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Abstract. Satellite-retrieved solar-induced chlorophyll fluo-
rescence (SIF) has shown great potential to monitor the pho-
tosynthetic activity of terrestrial ecosystems. However, sev-
eral issues, including low spatial and temporal resolution
of the gridded datasets and high uncertainty of the individ-
ual retrievals, limit the applications of SIF. In addition, in-
consistency in measurement footprints also hinders the di-
rect comparison between gross primary production (GPP)
from eddy covariance (EC) flux towers and satellite-retrieved
SIF. In this study, by training a neural network (NN) with
surface reflectance from the MODerate-resolution Imaging
Spectroradiometer (MODIS) and SIF from Orbiting Carbon
Observatory-2 (OCO-2), we generated two global spatially
contiguous SIF (CSIF) datasets at moderate spatiotempo-
ral (0.05◦ 4-day) resolutions during the MODIS era, one
for clear-sky conditions (2000–2017) and the other one in
all-sky conditions (2000–2016). The clear-sky instantaneous
CSIF (CSIFclear-inst) shows high accuracy against the clear-
sky OCO-2 SIF and little bias across biome types. The all-
sky daily average CSIF (CSIFall-daily) dataset exhibits strong
spatial, seasonal and interannual dynamics that are consistent
with daily SIF from OCO-2 and the Global Ozone Monitor-
ing Experiment-2 (GOME-2). An increasing trend (0.39 %)
of annual average CSIFall-daily is also found, confirming the
greening of Earth in most regions. Since the difference be-
tween satellite-observed SIF and CSIF is mostly caused by
the environmental down-regulation on SIFyield, the ratio be-
tween OCO-2 SIF and CSIFclear-inst can be an effective in-
dicator of drought stress that is more sensitive than the nor-
malized difference vegetation index and enhanced vegetation

index. By comparing CSIFall-daily with GPP estimates from
40 EC flux towers across the globe, we find a large cross-
site variation (c.v. = 0.36) of the GPP–SIF relationship with
the highest regression slopes for evergreen needleleaf for-
est. However, the cross-biome variation is relatively limited
(c.v.= 0.15). These two contiguous SIF datasets and the de-
rived GPP–SIF relationship enable a better understanding of
the spatial and temporal variations of the GPP across biomes
and climate.

1 Introduction

Obtaining a spatiotemporal continuous photosynthetic car-
bon fixation or gross primary production (GPP) dataset is
crucial to food security, ecosystem service and health eval-
uation, and global carbon cycle studies (Beer et al., 2010).
However, this is not possible without remote sensing data,
since in situ carbon flux measurements, such as FLUXNET
(Baldocchi et al., 2001), are usually costly and have lim-
ited spatial and temporal coverage (Schimel et al., 2015).
Many remote-sensing-based productivity efficiency models
(PEMs) have been built, but the model structure and param-
eterizations differ from each other and the performance of
most models is not satisfactory in terms of simulated inter-
annual variability and trends (Anav et al., 2015; Chen et al.,
2017).

Müller (1874) found that the chlorophyll fluorescence
(Chl F ) from a dilute chlorophyll solution was much stronger
than the Chl F from a green leaf, suggesting that an alterna-
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tive energy pathway exists for leaves in vivo. In the 1980s,
scientists found that plant photosynthesis and heat dissipa-
tion are two alternatives to quench the excited chlorophyll,
and there is a close linkage between Chl F and carbon as-
similation rate (Genty et al., 1989; Krause and Weis, 1991).
Leaf-level photosynthesis (Aleaf) and fluorescence (Chl F )
share the same source of energy originating from photo-
synthetically active radiation (PAR) absorbed by chlorophyll
(APARchl), which can be written using a light-use efficiency
(LUE) approach (Monteith, 1972):

Chl F = PAR× f PARchl×φF (1)
Aleaf = PAR× f PARchl×φP, (2)

where φF and φP represent the efficiencies for Chl F emis-
sion and photochemistry, respectively. f PARchl, being differ-
ent from the conventional definition of fraction of photosyn-
thetically active radiation absorption, only considers the frac-
tions absorbed by chlorophyll pigments where the photosyn-
thesis and fluorescence originate (Zhang et al., 2018c). How-
ever, Chl F measurements have been mostly conducted at the
leaf level, using pulse amplitude modulation (PAM) fluorom-
eters (Porcar-Castell et al., 2008; Roháček and Barták, 1999).
In this case, the measured Chl F intensity is not induced by
the Sun but by the modulated light source. Although the ab-
solute value of the Chl F intensity does not directly link to
Aleaf, it can still be used to calculate the fluorescence yield
and investigate the reaction mechanism of the energy parti-
tioning during the light reaction, and to calculate the quantum
yield for photochemistry or as a tool to detect plant reactions
under stress (Adams and Demmig-Adams, 2004; Flexas et
al., 2002).

The successful retrieval of solar-induced (steady-state)
chlorophyll fluorescence (SIF) from satellites has made it
possible for vegetation photosynthetic activities to be ob-
served at the global scale (Frankenberg et al., 2011; Guanter
et al., 2012; Joiner et al., 2011, 2013). Satellite SIF can be
expressed as a function similar to the Chl F at the leaf level
but with extra terms considering the radiative transfer within
the canopy and through the atmosphere (Joiner et al., 2014):

SIFsat(λ)= PAR× f PARchl×2F (λ)× fesc(λ,θs,θv,φ)

× τatm(λ,θs,θv,φ), (3)

where the satellite-retrieved SIF (SIFsat), fluorescence yield
(2F ), fesc and τatm are all functions of the wavelength (λ); in
addition, fesc and τatm are also affected by sun-sensor geom-
etry characterized by Sun zenith angle (SZA; θs), view zenith
angle (θv) and relative azimuth angle (φ). fesc is a factor de-
scribing how much SIF emitted by the chloroplast leaves the
canopy, and τatm is a function of atmospheric optical depth,
which indicates how much SIF that leaves the canopy top
passes through the atmosphere before it is captured by the
satellite sensors. It should be noted that the fraction of PAR
for fluorescence (f PARF ) may have a different activation

spectrum than that for photosynthesis (f PARchl), but this dif-
ference is ignored here for simplicity. Although additional
factors come into play during this process, satellite-retrieved
SIF shows high consistency with GPP using both model
simulations and ground-based measurements from eddy co-
variance (EC) flux towers, at least at the monthly timescale
(Guanter et al., 2014; Li et al., 2018a; Zhang et al., 2016c,
b). In addition, recent studies suggest that the GPP–SIF rela-
tionship is consistent across biome types (Sun et al., 2017).
This finding, if valid across all biomes, would greatly benefit
the usage of SIF for model benchmarking (Luo et al., 2012)
and global GPP estimation.

However, several issues hinder exploring the relationship
between SIF and in situ GPP estimates. Since the SIF sig-
nal is very small and sensors used to retrieve SIF were
not initially built to estimate SIF, the satellite-retrieved SIF
usually has a large footprint and large uncertainties in in-
dividual retrievals (Frankenberg et al., 2014; Joiner et al.,
2013, 2016). For instance, the SIF retrieval from the Global
Ozone Monitoring Experiment-2 (GOME-2) has a footprint
of 40km×40km or larger, and the SIF from the Greenhouse
gases Observing SATellite (GOSAT) has a circular footprint
with 10.5 km in diameter. Direct comparison between the
satellite-retrieved SIF signal and GPP estimates from EC flux
tower sites thus faces the problem of spatial inconsistency
except in areas of large homogenous landscape, e.g., the US
Midwest cropland (Zhang et al., 2014) or boreal evergreen
forests (Walther et al., 2016). However, corn (C4 pathway)
and soybean (C3 pathway) in SIF footprints have different
electron use efficiencies (Guan et al., 2016), which should
affect the relationship between SIF and GPP. The low preci-
sion of SIF measurements also leads to a need for averaging
multiple pixels either in space or time before being used.

SIF retrieved from the Orbiting Carbon Observatory-2
(OCO-2) satellite partially solved this issue with a much
smaller footprint size (1.3km× 2.25km), higher signal-to-
noise ratio compared to GOSAT (relatively higher SIF re-
trieval accuracy) and much larger numbers of observations
per day (Frankenberg et al., 2014; Sun et al., 2018). However,
due to the sparse sampling strategy and long revisit cycle,
the OCO-2 SIF data have large gaps between nearby swaths,
and the average sampling frequency for each flux tower site
is only 3.21 year−1 during 2015–2016 (Lu et al., 2018). In
addition, OCO-2 is often aggregated to a monthly dataset at
relatively coarse spatial resolution, typically at 1◦×1◦, which
limits its application in small regions. Although several sta-
tistical methods have been proposed to downscale satellite
observations to finer spatial–temporal resolutions (Tadić et
al., 2015, 2017), considering the large land surface hetero-
geneity and wide gaps between OCO-2 swaths (∼ 100 km),
it could be challenging to apply these methods to OCO-2 SIF.

A high spatiotemporal resolution SIF dataset is needed
to improve our understanding of the relationship between
SIF and GPP and provide accurate GPP estimates at the
global scale. As discussed previously, the satellite-observed
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SIF contains signals from APARchl, fluorescence yield, and
canopy and atmospheric attenuation. APARchl is considered
to be the first-order approximation of SIF as it exhibits high
correlation with SIF at the canopy scale (Du et al., 2017;
Rossini et al., 2016; Verrelst et al., 2015; Zhang et al., 2018c).
Previous studies have shown that f PARchl can be inversely
estimated using the surface reflectances and radiative trans-
fer models (Zhang et al., 2005, 2016a). The canopy structure
information that affects the SIF reabsorption within canopy
is also embedded in the near-infrared reflectance (Badgley
et al., 2017; Knyazikhin et al., 2013; Yang and van der Tol,
2018). Many previous studies have shown high correlation
between SIF and vegetation indices (VIs), especially VIs re-
lated to the chlorophyll concentration (Frankenberg et al.,
2011; Guanter et al., 2012). Therefore, broadband surface
reflectances may have the potential to be used to estimate
vegetation information and reconstruct global SIF (Duveiller
and Cescatti, 2016; Gentine and Alemohammad, 2018a).
However, physical models that can predict SIF (e.g., the
Soil Canopy Observation, Photochemistry and Energy fluxes,
SCOPE; van der Tol et al., 2009) often require many param-
eters, making it difficult to use reflectance and modeling to
predict SIF at a larger scale.

Neural networks (NNs), together with many other ma-
chine learning algorithms, have been used with remote sens-
ing datasets in the Earth sciences, especially for carbon and
water fluxes estimation (Alemohammad et al., 2017; Jung
et al., 2011; Tramontana et al., 2016), land cover mapping
(Kussul et al., 2017; Zhu et al., 2017), soil moisture re-
trievals and downscaling (Alemohammad et al., 2018; Ko-
lassa et al., 2018) or to bypass parameterization (Gentine et
al., 2018). These studies mostly attempted to link the satel-
lite signals with limited in situ observation or model sim-
ulations for model training, while taking advantage of the
large amount of data in remote sensing observations; they
applied the trained algorithm to generate a regional or global
dataset. Reconstructing SIF from surface reflectance, on the
other hand, uses no in situ observations but faces more prob-
lems related to the satellite data quality assurance. The SIF–
reflectance relationship is complicated, and the NN benefits
from the fact that an explicit physical and radiative transfer
relationship is not required.

In this study, we aim to generate a global contiguous
SIF (CSIF) product based on the SIF retrievals from OCO-
2 and surface reflectances from Moderate-resolution Imag-
ing Spectroradiometer (MODIS) aboard the Terra and Aqua
satellites. The CSIF dataset aims to fill the spatial gaps
between the OCO-2 swaths and temporal gaps due to the
long revisit cycle of OCO-2. Specifically, we first trained
and validated the NN using the satellite-observed instanta-
neous SIF under clear-sky conditions so that the relationship
is not affected by cloud-related artifacts. We further gener-
ated two SIF products, namely the clear-sky instantaneous
SIF (CSIFclear-inst) and the all-sky daily SIF (CSIFall-daily).
The spatiotemporal variations of these CSIF products were

analyzed and compared with SIF from OCO-2 and three
other GOME-2 SIF datasets. Finally, we showed two applica-
tions of CSIF datasets: (1) monitoring drought impact using
CSIFclear-inst and OCO-2 SIF; (2) evaluating the GPP–SIF
relationship by comparing CSIF with GPP estimates from
40 flux tower sites.

2 Materials and methods

2.1 OCO-2 solar-induced chlorophyll fluorescence
dataset

The 8100r OCO-2 SIF data between September 2014 and
December 2017 were used for NN training and evaluation
(Frankenberg, 2015; Frankenberg et al., 2014; Sun et al.,
2018). The daily sounding-based SIF retrievals at 757 nm
were first aggregated to 0.05◦ (around 5.6km×5.6km at the
Equator), consistent with MODIS Climate Modeling Grid
(CMG) resolution. The reasons for using this resolution in-
clude the following: (1) it is directly comparable (of the same
order of magnitude) to the OCO-2 SIF footprint size (around
1.3km× 2.25km) and the samples within each grid cell can
be more evenly distributed and thus more representative of
the grid cell SIF values than using much coarser 1◦× 1◦ or
2◦×2◦ grids; (2) by averaging multiple observations, the un-
certainty in the SIF signal can be approximately reduced by a
factor of

√
n (n is the number of observations within this grid

cell), assuming independent estimates and homogeneous SIF
value within each grid cell (Frankenberg et al., 2014). During
this aggregation, we only used cloud-free observations indi-
cated by the OCO-2 cloud flag. For each 0.05◦ grid cell, the
SIF value was only calculated when it contained more than
five cloud-free SIF soundings. Although several studies have
shown that SIF at different wavelengths has different sen-
sitivity to stress and leaf and canopy reabsorption (Porcar-
Castell et al., 2014; Rossini et al., 2015, 2016), we only use
SIF at 757 nm since it showed superior performance to SIF
at 771 nm in predicting GPP (Li et al., 2018a). The years
2015 and 2016 were used for training and 2014 and 2017
were used for validation. Altogether, 2 947 819 SIF grid cells
passed quality check during 2014–2017. Figure 1 shows the
spatial distribution of the SIF grid cells used for training and
validation (test). It should be noted that the OCO-2 satellite
started obtaining data from September 2014 and experienced
some malfunctioning during August and September in 2017,
causing lower coverage for validation samples in boreal re-
gions.

In addition to these cloud-free observations, we also cal-
culated the all-sky SIF at 0.05◦ resolution. All SIF retrievals
that passed the suggested quality checks (documented in de-
tailed by Sun et al., 2018) were used for the aggregation. The
aggregated all-sky instantaneous SIF retrievals were con-
verted to daily values based on the solar zenith angle (Zhang
et al., 2018a). We used this dataset to validate the all-sky
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Figure 1. Samples that were used for NN training (years 2015 and 2016) and validation (2014 and 2017). Panels (a) and (b) show the
spatial distribution of observation day of year (DOY) and panels (c) and (d) show the spatial distribution of the sample density. Each point in
panels (a) and (c) represents a 0.05◦ training grid cell. Limited observations in South America were caused by the South Atlantic Anomaly
(Sun et al., 2018).

daily SIF (CSIFall-daily) (see Sect. 2.5). In both cloud-free and
all-sky aggregations, only observations from the nadir mode
were used since glint mode tends to underestimate SIF (Sun
et al., 2018).

2.2 MODIS reflectance dataset (MCD43C4 V006)

We used the 0.05◦ daily nadir bidirectional reflectance dis-
tribution adjusted reflectance (NBAR) product from MODIS
(MCD43C4 V006) during 2000–2017 as input variables for
the NN. The NBAR product computed the reflectance at a
nadir viewing angle for each pixel at local solar noon. Com-
pared to MOD09 or MYD09 surface reflectance product, it
removed the angle effects and therefore should be more sta-
ble and consistent (Schaaf et al., 2002). This dataset was
processed in two different ways for training and prediction.
For the training process, following Gentine and Alemoham-
mad (2018a), we extracted the reflectance from the first four
bands of MODIS (centered at 645, 858, 469 and 555 nm, re-
spectively) for the corresponding pixels and days when the
cloud-free SIF observations were obtained. It should be noted
that although the MCD43C4 is generated for each day and
can match the daily SIF observations, the MCD43C4 NBAR
uses 16 days worth of inputs and so that the reflectances in-
cludes the information on other days than the day of inter-

est. However, we consider this to have limited effects since
(1) the vegetation growth/changes are continuous in time,
(2) the NBAR product uses 16-day data but also emphasizes
the specific day of interest (Schaaf, 2018). These four bands
were selected because the visible and near-infrared bands
included most of the vegetation information and drives the
variation of SIF (Verrelst et al., 2015). We also tested us-
ing all seven bands with/without the meteorological variables
(temperature and vapor pressure deficit, obtained from the
OCO-2 SIF lite files) to train the NN, but the improvements
in training and validation were very minor (R2 increased by
less than 0.01; data not shown), and thus we decided not to
use it. Since SIF is very sensitive to the incoming solar ra-
diation, using cloud-free training samples can minimize the
uncertainty of using cosine of the solar zenith angle as the
proxy of incoming PAR. It should be noted that the training
dataset may contain snow-affected samples, but these were
not removed to get a more realistic prediction of SIF during
winter.

For prediction, we first aggregated the daily reflectance to
4 days. The 4-day temporal resolution is selected to reach a
balance among application requirements, information redun-
dancy and dataset sizes. During this process, we used a gap-
filling and smoothing algorithm to reconstruct the surface re-
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flectance for the four bands. The detailed description of the
gap-filling algorithm can be found in Zhang et al. (2017a).
In this study, we slightly modified the algorithm by not ap-
plying the best index slope extraction (BISE) algorithm and
Savitzky–Golay (SG) filter. The reconstructed 4-day 0.05◦

reflectance together with other datasets allowed us to predict
SIF at 4-day 0.05◦ resolution during 2000–2017. Since this
processing does not involve any extra information and only
uses the reflectance observations from the successful model
inversion, it should be comparable to the reflectance used for
NN training.

2.3 Machine learning algorithms

A feed-forward NN is a number of computational nodes
(called neurons) structured in a single or multi-layer archi-
tecture. Each neuron is connected with all neurons in the pre-
vious layer and next layer. The neuron values are calculated
using an activation function with a pre-activated value, i.e.,
the weighted sum of all neurons in previous layer plus biases.
The training of the NN attempts to optimize these weights
and biases so that the differences between the output vari-
able in the training data and NN prediction are minimized. In
this study, we used Tensorflow (https://www.tensorflow.org,
last access: 27 September 2018) and built feed-forward net-
works with one to three layers and two to nine neurons for
each layer. After training models with data from 2015 and
2016, we validated the models using the test dataset from the
years 2014 and 2017. We then picked the one with best per-
formance and simplest structure for SIF prediction. The rec-
tified linear unit (ReLU) was used as the activation function
since it has shown better performance in our application, and
the cost function used is the root mean square error (RMSE).
We used 50 epochs with a batch size of 1024. Before training,
each variable was normalized by its mean and standardized
deviation. Since the NN is not deep and there is no sign of
overfitting, we did not use any regularization methods during
the training.

2.4 Reconstructing the clear-sky instantaneous SIF and
daily SIF

During the NN training process, we only used the SIF
and reflectance data in clear-sky conditions, and therefore
cos(SZA) was used as a proxy of the incoming photosyn-
thetically active radiation at top of canopy. In the prediction
process, we also used the calculated cos(SZA) based on the
satellite overpass local solar time and latitude. Since we did
not consider the cloud and aerosol attenuation of the PAR,
this product was referred to as the “clear-sky instantaneous
SIF (CSIFclear-inst)”.

In addition to the clear-sky instantaneous SIF, we also cal-
culated two daily SIF data by assuming that the incoming
solar radiation is the only factor that drives the diurnal cy-
cle (Zhang et al., 2018a). All-sky daily SIF (CSIFall-daily)

can be calculated using the clear-sky top-of-canopy radia-
tion (PARclear-inst) and the daily average radiation from the
Breathing Earth System Simulator (BESS) (Ryu et al., 2018):

CSIFall-daily =
CSIFclear-inst

PARclear-inst
×PARBESS

daily , (4)

where PARclear−inst was calculated following previous stud-
ies that only considered atmospheric scattering (see Ap-
pendix A1). Clear-sky daily SIF (CSIFclear-daily) assumes no
cloud throughout the day and can be calculated by multiply-
ing CSIFclear-inst with a daily correction factor (γ ) (Zhang et
al., 2018a):

CSIFclear−daily = CSIFclear−inst× γ. (5)

γ is calculated as the ratio between the cos(SZA) during the
satellite overpass and the daily averaged cos(SZA).

2.5 GOME-2 SIF (SIFGOME-2), reconstructed SIF from
GOME-2 (RSIFGOME-2) and SIF∗ datasets

In this study, we also used the GOME-2 SIF (SIFGOME-2),
reconstructed SIF from GOME-2 (RSIFGOME-2) using ma-
chine learning and the SIF∗ dataset in comparison with our
contiguous SIF from OCO-2. The GOME-2 SIF V27 was
retrieved using a principle component analysis algorithm in
the wavelength range 734–758 nm (Joiner et al., 2013, 2016).
The V27 version, compared to the widely used V26, provides
daily correction factor and improved bias correction and cal-
ibration (https://avdc.gsfc.nasa.gov/, last access: 27 Septem-
ber 2018). The level-3 monthly 0.5◦ daily average SIF was
used to compare with CSIFall-daily.

RSIFGOME-2 (Gentine and Alemohammad, 2018a) uses a
similar machine learning technique approach to CSIF but the
training is based on the biweekly gridded SIF product from
GOME-2 and the 8-day MYD09A1 reflectance dataset. Both
clear-sky and cloudy-sky SIF are used for NN training. This
dataset has a spatial resolution of 0.05◦ and 8-day temporal
resolution. Both RSIFGOME-2 and CSIFall-daily were aggre-
gated to the 0.5◦ and semi-monthly to facilitate the compari-
son.

The SIF∗ dataset (Duveiller and Cescatti, 2016) applies a
statistical method and calibrates a model that links monthly
0.5◦ SIF to the normalized difference vegetation index
(NDVI), evapotranspiration (ET) and land surface tempera-
ture (LST) dataset for each moving window. The model and
its spatiotemporally varied parameters were then applied to
finer resolution dataset (NDVI, ET, LST) with a weighted
average to generate SIF at 0.05◦ resolution. In this study,
we used the 0.5◦ monthly SIF∗ dataset during 2007–2013 to
compare with CSIF.

2.6 Comparing CSIF with GPP at flux tower sites

We further compared the CSIF dataset to GPP es-
timates from the tier 1 FLUXNET2015 datasets

www.biogeosciences.net/15/5779/2018/ Biogeosciences, 15, 5779–5800, 2018
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Figure 2. Predicted SIF in comparison with the OCO-2 SIF. Red lines represent the regression slope and the black dotted lines represent the
1 : 1 line.

(http://fluxnet.fluxdata.org, last access: 27 September
2018) to investigate the SIF–GPP relationship. Since the
CSIF dataset is continuous in space and time, it provides
many more samples pairs compared to the original OCO-2
SIF data (Lu et al., 2018). However, because of the land-
scape heterogeneity and inconsistency between the flux
tower footprint and CSIF pixel size, a rigorous site selection
is needed. We took the vegetation growth condition into
consideration during this process: (1) the annual average,
minimum, maximum and seasonal variability (represented
by standard deviation) of NDVI (from MOD13Q1 C6) for
the target pixel (where the flux tower is located, 250 m
by 250 m) need to be similar (within 20 % difference or
0.05 NDVI) to the neighboring (5 km by 5 km) area; (2) the
maximum NDVI value for target pixel and neighboring area
needs to be greater than 0.2 (not barren). The daily GPP
estimates, estimated using nighttime method (Reichstein
et al., 2005), were averaged and aggregated into 4-day
values to compare with CSIF. The 4-day GPP based on
more than 80 % of half-hourly valid (not gap-filled) net
ecosystem exchange was retained. Only sites that have at
least 92 valid observations (1 year) were used. Only 40 out
of 166 sites passed these criteria and were grouped into
different biome types (Table S1). In addition to CSIFall-daily,
we also calculated CSIFclear-daily and CSIFsite which used
flux-tower-observed radiation instead of PARBESS

daily in Eq. (4).

3 Results

3.1 NN training and validation

The NN with one layer and five neurons generally pre-
dicts the OCO-2 SIF during the training with a coeffi-
cient of determination (R2) around 0.8 and an RMSE of
0.18 mW m−2 nm−1 sr−1 (Fig. 2). The model also performs
well in the validation (R2

= 0.79, RMSE= 0.18) and does

not show effects of overfitting. Using a variety of layer (one
to three) and neuron (two to nine) combinations, we found
that one layer with five neurons exhibited slightly higher
model performance during the validation compared with a
more complex NN (Fig. A1 in Appendix). Therefore, we
chose to use the four-band reflectances to feed the one-layer-
five-neuron NN to generate the contiguous SIF for 2000 to
2017 when MCD43C4 NBAR dataset is available.

We also investigated the bias of our prediction among dif-
ferent biome types in Fig. 3. For 9 out of 14 biome types,
the differences between the CSIFclear-inst and the satellite-
retrieved SIF are less than 10 %, and most of the biases were
within 5 %. Wetlands and urban ecosystem show a 15 % bias
compared to the satellite-retrieved SIF, which may be caused
by the water or built-up contamination on the reflectance sig-
nal and the relatively small sample numbers. For savannas
and grassland, the changes in fluorescence yield due to sea-
sonal drought may be important, which cannot be consid-
ered in the NN based on reflectances only. Over croplands,
CSIF exhibits a 12 % underestimation. The croplands usually
have high nitrogen/chlorophyll concentration that may not be
fully captured by the four broadband reflectances (Wu et al.,
2008). Because we did not build biome-specific NNs for the
training, we do not expect biome-specific (especially needle-
leaf vs. broadleaf) relationships between SIF and reflectance.
Interestingly, we still reproduced SIF with very high accu-
racy regardless of the plant function traits (PFTs), i.e., leaf
types and canopy characteristics (leaf clumping, etc.). This
suggests that the escape factor and long-term changes in
mean fluorescence yield might be correctly accounted for by
the NN across PFTs, through the information available in the
reflectances only. However, it should be noted that this does
not suggest that the NN and reflectances can fully replicate
the fluorescence yield variations due to short-term variations
caused by stresses.

Biogeosciences, 15, 5779–5800, 2018 www.biogeosciences.net/15/5779/2018/

http://fluxnet.fluxdata.org


Y. Zhang et al.: A global spatially contiguous solar-induced fluorescence dataset 5785

C
SI

F i
ns

t−
cl

ea
r −

SI
F O

C
O

−2
  (

m
W

 m
−2

 n
m

−1
 s

r−1
 )

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

EN
F

EB
F

D
N

F

D
BF M

F

C
SH

O
SH

W
SA SA

V

G
R

A

W
ET

C
R

O

U
R

B

C
N

V

34023

0.2%

103192

2.25%

28712

8.33%

14209

−4.88%

134435

−3.67%

1428

6.85%

542538

−0.24%

159459

4.22%

153015

10.11%

426108

14.19%

11677

12.29%

263781

−12.72%

4116

−14.59%

106569

−3.44%

Figure 3. Difference between CSIFclear-inst and SIFOCO-2 for major biome types during 2014–2017. The MODIS land cover dataset for
2010 was used to identify the land cover type for each 0.05◦ grid cell (Friedl et al., 2010). The red percentages above each box represent the
mean relative error, and the numbers on top of the figure frame represent the total sample numbers for each biome type. Abbreviations are
as follows: ENF, evergreen needleleaf forest; EBF, evergreen broadleaf forest; DNF, deciduous needleleaf forest; DBF, deciduous broadleaf
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wetland; CRO, cropland; URB, urban; CNV, cropland or natural vegetation mosaics.

We also compared the time series of predicted CSIF and
OCO-2 SIF for 12 typical biome types (Fig. 4). The predicted
CSIF accurately captures the seasonal and interannual vari-
ation for most biome types, while the standard deviation for
each DOY is usually smaller than OCO-2 SIF. This may sug-
gest that the uncertainty of SIF is smaller in CSIF dataset.
For some ecosystems, e.g., DBF, MF and CRO, CSIF shows
slight underestimation during the peak growing season.

When comparing the daily average SIF from satel-
lite retrievals with the predicted all-sky daily CSIF
(CSIFall-daily) dataset (Fig. 5), the predicted SIF exhibits
∼ 7 % underestimation, with an R2 of 0.71 and a RMSE
of 0.08 mW m−2 nm−1 sr−1. The clear-sky daily CSIF
(CSIFclear-daily) shows∼ 11 % overestimation, with a slightly
higher R2 and lower RMSE. Considering the uncertainty in
SIF retrievals and the inconsistency in time of the compari-
son (satellite SIF was based on instantaneous PAR at the time
of satellite overpass and converted to daily values assuming
the atmospheric condition did not change within a day; pre-
dicted CSIF was based on 4-day average PAR), the all-sky
daily CSIF performs reasonably well.

3.2 Spatial–temporal variation of the global 0.05◦ SIF
datasets

Using the trained NN with the gap-filled reflectance datasets,
we produced two global CSIF datasets at 4-day temporal and
0.05◦ spatial resolution. Figure 6 shows the spatial patterns
of the 90th percentile for each pixel and the annual average
for both clear-sky instantaneous CSIF (CSIFclear-inst) and the
all-sky daily average CSIF (CSIFall-daily). For the 90th per-
centile, CSIFclear-inst exhibits hotspots in the tropical rain-
forest, south Asia and the North American corn belt, con-

sistent with regions with high peak productivity (Guanter et
al., 2014); CSIFall-daily shows similar spatial patterns but with
relatively lower values in the tropical forest, due to the per-
sistent cloud coverage. For the annual average SIF, tropical
forests exceed temperate cropland and show very high val-
ues for instantaneous clear-sky SIF. In all conditions, African
tropical forests exhibit lower values than Amazonian and
Southeast Asian tropical forests.

We further investigated the seasonal and interannual vari-
ations of the all-sky daily SIF across the latitudes. The tropi-
cal regions show continuous high SIF values across seasons,
and the northern mid- to high-latitude regions also exhibit
recurrent high values during the Northern Hemisphere sum-
mers (Fig. 7a). Near 40◦ S, a hot spot is present in austral
summer, with high interannual variability. Low SIF values
can be found in dry years (2006–2007, 2009–2010), while
high values were observed in wet or normal years (2010–
2011, 2012–2015). The global average SIF also displays a
strong seasonality coinciding with the Northern Hemisphere
growing season (Fig. 7b). For the annual total SIF values, a
statistically significant increasing trend (Mann–Kendall test,
p<0.0001) is found with around 0.39 % increase per year.
The year 2015 exhibited a low anomaly after detrending,
which may be caused by the El Niño events (Fig. 7c).

The spatial pattern of the trend in CSIFall-daily is displayed
in Fig. 8. An increasing trend dominates Europe, southeast
Asia and south Amazon. A decreasing trend is mostly found
in east Brazil, east Africa and some areas of inland Eurasia.
The histogram also shows a positive shift with a magnitude
(0.00027 mW nm−1 sr−1 yr−1) similar to the average global
trend in Fig. 7c. The spatial pattern of CSIFall-daily is very
similar to the trend pattern of MODIS enhanced vegetation
index (EVI) (C6) (Zhang et al., 2017b), but the south Brazil-
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Figure 6. Spatial pattern of maximum (90th percentile) and average daily values for instantaneous clear-sky SIF and all-sky daily SIF. All
values are in units of mW m−2 nm−1 sr−1.

Figure 7. Seasonal and interannual variation of all-sky condition daily CSIF (CSIFall-daily). (a) The latitudinal averages of CSIFall-daily for
each 4-day period (in mW m−2 nm−1 sr−1). (b) Global average of CSIFall-daily for each 4-day period. (c) The annual average CSIFall-daily
between 2001 and 2016 (black line) with linear fit (red dashed line).

ian Amazon forest shows a more positive trend than that of
EVI.

3.3 Comparison between SIF from GOME-2 and CSIF

We then compared the CSIF datasets with the reconstructed
SIF (RSIF) and SIF∗ based on coarser-scale and all-sky
GOME-2. Although these datasets were trained based on dif-
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Figure 8. Trend of annual average CSIFall-daily during 2003–2016. The trend is calculated by the Sen’s slope estimator. Dots represent
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ferent satellites, the relationship between CSIF and RSIF or
CSIF and SIF∗ is consistent across most regions across the
globe (Fig. 9). The R2 values are generally high (> 0.8) for
most regions except over tropical rainforests, barren regions
in western US, northwestern China, and northern Canada
and Russia. The low R2 values are mostly due to the rela-
tively low variability in the temporal domain in the tropics
but are also indicative of regions strongly polluted by cloud
cover in which CSIF might have a competitive advantage,
as the training OCO-2 data better observe the surface due to
smaller footprint and with higher signal-to-noise ratio. The
regression slopes are higher for regions with persistent cloud
cover (e.g., tropical forest). In the time series comparison
(Fig. 9e–p), all three SIF datasets show similar seasonal pat-
terns, while GOME-2-based RSIF and SIF∗ generally show
higher values than CSIF. In addition, RSIF exhibits larger
fluctuation during the non-growing season for some sites,
which may be caused by snow contamination.

We further compared the CSIFall-daily with GOME-2 daily
average SIF (Fig. 10). In general, the correlation is much
lower as compared with RSIF for most regions. For regions
with high variability in temporal domain, the CSIFall-daily still
shows high R2 values with respect to GOME-2 SIF. The re-
gression slopes exhibit smaller variation except for the Ama-
zonian tropical rainforests, southeast Asia and barren regions
in the Sahara, western US, northwestern China, central Aus-
tralia and the Andes mountains in South America. In gen-
eral, considering the various uncertainties and different satel-
lite overpass times, sensors used and retrieval algorithms,
CSIFall-daily well captured the GOME-2 SIF variations both
in space and time. In addition, since GOME-2 SIF in most
Argentina is affected by the South Atlantic Anomaly (SAA),
the coefficient of determination values are also lower as com-
pared with Fig. 9.

3.4 Using CSIF for drought monitoring

Since the CSIF dataset only uses broadband reflectances, it
should not contain the SIFyield information. Compared to
the SIF retrieved from OCO-2, the difference can be mostly
attributed to the SIFyield. Therefore, the difference or ratio
between SIFOCO-2 and CSIF can reflect the environmental
stress on SIFyield. Figure 11 shows the difference between
instantaneous clear-day OCO-2 SIF and CSIFclear-inst. Ex-
cept for Fig. 11c, the difference mostly captures the phys-
iological limitation of drought on energy partitioning after
being absorbed by chlorophyll. The spatial extent of drought
is also well-captured by the difference, where the most se-
vere drought-impacted places also exhibited the largest de-
cline (e.g., Namibia, Botswana, Zimbabwe in Fig. 11a, north-
east Amazon in Fig.11b and southern Spain, southernmost
France, central Italy, Croatia and Bosnia and Herzegovina).
The drought impact on California is less pronounced, pos-
sibly because of the irrigation systems and sparse sampling
points.

We further focused on the 2015 European drought to com-
pare the drought response of CSIF and two vegetation indices
(NDVI and EVI). Because the OCO-2 samples were not col-
lected at the same swath for each DOY, a large fluctuation
can be found in OCO-2 SIF and on the CSIF (which are using
the same pixels for a fair comparison) (Fig. 12a–d). However,
when calculating the ratio between CSIF and OCO-2 SIF, its
variation can be mostly attributed to the variation in SIFyield,
which can quantify the drought stress on plant physiology.
In all three regions, the ratio between OCO-2 SIF and CSIF
experienced a decrease during the drought period, but the
signal is only obvious after applying a smoothing filter. The
two vegetation indices, NDVI and EVI, on the other hand,
show a reduced response in Spain and Italy, perhaps due to
the plants’ adaption or very short drought duration.
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Figure 9. Comparison between CSIF, RSIFGOME-2 and SIF∗ dataset. Regression slopes and coefficient of determination (R2) between the
contiguous clear-sky condition instantaneous SIF from OCO-2 (CSIFinst-clear) and the reconstructed SIF from GOME-2 (RSIFGOME-2 a, b)
or SIF∗ (c, d) dataset. The regressions are forced to pass the origin. The CSIFclear-inst is aggregated to semi-monthly and 0.5◦× 0.5◦ spatial
resolution to be consistent with RSIFGOME-2. Comparison uses the data between 2007 and 2016 (RSIF) or 2007 to 2013 (SIF∗). White
regions are barren regions. (e–p) Time series comparison among CSIF (red), RSIFGOME-2 (blue) and SIF∗ (green) for pixels in 12 major
land cover types shown in Fig. 4.

3.5 GPP–CSIF relationship across biome types

With this contiguous SIFall-daily dataset, we finally evalu-
ated the GPP–CSIF relationship using GPP estimates from
40 flux tower sites from FLUXNET tier 1 dataset. The regres-
sion slope between GPP and CSIF (aGPP/CSIF) spreads across
sites with a regression slope ranging from 11.91 to 68.59
(g C m−2 day−1/mW m−2 nm−1 sr−1) for CSIFall-daily, 11.61
to 72.10 (g C m−2 day−1/mW m−2 nm−1 sr−1) for CSIFsite
and 11.37 to 62.75 (g C m−2 day−1/mW m−2 nm−1 sr−1) for
CSIFclear-daily. The R2 value for each individual site ranges
from 0.01 to 0.93 with a median value of 0.64, 0.62 and
0.69 for all-daily, site and clear-daily CSIF, respectively. The
RMSE is 1.67 g C m−2 day−1 on average.

Although the CSIF–GPP relationship varies across
40 sites, when lumping all observations within each biome
type, the variation is smaller (c.v.= 0.16, rhombus in
Fig. 13c, f, i). Specifically, ENF exhibited a significant larger
aGPP/CSIF (two-tailed Student’s t test, p = 0.036), which is
caused by a stronger canopy reabsorption/scattering of SIF.
OSH only has one site and also showed very high value.
If both biomes are eliminated, the aGPP/CSIF for the other
biomes exhibited smaller variation (c.v.= 0.08).

The CSIF–GPP relationship not only varies across biomes
but also varies within each biome type, especially for ever-
green needleleaf forest (ENF, nine sites), grassland (GRA,
eight sites) and wetland (WET, two sites) (Fig. 13c, f). For
CSIFall-daily, the average within-biome variation of aGPP/CSIF
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Figure 10. Regression slopes and coefficient of determination (R2)
between the contiguous all-sky condition daily SIF from OCO-2
(CSIFall-daily) and the satellite-retrieved daily SIF from GOME-2
(SIFGOME-2). The regressions are forced to pass through the origin.
The CSIFall-daily is aggregated to monthly and 0.5◦× 0.5◦ spatial
resolution to be consistent with SIFGOME-2. Comparison uses the
data between 2007 and 2016.

(c.v.= 0.26±0.08) is comparable to cross-site variations
(c.v.= 0.34) but larger than the cross-biome variations
(c.v.= 0.16, using the biome-specific CSIF–GPP factor). A
similar pattern can be found using CSIFsite or CSIFclear-daily.

4 Discussion

4.1 Information in contiguous SIF produced by
machine learning

Vegetation photosynthetic activity has variations in several
respects controlled by vegetation type, phenology, coverage
and interactions with the environment. These variations can
be expressed in the spatial, seasonal, diurnal and/or interan-
nual domains (Zhang et al., 2018a). Machine learning algo-
rithms try to minimize the differences between the predicted
SIF and the satellite-observed SIF. For OCO-2 SIF and the
MODIS reflectance used for NN training, the variance in the
spatial and seasonal domains is largest. Therefore, the NN
generally predicts SIF well in these two domains. The inter-
annual variations (i.e., the variations caused by year-to-year
anomalies, e.g., due to drought) typically have much smaller
variance and are more difficult to capture. This is why some
machine learning products fail to reproduce interannual vari-
ability accurately (Jung et al., 2011). Using additional vari-
ables that are sensitive to this interannual anomaly in the

model training can improve the model performance (Alemo-
hammad et al., 2017; Gentine and Alemohammad, 2018b;
Tramontana et al., 2016).

In this study, since the variations in SIFyield are relatively
small (Lee et al., 2015) and cannot be detected by broadband
surface reflectances, the SIFyield information may not be re-
produced by our CSIF data. Because the environmental lim-
itation on SIFyield may be complicated (may not be a linear
combination of temperature, vapor pressure deficit (VPD) or
surface reflectance in the shortwave infrared) and biome spe-
cific (van der Tol et al., 2014), inclusion of other environmen-
tal variables and reflectances in shortwave bands during NN
training did not greatly increase the SIF prediction accuracy.
It should also be noted that SIFyield is relatively stable when
no strong environmental limitation is present (Zhang et al.,
2018c). Therefore, the CSIF product should be considered as
a good proxy of OCO-2 SIF.

The satellite-retrieved SIF has a relatively large uncer-
tainty for each individual sounding, typically ranging be-
tween 0.3 and 0.5 mW m−2 nm−1 sr−1 (Frankenberg et al.,
2014). Previous site-level studies usually use SIF averaged
over a large buffered area (Li et al., 2018a; Verma et al.,
2017) to reduce the uncertainty. Assuming the uncertainty
is unbiased and has a Gaussian distribution, machine learn-
ing algorithms are designed to reproduce SIF with lower un-
certainty. Compared with previous studies that use light-use
efficiency models to downscale SIF to higher resolution (Du-
veiller and Cescatti, 2016), this study does not rely on multi-
ple modeled input (evapotranspiration, for example) that may
introduce additional uncertainties.

We also found a significant increasing trend (0.39 % yr−1)
in the global annual CSIFall-daily (Fig. 7). This trend is
close to the GPP trend derived from the satellite-data-driven
vegetation photosynthesis model (VPM) (0.32 % yr−1)
(Zhang et al., 2017a) but much greater than GPP de-
rived from other remote sensing data-driven models
– FLUXCOM (0.01 % yr−1; Tramontana et al., 2016),
BESS GPP (0.22 % yr−1; Jiang and Ryu, 2016), MODIS
C6 (0.26 % yr−1; Zhao et al., 2005) and WECANN
(−0.8 % yr−1, affected by the decreasing GOME-2 SIF
trend; Zhang et al., 2018b; Alemohammad et al., 2017). Con-
sidering there is no significant trend (−0.02 % yr−1, p>0.1)
in BESS PAR (Ryu et al., 2018), this increase is likely caused
by the greening of the Earth (Zhang et al., 2017b; Zhu et al.,
2016) as captured in the MODIS reflectance data. This in-
creasing trend is also within the range of most Earth system
models’ predictions (Anav et al., 2015). We also observed
a more pronounced increasing trend in the southern Ama-
zon than when using MODIS EVI (Zhang et al., 2017b).
This may suggest that CSIF is less likely to suffer from high
biomass saturation than optical vegetation indices and can
more effectively detect changes in tropical rainforests or over
high leaf area regions such as croplands.
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Figure 11. Difference between the OCO-2 SIF and CSIFclear-inst for four specific drought events during 2014–2017. (a) Southern Africa
drought between October 2015 and February 2016. (b) Northeast Amazon drought between January and March 2016. (c) California drought
between January and March 2015. (d) Southern Europe drought between July and August 2017.

4.2 The use of satellite SIF for drought monitoring

Drought can be categorized into different stages. At an early
stage, when plants sense water deficit in the soil and higher
vapor pressure deficit in the atmosphere, they reduce water
loss through stomatal closure. This, in turn, also reduces the
CO2 exchange from stomatal closure and inhibits photosyn-
thesis. The quantum yield for heat dissipation will increase
accompanied by a decrease in quantum yield for photochem-
ical quenching and fluorescence (Genty et al., 1989; Porcar-
Castell et al., 2014). This should allow satellites to poten-
tially capture this decrease in the SIF signal (especially dur-
ing the mid-afternoon when stress is more pronounced) as an
indicator of vegetation stress. In the second stage, with pro-
longed dry conditions, plants will recycle the nitrogen in the
leaves as represented by a decrease of the greenness (chloro-
phyll content) of leaves. In the third stage, if the drought con-
tinues, leaf senescence and vegetation mortality may follow.
SIF can potentially detect changes during all those drought
stages, whereas broadband reflectance-based indices (NDVI,
EVI) should only see the second and third stages.

Previous drought monitoring studies have mostly used
vegetation indices (VIs) as a indictor of drought stress (Ji and
Peters, 2003; Zhang et al., 2013). However, vegetation in-
dices can only respond to drought changes in the plants’ op-
tical properties (mostly during the second and third stages).
For most plants, there might be a tipping point where plants
will not recover from drought-induced xylem cavitation (Urli
et al., 2013). Since most VIs (e.g., NDVI, EVI) are most
sensitive to the canopy changes, drought monitoring based
on VIs may not be useful for drought mitigation and agri-

cultural irrigation management. SIF retrievals from satellite,
compared to optical reflectance signals, carry the information
not only about the PAR absorption by chlorophyll but also
about the drought stress on plant physiology. Although previ-
ous studies used satellite-based SIF datasets for post-drought
impact assessment (Lee et al., 2013; Yoshida et al., 2015;
Sun et al., 2015; Wang et al., 2016), these studies did not
separate the contribution of decreased APARchl or deceased
SIFyield. A more recent study compared the SIF and VIs in
India during heat stress (Song et al., 2018) and found that
SIF is more sensitive to heat stress than VIs. Similarly, since
NDVI and EVI cannot well capture the change in chloro-
phyll concentration, heat stress on APARchl and SIFyield can-
not be fully separated. This study developed a new method
to compare the difference between SIF signals and the re-
flectances, which can be applied for early drought warning
at global scale. Although daily OCO-2 data have large gaps
between swaths, combining several days of observation can
provide enough spatial coverage considering the spatial ex-
tent for most drought events. The spatial coverage issues
could be further improved using geostatistical-based meth-
ods (Tadić et al., 2017), but this may need further investiga-
tion. Compared to other meteorological drought indices, this
drought monitoring technique uses only near real-time data
and avoids the interannual anomalies caused by other fac-
tors (land cover change, crop rotation, etc.). The MCD43C4
dataset uses 16 days of inputs for the model inversion, and al-
though this may lead to temporal inconsistencies for the com-
parison between CSIF and OCO-2 SIF, it may have limited
effect due to the higher data quality during drought because
of the reduced cloud coverage.

www.biogeosciences.net/15/5779/2018/ Biogeosciences, 15, 5779–5800, 2018
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Figure 12. (a) Spatial distribution of OCO-2 SIF observations during 1 January to 1 November in 2015. Different colors represent the
observation DOY. (b–d) Average OCO-2 SIF, CSIF NDVI and EVI for the three countries as indicated by three boxes in panel (a). For two
vegetation indices, the red color represents the observations in 2015 and blue color represents multi-year average (2000–2014). (e–g) The
ratio between OCO-2 SIF and CSIF (SIF) or vegetation indices in 2015 and multi-year average. The thick grey line presents the splines’
smoothed SIF ratio.

4.3 Cross-biome and within-biome GPP–CSIF
relationship

In contrast to Sun et al. (2017), we found a large variation
of GPP–CSIF relationship across sites. Compared to previ-
ous studies, our study gave higher aGPP/CSIF estimates, prob-
ably due to a much higher aGPP/CSIF value for evergreen
needleleaf forest (10 out of 40 sites are ENF) (Table S1 in
the Supplement) and slight underestimation of CSIFall-daily
dataset. This higher aGPP/CSIF value for ENF was also sug-
gested by the comparison between OCO-2 SIF and FLUX-
COM GPP dataset (Sun et al., 2018) and other comparisons
using GOSAT SIF (Guanter et al., 2012). Consistent with
Li et al. (2018b), we also found small cross-biome variation
of the GPP–SIF relationship. However, a large within-biome

variation of aGPP/CSIF is also found, which contributes to a
large proportion of the observed cross-site variations rather
than the cross-biome variation. Compared to studies that use
OCO-SIF within a large buffering area (e.g., 40 km diameter
circle in Verma et al., 2017), we made the comparison over a
much smaller area and much higher temporal frequency.

There are several explanations for the observed site-
specific GPP–SIF relationship. (1) Leaf morphology may di-
rectly affect the reabsorption and scattering of SIF that leaves
the foliage (Atherton et al., 2017); however, this factor is not
considered in current SIF modeling (van der Tol et al., 2009;
Verrelst et al., 2015) and will directly affect the model sim-
ulation of the GPP–SIF relationship at the ecosystem scale
(Verrelst et al., 2016; Zhang et al., 2016c). (2) Vegetation
canopy characteristics also affect the reabsorption and scat-
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Figure 13. Comparison between GPP estimates from 40 EC flux towers and CSIFall-daily (a–c) that uses BESS PAR, CSIFsite (d–f) that
uses site-measured radiation and CSIFclear-daily (g–i) that assumes clear-sky condition. The 40 sites were grouped into forests (a, d, g) and
non-forests (b, e, h). Color–symbol combinations represent different sites. Summary of the regression slopes between GPP and CSIF for
different land cover types (c, f, i). The baseline (dashed black lines) was calculated using all samples (29.71 for CSIFall-daily, 29.18 for
CSIFsite and 22.33 for CSIFclear-daily). Error bars represent the standard deviation of slopes across sites within this biome type. Rhombuses
represent regression for each biome type when data from all sites were combined.

tering of SIF before leaving the canopy (Romero et al., 2018;
Yang and van der Tol, 2018). (3) Atmospheric condition may
attenuate and bias satellite SIF retrievals to some extent, but
this effect is assumed to be small unless thick clouds are
present (Frankenberg and Berry, 2017). (4) SIF and GPP
likely have different sensitivities to environmental stresses
(Flexas et al., 2002); therefore, ecosystems with frequent en-
vironmental stresses (e.g., drought) during the growing sea-
son tend to have relatively lower GPP-to-SIF ratio. (5) Since
light saturations have less effect on SIF than GPP (Damm et

al., 2015; Zhang et al., 2016c), the growing-season averaged
light intensity (affected by latitude, average cloud coverage),
vegetation canopy structure and leaf characteristics that re-
late to the light saturation will also affect GPP–SIF rela-
tionship. For example, the evergreen needleleaf forests have
much higher specific leaf area and usually lower Sun zenith
angle, making them less prone to light saturation. These fac-
tors may vary not only across biomes but also across sites.
Therefore, within one biome type, the GPP–SIF relationship
can also be different.

www.biogeosciences.net/15/5779/2018/ Biogeosciences, 15, 5779–5800, 2018
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It is also noteworthy that clear-sky daily SIF exhibited
stronger correlation with GPP (Fig. 13); a possible explana-
tion would be that the light-use efficiency increases with dif-
fused radiation, which partly compensates for the decrease
in incoming PAR when clouds are present (Gu et al., 2002;
Turner et al., 2006). Because the satellite SIF retrieval al-
gorithm discarded observations that were affected by thick
clouds (Sun et al., 2018), the SIF retrievals from OCO-2
are more positively biased than the actual SIF emission of
the plants. However, during periods when thick clouds are
present, the LUE also increases and so does the GPP /SIF
ratio. The positive SIF retrieval biases compensated the in-
crease in the GPP /SIF ratio and therefore contributed to
a stronger correlation between satellite-retrieved SIF (rather
than the actual SIF emission) and GPP.

4.4 Uncertainties and caveats

Although our CSIFclear-inst showed good performance as sup-
ported by the comparison with the clear-sky instantaneous
SIF retrievals from OCO-2, the CSIFall-daily exhibits a slight
underestimation. A possible explanation is that most SIF re-
trievals during overcast conditions did not pass the quality
checks, such that OCO-2 SIF are more likely obtained dur-
ing clear-sky conditions. This is supported by the fact that if
we compare OCO-2 SIF with clear-daily SIF, the R2 is even
higher (Fig. 6).

The canopy structure and sun-sensor geometry were not
explicitly considered in our modeling and only implicitly
embedded in the machine learning retrieval. Several recent
studies suggest that canopy structure will affect the PAR ab-
sorption and re-absorption of SIF before leaving the canopy
(fesc in Eq. 3) (Knyazikhin et al., 2013; Liu et al., 2016; Yang
and van der Tol, 2018) and further affect the GPP–SIF rela-
tionship (He et al., 2017; Migliavacca et al., 2017; Zhang et
al., 2016c). However, most of these studies made assump-
tions requiring either a dense canopy or non-reflecting soil
and thus cannot be easily applied at the global scale. In ad-
dition, OCO-2 SIF data used in this study are from nadir ob-
servations, while both the MODIS and GOME-2 sensors ac-
quire images both at nadir and near nadir. Such discrepancy
in observation angles may induce bidirectional effects. Since
CSIF is trained based on the satellite-observed SIF instead
of the canopy SIF emission, and as previously discussed, it
did not consider the atmospheric attenuation of SIF signal in
the presence of clouds. The CSIF values are expected to be
closer to the canopy SIF emission than the satellite-observed
SIF at the top of atmosphere.

The BESS PAR 4-day dataset has high overall accuracy
(RRMSE of 15.2 %) and very little bias (1.4 %). For differ-
ent climate zones, the uncertainties are typically under 20 %.
These uncertainties do not affect the CSIFclear-inst data but
will propagate to CSIFall-daily.

5 Conclusions

In this study, using the surface reflectance from the MODIS
instrument and a NN algorithm, we developed two spa-
tially contiguous and high-temporal-resolution SIF datasets
(CSIF). These two SIF products not only show high accuracy
when validated against the satellite-retrieved OCO-2 SIF but
also exhibit reasonably high consistency with both recon-
structed and satellite-retrieved GOME-2 SIF. CSIFall-daily ex-
hibits an increasing trend globally during 2001–2016, which
is attributed to the Earth greening and not to changes in PAR.
Since the CSIF dataset includes most information on PAR ab-
sorption of chlorophyll, the difference between OCO-2 SIF
and CSIF mostly contains the information on physiological
stress on fluorescence yield. This indicator is found to be
more effective for early drought warning than vegetation in-
dices. By comparing CSIFall-daily with GPP estimates across
40 EC flux tower sites, the GPP–SIF relationship is found
to vary across sites, and a large proportion of this comes
from within-biome variation. However, this finding still re-
quires further examination using SIF from both new satel-
lites instruments (e.g., TROPOMI) and ground-based mea-
surements. The high-resolution CSIF dataset can be further
used for regional to global carbon and water flux analysis.

Code availability. The code used to generate the CSIF dataset is
available at https://github.com/zhangyaonju/ (Zhang et al., 2018).

Data availability. The CSIF dataset (CSIFclear-inst, CSIFclear-daily
and CSIFall-daily) with a 0.5◦ spatial resolution and 4-day tempo-
ral resolution can be accessed through Figshare: https://doi.org/10.
6084/m9.figshare.6387494 (Zhang et al., 2018). The 0.05◦ 4-day
dataset can be obtained upon request, given the large size. The
MCD43C4 dataset can be accessed through NASA EARTHDATA
(https://earthdata.nasa.gov, Schaaf et al., 2002). The BESS PAR
product can be accessed through the Environmental Ecology Lab at
Seoul National University (http://environment.snu.ac.kr/bess_rad/,
Ryu et al., 2018).
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Appendix A: Calculation of clear-sky radiation

We calculated the clear-sky radiation following previous
studies (Duffie and Beckman, 2013; Ryu et al., 2018). The to-
tal surface shortwave radiation RT is the summation of direct
surface beam radiation (Rsb) and diffused radiation (Rsd):

RT = Rsb+Rsd. (A1)

Rsb and Rsd are calculated as the product of the top-of-
atmosphere shortwave radiation (RTOA) and the atmospheric
transmittance for beam radiation (τb) and that for diffused
radiation (τd):

Rsb = RTOA× τb (A2)
Rsd = RTOA× τd, (A3)

where RTOA is calculate as a function of solar constant (S0 =

1360.8 W m−2), the proportion of solar irradiance within
shortwave range (α = 0.98), the day of year (n) and the co-
sine of the solar zenith angle (cosθs):

RTOA = S0×α×

[
1+ 0.033cos

(
2πn
365

)]
× cosθs, (A4)

and τb is calculated as

τb = a0+ a1exp
(
−k

cosθs

)
, (A5)
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Figure A1. (a) Comparison of model performance (R2) during training and validation with a variety of NN layers (one to three) and neuron
numbers for each layer (two to nine). (b) Difference of model performance between the training and validation for different layer and neuron
combinations.

where a0, a1 and k are coefficients that consider the atmo-
spheric attenuation based on the atmosphere path length and
abundance of the gases or particles that need to be adjusted
for elevation:

a0 = 0.4237− 0.00821(6−A)2 (A6a)

a1 = 0.5055+ 0.00595(6.5−A)2 (A6b)

k = 0.2711+ 0.01858(2.5−A)2, (A6c)

where A is the elevation in kilometers. The ETOPO1 Global
Relief Model was used to provide the elevation information.
This dataset was downloaded from National Oceanic and At-
mospheric Administration (https://data.nodc.noaa.gov/, last
access: 27 September 2018) and aggregated to 0.05◦. In this
study, we did not consider the variation of these parameters
for different climate and latitudinal zones since those effects
are less important. The transmittance for diffused radiation
(τd) is calculated as a function of τb:

τd = 0.271− 0.294τb. (A7)
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