrillation (AF) is recognized as a major cardiovascular disease, affecting a large number
of the population (Zoniberisso et al., 2014; Potter and Le, 2015). AF is associated with increased
risks of cardiovascular events, reducing the life quality of AF patients or even causing mortality
(Hylek et al., 2003; Mathew et al., 2009). AF is also related to obesity, long-term alcoholism
and obstructive sleep apnea, each of which promotes the development of AF (Gami et al., 2004;
Mukamal et al., 2005; Miyasaka et al., 2006; Mathew et al., 2009, p. 25). Furthermore, the lack of a
deep understanding for its pathophysiological mechanisms affects the diagnosis of AF (Censi et al.,
2013). Therefore, an early detection of AF appears to be important for effective treatments of AF.
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Based on the duration of episodes, AF can be classified into
three main types, namely paroxysmal, persistent, and permanent
(January et al., 2014). Paroxysmal AF is usually the primary
condition of the arrhythmia, with which the episodes terminate
spontaneously within 7 days after its initiation; whilst persistent
and permanent AF can last for more than several months. For
many AF patients they may initially suffer very short episodes,
but the episodes increase in frequency and duration, leading
to be persistent by a mechanism of AF begetting AF (de Vos
et al., 2010). For this condition, AF may last longer than
7 days, to terminate which one may need interventions such as
pharmacological or electrical cardioversion. Without treatment,
persistent AF may turn into permanent AF, one of the most
sustained cardiac arrhythmias (Zoniberisso et al., 2014).

Early detection of AF is essential for effective treatments.
However, it is still not easy to address the early AF detection
task though the use of long-term ECG recording devices is
available. Proximal AF episodes often last only for a few beats
in duration, therefore, it is very time-consuming to detect AF by
visual inspection (Dash et al., 2009). Such a challenge calls for
a wide variety of automatic AF detectors. For the past years, a
series of sophisticated methods have been developed to tackle the
challenges of AF detection (Kikillus et al., 2007; Couceiro et al.,
2008; Babaeizadeh et al., 2009; Yaghouby et al., 2010; Larburu
et al., 2011; Parvaresh and Ayatollahi, 2011). Two classes of AF
detection methods, the atrial activity analysis-based (Artis et al.,
1991; Slocum et al., 1992; Lake and Moorman, 2011; Zhou et al.,
2014; Ladavich and Ghoraani, 2015) and the ventricular response
analysis-based (Moody and Mark, 1983; Tateno and Glass, 2001;
Dash et al., 2009; Park et al., 2009; Huang et al., 2011; Lian et al.,
2011; Yaghouby et al., 2012; Lee et al., 2014) method, attract the
interest of the most of studies. The first category methods utilize
the absence of P waves or the presence of f-waves for diagnosis.
The performance of this kind of method highly depended on the
signal quality, which is hard to be guaranteed in the practice.
The second category methods are based on the variability of RR
intervals. Although these kinds of methods have a robust noise
resistance, its diagnosis accuracy is unsatisfactory when a wide
variety of rhythms need to be dealt with due to the limitation of
the information conveyed by RR intervals (Petrutiu et al., 2006;
Huang et al., 2011; Lian et al., 2011; Lee et al., 2014).

Over past years, algorithms based on convolutional neural
networks (CNNs) have proved successful in information
classification in many fields, such as object detection, speech, and
image recognition (Lecun et al., 2015). However, CNNs-based

algorithms for stratifying cardiovascular diseases are not well-
established due to limited availability of ECG database. Though
a few previous studies have applied CNNs to detect cardiac
arrhythmias (Rajpurkar et al., 2017; Vollmer et al., 2017), it
still remains a challenge to develop an effective algorithm for
detecting AF based on short episodes of ECGs.

The objective of this study was to address some potential
drawbacks of existing AF classification methods by developing
an accurate and reliable one for the fully automated classification
of AF based on continuous wavelet transform (CWT) (Addison,
2005) and 2D CNNs (Krizhevsky et al., 2012) methods. Such
possible drawbacks of traditional AF classification methods
include: (i) manual extraction of ECG features that limits the
accuracy of classification; (ii) low efficacy for fast AF detection
with a short period of ECG signal data; and (iii) the use of atrial
or ventricular only activities to classify AF and normal condition,
lacking consideration of complete information of ECG signal.
The advantage of the proposed algorithm over others lies at that
we do not need to manually extract features of ECG signals.
Instead, the proposed CNNs can automatically extract the spatio-
temporal features of ECG patterns obtained by the CWT analysis
with proper trainings. In addition, the proposed algorithm can
detect AF by using only five beats to achieve a significant
performance, suggesting potentials for clinical applications.

The developed method was tested and validated by the MIT-
BIH Atrial Fibrillation Database (AFDB) (Goldberger et al.,
2000).

The rest of this paper is organized as follows. In Section
“Materials and Methods,” the method of three-stage AF
classification is described in details. In Section “Implementation
of the Algorithm,” some details about the implementation of the
algorithm are presented. In Section “Results and Discussion,”
the proposed method is evaluated using the AFDB, and
its performance with varied CNNs parameters is analyzed.
AF detection results by the presented method are compared
with those from other existing algorithms. Finally, Section
“Conclusion” concludes our study.

MATERIALS AND METHODS

The flowchart of the proposed AF detection method is shown
in Figure 1. It includes four stages in two phases: phase 1 is
for pre-processing (data denoising and data segmentation) and
phase 2 for CWT and AF classification with CNNs. In phase 1,

FIGURE 1 | Flowchart diagram of the proposed AF detection algorithm. Original ECG data is first preprocessed for denoising and segmentation, then CWT is
applied to transform time series of ECG signals into 3D patterns which is further classified by trained CNNs.
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the wavelet transform (WT) method is applied to remove the
noise from the ECG signal, which is then segmented into a series
of periods, each of which has duration of 1.2 s (i.e., 300 sample
points given the sampling rate of 250 Hz). In phase 2, CWT is first
employed to transform the five beats of the ECG signal in each
segment to a 3D time-frequency representation of ECG patterns.
Then, the proposed CNNs was properly trained to process the AF
classification.

Database
The MIT-BIH AFDB was used to evaluate the performance of
the developed AF detection method. The database contains 25
ECG recordings with about 10-h in duration length mainly from
PAF patients, which were obtained with a 250 Hz sampling rate.
However, in the present study four recordings in database were
excluded because two raw recordings (“00735” and “03665”)
are not available, and the other two recordings (“04936”
and “05091”) have some incorrect reference annotations. The
database contains 605 episodes for four different rhythms, among
them 291 episodes are for AF, 14 episodes for atrial flutter,
12 episodes for junctional rhythm, and 288 episodes for other
rhythms. For each ECG recording, it contains ECG signals from
two leads, first of which was used for this study.

Noise Filtering
Raw data of ECG is contaminated by noises. Therefore, the WT
method (Shyu et al., 2004; Gomes et al., 2010) is used to filter
noises.

For a time series of ECG f (t), its WT with respect to a given
mother wavelet (ψ) is defined as the following (Shyu et al., 2004;
Gomes et al., 2010):

Wa,bf (t) =
1
|a|1/2

∫
∞

−∞

f (t)ψ
(
t − b
a

)
dt (1)

where a, b and Wa,b are the scale factor, translational value and
WT respectively. Letting a = 2j (j∈Z,Z is the integral set), the WT
is regarded as dyadic WT, which represents better the multiscale
characterization of ECG signals than the CWT does (Mallat and
Zhong, 1992). For a discrete time series of f(t), which is denoted
as f(n), n = 1, 2, 3 . . .N, the calculation of dyadic WT is derived
from Equation (1) for low and high frequency components as
represented as:

S2j f (n) =
∑
k∈Z

hkS2j−1 f (n− 2j−1k) (2)

W2j f (n) =
∑
k∈Z

gkS2j−1 f (n− 2j−1k) (3)

where S2j and W2j are the smoothing operator of the WT, and
hk and gk are the coefficients of the corresponding high and low
filters. In this study, we decomposed original ECG signal into
seven scales (the corresponding frequency bands are 62.5–125,
31.25–62.5, 15.63–31.25, 7.81–15.63, 3.91–7.81, 1.95–3.91, and
0.98–1.95 Hz, respectively). By using the Daubechies4 (db4)
wavelet function (Daubechies, 1988), the input ECG signal f(n) is
decomposed into low frequency and high frequency components,

and the low frequency component is put into the next layer
for further decomposition. The reason why we choose the
db4 wavelet is due to its good regularity, which makes the
reconstruction of ECG signals smooth (Daubechies, 1988).

In numerical implementation, it was found that the high
frequency noise was mainly determined by one to three scale
bands. Therefore, the values of these three scales were set to zeros
to filter the high-frequency noise. The filtered signals were used
in subsequent processing, which are shown in Figure 2 for AF
and normal ECG signals.

Data Segmentation by Proportion
Segmentation of ECG signal into a series of time periods usually
requires precise detection of boundaries and peak positions
of the three characteristic of ECG waves (i.e., P, QRS, and
T waves corresponding to the depolarization of the atria and
ventricles, and repolarization of the ventricles respectively),
which are termed as fiducial points. In this study, segmentation
of ECG recordings into a series of time windows was based
on the annotated R-peak locations of the database, allowing us
to directly compare our results with the performance of other
existing methods.

For each segmented time window of the ECG signal, it
contains one heart beat cycle and has a length of 1.2 s (i.e.,
about 300 sampling points), starting at the 2/3 period of the
previous RR interval (which is the interval between the peaks of
the previous QRS complex to the current QRS peak, see Figure 3).
Each segment contains the information of atrial and ventricular
activities. The reason for the segment size to be chosen is to
allow each segment contain most of the information in one
heart beat cycle for both AF and normal conditions. An example
of segmented ECG signals into five beats for AF and normal
conditions are shown in Figure 3, with each beat being marked
by two dotted lines with the same color. For normal ECG signal
(Figure 3A), a clear P wave is present as shown by the encircled
inset. For AF ECG signal (Figure 3B), no clear P wave is present.
Instead, a series of continuous, rapid and irregular f-waves is
present indicating AF (f-waves) (see the encircled inset).

Continuous Wavelet Transform
Feature extraction plays a key role for AF classification (Chazal
and Reilly, 2006). Any information in the ECG signals that can
be used to discriminate AF from normal condition is considered
as one feature. The features can be extracted in various forms
directly from the processed ECG signal in the time, frequency and
time-frequency domains.

Previous studies have investigated various ways to extract ECG
features, among them the WT methods are believed to be the
most efficient for processing ECG signals (Guler and Ubeyli,
2005; Lin et al., 2008; Kutlu and Kuntalp, 2012). By WT, one can
extract ECG information in both frequency and time domains,
which is superior to the traditional Fourier transform, which
can only analyze ECG information in the frequency domain
(Dokur and Olmez, 2001). For various types of WT (Addison,
2005), the most popular one for ECG classification is the discrete
wavelet transform (DWT) (Kozak et al., 2008). In addition to
DWT, CWT has also been used to extract features from the
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FIGURE 2 | (Ai,Aii) Original and denoised ECG signal in AF condition (ECG record 07910). (Bi,Bii) Original and denoised ECG signal in normal condition (ECG
record 07910). f-Waves between two consecutive R-waves are apparent illustrating atrial fibrillation (AF).

FIGURE 3 | Illustration of segmented ECG signals into five beats for normal (A) and AF (B) conditions. Each beat was marked by two dotted lines with the same
color. In (A) for normal ECG, a clear normal P wave is present as shown by the encircled inset. In (B) for AF ECG, abnormal f-waves are apparent as shown in the
encircled inset.
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ECG signals, since it solves many of DWT defects, such as
the coarseness of the representation and instability, which has
been applied successfully for at least a decade ago (Addison,
2005).

In this study, we have employed CWT based Equation (1)
with the Daubechies5 (db5) wavelet to transform five beats to
a series of five corresponding 2D CWT patterns, which can be
regarded as a 3D time-frequency representation of ECG signals
(Daubechies, 1988). Figure 4 shows examples of the 2D patterns
of CWT transformation from normal and AF ECG signals. In
the figure, the color codes the density of the signal component
in the corresponding frequency with brighter color representing
a higher density. As shown in Figures 4Ai,Aii, there are some
differences in the 1D time series of ECGs between normal
and AF conditions. First, there is no clear or a dominant P
wave in the AF ECG (Figure 4Ai) as compared to the normal
ECG (instead, high frequency but low amplitude f-waves exist).
Second, due to the filtering effect of atrioventricular node,
there is no 1:1 ventricular response to the atrial excitation,
therefore the RR interval is different between the AF and
normal conditions. Consequentially during each segmented time
window of the ECG signal (fixed for 1.2 s, i.e., 300 sampling
points), one R wave presents in the AF ECG (Figure 4Ai)
whilst two R waves presents in the normal ECG (Figure 4Aii).
Such different information in the time domain are reflected by

the CWT, which converts the 1D time domain signal into the
2D pattern in the time-frequency domain of the distribution
of frequency at different timings, which can be used to better
differentiate AF from normal condition. The 2D CWT patterns
for AF and normal conditions are shown in Figures 4Aii,Bii
correspondingly.

The Basic Construction of Convolutional
Neural Networks
Convolutional neural network has been shown to be able
to automatically extract features of signals without any data
pre-processing and pre-training algorithms (Arel et al., 2010).
A traditional CNNs is composed of an input and an output
layer, as well as multiple hidden layers which typically consist of
convolutional layers, pooling layers, and fully connected layers
(Hubel and Wiesel, 1959).

For convolutional layers, they are locally connected to
extract and convolve the features by applying a set of weights
which are called filter or kernel (Hubel and Wiesel, 1959).
Basically, the relevant high-level features can be extracted with
the increase of the number of the convolutional layers. The
weights of the parameters of the convolutional kernels in
each layer are trained with the backpropagation (BP) error
algorithm (Rumelhart et al., 1988). For an activation function, a

FIGURE 4 | (Ai,Aii) 1D time domain signal and 2D frequency-time pattern based on CWT in AF condition. (Bi,Bii) 1D time domain signal and 2D frequency-time
pattern based on CWT in normal condition.

Frontiers in Physiology | www.frontiersin.org 5 August 2018 | Volume 9 | Article 1206

https://www.frontiersin.org/journals/Physiology/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/Physiology#articles


fphys-09-01206 August 29, 2018 Time: 10:36 # 6

He et al. Automatic Detection of Atrial Fibrillation

FIGURE 5 | (A) Schematic illustration of the basic construction of CNNs. (B) The architecture of the proposed CNNs. The input instance of the proposed CNNs is
five 128 × 128 images representing the CWT spectrums of corresponding five beats. In the convolutional layer, the output size is denoted as (x, y, z), where (x, y) is
the size of the feature map in this layer, and z is the number of convolutional kernels. In the Max-pooling layer, the size of the feature map is reduced by half in both x
and y axes. In the Dropout layer, the output size is the same as the output of previous layer. In the Flatten layer, the output is flattened to an 1D vector. In the Fully
connected layer, the output size is the same as the number of neurons of the layer.
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sigmoid function is usually applied to the convolved features as
follows:

αki =Wkxi + bk (4)

βki =
1

1+ e−αki
(5)

where αki represents the convolution result that is for the ith input
and the kth feature map, Wk and bk respectively represent the
corresponding weights and bias terms for the kth feature map.
The sigmoid function output βki is applied to the kth feature map
producing outputs. Furthermore, xi denotes the ith training data
which is an n-dimension vector.

After the convolution layer, the dimensionality of the extracted
features is reduced in order to improve the speed of the
training process, so the pooling layer is applied to the following
hidden layer which is called the subsampling layer merging
similar features into one. The action of the pooling layer is to
compute the averaged convolved features within the neighboring
neurons that are laid in the prior convolutional layer. In some
cases, the dropout layer may be applied for random training
network parameters to prevent over-fitting. After a given set
of convolutional, pooling and dropout layers, one or more
fully connected layers are employed whose neurons are jointed
to the whole neurons from the previous layer at the end of
the constructed CNNs. The major of CNNs parameters are
generally produced by the fully connected layer parameters,
which complete the mission of AF classification and determine
the final classification results. The basic construction of CNNs is
shown in Figure 5A including the common input convolutional,
pooling, dropout, fully connected, and output layers.

In this paper, the CNNs architecture including the input,
convolutional, max-pooling, dropout, flatten, fully connected,
and output layers are designed in which the optimal parameters
are described in Section “Implementation of the Algorithm.”
The whole construction of the proposed CNNs for AF
classification is also demonstrated in Section “Implementation of
the Algorithm.”

IMPLEMENTATION OF THE ALGORITHM

The Division of Dataset
The original annotated time series of ECG signal is divided
into a series of five segments, each of which contains one heart
beat cycle. In total, 162,536 five beat data segments were used,
among which 61,924 and 100,612 segments are for AF and
normal condition respectively. It is obvious that the AF and
normal samples are not balanced. To address this issue, we
randomly selected the same number data of AF and normal
conditions, which were assigned into training and test sets from
different recordings, by which over-fitting resulted from training
and testing data set from the same patient was also avoided.
Eventually, we extracted a total of 100,000 samples into a training
set and test set based on the proportion of 4:1, among which
80000 training and 20000 test data were used to build the model.

The Architecture of the Proposed CNNs
Continuous wavelet transform was used to transform the five beat
time domain signals into time-frequency domain signals with the
db5 wavelet (Daubechies, 1988), resulting in five corresponding
2D patterns of frequency density as a 3D input instance to the
proposed CNNs.

With a 3D input instance, the structure of the proposed CNNs
is designed as shown in Figure 5B. The CNNs structure contains
four convolutional layers, three dropout layers, two max-pooling,
two fully connected layers, and one flatten layer. Each of the
first two convolutional layers has 32 convolution kernels with the
kernel size of 10 × 10. After the convolution operations, the first
max-pooling layer with pooling size of 2 × 2 was used to reduce
the size of the previous output followed by a dropout layer to
suppress the complexity of the network. The number of kernel
of the following two convolutional layers is the same as in the
previous ones, but the sizes of the kernels are 8 × 8 and 4 × 4
respectively. Followings are the second max-pooling layer with
the same pooling size as the first one and a dropout layer. After
these operations, the output data is transformed to a 1D vector by
a flatten layer, and then feed into two fully connected layers that
have 256 and 1 neurons respectively, between which is a dropout
layer.

In the CNNs, the learning rate, momentum and weight decay
rates are set to 0.001, 0.8, and 10−6 respectively. To optimize
these parameters, the stochastic gradient decent (SGD) algorithm
(Rumelhart et al., 1988) was implemented. Furthermore,
instead of large-size convolutional kernel, a multi-layer with
small-scale convolutional kernel is used in order to reduce the

TABLE 1 | Optimal CNNs parameter set for AF arrhythmias classification.

The CNNs parameter Value

Learning rate initial value 0.001

Moment coefficient 0.8

First convolutional layer kernel size 10

Weight decay rates 10−6

Second convolutional layer kernel size 10

First max-pooling layer kernel size 2

Third convolutional layer kernel size 8

Forth convolutional layer kernel size 4

Max-pooling layer kernel size 2

The number of neurons in the first fully connected layer 256

The number of neurons in the second fully connected layer 1

Epoch number 50

TABLE 2 | Various learning rate for proposed CNNs.

Learning rate value Testing samples classification accuracy (%)

0.0007 99.08

0.0008 99.12

0.0009 99.06

0.001 99.23

0.003 99.08

0.005 99.04
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TABLE 3 | Various moment coefficient for proposed CNNs.

Moment coefficient Testing samples classification accuracy (%)

0.7 99.18

0.75 99.15

0.8 99.23

0.85 99.06

0.9 99.16

0.95 98.90

number of parameters and increase the non-linearity of the
network.

As shown in Figure 5B, the Conv2d_i (i = 1, 2, 3, 4)
represent the four convolutional layers, which are followed by
two Max-pooling2d_j (j = 1, 2) and Dropout_k (k = 1, 2)
layers. In this paper, the input instance of the proposed network
is a 3D vector with a size of (128, 128, 5) specifying the
length, width and beat number of the CWT pattern. After four
convolution and two max-pooling operations, the size of the
instance is transformed into a pattern of (22, 22, 32), which
specify the size of convolutional result of each kernel and the
number of kernels in the last convolutional layer. Through the
flatten layer, the output size of the previous layer is changed
to 15488 (22 × 22 × 32), which is then input into the first
Fully connected_1 layer containing 256 neurons. Finally, with
the third Dropout_3 and the second Fully connected_2 layer, the
classification results are decided.

RESULTS AND DISCUSSION

The proposed method was applied to the dataset of AFDB.
From classification results, we calculated four parameters: correct
AF classification number [true positives (TPs)], false normal
classification number [false negatives (FNs)], correct normal
classification number [true negatives (TN)], and false AF
classification number [false positives (FPs)]. In order to evaluate
the performance of the proposed classification algorithm,

the sensitivity (Se), specificity (Sp), positive predictive value
(PPV), and overall accuracy (ACC) were calculated using the
following equations respectively.

Se =
TP

TP + FN
× 100% (6)

Sp =
TN

TN + FP
× 100% (7)

PPV =
TP

TP + FP
× 100% (8)

Acc =
TP + TN

TP + FP + TN + FN
× 100% (9)

In this study, the newly developed algorithm using CNNs with
the AFDB have achieved 99.41, 98.91, 99.39, and 99.23% for
the sensitivity, specificity, PPV, and overall accuracy respectively,
which was better than most of other existing algorithms as
detailed below.

Selection of Parameters
To obtain an optimal CNNs network structure to classify AF,
the impacts of varied structural and training parameters of the
network on output results were evaluated. By comparing the final
error values of testing samples, a set of final CNNs parameters
were obtained to achieve the minimum testing error, which are
shown in Table 1.

The number of feature maps in the pooling layers is the same
as the convolutional layers. The learning rate and moment are
initialized at 0.001 and 0.8 during the training procession. The
classification loss function about the training samples is stable
after 50 epochs of CNNs. Because of the number of the training
samples, the accuracy rate of the proposed method cannot be
further increased by changing the number of convolutional and
max-pooling layers.

In the following analysis, the impacts of different training and
structural parameters about the proposed classification method
are discussed.

TABLE 4 | Comparison of the performances of AF classification algorithms based on the same database of AFDB.

Algorithm Year WL (s) Se (%) Sp (%) PPV (%) ACC (%)

Moody and Mark 1983 60 87.54 95.14 92.29 92.12

Cerutti et al. 1997 90 96.10 81.55 75.76 83.38

Tateno and Glass 2001 50 94.40 97.20 96.10 –

Logan and Healey 2005 120 96.00 89.00 – –

Couceiro et al. 2008 60 93.80 96.09 – –

Babaeizadeh et al. 2009 >60 89.00 96.00 88.00 –

Dash et al. 2009 128 beats 94.40 95.10 – –

Lake and Moorman 2011 12 91.00 94.00 – –

Huang et al. 2011 101 beats 96.10 98.10 – –

Ladavich and Ghoraani 2015 7 beats 98.09 91.66 79.17 93.12

Asgari et al. 2015 9.8 97.00 97.10 – 97.10

Garcia et al. 2016 7 beats 91.21 94.53 – 93.32

Xia et al. 2018 5 98.79 97.87 – 98.63

Proposed Algorithm 2018 5 beats 99.41 98.91 99.39 99.23
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Learning Rate
In this case, the original value of the learning rate is changed
systematically from 0.0007 to 0.005. Table 2 shows the testing
samples classification accuracy of different learning rate values
after 50 epochs. As the performance displayed in Table 2, results
of the proposed CNNs are not improved whether the learning
rate is increased or decreased. Therefore, the optimum value of
the learning rate is set to 0.001.

Momentum Coefficient
In this case, the influences of altering the momentum coefficient
on the results of the proposed CNNs are investigated. The
classification accuracy about the testing samples during 50 epochs
are calculated and presented in Table 3 with the same CNNs
structural parameters. As the performance shown in Table 3, the
results of the proposed CNNs are not improved whether the
momentum coefficient is increased or decreased. Therefore,
the optimum momentum coefficient value is set to 0.8. About
the momentum coefficient, it can avoid the neural network
into a local minimum. However, it also may result in the
unstable of the network structure when the value is set quite
high.

CNNs Structural Parameters
In this study, the final values of the learning rate and momentum
coefficient are respectively set to 0.001 and 0.8. Furthermore,
the changes for the other CNNs structural parameters (the
convolutional and max-pooling layer kernel size and the number
of neurons in the fully connected layer max-pooling layer kernel
size) also have been carried out based on experimentation
experiences. According to the results, the performance is not
improved for different structural parameter sets, as such the
parameters shown in Table 1 are still as optimum choice for
proposed CNNs.

Comparison With Other Related Studies
for AF Classification
In order to evaluate the performance of the proposed
classification method, the proposed algorithm was compared
with other existing algorithm employing five measurements
containing the sensitivity, specificity, PPV, overall accuracy and
the length of the window (WL) respectively. Many of the
algorithms (Moody and Mark, 1983; Cerutti et al., 1997; Tateno
and Glass, 2001; Logan and Healey, 2005; Couceiro et al., 2008;
Babaeizadeh et al., 2009; Dash et al., 2009; Huang et al., 2011;
Lake and Moorman, 2011; Asgari et al., 2015; Ladavich and
Ghoraani, 2015; García et al., 2016; Xia et al., 2018) were
chosen for comparison as the best performing results for various
methods.

As shown in Table 4, the performance of the proposed
method is better than all of other algorithms in comparison
for classifying AF which implemented on the same database
of AFDB. In addition, the present algorithm is capable of
AF detection by using only five beats, which is superior to
other algorithms. This is due to the implementation of finer
CWT transform and better designed CNNs network of the

present algorithm as compared to the others, allowing a more
accurate identification of AF by using shorter ECG segments
based on automatically extracting pattern features of 2D CWT
transformation patterns.

Clinical Relevance
The proposed method is able to classify AF with five beat
cycles. It has potentials to be used as an assistant diagnosing
tool for clinic uses. In general, AF is the main causes of
strokes so it is essential to diagnose it in the early stage
for AF patients. Upon a proper early diagnosis, efficient
treatment plans like rate-control medication or anticoagulation
therapy for AF patients can be made to reduce the occurrence
of strokes. As the proposed algorithm requires only five
beats, proximal AF data can be detected as AF with a high
accuracy.

CONCLUSION

We developed a framework based on time-frequency
representation of ECG signals and CNNs architectural model
for automated classification of AF. The framework transforms
1D ECG signal into 2D patterns of frequency densities, allowing
the state-of-the-art techniques of CNNs-based machine learning
method to classify AF automatically. It analyzes the time-
frequency features of both atrial and ventricular activities,
allowing AF detection by using a very short period (five
beats) of ECG. By testing it on the AFDB, a performance
with 99.41, 98.91, 99.39, and 99.23% for the sensitivity,
specificity, PPV, and overall accuracy respectively was achieved,
which is superior to the most of the existing algorithms
suggesting a great potential in clinical diagnosis in the
future.
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