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Objectives: Medial temporal lobe epilepsy (mTLE) is characterized by decreased
hippocampal volume, which results in motor memory consolidation impairments.
However, the extent to which motor memory acquisition are affected in humans with
mTLE remains poorly understood. We therefore examined the extent to which learning
of a motor tapping sequence task is affected by mTLE.

Methods: MRI volumetric analysis was performed using a T1-weighted three-
dimensional gradient echo sequence in 15 patients with right mTLE and 15 control
subjects. Subjects trained on a motor sequence tapping task with the left hand in right
mTLE and non-dominant hand in neurologically-intact controls.

Results: The number of correct sequences performed by the mTLE patient group
increased after training, albeit to a lesser extent than the control group. Although
hippocampal subfield volume was reduced in mTLE relative to controls, no differences
were observed in the volumes of other brain areas including thalamus, caudate,
putamen and amygdala. Correlations between hippocampal subfield volumes and the
change in pre- to post-training performance indicated that the volume of hippocampal
subfield CA2–3 was associated with motor sequence learning in patients with mTLE.

Significance: These results provide evidence that individuals with mTLE exhibit learning
on a motor sequence task. Learning is linked to the volume of hippocampal subfield
CA2–3, supporting a role of the hippocampus in motor memory acquisition.

Highlights

- Humans with mTLE exhibit learning on a motor tapping sequence task but not to the
same extent as neurologically-intact controls.

- Hippocampal subfield volumes are significantly reduced after mTLE. Surrounding brain
area volumes do not show abnormalities.

- Hippocampal subfield CA2–3 volume is associated with motor sequence learning in
humans with mTLE.
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INTRODUCTION

The hippocampus is involved in procedural memory, a type of
memory necessary for motor sequence learning (Albouy et al.,
2013). During a serial reaction time task, amnesic patients
have been shown to outperform controls by repeating the
sequence of key presses to the location of the stimulus through
increasingly rapid performance. However, these same patients
exhibit an impaired ability to recognize the sequence (Reber
and Squire, 1998). Medial temporal lobe epilepsy (mTLE) is
characterized by seizures originating in mesial temporal lobe
structures. Decreased hippocampal volume ipsilateral to the
epileptogenic temporal lobe has been reported in this patient
population (Marsh et al., 1997). At present, it is not known
whether motor sequence learning is preserved in humans with
mTLE.

Neural correlates of motor sequence learning have
been characterized in neurologically-intact controls and
include the cerebellum, basal ganglia, supplementary motor
area, as well as primary motor and premotor cortices
(Willingham et al., 2002; Doyon et al., 2003). However,
the role of hippocampus during motor sequence learning
is still controversial. Most prior work has not implicated
the hippocampus in motor sequence learning (Curran,
1997; Clark and Squire, 1998; Chun and Phelps, 1999;
Poldrack et al., 2001), but other findings suggest that the
hippocampus is necessary irrespective of whether knowledge
of the sequence was implicitly or explicitly acquired (Grafton
et al., 1995; Schendan et al., 2003). The hippocampus is
thought to support motor sequence learning by encoding
temporally discontiguous but structured information and
events (Schendan et al., 2003; Eichenbaum, 2004; Albouy et al.,
2008).

Hippocampus is composed of several histologically distinct
subfields: subiculum, cornu ammonis sectors (CA)1–4, and
dentate gyrus (DG). There is evidence that histological
differences influence functional characteristics of each subfield.
Animal studies suggest a selective role for CA1 pyramidal
cells in intermediate and long-terms patial learning or
memory consolidation, but not in short-term acquisition
or encoding (Blum et al., 1999; Remondes and Schuman,
2004; Vago et al., 2007). Rather, CA2–3 is thought to be
responsible for encoding and early retrieval (Hasselmo,
2005; Acsády and Káli, 2007). In addition, there is evidence
that CA1 pyramidal cells are less critically involved in
declarative memory compared to DG granule cells or
CA4 pyramidal cells in humans with TLE (Coras et al.,
2014).

The goal of our study was to examine the effect of
mTLE on motor sequence learning. Considering the spatial
recall demands of a motor tapping sequence, we hypothesized
that mTLE patients will exhibit a reduced ability to learn
a motor sequence task. To test this hypothesis, 15 patients
with right mTLE and 15 controls trained on a motor
sequence tapping task, and MRI volumetric analysis was
performed using a T1-weighted three-dimensional gradient echo
sequence.

MATERIALS AND METHODS

Subjects
We recruited patients with unilateral mTLE from the First
People’s Hospital of Foshan. First, each patient underwent
non-invasive neurophysiologic evaluation via interictal EEG
recordings and extensive video-EEG monitoring to record
seizures. Next, two examiners independently obtained the
evaluation of ictal semiology and defined the cerebral structures
impacted by epileptic activity according to clinical and EEG
features of the seizures. In addition, 3-T MRI was performed to
investigate temporal lobe structures in detail for all patients. The
presence of medial temporal sclerosis was evaluated qualitatively
by visual inspection of structure MRI. Raters were blind to motor
sequence learning results. Patients with epileptic paroxysms
in extra-temporal regions on EEG were excluded. A total of
15 mTLE patients (seven males, 29.9 ± 7.8 years of age) with
right (onset) unilateral seizures were enrolled. Demographics
and clinical information of patients are provided in Table 1. All
subjects with TLE exhibited MRI evidence of right hippocampal
sclerosis. We also recruited 15 healthy adults (nine males,
29.1 ± 9.1 years of age) to serve as controls. Musicians were
excluded from the sample. All subjects were right-handed. All
subjects gave their written informed consent prior to the study,
which was in accordance with the Declaration of Helsinki and
approved by the local ethics committee at the Jinan University
and the First People’s Hospital of Foshan.

MRI Data Acquisition
A 3-T MR imaging system (General Electric) was used for
scanning. A high resolution three-dimensional T1-weighted
image was acquired via a 3D-fast spoiled gradient recall sequence
with the following parameters: IR = 450 ms, flip angle = 15◦, and
FOV = 24× 24 cm2. One hundred and forty-six slices with a slice
thickness of 1 mm were acquired to construct a 256 × 228 data
matrix.

Structural Volume Evaluation
The volumetric segmentation was performed with experimental
software (Freesurfer package v5.11), which provided fully
automatic cortical parcellation and segmentation of subcortical
structures. The program calculates brain sub-volumes by
assigning a neuro-anatomical label to each voxel based
on probabilistic information estimated automatically from a
manually labeled training set. Briefly, this process includes
motion correction, removal of non-brain tissue using a hybrid
watershed/surface deformation procedure, multiple intensity and
spatial normalization, Talairach transformation, segmentation of
the subcortical white matter and deep gray matter structures
(Fisch et al., 2004; Ségonne et al., 2004). Details regarding the
process and analysis pipeline has been described elsewhere1.
Finally, 12 hippocampal sub-regions in the left or right
hemisphere were automatically obtained: fimbria, CA1, CA2-
CA3, CA4-DG, subiculum and presubiculum. All sub-regions
from each participant were visually inspected to detect visible

1https://surfer.nmr.mgh.harvard.edu/
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TABLE 1 | Demographic and clinical characteristics (Mean ± SD).

mTLE Control p-value

Sample size 15 15 —
Sex (male/female) 7/8 9/6 0.74a

Age (years) 29.9 ± 7.8 29.1 ± 9.1 0.67b

Education (years) 11.2 ± 3.8 13.6 ± 3.5 0.51b

Epilepsy duration (years) 12.5 ± 10.8 —
Age at epilepsy onset 10.7 ± 9.1 —
Frequency (times/year) 22.3 ± 31.7 —

aChi-square test; btwo-sample t-test.

errors in segmentation. The whole hippocampus volume was
obtained by adding all hippocampal subfields. In addition
to hippocampal subfields, we also calculated the volumes
of surrounding brain areas that served as references for
volumes outside of the hippocampus. These reference areas
included thalamus, caudate, putamen and amygdala in the
right hemisphere. The total intracranial volume (TIV) was also
automatically calculated by FreeSurfer software. Volumes of
the hippocampal subfields and surrounding brain areas were
adjusted for TIV using the following formula (Buckner et al.,
2004):

Volumeadj = Volumeobserved − β
(
TIVobserved − TIVsample mean

)
(1)

where, β is the slope of the regional volume regression on
TIVobserved.

The volumetric segmentation was also performed with
experimental software of Freesurfer package v6.0 (Iglesias et al.,
2015). Finally, 12 hippocampal sub-regions in the left or right
hemisphere were automatically obtained including hippocampal
tail, subiculum, CA1, hippocampal fissure, presubiculum,
parasubiculum, molecular layer, granule cell layer of DG
(GC-DG), CA2-CA3, CA4, fimbria and hippocampus-amygda-
la-transition-area (HATA). The TIV was also automatically
calculated. Volumes of the hippocampal subfields were adjusted
for TIV using the formula as described above.

Motor Sequence Learning Task
Subjects performed a finger-tapping task in a particular sequence
during a pre-training performance test, a training protocol,
and a post-training performance test (Figure 1; Korman et al.,
2003; Walker et al., 2003). During motor sequence learning
task, the seizures were not monitored. Note that the post-test
was performed immediately following training on the motor
sequence. T1 images were acquired upon enrollment in the study
and before behavioral testing. Participants were instructed to
press four numeric keys on a standard computer keyboard with
the fingers of the left-hand in right mTLE and finger of the non-
dominant, left hand in controls. Each trial of the task involved
repeating the same five-element sequence (4-1-3-2-4) as quickly
and accurately as possible during a 30-s interval, followed by
30 s of rest. Subjects were instructed to not correct for errors
and to continue tapping without pause as smoothly as possible.
During a trial, the sequence was displayed on a monitor in front
of the subject. Each key press produced a dot on the monitor.

Pre- and post-training tests consisted of three, 30-s trials with
30-s rest periods between each trial. Performance was measured
as the total number of correct sequences completed and the
number of errors in a trial. The training protocol consisted of
12, 30-s trials with 30-s rest periods between trials, lasting a total
of 12 min.

Statistical Analysis
Normal distribution was tested by the Shapiro–Wilk’s test
and Mauchly’s test was used to test for sphericity. Data
were log transformed when not normally distributed. When
sphericity could not be assumed, the Greenhouse–Geisser
correction statistic was used. Two-way analysis of variance
(ANOVA) was performed to determine the effect of GROUP
(mTLE and controls) and TIME (pre-training and post-
training) on the numbers of errors and correct sequences.
One-way ANOVAs were performed to determine the effect
of GROUP on the volume size of hippocampal subfields and
reference brain areas (i.e., thalamus, caudate, putamen and
amygdala). In the above ANOVA analysis, age, gender and years
of education (log transformed) were modeled as nuisance
variables. Bonferroni post hoc analysis was used to test for
pairwise comparisons. Partial correlation analyses (corrected
for log of years of education) were used to assess the relative
importance of each subfield within left and right hippocampus
in predicting motor sequence learning. The threshold for
significance was set at P< 0.008 (Bonferroni correction based on
six hippocampal subfields) to control for multiple comparisons.
To test the possible impact of epilepsy history and disease
load (age at onset, duration, epilepsy frequency) on volume
size of hippocampal subfields and motor sequence learning,
nonparametric statistics (Spearman correlations) were used.
We also examined the possible impact of the time between
seizures and the moments of behavioral testing on motor
sequence learning with spearman correlations. Significance was
set at P < 0.05. Group data are presented as mean ± SD in
the text.

RESULTS

Behavioral Results
Figure 2 illustrates pre- and post-training performance (numbers
of errors and correct sequences completed) during the motor
sequence tapping task in mTLE and control groups. A two-way
ANOVA showed a significant effect of GROUP (F(1,56) = 21.3,
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FIGURE 1 | Motor sequence task consisted of blocks of multiple trials, with each trial consisting of an active tapping period (30 s) and a rest period (30 s). Tapping
periods required subjects to repeatedly tap a five-element numerical sequence (e.g., 4-1-3-2-4) on a numbered button box. Pre- and post-training performance tests
were comprised of three trials, while training involved 12 trials.

P < 0.001), TIME (F(1,56) = 12.4, P < 0.001) and in their
interaction (F(1,56) = 10.1, P < 0.001) on the number of correct
sequences completed (Figure 2A). Post hoc tests showed that
the number of correct sequences was greater at post-training
compared with pre-training in control (p < 0.01) and mTLE
groups (p < 0.01). However, the increase in the number of
correct sequences was greater in controls relative to the mTLE
group (p < 0.001, Figure 2B). There was no difference of the
baseline performance between groups (p > 0.05). A two-way
ANOVA showed no significant effect of GROUP (F(1,56) = 1.2,
P = 0.13), TIME (F(1,56) = 0.85, P = 0.32) and in their
interaction (F(1,56) = 1.8, P = 0.11) on the number of errors
(Figures 2C,D).

Volumetric Results
Figure 3 shows volume size of hippocampal subfields
(Figure 3A) and reference brain areas (i.e., thalamus, caudate,
putamen and amygdala; Figure 3B) in mTLE and control
groups by FreeSurfer v5.1. The ANOVA for hippocampal
subfields and reference brain areas showed a significant
effect of GROUP on volume size (F(1,19) = 15.23, P = 0.006).
Post hoc tests indicated that volume size of all hippocampal
subfields was less in the mTLE group compared to the control
group: fimbria (F(1,15) = 11.7, P < 0.001), CA1 (F(1,15) = 12.4,
P < 0.001), CA2-CA3 (F(1,15) = 15.3, P < 0.001), CA4-DG
(F(1,15) = 8.1, P < 0.001), subiculum (F(1,15) = 7.8, P < 0.001),
and presubiculum (F(1,15) = 10.5, P < 0.001). However, volume
size of specific reference brain areas was not different between
groups: thalamus (F(1,15) = 0.61, P = 0.42), caudate (F(1,15) = 0.35,
P = 0.56), putamen (F(1,15) = 1.5, P = 0.26) and amygdala
(F(1,15) = 2.01, P = 0.18).

Table 2 presents volume size of hippocampal subfields in
mTLE and control groups by FreeSurfer v6.0. The ANOVA
for hippocampal subfields in the right hemisphere showed a
significant effect of GROUP on volume size (F(1,11) = 20.1,
P < 0.001). Post hoc tests indicated that volume size of all
hippocampal subfields but the hippocampal fissure in the right

hemisphere was less in the mTLE group compared to the control
group. In addition, volume size of the hippocampal subfields in
the left hemisphere was not different between groups.

Behavior-Volumetric Correlations
Figure 4 illustrates the association between motor sequence
learning (i.e., the percentage increase of correct sequences
post-training relative to pre-training) and hippocampal subfield
volumes inmTLE subjects by FreeSurfer v5.1. Right hippocampal
subfield CA2–3 volume was significantly correlated with motor
sequence learning in mTLE subjects (p < 0.008; Figure 4).
No other right hippocampal subfield volumes were correlated
with motor sequence learning. Right hippocampal subfield
volumes were not correlated with motor tapping performance at
either pre-training or post-training (p > 0.05) nor with seizure
frequency, duration of epilepsy, and epilepsy onset (p> 0.05). In
addition, left hippocampal subfield volumes were not correlated
with motor sequence learning (p > 0.05). Seizure history and
seizure load were not correlated with motor sequence learning
(p > 0.05). The time between seizures and the moments of
behavioral testing were also not correlated with motor sequence
learning (p> 0.05).

To test the reproducibility of our results, we also calculated
the association between motor sequence learning and both sides
of hippocampal subfield volumes in mTLE subjects by FreeSurfer
v6. The results were similar with that using FreeSurfer v5.1.
Only right hippocampal subfield CA2–3 volumewas significantly
correlated with motor sequence learning in mTLE subjects
(p< 0.001). No other right or left hippocampal subfield volumes
were correlated with motor sequence learning (p> 0.05).

DISCUSSION

The current study investigated the effect of mTLE on
motor sequence learning. Findings indicate that patients with
mTLE can learn a motor sequence tapping task, albeit to
a lesser extent than neurologically-intact controls. Although
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FIGURE 2 | Performance on the motor sequence task. (A) Mean number of correct sequences completed during pre- and post-training sessions in control and
medial temporal lobe epilepsy (mTLE) groups. (B) Percent increase in correct sequences completed from pre- to post-training in control and mTLE groups. (C) Mean
number of errors during pre- and post-training sessions in control and mTLE groups. (D) Percent increase in errors from pre- to post-training sessions in control and
mTLE groups. Error bars indicate SDs. ∗P < 0.05.

all hippocampal subfield volumes were decreased in mTLE
patients, CA2–3 volume was associated with motor sequence
learning. Thus, results demonstrate that patients with mTLE
have impairments in motor memory acquisition. However, these
impairments do not preclude some degree of motor sequence
learning, which is associated with the volume of hippocampal
subfield CA2–3.

Contributions of Hippocampus to Motor
Sequence Learning
Consistent with previous work, we found that performance
increased after training on a sequence tapping task (Korman
et al., 2003; Walker et al., 2003). Since hippocampus is thought
to be involved in motor sequence learning (Albouy et al.,
2013), it is plausible that structural abnormalities influence
learning of such a task even after practice. Previous work has
shown that hippocampus is critical for encoding temporally
discontiguous but structured information and events (Schendan

et al., 2003; Eichenbaum, 2004). If hippocampus contributes
to motor sequence learning processes, then disease states such
as mTLE would likely alter neuronal interactions critical for
learning in this regard. It was therefore unexpected that mTLE
patients exhibited sequence learning. The percentage change
in performance, however, was significantly reduced relative to
controls, suggesting that learning was adversely impacted by
hippocampal abnormalities. It should be noted that baseline
performance was not different than controls (Figure 2A),
indicating that individuals in the mTLE group did not have
impairments in motor function or were otherwise unable to
perform at the same level as participants in the control group.
These findings align with previous work showing that amnesic
patients outperform controls through intensive training on a
serial reaction time task but show an impaired ability to explicitly
recognize the sequence of stimuli location (Reber and Squire,
1998). Taken together, motor memory acquisition appears to be
supported by medial temporal lobe structures.
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FIGURE 3 | (A) Mean volume size of hippocampus subfields and (B) reference brain areas in control and mTLE groups. Error bars indicate SDs. ∗P < 0.05.

Volume Size in Hippocampal Subfields and
Surrounding Brain Areas
mTLE patients had reduced hippocampal subfield volumes, a
finding that is consistent with postmortem examination and
other cross-sectional studies of this population (Duncan, 1997;
Keller and Roberts, 2008; Mueller et al., 2012). The lack of

unchanged volumes in other areas such as caudate, putamen,
and amygdala for mTLE are generally in agreement previous
work (Bernasconi et al., 2004; Keller and Roberts, 2008).
However, patients in this study did not exhibit reductions
in volume size of the thalamus, which runs counter to
prior findings (Bernasconi et al., 2004). The discrepancy

TABLE 2 | Hippocampal subfield volumes calculated by FreeSurfer ver.6.0 (Mean ± SD).

mTLE (n = 15) Control (n = 15) p-value

Left hemisphere
Hippocampal_tail 568.6 ± 53.2 587.1 ± 71.8 0.38
Subiculum 431.4 ± 52.3 446.3 ± 46.7 0.62
CA1 667.2 ± 75.8 681.9 ± 67.2 0.49
Presubiculum 302.7 ± 22.5 316.8 ± 36.7 0.54
Parasubiculum 52.9 ± 10.8 55.7 ± 13.1 0.68
Molecular_layer 556.3 ± 51.2 556.3 ± 51.2 0.42
GC-DG 310.8 ± 39.2 318.2 ± 35.7 0.48
CA2-CA3 195.8 ± 26.7 203.4 ± 22.4 0.71
CA4 254.9 ± 30.6 261.4 ± 27.8 0.68
Fimbria 93.3 ± 23.8 106.7 ± 27.2 0.52
HATA 61.5 ± 8.3 60.6 ± 10.6 0.76
Hippocampal_fissure 151.4 ± 25.9 156.1 ± 28.7 0.63

Right hemisphere
Hippocampal_tail 391.7 ± 90.1 562.3 ± 64.9 0.38
Subiculum 305.8 ± 56.4 452.1 ± 49.5 0.62
CA1 462.3 ± 86.4 667.8 ± 62.1 0.49
Presubiculum 215.3 ± 30.6 320.1 ± 28.9 0.54
Parasubiculum 40.2 ± 8.5 58.3 ± 11.4 0.68
Molecular_layer 382.4 ± 49.1 571.3 ± 52.3 0.42
GC-DG 205.3 ± 34.5 305.7 ± 37.1 0.48
CA2-CA3 126.7 ± 27.1 221.8 ± 32.8 0.71
CA4 162.7 ± 33.2 278.1 ± 30.2 0.68
Fimbria 59.6 ± 18.2 95.5 ± 20.4 0.52
HATA 51.7 ± 10.2 61.5 ± 9.2 0.76
Hippocampal_fissure 141.7 ± 28.3 150.2 ± 23.6 0.63
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FIGURE 4 | Scatter plots depicting the association between motor sequence learning and the hippocampus subfields in right and left hemispheres.

may be because mTLE patients in the current study did
not have a history of febrile convulsions (Dreifuss et al.,
2001).

CA2–3 Contributions to Motor Sequence
Learning
We found that subfield CA2–3 was the only hippocampal
subfield associated with motor sequence learning in the mTLE
group. There is evidence showing that sub-region CA3 plays
a significant role in short-term spatial memory acquisition
and encoding processes, while sub-region CA1 contributes

to intermediate/long-term spatial memory and consolidation
(O’Reilly and McClelland, 1994; Treves and Rolls, 1994; Kesner
et al., 2004; Remondes and Schuman, 2004; Daumas et al.,
2005). Within a given day, encoding of information acquired
in a Hebb-Williams maze or in contextual fear conditioning
is impaired by targeted lesions to the CA3 and DG sub-
regions, but not from targeted lesions to the CA1 sub-region.
In contrast, retention and retrieval is disrupted following lesions
to CA1 across days, but not following lesions to CA3 or DG
(Lee and Kesner, 2004a,b; Jerman et al., 2006). Impairments have
also been demonstrated in delay-dependent retrieval without
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impairing immediate recall or encoding of spatial information
after infusing glutamatergic antagonists (Lee and Kesner, 2002),
or cyclooxygenase-2 inhibitors (Sharifzadeh et al., 2006) into
the CA1 sub-region, but not when infused into the CA3 sub-
region. Findings from the current study are in agreement with
those of previous work and demonstrate that the integrity of
the CA2–3 hippocampal subfield was correlated with motor
sequence learning.

Limitations
Aside from a small sample size, there are at least four important
limitations of our study. First, the current cross-sectional study
is limited in that it does not capture long-term hippocampal
volume loss. Understanding the evolution of change in volume of
hippocampus and its individual subfields would provide unique
insights into the relationship between volumetric reductions due
to mTLE and the extent of impairments in motor sequence
learning. Second, motor sequence learning was only related
to initial motor memory acquisition in the current study.
Future studies should examine other hippocampal-dependent
tasks associated with other types of memory (e.g., non-motor
sequence learning), which will provide greater insight into
the role of specific sub-parts of the hippocampus. Third, we
only investigated initial motor memory acquisition. Whether
long-term memory or consolidation of the motor sequence is
impacted by mTLE is an important consideration. Accordingly,

future work should focus on how memories are sufficiently
strengthened to be behaviorally salient, thus, allowing further
insight into the role of specific hippocampal regions. Finally,
since mTLE may be a heterogeneous group with varying
hippocampal subfield anomalies difficult to identify solely based
on MRI, future work can expand on the current findings by
including a histopathology report according to the International
League Against Epilepsy (ILAE) classification of Hippocampal
sclerosis (Blümcke et al., 2013).
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