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Abstract

It is proved that if Ap is a countable elementary abelian p-group, then:
(i) The ring End (Ap) does not admit a nondiscrete locally compact ring
topology. (ii) Under (CH) the simple ring End (Ap)/I , where I is the
ideal of End (Ap) consisting of all endomorphisms with finite images,
does not admit a nondiscrete locally compact ring topology. (iii) The
finite topology on End (Ap) is the only second metrizable ring topology
on it. Moreover, a characterization of completely simple endomorphism
rings of modules over commutative rings is obtained.
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1. Introduction

The notion of associative simple ring can be extended for associative topo-
logical rings in several ways:

(i) simple abstract ring endowed with a nondiscrete ring topology (for
instance, the classification of nondiscrete locally compact division rings,
see [25, Chapter IV] and [4, 15, 16]; we refer to some historical notes
about locally compact division rings to [29]);
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(ii) topological ring without nontrivial closed ideals (see [22, 31]).
(iii) topological ring R with the property that if f : R → S is a continuous

homomorphism in a topological ring S, then either f = 0 or f is a
topological embedding of R into S (see [24]).

In all cases it is assumed that multiplication is not trivial.
I. Kaplansky has mentioned (see [20], p. 56) that the classification of locally

compact simple rings in positive characteristic p is difficult. He proved that ev-
ery simple nondiscrete locally compact simple torsion-free ring is a matrix ring
over a locally compact division ring. However in [26] (see also [30]) has been
constructed a nondiscrete locally compact simple ring of positive characteristic
which is not a matrix ring over a division ring. Thereby the program of classi-
fication of nondiscrete locally compact simple rings was finished. Nevertheless
it is interesting to look for new examples of locally compact simple rings.

If Ap is a countable elementary abelian p-group and I is the ideal of the ring
End (Ap) consisting of endomorphisms with finite images, then the factor ring
End (Ap)/I is a simple von Neumann regular ring. We prove that under (CH)
this ring does not admit a nondiscrete locally compact ring topology.

S. Ulam (see [23, Problem 96, p. 181]) posed the following problem: ”Can the
group S∞ of all permutations of integers so metrized that the group operation
(composition of permutations) is a continuous function and the set S∞ becomes,
under this metric, a compact space? (locally compact?)”. E.D. Gaughan (see
[10]) has solved this problem in the negative.

We study in §3 an analogous problem for the endomorphism ring of a count-
able elementary abelian p-group, namely: ”Does the endomorphism ring
End (Ap) of a countable elementary p-group Ap admit a nondiscrete locally
compact ring topology?”. Similarly to the Ulam’s problem we obtain a negative
answer to this question. Moreover, we prove that Tfin is the only ring topology
T on End (Ap) such that (End (Ap), T ) is complete and second metrizable.

We classify in §4 the completely simple rings (End (M), Tfin) of vector spaces
M over division rings. Corollary 4.4 gives a characterization of semisimple left
linearly compact minimal rings. It should be mentioned that Corollary 4.4 is
related to a result from [3] stating that any semisimple ring admits at most one
linearly compact topology.

Furthermore, we obtain in §5 a description of completely simple rings of the
form (End (MR), Tfin) of modules M over a commutative ring R. We extend
the result of [28] to topological rings (End (MR), Tfin).

2. Notation, Conventions and Preliminary Results

Rings are assumed to be associative, not necessarily with identity. Topo-
logical spaces are assumed to be completely regular. The weight (see [8], p.12)
of the space X is denoted by w(X). The pseudocharacter of a point x ∈ X
(see [8], p.135) is the smallest cardinal of the form |U|, where U is a family
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of open subsets of X such that ∩U = {x}. The closure of a subset A of the
topological space X is denoted by A and the interior by Int(A) (see [8], p.14).
A topological spaceX is called a Baire space (see [8], p.198) if for each sequence
{X1, X2, . . .} of open dense subsets of X the intersection ∩∞

i=1Gi is a dense set.
An abelian group A is called elementary abelian p-group (p prime) if pa = 0

for all a ∈ A. Such group is a direct sum of copies of the cyclic group Z(p).
The subring of a ring R generated by a subset S, is denoted by 〈S〉. A ring R
is called locally finite if every its finite subset is contained in a finite subring.
A topological ring (R, T ) is called metrizable if its underlying additive group
satisfies the first axiom of countability. A ring R with 1 is called Dedekind-
finite if each equality xy = 1 implies yx = 1. It is well-known that every finite
ring with identity is Dedekind-finite. Since every compact ring with identity
is a subdirect product of finite rings, it follows that every compact ring with
identity is Dedekind-finite. If A ⊆ R, then Annl(A) := {x ∈ R | xA = 0}. If
X,Y are the subsets of R, then X · Y := {xy | x ∈ X, y ∈ Y }. A topological
ring R is called compactly generated (see [27, Chapter II]) if there exists a
compact subset K such that R = 〈K〉. If (R, T ) is a topological ring and I is
an ideal of R, then the quotient topology of the factor ring R/I is denoted by
T /I. If K is a subset of an abelian group A, then set

T (K) = {α ∈ End (A) | α(K) = 0}.

When K runs over all finite subsets of A, the family {T (K)} defines a ring
topology Tfin on End (A). This topology is called the finite topology.

Lemma 2.1. For any abelian group A the ring (End (A), Tfin) is complete.

Proof. See [27, Theorem 19.2]. �

Lemma 2.2 (Cauchy’s criterion). In a Hausdorff complete commutative group
G, in order that a family (xα)α∈Ω should be summable it is necessary and
sufficient that, for each neighborhood V of zero in G, there is a finite subset Ω0

of Ω such that Σα∈Kxα ∈ V for all finite subsets K of Ω which do not meet Ω.

Proof. See [5], p.263. �

Lemma 2.3. If (xα)α∈Ω is a summable subset in (End (A), Tfin) then every
subset ∆ of Ω the family (xβ)β∈∆ is summable.

Proof. Let V be a neighborhood of zero of (End (A), Tfin). We can consider
without loss of generality that V is a left ideal of End (A). There exists a finite
subset Ω0 of Ω such that Σα∈Kxα ∈ V for every finite subset K of Ω for which
K ∩ Ω0 = ∅. Let F be a finite subset of ∆ such that F ∩ (Ω0 ∩∆) = ∅. If
α ∈ F , then α /∈ Ω0, hence Σα∈Fxα ∈ V . By Cauchy’s criterion the family
(xβ)β∈∆ is summable. �

A topological ring (R, T ) is called minimal (see, for instance, [7]) if there is
no ring topology U such that U ≤ T and U 6= T . A topological ring (R, T )
is called simple if R is simple as a ring without topology. A topological ring
(R, T ) is called weakly simple if R2 6= 0 and every its closed ideal is either 0
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or R. A topological ring (R, T ) is called completely simple (see [24]) if R2 6= 0
and for every continuous homomorphism f : (R, T ) → (S,U) in a topological
ring (S,U) either ker(f) = R or f is a homeomorphism of (R, T ) on Im(f).
Equivalently, R2 6= 0 and (R, T ) is weakly simple and minimal. Let M be a
unitary right R-module over a commutative ring R with 1. The module M
is called divisible if Mr = M for every 0 6= r ∈ R. A right R-module M is
called faithful if Mr = 0 implies r = 0 (r ∈ R). A right R-module M is called
torsion-free if mr = 0 implies that either m = 0 or r = 0, where m ∈ M and
r ∈ R. Recall that a submodule N of an R-module M is called fully invariant
α(N) ⊆ N for every endomorphism α of MR. We use in the sequel the notion
and results from the books [8, 27].

Remark 2.4. If R is a von Neumann regular ring, then R2 = R.

Lemma 2.5. An ideal I of a von Neumann regular ring is von Neumann
regular.

Proof. Let i ∈ I. Thus there exists x ∈ R such that ixi = i. It follows that
ixixi = i and xix ∈ I. �

Corollary 2.6. If I an ideal of a von Neumann regular ring R, then any ideal
H of I is an ideal of R, too.

Proof. RH = RH2 ⊆ IH ⊆ H . Similarly, HR ⊆ H . �

If Ap is a p-elementary countable group, then

I = {α ∈ End (Ap) | |Im(α)| < ℵ0}.

Fix a linear basis {vi | i ∈ N} of Ap over the field Fp. Using this fixed basis,
we define the map ei : A→ A such that

ei(vj) = δijvj , (i, j ∈ N)

where δij is the Kronecker delta.

Lemma 2.7. We have for End (Ap):

(i) I is a von Neumann regular ring.
(ii) I is a simple ring.
(iii) The factor ring End(Ap)/I is simple von Neumann regular.
(iv) I is a locally finite ring.

Proof. (i): The ring End (Ap) is regular (see [21, Theorem 4.27, p. 63]), so I
is von Neumann regular by Lemma 2.5.

(ii), (iii): The ideal I is the only nontrivial ideal of the ring End (Ap) (see
[17, §17, Theorem 1, p. 93]). This means that End (A)/I is simple. It is regular
by the part (i).

(iv) Since I is simple (see [17, §12, Proposition 1]), it suffices to show that
I contains a nonzero locally finite right ideal.

Let us show that the left ideal Ie1 of I is locally finite as a ring (equivalently,
as a Fp-algebra). We have 0 6= e1 ∈ Ie1. IfH is the left annihilator of Ie1, then,
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obviously, H is a locally finite ring, hence it is locally finite as a Fp-algebra.
We claim that Ie1/H is finite. Define βn ∈ H (n ≥ 2) in the following way

βn(vi) =

{

vn, for i = 1;

0, for i 6= 1.

Let us prove that Ie1 = Fpe1 +Σ∞
n=2Fpβn.

If α ∈ I, then α(v1) = r1v1 + · · ·+ rnvn, where ri ∈ Fp and n ∈ N, so

αe1(v1) = r1e1(v1) + r2β2(v1) + · · ·+ rnβn(v1)

= (r1e1 + r2β2 + · · ·+ rnβn)(v1);

αe1(vj) = (r1e1 + r2β2 + · · ·+ rnβn)(vj) (j 6= 1).

This yields
αe1 = r1e1 + r2β2 + · · ·+ rnβn

and so Ie1 = Fpe1 +Σ∞
n=2Fpβn.

In particular, Ie1 = Fpe1 +H , and so H has a finite index in Ie1. Clearly,
Ie1 is a locally finite Fp-algebra (see [17, Proposition 1, p. 241]) and I is a
locally finite Fp-algebra (see [17, Proposition 2, p. 242]). �

The next result can be deduced from [27, Lemma 36.11].

Lemma 2.8. Let A be a locally compact, compactly generated, and totally
disconnected ring. If A contains a dense locally finite subring B, then A is
compact.

Proof. Let A = 〈V 〉, where V is a compact symmetric neighborhood of zero.
Since V is compact, the subset V +V +V ·V also is compact. Since B is dense,
A = B+V . By compactness of V +V +V ·V there exists a finite subset H ⊆ B
such that V +V +V ·V ⊆ H+V . Since B is a locally finite ring, we can assume
without loss of generality that H is a subring. Let H \{0} = {h1, . . . , hk}. The
subset

H + h1V + · · ·+ hkV + V

is an open subgroup of R(+). Indeed, this subset is symmetric and

(H + h1V + · · ·+ hkV + V ) + (H + h1V + · · ·+ hkV + V )

⊆ H + h1(V + V ) + · · ·+ hk(V + V ) + V + V

⊆ H + h1V + · · ·+ hkV + V .

We prove by induction on m that

V [m] ⊆ H + h1V + · · ·+ hkV + V, (m ∈ N)

where V [1] = V and V [m] = V [m−1] · V for all m.
The inclusion is obvious for m = 1.
Assume that the assertion has been proved for m ≥ 1. Clearly,

V [m+1] = V [m] · V ⊆ H · V + h1(V · V ) + · · ·+ hk(V · V ) + V · V ⊆

h1V + · · ·+ hkV + h1(H + V ) + · · ·+ hk(H + V ) +H + V ⊆

H + h1V + · · ·+ hkV + V .
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Consequently, A = H + h1V + · · ·+ hkV + V , therefore A is compact. �

An element x of a topological ring is called discrete if there exists a neigh-
borhood V of zero such that xV = 0 (i.e., the right annihilator of x is open).

Lemma 2.9. The set of all discrete elements of a topological ring is an ideal.
A simple ring with identity does not contain nonzero discrete elements.

3. Locally compact ring topologies on End (A) of a countable

elementary abelian p-group A

Theorem 3.1. Let R be a simple, nondiscrete and locally compact ring of
char(R) = p > 0 and 1 ∈ R. If V is a compact open subring of R and
{eα | α ∈ Ω} is a set of orthogonal idempotents in R, then

|Ω| ≤ w(V ).

Proof. The ring R does not contain nonzero discrete elements by Lemma 2.9.
Since R is locally compact and char(R) = p, it is totally disconnected. Ad-
ditionally, R has a fundamental system of neighborhoods of zero consisting of
compact open subrings by [19, Lemma 9].

If V is a compact open subring of R, then by continuity of the ring operations
for each α ∈ Ω there exists an open ideal Vα of V such that eαVα ⊆ V . Clearly,
there exists yα ∈ Vα for which eαyα 6= 0 since R has no nonzero discrete
elements.
We claim that hold the following two properties:

(i) eαyα 6∈ {eβyβ | β 6= α} for each α ∈ Ω;
(ii) the set X = {eαyα | α ∈ Ω} is a discrete subspace of V .

Indeed, if were eαyα ∈ {eβyβ | β 6= α} for some α ∈ Ω, then

eαyα = eαeαyα ∈ eα{eβyβ | β 6= α}

⊆ {eαeβyβ | β 6= α}

= {0},

so eαyα = 0, a contradiction. The part (i) is proved.

(ii) Now, for each α ∈ Ω we have V \ {eβyβ | β 6= α} is open and, conse-
quently,

(V \ {eβyβ | β 6= α}) ∩X = {eαyα},

by (i). Therefore the point eαyα(α ∈ Ω) of X is isolated. In other words, the
subspace X of V is discrete.

Since X is discrete, |Ω| = |X | = w(X) ≤ w(V ) (see [1, Exercises 98-99,
p. 72]). �

Theorem 3.2. Let Ap be a countable elementary abelian p-group. Then the
ring

I = {α ∈ End (Ap) | |Im(α)| < ℵ0}

does not admit a nondiscrete ring topology U such that (I,U) is a Baire space.
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Proof. Put Sn = {α ∈ I | α(A) ⊆ Fpv1 + · · · + Fpvn}, where n ∈ N. Clearly,
I = ∪n∈NSn and

Sn = {α ∈ I | eiα = 0 for i > n} = Annr
(

{ek | k > n}
)

.

This yields that the subset Sn is closed due the continuity of the ring operations.
Since I is a Baire space, there exists n ∈ N such that Int(Sn) 6= ∅, hence Sn

is an open subgroup.
Set β ∈ I such that

β(vi) =

{

vn+i, for i = 1, . . . , n;

0 , for i > n.

Let W ⊆ Sn be a neighborhood of zero of (I,U) such that βW ⊆ Sn. If
w ∈ W \ {0}, then there exist a ∈ A and r1, . . . , rn ∈ Fp such that

0 6= w(a) =

n
∑

i=1

rivi and β(w(a)) =

n
∑

i=1

rivn+i.

There exists j ∈ 1, . . . , n such that rj 6= 0. Then

en+jβw(a) = rjvn+j 6= 0,

hence en+jβw 6= 0 and so βw 6∈ Sn, a contradiction. �

Corollary 3.3. Under the notation of Theorem 3.2 the ring I does not admit
a nondiscrete locally compact ring topology.

Proof. This follows from the fact that each locally compact space is a Baire
space (see [6, Theorem 1, p. 117]). �

Our main result is the following.

Theorem 3.4. The endomorphism ring End (Ap) of a countable elementary
abelian p-group Ap does not admit a nondiscrete locally compact ring topology.

Proof. We use the notation and results from section 2. Denote R = End (Ap).
Assume on the contrary that there exists on R a nondiscrete locally compact
ring topology T .
Fact 1. The ring (R, T ) has a fundamental system of neighborhoods of zero
consisting of compact open subrings.
Since the additive group of the ring R has exponent p, it is totally disconnected
(this follows from [12, Theorem 9.14, p. 95]). By I. Kaplansky’s result (see [19,
Lemma 9]), the ring (R, T ) has a fundamental system of neighborhoods of zero
consisting of compact open subrings.
Fact 2. The group Rei is countable for each i ∈ N.
We claim that Rei is infinite. Indeed, for each j ∈ N put βj ∈ R such that

βj(vk) =

{

vj , for k = i;

0, for k 6= i.

If j 6= s, then βjei(vi) = βj(vi) = vj and βsei(vi) = βs(vi) = vs, hence
βjei 6= βsei, so Rei is infinite.
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The ring Rei is countable. Indeed, consider the mapping ψ : Rei → A
Fpvi
p ,

where

ψ(αei)(rvi) = α(rvi) for all r ∈ Fp.

If αei 6= βei (α, β ∈ R), then there exists an element x =
∑

j rjvj ∈ Ap such

that αei(x) 6= βei(x), hence, α(rivi) 6= β(rivi). Thus

ψ(αei)(rivi) = α(rivi) 6= β(rivi) = ψ(βei)(rivi).

The latter means that ψ is an injective mapping of Rei into A
Fpvi . Since AFpvi

is countable, Rei is countable, too.
Fact 3. I is a closed ideal of R. We claim that I is not dense in the topological
ring (R, T ). Assume the contrary. Since I is locally finite and is a maximal
ideal, (R, T ) is topologically locally finite by Lemma 2.8. The ring R contains

two elements x, y such that xy = 1 and yx 6= 1. The subring 〈x, y〉 is com-
pact, hence Dedekind-finite, a contradiction. We obtained that (R/I, T /I) is
a nondiscrete metrizable locally compact ring.
Fact 4. I is a discrete ideal of R.
This follows from Theorem 3.2.
Fact 5. Rei is a discrete left ideal of R for every i ∈ N.
Indeed, Rei ⊆ I and I is discrete by Fact 4 for every i ∈ N.
Fact 6. Annl(ei) is open in R for every i ∈ N.
Indeed, the group homomorphism q : R → Rei, r 7→ rei, is continuous. Since
Rei is discrete q

−1(0) = Annl(ei) is open.
Fact 7. ∩iAnnl(ei) = 0.
Obvious.
Fact 8. T ≥ Tfin.
We notice that Annl(ei) = T ({vi}) for every i ∈ N. For, if αei = 0, then
α(vi) = αei(vi) = 0, i.e., α ∈ T ({vi}). Conversely, if α ∈ T ({vi}), then
αei(vi) = α(vi) = 0. If j 6= i then αei(vj) = 0. Therefore αei = 0. Moreover

T ({v1, . . . , vn}) = ∩n
i=1T ({vi}) = ∩n

i=1Annl(ei) ∈ T (∀n ∈ N).

Since the family {T ({v1, . . . , vn})} forms a fundamental system of neighbor-
hoods of zero of (R, Tfin), we get that Tfin ≤ T .
Fact 9. The ring (R, T ) is metrizable.
Since ∩i∈NAnnl(ei) = 0, the pseudocharacter of (R, T ) is ℵ0. If V is a compact
open subring of (R, T ) (see Fact 1), then the pseudocharacter of V also is ℵ0.
However in every compact space the pseudocharacter of a point coincides with
its character. Therefore (R, T ) is metrizable.
Fact 10. (R/I, T /I) has an open compact subring.
Indeed, it is well-known (see [19]) that every totally disconnected ring has a fun-
damental system of neighborhood of zero consisting of compact open subrings.
Henceforth V is a fixed open compact subring of (R/I, T /I).
Fact 11. R/I contains a family of orthogonal idempotents of cardinality 2ℵ0 .
Indeed, the family {ei}i∈N of idempotents of the ring (R, Tfin) is summable
and 1A = Σn∈Nen, where 1A is the identity of R.
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The first ordinal number of cardinality c of continuum is denoted by ω(c).
Let {N(α) | α < ω(c)} be a family of infinite almost disjoint subsets of N (see
[8, Example 3.6.18, p. 175–176]). Put fN(α) = Σi∈N(α)ei for each α < ω(c). The
element fN(α) exists by Lemma 2.3. Then:

(i) fN(α) /∈ I for every α < ω(c);
(ii) fN(α)fN(β) ∈ I for each α, β < ω(c) and α 6= β.

If gα = fN(α) + I for each α < ω(c), then {gα | α < ω(c)} is the required
system of orthogonal idempotents.

The subring V is metrizable (by Fact 9). Since V is compact and R/I is a
simple von Neumann regular ring by Lemma 2.7 and w(V ) ≤ ℵ0, we obtain a
contradiction to Theorem 3.1. �

Theorem 3.5. (CH) Under the notation of Theorem 3.4, the ring R/I does
not admit a nondiscrete locally compact ring topology.

Proof. Assume on the contrary that the factor ring R/I admits a nondiscrete
locally compact ring topology T , so (R/I, T ) contains an open compact subring
V . Since the cardinality of R/I is continuum and V is infinite, the power of V
is continuum. Since we have assumed (CH), the subring V is metrizable, hence
second metrizable (see [14, 18]). However we have proved in Theorem 3.4 that
the ring R/I contains a family of orthogonal idempotents of cardinality c, a
contradiction with Theorem 3.1. �

Theorem 3.6. The finite topology Tfin is the only second metrizable ring topol-
ogy T on R for which (R, Tfin) is complete.

Proof. Let K = 〈F 〉, where F is a finite subset of A. Clearly, there exists a
subgroup A′ of A such that A = K⊕A′. Choose eF ∈ R such that eF ↾K= idK
and eF (A

′) = 0. Clearly,
T (K) = R(1− eF )

and αK = 0 if and only if α ∈ R(1− eF ), so the family {R(1− eF )}, where F
runs over all finite subset of A, forms a fundamental system of neighborhoods
of zero for (R, Tfin).

There exists an injective map of ReF to Hom(K,A), so the left ideal ReF is
countable, due to countability Hom(K,A). Since e2F = eF , the Peirce decom-
position

R = ReF ⊕R(1− eF )

of R with respect to the idempotent eF is a decomposition of the topological
group (R,+, T ). It follows that ReF is discrete, hence R(1−eF ) is open (in the
topology T ). Hence T ≥ Tfin, so T = Tfin (see [9, Theorem 30] or [11]). �

4. Completely simple topological endomorphism rings

of vector spaces

Theorem 4.1. Let AF be a right vector space over a division ring F and
S = End (AF ). The following conditions are equivalent:

(i) (S, Tfin) is a completely simple topological ring.
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(ii) dim(AF ) = ∞ or dim(AF ) < ∞ and F does not admit a nondiscrete
ring topology.

Proof. (i)⇒ (ii): If AF is finite-dimensional, then S is discrete and isomorphic
to the matrix ring M(n,F), where n is the dimension of AF . Then, obviously,
F does not admit a nondiscrete ring topology.

(ii)⇒ (i): If dim(AF ) = n <∞, then S ∼= M(n,F). Since F does not admit
nondiscrete ring topologies, the same holds for M(n,F).

Let AF be infinite dimensional. Fix a basis {xα}α<τ over F , where τ is an
infinite ordinal number. It is well-known that the topological ring (S, Tfin) is
weakly simple (see [22, Satz 12, p. 258]) and the family {T (xα)}α<τ is a prebase
at zero for the finite topology Tfin of S.

Assume on the contrary that there exists a Hausdorff ring topology T ,
coarser that Tfin and different from it. Let eα ∈ S such that e2α = eα and
eα(xβ) = δαβxα for each α < τ , where δαβ is the Kronecker delta.
Fact 1. T (xα) = Annl(eα) for each α < τ .

Indeed, if p ∈ T (xα), then peα(xα) = p(xα) = 0. If β 6= α, then eα(xβ) = 0,
hence peα = 0, i.e. p ∈ Annl(eα). Conversely, if peα = 0, then we have
p(xα) = peα(xα) = 0, i.e. p ∈ T (xα).
Fact 2. There exists α0 < τ for which Seα0

is nondiscrete in (S, T ).
Assume on the contrary that for every α < τ there exists a neighborhood

Vα of zero of (S, T ) such that Seα ∩ Vα = 0. If Uα is a neighborhood of zero of
(S, T ) such that Uαeα ⊆ Vα, then Uαeα = 0, hence Annl(eα) = T (xα) is open
in (S, T ). Hence Tfin ≤ T and T = Tfin, a contradiction.
Fact 3. (Seα0

∩ V )xα0
* ⊕β∈KxβF

for any neighborhood V of of zero of (S, T ) and any finite subset K of the set
[0, τ) of all ordinal numbers less than τ .

Assume on the contrary that there exists a finite subset K of [0, τ) and a
neighborhood V of zero of (S, T ) such that

(4.1) (Seα0
∩ V )xα0

⊆ ⊕β∈KxβF.

Fix γ ∈ [0, τ) \K. For each β ∈ K define qβ ∈ S such that qβ(xβ) = xγ and
q(xδ) = 0 for δ 6= β.

Let V0 be a neighborhood of zero of (S, T ) such that V0 ⊆ V and qβV0 ⊆ V
for all β ∈ K. There exists 0 6= h ∈ Seα0

∩ V0 by Fact 2 and hxα0
6= 0 by Fact

1. Since Seα0
∩ V0 ⊆ Seα0

∩ V , we obtain that hxα0
= Σβ∈Kxβfβ , (fβ ∈ F )

by (4.1). There exists β0 ∈ K such that fβ0
6= 0 (because hxα0

6= 0), so

qβ0
h = qβ0

(Σβ∈Kxβfβ) = rβ0
xγ 6∈ ⊕β∈KxβF,

a contradiction. Therefore Fact 3 is proved.
Now let V be a neighborhood of zero of (S, T ). Pick up a neighborhood V0

of zero of (S, T ) such that V0 · V0 ⊆ V . Since T ≤ Tfin, there exists a finite
subset K of [0, τ) such that

T ({xβ | β ∈ K}) ⊆ V0.
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We have (Seα0
∩ V0)xα0

* ⊕β∈KxβF by Fact 3. It follows that there exists
q ∈ Seα0

∩ V0 such that
q(xα0

) 6∈ ⊕β∈KxβF.

Clearly, q(xα0
) ∈ AF , so it can be written as q(xα0

) =
∑

α<τ xαfα, where
fα ∈ F and there exists β0 6∈ K such that fβ0

6= 0.

Consider the element s ∈ S such that s(xβ0
) = xα0

f−1
β0

and s(xλ) = 0 for

λ 6= β0. Evidently, s ∈ T (K), hence

sq ∈ T (K) · V0 ⊆ V0 · V0 ⊆ V.

Moreover, sq(xα0
) = s(xβ0

fβ0
+ · · · ) = xα0

. Since q ∈ Seα0
, we obtain that

sq(xβ) = 0 for β 6= α0. Consequently, eα0
= sq ∈ V for every neighborhood V

of zero of (S, T ), a contradiction. �

Remark 4.2. The question of existence of a uncountable division ring which
does not admit a nondiscrete Hausdorff ring topology is open. Several results
on this topic can be found in Chapter 5 of [2].

Theorem 4.3. Let
∏

α∈ΩRα be a family of compact rings with identity. Then
the product (

∏

α∈ΩRα,
∏

α∈Ω Tα) is a minimal ring if and only if every (Rα, Tα)
is a minimal topological ring. (Here

∏

α∈Ω Tα is the product topology on the
ring

∏

α∈ΩRα.)

Proof. ⇒: Assume on the contrary that there exists β ∈ Ω and a ring topology
T ′ on Rβ such that T ′ ≤ Tβ and T ′ 6= Tβ . Consider the product topology U
on

∏

α∈ΩRα, where Rα is endowed with Tα when α 6= β and Rβ is endowed
with T ′. Obviously, U ≤

∏

α∈Ω Tα and U 6=
∏

α∈Ω Tα, a contradiction.
⇐: Denote by πα(α ∈ Ω) the projection of

∏

α∈ΩRα on Rα. By definition of
the product topology,

∏

α∈Ω Tα is the coarsest topology on
∏

α∈ΩRα for which
the projections πα(α ∈ Ω) are continuous.

Let U be a ring topology on
∏

α∈ΩRα, U ≤
∏

α∈Ω Tα and β ∈ Ω. Since

U ↾Rβ×
∏

γ 6=β{0γ}
≤

(

∏

α∈Ω

Tα
)

↾Rβ×
∏

γ 6=β{0γ}
,

it follows that U ↾Rβ×
∏

γ 6=β{0γ}
= (

∏

α∈Ω Tα) ↾Rβ×
∏

γ 6=β{0γ}
by minimality of

(Rβ , Tβ).
Then the family {V ×

∏

γ 6=β{0γ}} when V runs all neighborhoods of zero of

(Rβ , Tβ) is a fundamental system of neighborhoods of zero of
(

Rβ ×
∏

γ 6=β

{0γ}, U ↾Rβ×
∏

γ 6=β{0γ}

)

.

Since Rβ×
∏

γ 6=β{0γ} is an ideal with identity of
∏

α∈ΩRα, the topological ring

(
∏

α∈ΩRα,U) is a direct sum of ideals Rβ×
∏

γ 6=β{0γ} and {0β}×
∏

γ 6=β Rγ . Let

V be a neighborhood of zero of (Rβ , Tβ). Then V ×
∏

γ 6=β Rγ be a neighborhood

of zero of (
∏

α∈ΩRα,U) and πβ(V ×
∏

γ 6=β Rγ) = V .

We have proved that πβ is a continuous function from (
∏

α∈ΩRα,U) to
(Rβ , Tβ). It follows that

∏

α∈Ω Tα ≤ U and so U =
∏

α∈Ω Tα. �
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Corollary 4.4. A left linearly compact semisimple ring is minimal if and only
if has no direct summands of the form M(n,∆), where ∆ is a division ring
which does not admit a nondiscrete Hausdorff ring topology.

Proof. This follows from Theorems 4.1, 4.3 and the Theorem of Leptin (see [22,
Theorem 13, p. 258]) about the structure of left linearly compact semisimple
rings. �

Corollary 4.5. A semisimple linearly compact ring (R, T ) having no ideals
isomorphic to matrix rings over infinite division rings is minimal.

5. Completely simple endomorphism rings of modules

The endomorphism ring of a right R-module M is denoted by End (MR).

Lemma 5.1. Let M be a divisible, torsion-free module over a commutative
domain R and K the field of fractions of R. The additive group of M has a
structure of a vector K-space such that R-endomorphisms of M are exactly the
K-linear transformations.

Proof. We define a structure of a right vector K-space as follows: if a
b
∈ K and

m ∈ M , then there exists a unique x ∈ M such that ma = xb; set m ◦ a
b
= x.

Moreover, if a
b
= c

d
and 0 6= m ∈M , then m ◦ a

b
= m ◦ c

d
. Indeed, if m ◦ a

b
= x

and m ◦ c
d
= y, then mad = xbd and mbc = ybd which means that xbd = ybd,

hence x = y.
Let α ∈ End (MR),

a
b
∈ K, m ∈ M . By definition, am = b(a

b
◦m), hence,

aα(m) = bα(a
b
◦m), which means that α(a

b
◦m) = a

b
◦α(m), so α is a K-linear

transformation. Note that, if a ∈ R and m ∈M , then m ◦ a
1 = ma.

Conversely, if α is a K-linear transformation, a ∈ R, m ∈M , then

α(a1 ◦m) = a
1 ◦ αm,

i.e. α(am) = aα(m). We have proved that every K-linear transformation is an
right R-module homomorphism. �

Remark 5.2. The center Z(R) of a weakly simple ring R is a domain.

Remark 5.3. For every right R-module M the underlying group M(+) is a
discrete left topological (End (MR), Tfin)-module.

Indeed, T (m)(m) = 0 for every m ∈ M . Moreover, End (MR){0} = {0}, so
M is a discrete left topological (End (MR), Tfin)-module.

Theorem 5.4. Let MR be a module over a commutative ring R.
If the topological ring (End (MR), Tfin) is weakly simple, then:

(i) P = {r ∈ R | Mr = 0} is a prime ideal of R.
(ii) M is a vector space over the field K of fractions of R/P and the R-

endomorphisms of M are exactly the K-linear transformations.

Conversely, if MR is an R-module and are satisfied (i) and (ii), then the ring
(End (MR), Tfin) is a weakly simple topological ring.
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Proof. ⇒: If (End (MR), Tfin) is weakly simple, then the mapping:

(5.1) αr : M →M, m 7→ mr (r ∈ R)

is an R-module homomorphism and αr ∈ Z(= the center of End (MR)).
First we show that the part (i) holds. Indeed, if a, b ∈ R and ab = 0, then

αaαb = 0 (see (5.1)). Thus (End (MR)αa) · (End (MR)αb) = 0, so

(End (MR)αa) · (End (MR)αb) = 0.

Since End (MR) is weakly simple, one of them, say End (MR)αa, is zero. This
implies that αa = 0, hence a ∈ P .

(ii) The structure of R/P -module on M is defined as follows: if r ∈ R and
m ∈M , then put M(r + P ) = mr.

Note thatM is a torsion-free right R/P -module. Assume thatm(r+P ) = 0,
where 0 6= r + P ∈ R/P and 0 6= m ∈ M . Then mr = 0 = αr(m) (see (5.1)).

Thus End (MR)αr(m) = 0. It follows that
(

End (MR)αr

)

(m) = 0 by Remark
5.3. Since End (MR) is weakly simple

End (MR)αr = End (MR).

We obtained that End (MR)(m) = 0, so m = 0, a contradiction.
Under this convention R-submodules are exactly R/P -submodules and R-

endomorphisms are exactly R/P -endomorphisms.
The module M is a divisible R/P -module. Indeed, if 0 6= r+P ∈ R/P , then

0 6=M(r + P ) =Mr. Suppose that Mr 6=M . Consider

I = {α ∈ End (MR) | α(M) ⊆Mr}.

Since Mr is a fully invariant submodule, I is a two-sided ideal of the ring
(End (MR), Tfin).

The ideal I is closed. Indeed, let α ∈ I. If m ∈ M , then there exists β ∈ I
such that α − β ∈ T (m). Clearly, α(m) = β(m) ∈ Mr and so α ∈ I. We have
proved that I is closed.

Since 1M /∈ I, I = 0. It follows that αr = 0 (see (5.1)), a contradiction.
The module M has a structure of a right K-vector space and End (MR) is

exactly the ring of endomorphisms of M by Lemma 5.1.
The converse follows from Theorem 4.1. �

A characterization of completely simple topological ring End (MR) is given
by the following.

Theorem 5.5. Let MR be a module over a commutative ring R. The topo-
logical ring (End (MR), Tfin) is completely simple if and only are satisfied the
conditions (i) and (ii) of Theorem 5.4 and either

(i) M is finite or
(ii) M is infinite and the dimension of M over the field K is infinite.

Proof. ⇒: According to Theorem 5.4, the ideal P is prime and the topology
of End (MR) coincide with the finite topology of End (MK), where K is the
field of fractions of R/P . If M is finite, we have the part (i). Assume that
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M is infinite. If R/P is finite, then the dimension of M over K is infinite.
Suppose that R/P is infinite and dimK(M) = n < ℵ0. Then M is isomorphic
to M(n,K). Since K is an infinite field, it admits a nondiscrete ring topology
(see [13]) and we obtain a contradiction because End (MR) is a discrete ring.
Consequently dimK(M) is infinite.
⇐ This follows from Theorems 4.1 and 5.4. �

Corollary 5.6. The topological ring (End (A), Tfin) of an abelian group A is
completely simple if and only one of the following conditions holds:

(i) A is a elementary abelian p-group.
(ii) A is a divisible torsion-free group of infinite rank.
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