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Efficient high-throughput transcriptomics (HTT) tools promise inexpensive, rapid
assessment of possible biological consequences of human and environmental
exposures to tens of thousands of chemicals in commerce. HTT systems have used
relatively small sets of gene expression measurements coupled with mathematical
prediction methods to estimate genome-wide gene expression and are often trained
and validated using pharmaceutical compounds. It is unclear whether these training sets
are suitable for general toxicity testing applications and the more diverse chemical space
represented by commercial chemicals and environmental contaminants. In this work, we
built predictive computational models that inferred whole genome transcriptional profiles
from a smaller sample of surrogate genes. The model was trained and validated using
a large scale toxicogenomics database with gene expression data from exposure to
heterogeneous chemicals from a wide range of classes (the Open TG-GATEs data base).
The method of predictor selection was designed to allow high fidelity gene prediction
from any pre-existing gene expression data set, regardless of animal species or data
measurement platform. Predictive qualitative models were developed with this TG-
GATES data that contained gene expression data of human primary hepatocytes with
over 941 samples covering 158 compounds. A sequential forward search-based greedy
algorithm, combining different fitting approaches and machine learning techniques, was
used to find an optimal set of surrogate genes that predicted differential expression
changes of the remaining genome. We then used pathway enrichment of up-regulated
and down-regulated genes to assess the ability of a limited gene set to determine
relevant patterns of tissue response. In addition, we compared prediction performance
using the surrogate genes found from our greedy algorithm (referred to as the SV2000)
with the landmark genes provided by existing technologies such as L1000 (Genometry)
and S1500 (Tox21), finding better predictive performance for the SV2000. The ability of
these predictive algorithms to predict pathway level responses is a positive step toward
incorporating mode of action (MOA) analysis into the high throughput prioritization and
testing of the large number of chemicals in need of safety evaluation.

Keywords: cellular mode-of-action, predictive toxicology, whole genome prediction, high-throughput
toxicogenomics, pathway enrichment analysis
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INTRODUCTION

Gene expression changes have proven to be reasonable predictors
of the dose-response for classical apical endpoints in vivo, i.e.,
the 2-year rodent bioassay (Ellinger-Ziegelbauer et al., 2008;
Thomas et al., 2013). Toxicogenomic responses are also being
used successfully to categorize developmental toxicants (van
Dartel et al., 2010; Theunissen et al., 2011; Hermsen et al.,
2012), and many approaches exist for evaluating similarities
and differences in toxicogenomic responses across chemical
groups (van Dartel et al., 2011). Different suites of genes that
serve as transcriptional biomarkers of genotoxicity have been
identified (Amundson et al., 2001; Iida et al., 2003; Dickinson
et al., 2004; Ellinger-Ziegelbauer et al., 2008; Boehme et al.,
2011; Li et al., 2015). Toxicology is now moving toward use
of higher-throughput in vitro methods as a basis for screening
compounds for subsequent testing and these screening analyses
for transcriptomic changes are playing an increasingly prominent
role in early stages of testing (Li et al., 2012; Hawliczek-Ignarski
et al., 2017).

Even though the costs of full genome expression analysis
technologies continue to fall, the large number of untested
chemicals in commercial inventories have inspired the use
of high-throughput transcriptomics (HTT) approaches for
assessing gene expression changes. These technologies are based
on the presence of a high degree of correlation between the
expression of related genes across the genome (Eisen et al.,
1998; Allocco et al., 2004; Fraser et al., 2004; Zhou and Gibson,
2004; Liang et al., 2018). Leveraging this interdependence, some
HTT technologies measure the expression of relatively small
subsets of “surrogate” genes and impute the balance of the
genome using computational prediction models. The imputed
equivalent to a whole transcriptome assay can then be used to
make inferences about chemical targets using a variety of gene
association techniques, followed by enrichment analyses to link
gene expression profiles to known patterns of either cellular
biology or of responses to chemical exposures.

One of the pioneering HTT efforts was Genometry’s L1000
platform1. The landmark genes used in the L1000 platform were
derived using available public human gene expression data to
determine genes with the most correlated expression changes
across a range of cell types and chemical stressors, primarily
from studies with pharmaceutical compounds. This correlation
analysis yielded a set of 978 genes that were then used to
computationally predict the remainder of the transcriptome (the
inferred probes). The L1000 platform has been shown to be
highly reproducible, and suitable for computational inference
of expression levels of about 81% of non-measured transcript
abundance (Subramanian et al., 2017). Results from the L1000
have been used successfully to predict molecular targets based
on similarity analysis with responses to other pharmaceutical
compounds (Subramanian et al., 2017). Because of the large
number of chemicals in commerce or under development for
commercial use that have little to no toxicity data, the promise
for this type of approach in environmental science is substantial.

1http://genometry.com/

For toxicogenomic interpretation, L1000 data has been
coupled with a novel chemical association algorithm using the
Connectivity Mapping (CMAP) concept (Lamb et al., 2006).
CMAP uses a large database of L1000 generated gene expression
profiles derived from thousands of small molecule and genetic
reagent exposures to multiple cell lines. Novel compounds can
in turn be assayed on the L1000 platform and their measured
gene expression used to search for non-random associations with
expression signatures of tested compounds to infer commonality
in function and cellular effects. While the CMAP concept was
developed independently of the L1000 assay technology, the
current public CMAP database has been derived from L1000
data due to the high throughput nature of the L1000 screening
system2.

Existing full genome prediction models like the L1000 have
primarily used pharmaceutical compounds as their test sets.
The chemical space of commercial compounds is much larger
than that of pharmaceutical compounds. It is not at all clear
that any single predictive gene expression model will be equally
effective across this broader landscape of chemical structures.
This chemical diversity makes it difficult for the inference of
specific modes of action for adverse effects. Highly adaptable
or “tunable” modeling algorithms for predictive toxicogenomics
that are computationally tractable and both time and cost
effective would be more useful than any single, static platform.

In this study, we explored the application of gene expression
prediction models to a more diverse chemical space, focusing
on two primary goals. First, rather than using a fixed
candidate gene set as predictors, we developed a more robust,
data driven predictor selection. This process is intended to
permit high fidelity gene prediction from any pre-existing
gene expression data, regardless of species or platform used
to generate the relative gene expression measurements. Such
a data driven approach would allow for refinement of the
predictor selection as new or additional data became available
or could be tailored to particular exposure landscapes when
existing predictors prove less than optimal. Our second goal
was to use data-driven predictors set to computationally
infer whole genome equivalent transcriptomic expression
and then process those expression estimates qualitatively to
elucidate conventional ontology enrichment results for inferring
toxicogenomic mode of action (MOA). The robust data-driven
predictor selection, independent of a specific gene expression
technology, combined with whole transcriptome expression
modeling and qualitative selection of differentially expressed
genes for ontology enrichment could prove a valuable open-
source approach to HTT chemical screening.

METHODS

We developed a novel set of HTT genes based on a broader
suite of chemistries than previously investigated. Toward this
end, we developed a qualitative approach based on classification
models predicting three classes of probes: up regulated, down

2https://www.broadinstitute.org/connectivity-map-cmap
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regulated, and unchanged. The context of selecting qualitative
model over quantitative has been provided in Supplementary
Material. This approach uses machine learning to select a set
of surrogate genes using a publicly available toxicogenomics
database containing gene expression changes resulting from
exposure to a wide range of heterogeneous chemicals. Data
resources, such as the TG-GATEs database have greatly expanded
the chemical domain of transcriptomic data. The available TG-
GATEs data was randomly split into a training set (75%) used
to select the surrogate genes and fit the predictive model, and
a test set (25%) used for model validation. The predictive
performance of the resulting model was assessed based on
pathway enrichment analysis comparing how major pathways
were enriched using up-regulated and down-regulated genes
for both the actual and predicted expression patterns. In a
second step, we used the Genometry L1000 and another well-
established Affymetrix whole genome toxicogenomics platform
to gauge performance characteristics of the pathway enrichment
approach.

Data
For modeling purposes, we used primary human hepatocyte
exposure data for 158 compounds in the Open TG-GATEs
(Igarashi et al., 2015) database. Gene expression for the primary
human hepatocyte exposures were run on Affymetrix HG-
U133_Plus_2 microarrays, typically at three exposures (low,
middle, and high), the actual values of which varied depending on
the specific compound. Each exposure series used its own vehicle
controls. Data were also typically sampled at 3-time points for
most compounds: 2, 8, and 24 h. Gene expression in response
to the 158 compounds across concentration and exposure times
gave a total of 941 experimental conditions. The full listing of
CEL files and samples available in Open TG-GATEs is listed in
Supplementary Material (Data Sheet 2).

Selection of Surrogate Genes
Seventy-five percent of the total samples in the TG-GATEs were
used for the selection of surrogate genes while the remaining 25%
samples were used subsequently to validate the performance of
the predictive qualitative models which used the new surrogate
genes as predictors. The method of selecting a set of surrogate
genes by using TG-GATEs database involved several steps
and machine learning techniques (Figure 1 and Supplemental
Figure S1).

Removal of Low-Impact Genes
Genes with a very low variance of expression across different
cell lines and different experimental conditions contained very
limited information. To minimize the computational burden, we
removed the genes which had low variance across samples from
downstream analysis. The criteria to remove low variance gene
expressions depended on the distribution of expression from
specific dataset. We then removed any gene with a variance lower
than the median variance across samples. The TG-GATEs gene
expression data were then categorized using thresholds of -0.1
for down-regulation and 0.1 for up-regulation. The threshold was
selected because it provides a similar proportional distribution

of up-regulated, down-regulated and unchanged genes across
samples for each type of chemical in the heterogeneous and
diverse pool of chemicals.

Further Reduction of Features Using
Unsupervised Clustering
A combination of principal component analysis (PCA) and
k-means clustering was used to cluster the relevant (other
than the very low variance) features into k small clusters.
Representative features from each cluster were used to create a
set of features that serve as inputs to a greedy algorithm (GA)
to select the surrogate genes. The reduced set has k features
(see Supplemental Figure S1). The optimum value for k for
the k-means clustering was found using the Elbow method
(Ketchen and Shook, 1996). The Elbow method computes the
distortions using incremental cluster numbers. Here, to reduce
computational complexity we set the increment as 500.

Machine Learning Methods for Selection
of Surrogate Genes
A sequential forward search-based GA was used to select
the list of surrogate genes (see Figure 2). For this, we first
identified co-regulated genes that have a similar direction (but
not necessarily magnitude) of response irrespective of chemical
treatment. Ultimately, the genes were curated to define a subset
of genes that reliably represented the full genome. The GA
was coupled to three different classification modeling algorithms
consisting of support vector machine (SVM) (Cristianini and
Shawe-Taylor, 2000), random forest (RF) (Breiman, 2001), and
artificial neural network (ANN) (Ballabio et al., 2009). Each one
of these coupled methods (GA-SVM, GA-RF, and GA-ANN)
was performed separately leading to three sets of selected genes.
A combined set of surrogate genes was created by taking those
genes that appeared in at least two out of three different coupled
methods.

Only qualitative models (up, down, and unchanged) were used
throughout the selection of surrogate genes and the evaluation
of their performances. The performance of each the three sets
of surrogate genes was evaluated by training a model on 30% of
the samples used in GA and validated on 25% of the holdout
samples (validation set). SVM, RF, and ANN methods were
used to validate the performance of surrogate genes found from
GA-SVM, GA-RF, and GA-ANN respectively.

The performance of the combined set of the surrogate genes
was evaluated using a consensus of all three methods (SVM, RF,
and ANN). Prediction of the validation set was made using the
combined surrogate genes with all three qualitative models and
decision on final prediction was made on majority agreement of
these models. When the three models predicted three different
classes, the prediction was marked as “unchanged.”

Pathway Enrichment Analysis
Pathway enrichment analysis was used to validate predictive
ability of each set of surrogate genes. Cellular responses to
chemical stimulus are achieved via concerted activation of
biological pathways. Various efforts to map these pathways
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FIGURE 1 | A flowchart for selecting a set of surrogate genes from largescale toxicogenomics data involving diverse training set. We started with high dimensional
toxicogenomics data with gene probesets as features and exposure of those probesets in different experimental conditions as samples. After several filtering and
feature selection process, we used a sequential forward search-based greedy algorithm to select the surrogate probes. See Supplemental Figure S1 for the
detailed algorithm.

FIGURE 2 | Algorithm for sequential forward search-based greedy algorithm to build set of surrogate genes. A 10-fold cross validation error of predicting Y features
using X predictions was used as an objective function in each step of the greedy algorithm. The algorithm keeps building the set of surrogate genes in increment of
five genes at a time until a desired number of surrogate genes are selected.

and the suites of genes associated with particular pathways
have provided the scientific community with publicly available
ontology databases. Here we used these publicly available
ontologies to explore whether the incorporation of biological
pathway information into the gene set analysis would improve

prediction of whole genome response from the HTT gene
subsets. We used a visualization technique we have employed
previously (Clewell et al., 2014; Deisenroth et al., 2014;
McMullen et al., 2014; Black et al., 2015; Andersen et al., 2017a,b)
to perform traditional hypergeometric over-representation
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analysis for genes identified by our models as up- or down-
regulated. Reactome is a curated biochemical pathway-based
cell biology ontology with descriptions that progress from
broad, collective functional categories (e.g., “metabolism” or “cell
signaling”) to more defined sub-collections of functionally related
cellular pathways, and finally to discrete biochemical cellular
process pathways3. Pathways enriched in a toxicogenomics
experiment can be summarized using a directed acyclic graph
that captures these relationships between pathways in the
ontology. Intensity of the color of nodes to indicate relative
significance of their enrichment, and node size captures
the relative number of elements from the query gene set
found among that category’s elements. Together, the enrichment
analysis and subsequent visualization provided both a statistically
rigorous and intuitive snapshot of the processes perturbed by the
compound.

We next applied a Pathway Similarity Index (PSI) to compare
performance in terms of pathway enrichment analysis. The PSI
has the following criteria:

• Pathway Similarity Index (PSI) finds similarity between
actual and predicted pathways using up and down regulated
genes of actual and predicted data respectively.
• PSI has a numeric value ranging from 0 to 1 where the

highest value represents a perfect correspondence.
• Number of common pathways and number of query

elements in each common pathway determines the numeric
value of PSI.
• Finding larger set of common pathway element has a higher

influence on PSI value than finding the smaller set.

The details of calculation of the PSI were as follows. Let Nc be
the number of pathways common between actual and predicted
pathway enrichment, N be the number of pathways in the actual
enrichment. Then PSI is calculated in equation 1 as follows:

PSI=mean
(

Nc

N
, ∂

)
(1)

Where ∂ is calculated in equation 2 as follows:

∂=
∑Nc

i=1 Qci∑N
j=1 Qoj

(2)

Here, Qci is the number of query element in ith common pathway;
and Qoj is the number of query element in jth pathway in the
actual enrichment.

RESULTS

Generation of a Novel HTT Gene Set
Using Machine Learning
Our approach removed features with variance lower than
the median variance across samples for each gene to reduce
computational complexity (see Methods, Figure 1 and

3https://reactome.org/

Supplemental Figure S1). This step reduced the number of
probes from 54,675 to 27,338. The gene expression changes were
then binned into three categories (up-regulated, down-regulated
and unchanged) using a threshold of −0.1 for down-regulation
and 0.1 for up-regulation.

These 27,338 probes were further reduced in the next step
that involved unsupervised clustering with combination of PCA
and k-means algorithm. The optimum number of clusters for
the k-means clustering was found to be 10,000 using Elbow
method (Ketchen and Shook, 1996). The optimum k found
here captures 75% of the total variance. A representative probe
was selected (nearest to the center of each cluster) to get the
desired reduction from 27,338 to 10,000. After that, the GA
based on each of the three classification techniques provided a
predetermined number (2,000) of surrogate genes from these
10,000. Each of these gene sets contained 2,000 genes that should
reliably predict the broader transcriptomic profiles irrespective
of chemical treatment. A combined set was created (referred to
here as the SV2000 surrogate set consisting of 2,332 probes) that
contained genes which were present in at least 2 out of 3 surrogate
sets.

Validation of Prediction Performance of
Surrogate Genes Using Pathway
Enrichment Analysis
Differences between expression changes of individual genes
measured across different transcriptomic platforms can be
reconciled by assuming a pathway approach (Guo et al., 2006).
Here, we tested whether this concept extends to differences
between HTT and traditional transcriptomics experiments.

Table 1 shows the comparison of prediction performance
of expression classes in response to 100 µM 2,4-dinitrophenol
using surrogate genes found from our algorithm using 3 different
versions of GA (GA-SVM, GA-RF, and GA-ANN). In all the
3 versions, the algorithm was stopped after selecting 2,000
surrogate genes (see Figure 2).

The comparison of pathway enrichment using gene expression
results from the full genome vs. predicted expression classes in
response to 100 µM 2,4-dinitrophenol is shown in Figure 3
where the combined set of surrogate genes (SV2000) was used.
Prediction was made using a consensus of all three qualitative
models (see Methods). Thirty-eight (38) out of sixty-one (61)
significantly enriched pathways were found to be common

TABLE 1 | Comparison of prediction performances of expression classes in
response to 100 µM 2,4-dinitrophenol using three different sets of surrogate
genes found by 3 versions of GA.

Classification method in GA Number of surrogate
genes used

PSI

Random forest (GA-RF) 2,000 0.8132

Support vector machine (GA-SVM) 2,000 0.7552

Artificial neural network (GA-ANN) 2,000 0.7931

The pathway similarity index (PSI) indicates the similarity between the pathways
found using actual and predicted expression classes.
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FIGURE 3 | Comparison of MetaCore pathways enriched by up and down-regulated genes of (A) actual gene expression classes for TG-GATEs genes in response
to 100 µM 2,4-dinitrophenol and (B) predicted gene expression using combined surrogate genes and a consensus prediction of all 3 prediction models. All colored
nodes are significant at an enrichment FDR < 0.005 with a minimum of five query elements found in category elements. Ontologic enrichment of genes were
performed against the public MetaCore Ontology and the enrichment was visualized. We have found that the predicted Affymetrix genes has a very similar
enrichment profile as the actual gene expression. Thirty-eight (38) out of sixty-one (61) significantly enriched categories (shown in green) were common between
actual and predicted gene expression classes.
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FIGURE 4 | Probability distribution of PSI values for 100 random samples of
validation set. The 100 samples are selected from the 25% holdout samples
of TG-GATEs (validation set) keeping the distribution of categories same as
original. The average of these PSI values was 0.64 with most of the values
located between 0.6 and 0.8 and none of the values below 0.5.

with a PSI equal to 0.86. Significantly enriched pathways with
most number of query element found in ontology include
development, immune response, cytoskeleton remodeling, cell
cycle, transport and transcription. Pathways common between
the network determined with whole genome expression data and
predicted network are in green.

PSI values for a total of 100 random samples from validation
set (25% holdout samples from TG-GATEs), which has the
similar distribution of use categories as the actual validation
samples, were calculated and a distribution of these PSI values
appears in Figure 4. The average of these PSI values was 0.64 with
most of the values located between 0.6 and 0.8 and none of the
values below 0.5.

To verify that the resulting PSI values are not obtained by
chance, we did a Y-scrambling test where we randomly scrambled
the samples in testing data to predict the expressions from the
model created by non-scrambled training data. The average of
these PSI values was 0.41 with this Y-scramble test which suggest
that the result in our analysis was not obtained by chance.

We next checked if there were patterns between the overlap
of surrogate genes identified using different machine learning
approaches. The diagram in Figure 5 shows the number of
common probes between the 3 selected sets. This number was
869 for SVM and RF, 776 between for RF and ANN, and
865 between the sets of SVM and ANN. A total of 89 probes
were common to all three sets. The probes which were present
in more than one set have a higher likelihood of serving as
predictors of the remaining genome than the ones which are
present in only one set. A total of 2,332 probes (SV2000 surrogate
probes) were present in at least 2 sets and these probes were
then used to predict the remaining genome. Interestingly, while
the three machine learning approaches all produced predictive
suites of surrogate genes, a large collection of genes (1,247,
or 35%) were only identified by one algorithm. This behavior
indicates that there is a degree of degeneracy of information
in the transcriptome that HTT approaches build upon, i.e., the
expression levels of many transcripts are approximately equally
predictive.

FIGURE 5 | Patterns between the overlap of surrogate probes identified using
3 different machine learning approaches inside the greedy algorithm. Each of
the sets contains 2,000 probes. The subsets labeled in white were used to
combine the 3 sets of surrogate probes to create SV2000 which contains a
total of 2,332 probes.

DISCUSSION

The Utility of Transcriptomics for
Chemical Safety Evaluation
Gene expression microarrays and next-generation sequence
technologies have been used to study functional changes
from exposure to pharmacological, industrial, and agricultural
compounds. However, a number of practical challenges have
impeded the broader use of toxicogenomics for assessing hazards
to human health, including the generally low throughput and
expense of traditional microarray approaches. More limited,
predictive transcriptomics gene sets should provide a viable
alternative in leveraging the wealth of public gene expression
data available to produce predictive models of transcriptomic
change based on measurement of a small sub-sample of mRNA
transcripts.

HTT Approaches to Address Limitations
of Conventional Transcriptomics
While HTT approaches are promising for evaluating gene
expression changes, their utility for assessing response to
environmental toxicants has not been fully evaluated. Our
approach utilized TG-GATEs’ toxicogenomic data of human
hepatocytes treated with diverse chemicals to select a set of
surrogate genes. A sequential forward search-based GA has been
used to develop three different sets of surrogate probes using
three different classification approaches. A combined set was
created (SV2000 surrogate set consisting of 2,332 probes) using
the probes which are present in at least 2 out of 3 surrogate
sets. This combined surrogate set was used to predict expression
classes (up-regulated, down-regulated, and unchanged) of the
remaining genome using a consensus prediction approach.
Instead of directly comparing the expression levels, a pathway
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enrichment approach was used to validate the prediction
performance.

Comparison of Our Surrogate Genes
With Existing Lists
In addition to the validation of our models, we used the
pathway enrichment analysis approach and the measure of PSI
to compare the performance of our selected set of genes with
existing sets of surrogate genes developed by other methods.
For this comparison, we chose the L1000 landmark genes and
another list – the S1500 – that was designed to predict the
whole transcriptome expression for toxicogenomic studies at the
NIEHS National Toxicology Program. The genes in the S1500 list
were based on a 5-step series of analyses to derive consensus gene
sets that are highly correlated within a group of predictive genes,
and which collectively represent known ontology associations
of genes. The goal of the S1500 effort was to select gene sets
with a high predictive capacity that are closely associated with
defined ontology elements. To date, this approach has yielded
5,892 unique Affymetrix probes (HG_U133plus2 array based)
representing 2,737 human genes that are collectively associated
with 674 Reactome pathways4. All 978 landmark probes from
Genometry’s L1000 platform are present among the 5,892 S1500
probes.

We performed a probe-wise overlap analysis to understand
the relationship between our identified SV2000 surrogate probes
and existing sets (Figure 6). Among the 5,892 probes in S1500,
237 were found in the 2,332 SV2000 surrogate probes. For
L1000, 43 of the 978 probes were present in our set. The small
overlap between these different approaches is probably due to
the redundancy within the gene expression data of the whole
genome which is the conceptual basis behind the HTT approach:
selecting a set of surrogate genes and predicting the remainder
of the genome. These differences also appear to indicate that
the information encoded in the gene expression of the three sets
of selected genes is equally predictive despite differences in the
identity of the surrogate probes.

To further investigate the predictivity of the three sets of
genes, all 3 qualitative models (SVM, RF and ANN) were used
to predict the remaining genome using SV2000, L1000, and
S1500 surrogate probes. A decision on prediction was taken
based on consensus of all three models. Table 2 summarizes
the results of this comparison showing that our set of surrogate
genes (SV2000) provided somewhat higher PSI than the other
surrogate sets. We interpret this result, i.e., that all three sets
provide PSI values above 0.7, that there is no single set of
surrogate genes that works in all cases and that the selection
is likely to be technology and approach dependent. Our set of
selected surrogate genes were powerful predictors when used
within our fitted 3-methods (ANN-RF-SVM) consensus model
and optimized for our MATLAB code. The code is available on
GitHub5.

4https://ntp.niehs.nih.gov/go/S1500
5https://github.com/ScitoVation/moa

The Importance of HTT Data for
Toxicology Applications
The use of an appropriate training set is crucial for meaningful
interpretation of HTT data. For chemical safety and MOA
applications, it is important to impute expression response
from a diverse set of chemical compounds. Data included in
both the CMAP and NIH’s LINCS collections is primarily
derived from pharmaceutical compounds. These small molecule
perturbations may differ substantially from those observed
with industrial, consumer, or agricultural compounds and
environmental toxicants or pollutants. Many pharmaceuticals
have relatively discrete modes of actions and have one or a few
possible targets in any given cell or tissue. In contrast, industrial
compounds and agrichemicals often have multiple cellular targets
and result in cellular perturbations involving many genomic
pathways. Additionally, the biological information regarding
modes of action with these compounds may be largely derived
from experimental animals rather than humans. We include one
example of this type of ontology enrichment in Supplementary
Material for the agricultural fungicide fenbuconazole (used to
primarily control molds on cereal crops) which has a liver
MOA reportedly similar to that of phenobarbital, the common
seizure-control barbiturate, which has a strong Cyp450 induction
response in human liver.

To date, there have been few attempts to explore the
application of similar gene expression prediction models to a
more diverse chemical space or to correlate predictive expression
analyses with existing in vivo dose response data relevant
to industrial or agrichemical toxicity tests. One exception is
a disease-centric approach to predict full equivalents for the
Affymetrix HG-U133-Plus-2 array to fill in missing data from
HG-U133a studies available in public repositories (Zhou et al.,
2016). It remains to be seen how broadly applicable any single
gene expression imputation method may be when applied to

FIGURE 6 | Overlap between S1500+ probe set, L1000 landmark probes and
SV2000 surrogate probes. All 978 landmark probes from Genometry’s L1000
platform are present among the 5,892 S1500 probes; hence the L1000 set in
the Venn diagram is pictured completely inside the S1500+ set. Among the
5,892 probes in S1500, 237 were found in the 2,332 SV2000 surrogate
probes. For L1000, 43 of the 978 probes were present in SV2000 set.
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situations significantly displaced in chemical space or cellular
response from those from which the data predictors were drawn.
Additional characteristics of the training data sets, such as
suitability of cell lines and representative tissues sampled in
various studies, merely adds to the challenge in assessing any
prediction platform for chemical toxicity screening.

Continued Improvement of Predictive
Transcriptomics Platforms
As technological developments decrease cost and increase
throughput of full-genome transcriptomics, new toxicogenomics
platforms are emerging alongside HTT. Novel sequence-based
technologies that move beyond traditional next-generation
approaches offer even higher throughput, such as BioSpyder’s
TempO-Seq technology (House et al., 2017; Yeakley et al.,
2017). Nonetheless, predictive transcriptomic modeling
approaches will remain valuable tools as the National Toxicology
Program implements their S1500 + initiative (NIOSH,
2013)6. Furthermore, HTT has applications in (1) efforts to
align new data using emerging genomic technologies to legacy
transcriptomics and (2) for data mining approaches of potentially
useful gene signatures or more restricted gene sets for predicting
the possibility of responses of human tissues exposed to various
compounds.

The method introduced in this paper showed improved
prediction performance compared to existing technologies. Our
platform, though, also has some limitations that could be
overcome in future versions. Identifying a set of an optimal
surrogate genes from a virtually limitless domain of possible
sets poses a technical challenge that generates computational
constraints. A sequential forward search-based GA can become
stuck in a local optimum and this can provide a false set of
surrogate genes. Here, we mitigated this possibility by removing
low-impact genes and using unsupervised clustering prior to
the GA. Alternatively, the method might be improved by
introducing computational measures to escape local minima.
The prediction performance also depends heavily on selection
of threshold for classifying the genes into three categories. Here,
we have optimized these thresholds to 0.1 for up-regulation
and -0.1 for down-regulation –a process that provided a similar
proportional distribution of up-regulated, down-regulated and

6https://ntp.niehs.nih.gov/iccvam/meetings/iccvam-forum-2016/7-niehs-tox21-
508.pdf

TABLE 2 | Comparison of prediction performances of expression classes in
response to 100 µM 2,4-dinitrophenol using three different sets of surrogate
genes (our combined set, L1000 and S1500).

Predictor Set Number of surrogate
genes used

PSI

SV2000 2,332 0.8552

L1000 978 0.7097

S1500 5,892 0.7182

The pathway similarity index (PSI) indicates the similarity between the pathways
found using actual and predicted expression classes.

unchanged genes across samples for each type of chemical in
the heterogeneous and diverse pool of chemicals. The future
challenge can be using multiple toxicogenomics data and evaluate
prediction performance across databases.

Any predictive transcriptomics technology that fails to
keep pace with changes in respective species transcriptomic
information will inevitably lose predictive power simply by
ignoring emerging data that could be used for improving
predictor selection and model training. For this reason, we plan to
continually update our training sets to maximize the applicability
domain of our models with the goal of increasing predictivity
across a broader chemical space.

The other sets of surrogate genes used for comparison in
this study are also likely to have specific strengths as well.
A deep analysis of redundancy based on a large transcriptomic
database could reveal the degree of overlap in information. Such
study can be useful to extend and improve the set of surrogate
genes. For example, a logical extension of the work presented
in this paper would be to compare the power and concordance
of chemical response prediction using our approach and the
S1500 + predictive gene set as an independent assessment to
the L1000 comparison presented here. This comparison could
help clarify if there is some optimal predictive gene expression
method, or some consistently highly predictive gene sets and
ontology pathways that are more predictive of cellular changes
associated with toxicity.

CONCLUSION

In an attempt to select an optimal set of surrogate genes,
we used a high-throughput toxicogenomics database, Open
TG-GATEs, with expression of 54,675 probes in response to
chemicals belonging to diverse classes. Given our emphasis on
HTT for human risk assessment, we focused on human primary
hepatocyte data in TG-GATEs to create a set of 2,332 surrogate
probes (SV2000) to predict expression classes of the remaining
genome. However, the data-driven predictor selection method
presented here can be applied to any gene expression data,
irrespective of species or platform used for data generation. This
approach allows for refinement of the predictor selection as
additional data become available.

Our process of generating SV2000 set made use of pathway
enrichment of up-regulated and down-regulated genes as a
measure of prediction performance – a strategy that eliminates
difficulties in predicting changes of expression directly. Rather
than having correlation coefficient or mean square error as
prediction performance of direct expression prediction, we used
a PSI that compared similarities and differences in the ontology
pathways generated with up-regulated & down-regulated genes
from both the actual and predicted gene expression classes. Our
method is open source and showed significant improvement of
prediction performance of the whole transcriptome compared to
existing technologies for the cases examined to date. Together,
these results highlight some of the challenges and opportunities
of the emerging HTT approaches and their use in assessment of
industrial and agrichemical compounds.
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