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The role and importance of social learning have been investigated by many researchers

because it is observed in many animals and is expected to play a significant role in cultural

phenomena. We explore the coevolution between individual learning and social learning

on a rugged fitness landscape as a realistic condition in which they can interact with each

other. We demonstrate that social learning allows individuals not to have adaptive traits

innately, and thus, has two important roles to enhance individual fitness. First, social

learning spreads and keeps the adaptive phenotypes acquired by individual learning.

Second, social learning enables individuals to explore a wide range of fitness landscape

by the increased population diversity. Based on the difference of the roles of individual

and social learning, they can work complementarily in the course of adaptive evolution

on the rugged fitness landscape.
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INTRODUCTION

Animals adapt to their environment by two different mechanisms working on two levels, evolution
and learning. Evolution is a population level mechanism and learning is an individual level
mechanism. There have been a lot of discussion on the effects of learning on the course of evolution.
Baldwin, a pioneer in epigenetic evolutionary theory, proposed a possible scenario which is now
called Baldwin effect that explains how evolution and learning interact with each other [1]. It
consists of the following two steps [2]. (1) Some agents acquire adaptive phenotypes by learning,
and then, they increase in population. (2) Because of the learning cost, agents which have the
adaptive phenotypes innately become more adaptive than other agents, so the population evolves
to have adaptive phenotypes innately i.e., a genetic assimilation of adaptive phenotypes. Through
these two steps, learning facilitates the evolution.

Hinton and Nowlan devised a simple computational model that shows learning can accelerate
evolution, and they associated this phenomenon with the Baldwin effect [3]. However, individuals
in the model only used individual learning based on trial-and-error. Learning can be classified into
individual learning (e.g., trial-and-error process) and social learning (e.g., imitation process). Via
individual learning animals adapt to their environment by using only their own experience while via
social learning they adapt to their environment by using other animals’ experience. In general, it is
considered that social learning affect evolution of animals significantly, because it allows animals to
acquire adaptive behavior without paying the cost of trial-and-error process, and also, the adaptive
behavior can be evolved cumulatively through generations by the imitation between adults and
offspring. These types of transmission are necessary to create culture, and from the interest of
cultural evolution, social learning has been investigated for a long time from many points of view.
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The two major focuses of the research on social learning
having been the conditions under which social learning evolves
and the way of social learning. In the research focusing on
the conditions, researchers mainly investigated the effects of
fluctuation and structure of environment, and successfully
showed that social learning is favored in stable and simple
environment. For example, on the effect of fluctuation on
environment, Rendell et al. [4] and Jones et al. [5] found that
when the environment is varied or intense, social learning is
disfavored. On the effect of structure of environment, Tamura
et al. [6] developed a mathematical model to explore the
effect of social networks on social learning and revealed that
social networks disfavor the social learning. Kobayashi et al.
[7] also developed an island migration model and revealed
that spatial structures disfavor the social learning. The way of
social learning can be approached from at least two aspects:
“when” and “whom” they learn from Laland [8]. As a study
focusing on “when,” Enquist et al. [9] found that “critical social
learning” that does social learning during having no information
about the environment and then does individual learning, is
superior to pure social learning. Rendell et al. [4] also revealed
that the “conditional social learning” that does social learning
only when individual learning fails, is superior to pure social
learning. As a study focusing on “whom,” Mesoudi [10] found
that “copy-successful-individuals” strategy is more adaptive than
individual learning by experimental simulation using human
subjects. “whom” aspect is linked to the biases in information
transmission. Specifically, it has been shown that the conformist
bias is adaptive under a broad range of environmental conditions
[11–14].

However, most of computational or mathematical research
assumed the transfer of very simple information (typically,
which of two behaviors is correct) that sometimes becomes
absolute [6, 7, 9, 11–14]. This situation could be interpreted
as the evolution on a fitness landscape with a single peak
of which location might change occasionally. However, in the
real world, the fitness landscape should have many peaks as
local optima in general. Therefore, we explore the interactions
between individual learning and social learning on a rugged
fitness landscape as a more realistic condition. The purpose of
our study is to clarify evolutionary roles of individual and social
learning on a rugged fitness landscape in the context of the
Baldwin effect. We adopted a minimal fitness function [15] that
represents a multi-modal fitness landscape in which there is a
trade-off between the adaptivity of individuals and the strength
of nonlinear epistatic interactions among multiple phenotypes.
We constructed an agent-based evolutionary model in which
each individual can accommodate its plastic phenotypes using
both individual learning based on trial-and-error and social
learning based on imitation of multiple phenotypes from the
most adaptive individual.

MODEL

Rugged Fitness Landscape
There are N individuals in a population and each individual
has M traits ti (i = 0 . . . M-1) as shown in Table 1. Each gene

gi (i = 0. . . M-1) in a M-length chromosome GI represents
the initial value of the corresponding trait ti , taking an integer
value within the range [1, M]. Each individual has another
M-length chromosome GP (pi (i = 0. . . M − 1)) which
decides whether the corresponding trait is plastic (“1”) or not
(“0”). Each row of plastic traits is highlighted in Table 1. Plastic
traits can be changed through the individual or social learning
process (described later). Each individual also has a gene s which
represents the probability of performing social learning instead
of individual learning. s has a real value in the range of [0, 1]. The
trait values ti are determined in the range of gi±1 by learning.
So as to evaluate the fitness of each set of traits, we adopted the
following fitness function [15]:

fitness = argmax
(

f (n)
)

, (1)

f (n) =

{

n if num (n) ≥ n,
0 otherwise,

(2)

where num(n) represents the number of traits of which
phenotypic value is n. The fitness is determined by a group of
traits which have the same values using Equations (1, 2). Equation
(2) shows that the trait group of n yields the fitness value n if its
group size (num(n)) is greater than or equals to n, and Equation
(1) shows that the highest f (n) of the trait group defined by
Equation (2) is adopted as the fitness of the trait set. For example,
the fitness of the trait set inTable 1 is 6 because the number of 6 in
the traits is 6 and at the same time, it is the highest number among
those which satisfy the condition in Equation (2), as illustrated in
Table 2.

This fitness function has the following two characteristics, and
thus the fitness landscape is rugged as illustrated in Figure 1.

1) The higher the fitness of trait group is, the harder to get
it, because the minimum size necessary for the trait group to
express its adaptivity becomes larger.
2) When n ≥ M/2 it is impossible to satisfy both conditions
num(n) ≥ n and num (n+ 1) ≥ n+ 1.

The benefit for using this fitness landscape is that we can
explicitly grasp the contribution of each phenotypic value on
the fitness and the progress of the evolution while keeping the
ruggedness of the landscape high.

TABLE 1 | An example of an individual (M = 10).

ti 6 6 2 6 2 6 6 3 6 2

gi 6 6 2 5 2 6 6 2 6 2

pi 0 0 0 1 1 0 0 1 0 0

S 0. 73

TABLE 2 | Fitness evaluation of the trait set in Table 1.

n 1 2 3 4 5 6 7 8 9 10

num(n) 0 3 1 0 0 6 0 0 0 0

f(n) 0 2 0 0 0 6 0 0 0 0

fitness 6
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Individual Learning and Social Learning
We assume an intergenerationally overlapped population that
consists of N/2 parents and N/2 offspring. Figure 2 illustrates
the population structure composed of two types of (i.e., parent
and offspring) individuals. In each generation, all individuals
simultaneously learn individually or socially L times regardless
of being parents or offspring. In other words, the individuals
learn L times with their parents and themselves after they are
born in a generation, and then they become parents and learn L
times with their offspring and themselves in the next generation.
In each learning step, each individual chooses social learning
with its genetically determined probability s, meaning it chooses
individual learning with the probability 1-s. The way of learning
is defined as follows.

Social Learning
The individual who chose social learning selects and imitates
another individual who got the highest fitness in the last learning
step. It makes each plastic trait closer to the corresponding trait

FIGURE 1 | An image of a rugged fitness landscape defined by Equations (1,

2).

FIGURE 2 | The overlap between generations in the model.

of the selected individual, by adding −1 or +1 to the genetically
determined initial value.

Individual Learning
The individual who chose individual learning changes possibly all
of its plastic traits by adding a value selected randomly from {−1,
0, 1} to the genetically determined initial value. Selecting 0 means
that the corresponding trait is not changed by learning.

The fitness of acquired trait set is evaluated after each learning
process. We define the step fitness as the highest value among the
all fitness values of each individual’s trait sets evaluated until the
current time step. Thismeans that individuals can keep and adopt
the most adaptive trait set at each time step.

Figure 3 illustrates an example of learning process. This
individual adopt individual learning and obtained the fitness 3
at time step t. At the next step, it obtained the higher fitness
4 by imitating the phenotypes of the best individual in the
previous step through social learning, whichmade the step fitness
increased. At step t+3, this individual obtained the trait set of
which fitness was 3, but its step fitness was kept 4, as defined.

Evolution
After completing L steps of learning, offspring grow up to parents
and produce the offspring by the following genetic operations.

(1) The lifetime fitness of each individual is defined as the
average step fitness over all the learning steps during its
lifetime. Two parents are independently selected from the
population by roulette wheel (fitness proportionate) selection
based on the lifetime fitness.
(2) For GI and GP, we apply a single-point crossover
operation on a pair of cloned chromosomes from the parents,
which produce two offspring chromosomes for GI and GP,
respectively.
(3) Each value of cloned genes gi, pi, s from the parents are
mutated with the probabilities mg , mp, and ms , respectively.
A mutation occurring in gi adds +1 or −1 to the current
value, and if the value exceeds its domain, does it again until
satisfying the condition. A mutation in pi flips the current
binary value. A mutation in s adds a random value from a
normal distributionN(0, σ 2). If the value goes lower than 0, it
also does it again until satisfying the condition.

RESULTS

We conducted computational experiments to explore the
coevolution between individual and social learning, using
the parameters shown in Table 3. The initial population was
composed of N/2 individuals of which gi were all 1, and pi
and s were randomly determined. We assumed two cases of
experiments, one in which individuals were allowed to perform
individual learning only, and the other in which the proportion
of social learning could evolve (as described above). Experiments
were conducted 20 times for each case, and the average lifetime
fitness at the final generation of the former case was 6.91 and
that of the latter was 8.98. Table 4 shows the breakdown of the
dominant values of the fitness function in the last generation in
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FIGURE 3 | An example of learning process.

TABLE 3 | Default parameter values.

Population size N = 1,000

Number of learnings L = 50

Number of generations T = 15,000

Number of trait ti (i = 0… M-1) M = 10

Mutation rate of gene g mg= 0.006

Mutation rate of gene p mp= 0.005

Mutation rate of gene s ms= 1

Standard deviation of normal distribution σ = 0.02

TABLE 4 | Breakdown of the how much average fitness increased (Total 20).

The maximum value of average fitness reached 7 8 9 10

Individual learning 20 0 0 0

Individual and social learning 0 4 8 8

Even if the average fitness approaches a certain value, it was rare that theymatch perfectly,

so if the average fitness exceeded a certain value n−0.1, we say that the average fitness

had reached n.

the 20 trials for each case. The average fitness tends to be slightly
smaller than dominant values of them in the population due to
the deviation of the distribution. Thus, if the average lifetime
fitness exceeded a certain value n − 0.1, we regarded that it had
reached n. In the former case, it reached 7 in all the trials, but in
the latter case, it increased to 10 which is the highest value in this
model, and in all experiments, it reached higher values than 7.
Therefore, the social learning can facilitate the adaptive evolution
of the population on a rugged fitness landscape.

Experiments Only With Individual Learning
First, we show the details of experiments only with individual
learning. We fixed genes s of all individuals to 0. Figure 4

shows a result of the experiments, which indicates the typical
dynamics of evolution process in this case. In the Figure 4A,
the horizontal axis represents the generation. The green and
red lines show the highest fitness and the average of the

lifetime fitness, respectively. The blue line shows the average
innate fitness, which represents the average fitness of initial
phenotypic values gi. In the Figure 4B, the blue line shows the
proportion of plastic phenotypes and the light blue line shows
the average of the variances of gene gi in each locus. The red line
shows the average plasticity contribution. We used the plasticity
contribution in order to see how and when learning effectively
worked. Specifically, as this index, we calculated the number of
the learned trait (in the sense that it was changed from the initial
trait) which contributed to the fitness (in the sense of Equations
1, 2) divided by the number of the plastic traits, in the most
adaptive phenotype attained by the individual (that equals to
the phenotype in the last learning step). Figure 4C represents
the distribution of the innate fitness, and Figure 4D represents
the distribution of calculated fitness by individual learning in
learning steps and Figure 4E represents the enlarged view of
Figure 4D.

We see from Figure 4A that individuals evolved through
repeated occurrences of the two steps of Baldwin effect during
the first 2200 generations. (1) The highest fitness increased

(discovering adaptive traits by individual learning) and the
average fitness increased while the average innate fitness

remained steady or decreased (agents which can learn adaptive

traits increased in population). This corresponds to the 1st step of

Baldwin effect. (2) Then, the innate fitness increased (because of
the learning failure cost, agents evolve to adaptive traits innately).

This corresponds to the 2nd step of Baldwin effect. As a result,

the average lifetime fitness increased to 7.0 until around the
2200th generations, and converged to this value, meaning that

the population got stuck in the local optima of the rugged fitness
landscape.

Figure 5 represents the enlarged view of Figure 4.
Figure 5(1–4) illustrate typical phases of the evolution of the

population on the rugged fitness landscape, each corresponding
to the duration indicated by a double headed arrow. Each

individual is represented as a pair of a circle, showing its innate
fitness, and a square, showing its lifetime fitness. The circle and
the square are connected with a directional arrow, representing
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FIGURE 4 | The evolution of the population with individual learning. (A) Shows the initial and highest and lifetime fitness, and (B) shows the proportion of plastic traits,

plasticity contribution and average variance of each gene. (C) Shows the distribution of the innate fitness. (D) Shows the distribution of acquired step fitness by

individual learning, and (E) shows the enlarged view of (D), when agents doing only individual learning.

its learning process. In general, individuals are classified into
three types a, b, c. Thick circles and squires represent dominant
individuals in the population. The string of numbers around each
individual represents its example phenotypes. The underlined
values are plastic traits.

First, in phase (1), most of agents, classified as type-a, had the
same fitness values before and after learning, meaning that they
stayed on a peak of the landscape through their lifetime. This
corresponds to around 1000th to 1250th generation. We can see
that most of agents had the fitness 6 innately from Figure 5C, and
also in Figure 5D, few agents acquired the fitness 7 by learning.
This is because they had few “7” traits and it was difficult to satisfy
the condition num (7) ≥ 7 by learning.

In phase (2), individuals, classified as type-b, who had the
higher lifetime fitness than the innate fitness increased in the
population, meaning that they jumped over the valley of the
fitness landscape by learning. This phase corresponds to around
1250th to 1500th generation. These individuals had more plastic
traits than type-a individuals and also they had more “7” traits
innately. As a result, they could satisfy the condition num (7) ≥

7 by learning. We can see the proportion of plastic traits and
plasticity contribution increased in Figure 5B. The increase of
“7” traits in innate phenotypes decreased the probability of
acquiring the fitness 6 by learning as shown in Figure 5D. In
Figure 5E, we can confirm the proportion of fitness 7 acquired
by learning increased.

In phase (3), individuals which were born in the valley of the
fitness landscape but could reach the higher peak by learning
increased. They are classified as type-c. This phase corresponds to
around 1500th to 1900th generation in the graph. This is because
individuals came to have more traits 7 innately to increase the
probability of acquiring the fitness 7. As a result, they became to

not to satisfy the condition num (n) ≥ n innately in any numbers
and thus, their innate fitness became 0.We can see the proportion
of the innate fitness 0 increased in Figure 5C and the proportion
of fitness 7 acquired by learning increased in Figure 5D.

In phase (4), individuals who existed on the top of the higher
peak increased. This phase corresponds to around 1900th to
2100th generation. They satisfied the condition num (7) ≥ 7
innately and they could not acquire more adaptive phenotypes
by learning. Thus, they were type-a agents. In Figure 5C, the
proportion of plastic traits decreased to around 0.3 because non-
plastic traits of “7” traits increased the probability of acquiring
fitness 7 phenotypes by learning. We can confirm the proportion
of the innate fitness 7 increased in Figure 5C.

After phase (4), the population converged to the top of the
peak of the fitness 7, and it means the evolution process got back
to phase (1). The population climbed the rugged fitness landscape
by repeating these 4 phases until around 2200th generation.
However, as seen in Figure 5, the evolution process completely
converged. This is because the population could not acquire the
fitness 8 stably as shown by the repeated temporal increase of the
highest fitness in Figure 5A.

Experiments With Individual and Social
Learning
Next, we show the details of experiments with social learning.
Figure 6 shows a typical example when the average fitness
increased to 10. This is a universal behavior in every experiments
when fitness increased. The representation is the same as in
Figure 4, but it is changed in some points. In Figure 6A, highest
fitness is replaced by that acquired by individual learning (green
line) and that acquired by social learning (purple line). If they
took the same values, they are represented by black line. In
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FIGURE 5 | Enlarged view of Figure 4. (1–4) Illustrate typical phases of the evolution of the population on the rugged fitness landscape, each corresponds to the

duration indicated by a double headed arrow. Each individual is represented as a pair of a circle, showing its innate fitness, and a square, showing its lifetime fitness.

The circle and the square are connected with a directional arrow, representing its learning process. Thick circles and squares represent dominant individuals in the

population.

Figure 6B, the proportion of social learning is added, and in
Figure 6F, the proportion of fitness acquired by social learning
is added. In this model, population finally reached the fitness 10,
the maximum value of this fitness function.

The gene s, which is the probability of social learning, evolved
to high values at early generation, and it kept high values. This
is because imitating phenotypes of the best agents was more
adaptive than acquiring adaptive phenotypes by trial and error.
It took high values more stably as the lifetime fitness increased.
This is because as the fitness landscape became more rugged,
acquiring adaptive phenotypes by individual learning became
more difficult. In addition, once such adaptive phenotypes were
acquired by individual learning and then came to be maintained
in the population by social learning, social learning became more
adaptive than individual learning.

This adaptive evolution process was caused by complex
interactions between individual learning and social learning.
Figure 6(1–4) illustrate typical phases of the evolution of the
population on the rugged fitness landscape as in Figure 4.
A green directional arrow, which connects a circle and a
square, represents a change in the fitness by social learning,
and a dotted square represents the best phenotypes shared in
the population through imitation from parent individuals to
offspring individuals in the population.

First, in phase (1), most of agents, classified as type-c,
acquired adaptive, but innately non-adaptive, phenotypes by

social learning. They had almost the same lifetime fitness as type-
a agents, so they can coexist with them and the genetic diversity
increased.

In phase (2), because of the increased genetic diversity
due to social learning, some type-c individuals occasionally
had higher numbered values of innate phenotypes, meaning
that they were born in the valley near to the higher peak of
fitness landscape. They could found new adaptive phenotypes
by individual learning, and became the best individuals to be
imitated by others.

However, other type-c individuals often failed to imitate such
new adaptive phenotypes mainly due to the lack of plasticity
as illustrated in Figure 6(2′). This made the population lose
the adaptive phenotypes and type-a individuals dominated
the population again. Thus, the population went back to
phase (1). These transition processes repeatedly occurred from
around 3200th to 6000th generation in this trial. The phases
Figure 6(1–2′) correspond to the increase in the innate fitness 0
in Figure 6C, the increase in the acquired fitness 9 in Figure 6E,
and the increase in the innate fitness 8, respectively.

On the other hand, once individuals successfully imitated
the new adaptive phenotypes by social learning and they were
maintained in the population, type-b individuals, who could
acquire such new adaptive phenotypes while keeping innate
adaptive phenotypes, increased in the population, as illustrated in
Figure 6(3). This phase corresponds to around 6000th to 6300th
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FIGURE 6 | The evolution of the population with individual and social learning. (A) Shows the initial and highest and lifetime fitness, and (B) shows the proportion of

plastic traits, plasticity contribution and average variance of each gene. (C) Shows the distribution of the innate fitness. (D) Shows the distribution of acquired step

fitness by individual learning, and (E) shows the enlarged view of (D). (F) Shows the distribution of acquired step fitness by social learning. (1–4) illustrate typical

phases of the evolution of the population on the rugged fitness landscape, each corresponds to the duration indicated by a double headed arrow. Each individual is

represented as a pair of a circle, showing its innate fitness, and a square showing its lifetime fitness. The dotted square showing inherited phenotypes through

generations. The circle and the square are connected with a directional arrow, representing its learning process. Blue arrow represents individual learning and green

arrow represents social learning. Thick circles and squares represent dominant individuals in the population.

generation. We can see from the enlarged view in Figure 6F,
which is marked by a square, individuals which could imitate
fitness 9 phenotypes increased slightly. This phase is the similar
to phase (2) in the case with individual learning only.

In phase (4), type-c individuals, who could acquire new
adaptive phenotypes more quickly by discarding innate adaptive
phenotypes, increased in the population as in phase (3) in the case
with individual learning only. This phase corresponds to around
6300th to 7000th generation. The proportion of plastic traits and
plasticity contribution in Figure 6B took very high values around
0.9 compared with those in the case with individual learning only.
It means that individuals highly relied on social learning and they
need high plasticity to imitate precisely. In Figure 6B, the average
variance of each gene increased and it shows type-c individuals
increased in the population.

Finally, the evolution process went back to phase (1) but the
population existed on a more adaptive peak. Type-c individuals
appeared in the other side of the valley and dominated the
population, and a few type-a individuals appeared. Therefore, the
evolutionally process was cyclic, and individuals evolved through
this process on the rugged fitness landscape.

In addition, we conducted experiments with different settings
of parameters, and found that the basic scenario of evolution
process did not change under the assumption of plausible
parameter settings. We also found that some parameters can
affect the speed of evolution (i.e., the fitness increase). For
example, the larger number of learning iterations L, which is a
parameter relating to learning process, can increase the speed of
evolution, which is expected to be due to the increase in chances
to acquire new and adaptive phenotypes, and vice versa. On the
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other hand, the higher values of parameters on mutation process
mg , mp, ms, and σ generally decreased the speed of evolution
if they were increased. These are mainly due to the fact that a
strong mutation prevents the population from keeping adaptive
sets of genotypes, plasticity, and high social learning rate. But the
lower mg also slowed down the speed of evolution because of the
smaller genetic diversity.

DISCUSSION

We constructed a computational evolutionary model with
individuals that can learn individually or socially on a multi-
modal fitness landscape as a more realistic situation than those
which have been used in previous research. Comparing the
results with only individual learning and with both of learning,
we found essential differences between these two learning, which
can be described at more general level as follows.

In general, learning has an effect to expand the individuals’
search range in phenotypic space. At the same time, it also
enables individuals which have different genotypes to have
similar phenotypes and fitness values, which means that, at
the population level, learning has an effect of bringing the
population genetic diversity. Comparing individual and social
learning, the characteristic of individual learning is the ability
to find new adaptive phenotypes, which cannot be achieved by
social learning. On the other hand, social learning has greater
amount of the above-described effects of learning, especially of
an increase in genetic diversity, by allowing individuals to imitate
the adaptive phenotype in population already found by individual
learning, without trial and error.

Based on these differences, individual and social learning
work complementarily in the course of adaptive evolution on
the rugged fitness landscape as follows. Individual learning can
find new adaptive phenotypes thanks to the diversity of genetic
expressions created by social learning. It is illustrated in the
transition from Figure 5(1) in which individuals that were born
on the valleys on either side of a peak (8) leach the peak by

social learning to Figure 5(2) in which an individual that was
born on the valley of the right side of the top found a new
fitness peak (9) by individual learning. On the other hand, social
learning can keep a new adaptive phenotype found by individual
learning in the population. It is illustrated in the transition from
Figures 5(2,3) in which individuals on the lower peak (8) can find
the higher peak (9) by social learning, thus keeping the new peak
found by individual learning in the population. However, if every
social learning is unsuccessful because of keeping different values
for non-plastic trait, the peak found by individual learning is lost
and the population moves back to Figure(1) via Figure(2′).

We have described how individual and social learning interact
with each other and how it enables individuals to find adaptive
phenotypes on the rugged fitness landscape with valleys which
cannot be crossed by individual learning alone. In recent
years, theoretical and empirical research to predict and explain
social learning strategies of humans and other animals has
been conducted [16]. One of the promising direction would
be to introduce several typical strategies for social learning
into the model and investigate the effect of the interaction
between the strategies on the evolutionary scenario of the
cooperation. It is also would be the future direction to consider
network structures of social interactions so as to make the
model more realistic, in terms of the “whom” aspect of social
learning.
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