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Abstract
Background/Aims: To identify new treatment strategies for gastric cancer and to elucidate 
the mechanism underlying its pathophysiology, we transfected sh-MARCH8 into the human 
gastric cancer cell lines MKN-45 and AGS to investigate the roles of MARCH8 in gastric cancer. 
Methods: We used genetic engineering to construct the sh-MARCH8 interference plasmid and 
transfected it into gastric cancer cells. Colony formation assays and cell viability measurements 
were performed to detect the viability and proliferation of cancer cells. Wound healing assays 
were performed to estimate the migration and proliferation rates of the cells. Cell invasion 
assays were used to estimate the invasive abilities of the cells. Cell apoptosis analysis was 
performed by using flowing cytometry. Western blot analysis was performed to estimate the 
expression levels of proteins. Statistical analysis was performed using the SPSS 18.0 software. 
Student’s t-test was used to determine the significance of all pairwise comparisons of 
interest. Results: We observed that the transfection of sh-MARCH8 inhibited the survival and 
proliferation of MKN-45 and AGS cells. The migration and invasion of the MKN-45 and AGS 
cells were significantly decreased, and apoptosis was induced in comparison with the control 
cells. These results were further confirmed by data showing that sh-MARCH8 increased the 
BAX/BCL2 ratio in MKN-45 and AGS cells. We also observed that sh-MARCH8 inactivated 
the PI3K and ß-catenin stat3 signaling pathways by changing protein expression levels or 
the phosphorylation of related proteins. Conclusion: These data suggested that sh-March8 
reduced viability and induced apoptosis of the MKN-45 and AGS cells through the PI3K and 
ß-catenin stat3 signaling pathways. Taken together, our data revealed that transfection of sh-
MARCH8 into the MKN-45 and AGS gastric cancer cell lines inhibited their growth, and this 
approach may be useful as a novel strategy for gastric cancer therapy.
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Introduction

Since researchers determined the genetic basis of cancer in 1914 [1], the carcinogenesis 
of many types of cancer has been studied, and the genetic theory of cancer has been accepted 
[2]. Gastric cancer (GC) is a highly heterogeneous disease with different molecular and 
genetic changes, including several chromosomal alterations [3, 4], variations in epigenetics 
[5-9], and miRNA involvement [10]. GC is the fifth most common cancer and the third most 
common cause of cancer deaths worldwide, accounting for 8.8% of all cancer-related deaths 
(723, 000 deaths) [11, 12]. Even today, in east Asia, Latin America and eastern Europe, as 
well as specific subgroups in the United States, the incidence and mortality of gastric cancer 
remains disproportionately high [11, 12].

Over the past several decades, the study of GC has provided information on its genetics, 
epigenetic inheritance, transcriptome, and metabolic changes [13-18]. Based on Laurence’s 
histopathological classification, a new molecular classification system was proposed to 
better classify gastric tumors [19-22].

The MARCH (membrane-associated RING-CH) family of E3 ubiquitin ligases was found 
with the aid of the viral protein homolog to interfere with host defenses [23]. Similar to 
most ubiquitin ligases, members of the MARCH family target various membrane proteins 
for degradation [24-27]. To date, eleven members of the MARCH family have been identified 
and characterized. Most of these ligases share a basic structure with c-MIR, the founding 
member of the family. Now known as MARCH8, this protein contains an N-terminal RING 
finger domain that potentially interacts with an E2 enzyme, as well as two trans-membrane 
domains [23, 25, 28]. These proteins usually contain several (two, four, or twelve) trans-
membrane (TM) domains; however, MARCH7 and MARCH10 do not contain any predicted 
TM domains [29].

The functions of MARCH8 and its close relative MARCH1 have been studied mostly 
in immune cells, where these proteins mediate the ubiquitination and downregulation of 
immune-regulatory cell surface molecules, including MHC-II, Fas, and CD86 (B7.2) [24, 
25, 30-33]. MARCH8 also controls cell surface expression of some additional proteins [34, 
35]. It has been observed that MARCH8 is expressed in the early embryos of zebrafish and 
Xenopus, suggesting that this protein might have a role in embryogenesis [37]. MARCH1 may 
be involved in dendritic cell maturation by promoting the ubiquitination and degradation 
of MHC-II and CD86 [29, 32, 38, 39]. MARCH10 and MARCH11 are highly expressed in the 
testes and are predicted to play a pivotal role in spermatogenesis and the organization of 
spermatid flagella [40-42]. Several other MARCH family members are widely expressed in 
various tissues, but their physiological roles are largely unknown.

In the present study, we aimed to investigate the roles of MARCH8 in human GC and to 
elucidate the underlying mechanisms. In this study, we report that knockdown of MARCH8 
reduced viability and induced apoptosis in MKN-45 and AGS cells through the PI3K and 
ß-catenin stat3 signaling pathways. These data suggest that MARCH8 inhibition may be a 
novel strategy for gastric cancer therapy.

Materials and Methods

Agents
The RPMI-1640 medium was from HyClone Company (Cat# SH30809.1, Logan, Utah, USA). The fetal 

goat serum was from Gibco (Cat# A31608-02,USA). The antibiotics, 0.25% trypsin, CCK-8 and DMSO were 
from Beijing Solarbio Science and Technology Company (Cat# P1400, T1300, CA1210, D8370, Beijing, 
China). Lipofectamine2000 was obtained from Invitrogen (Cat# 1777190, USA). The Annexin V-FITC/PI 
Apoptosis Kit was ordered from the 4A Biotech Company (Cat# FXP018-100, Beijing, China). The primary 
antibodies, including AKT CST (Cat# 9272, 1:1000); p-AKT CST (Cat# 4060, 1:1000); mTOR CST (Cat# 2972, 
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1:1000); p-mTOR CST (Cat# 5536, 1:1000); BCL2 Abcam (Cat# ab692, 1:1000); BAX Abcam (Cat# ab32503, 
1:1000); active-caspase-3 Abcam (Cat# ab13585, 1:1000); β-catenin PTG (Cat# 51067-2-AP, 1:1000); E-CAD 
PTG (Cat# 20874-1-AP, 1:1000); CYDLIN D1 Abcam (Cat# ab40754, 1:1000); P-STAT3 Abcam (Cat# ab30647, 
1:1000); GAPDH PTG (Cat# 60004-1-Ig, 1:5000); and all rabbit anti-human antibodies were from Abcam 
(Cambridge, United Kingdom). The HRP sheep anti-rabbit/mouse secondary antibodies (1:5000) were from 
PTG (USA).

The ultrapure RNA extraction kit (HiFiScript cDNA Synthesis Kit), fluorescence quantitative PCR kit 
(UltraSYBR Mixture), RIPA lysis buffer, BCA protein assay kit, and protease inhibitor cocktail were all from 
Beijing Kangwei Century Company (CwBio, Beijing, China). Additionally, the primers were synthesized 
by Genewiz (Beijing, China). The Matrigel was from BD Biosciences (354230, USA), and the Transwell 
cell culture plates were from Millipore (M160439, USA). The cell culture equipment was from Eppendorf 
(Hamburg, Germany). The LDS sample buffer was from Invitrogen (NP0007, USA). The protein marker was 
from ThermoScientific (SM1881, USA), and the ECL developer was from PTG (B500022, USA).

Construction of sh-MARCH8 interference plasmid
The MARCH8 interference sequence is 5′-CTTGAGCTGAATGAGAGAATA-3′. For insertion into the 

p-Super vector, Bgl II and Hind III restriction enzyme sites were fused to each terminus. The plasmid 
containing the MARCH8 interference sequence was confirmed by enzyme digestion and sequencing.

Cell culture and transfection
The MKN-45 and AGS gastric cancer cell lines were purchased from the cell bank of the Chinese 

Academy of Sciences (Shanghai, China). The cells were incubated in RPMI-1640 medium containing 10% 
FBS, 100U/ml penicillin and 0.1mg/ml streptomycin at 37°C with 5% CO2. The cells were trypsinized 
during the logarithmic phase and were re-plated into a fresh 6-well plate. The sh-MARCH8 transfection was 
performed using Lipofectamine2000 following the manufacturer’s instructions. The p-Super empty vector 
was used as the control.

Fluorescence quantitative PCR
The total RNA was extracted using the Ultrapure RNA Extraction Kit, and the cDNA was synthesized 

with the HiFiScript cDNA Synthesis Kit. The expression of MARCH8 was detected by fluorescence quantitative 
PCR, and the primers used are listed below:

MARCH8:
Forward: 5′-GGGAGAAGTTGCAGATGAC-3′
Reverse: 5′-GCACATACAAGGACCAGAC-3′
β-actin was used as standard control:
Forward: 5′-CCCGAGCCGTGTTTCCT-3′
Reverse: 5′-GTCCCAGTTGGTGACGATGC-3′
The relative expression was calculated using the 2 – ΔΔCt method.

Western blot analysis
The transfected cells were cultured in a 6-well plate to 95% confluence. Forty-eight hours after 

transfection, the cells were lysed with ice-cold RIPA buffer (150 mM NaCl, 1.0% NP-40, 0.1% Triton X-100, 
0.5% sodium deoxycholate, 0.1% SDS, 50 mM Tris-HCl, pH 8.0 and protease inhibitors), and the protein 
concentration was measured using the BCA method. The protein samples were denatured by heating 
at 95°C for 5 minutes, and approximately 20 μg was loaded into each lane in a 10% SDS-PAGE gel. After 
transferring the protein to the PVDF membrane, it was blocked with 5% non-fat milk for 1 hour at room 
temperature and incubated with primary antibodies in blocking solution at 4°C overnight. The membrane 
was then washed three times for 5 minutes with TBST and was later incubated with the relevant secondary 
antibody in blocking buffer at room temperature for 1 hour. After washing, the membrane was covered 
with the ECL substrate for signal development. The images were acquired using darkroom development 
techniques for chemiluminescence.
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Cell viability and proliferation assays
After transfection for 24 h, the cells were trypsinized and counted to make a suspension. Approximately 

1000 cells were seeded into each well of a 96-well plate. Cell viability was checked every 24 hours by adding 
10 μl of CCK8 reagent. After incubation at 37 °C for 90 minutes, an OD value of excitation light was detected 
using enzyme standard instrument with 450 nm. A proliferation curve was plotted using the OD values.

Colony formation assays
After transfection for 24 h, the cells were trypsinized to produce a single-cell suspension and were 

counted. Approximately 500 cells were seeded into each 10 cm dish with 5 ml of medium. The dishes were 
placed in an incubator at 37°C with 5% CO2 and left there until the cells formed sufficiently large clones. The 
medium was removed, and the cells were rinsed carefully with PBS. The cells were then fixed with 5 ml 4% 
paraformaldehyde for 30 minutes followed by staining with 0.1% crystal violet for 30 minutes. The crystal 
violet was carefully removed followed by rinsing with tap water. The dishes with the colonies were left to 
dry in normal air at room temperature. The numbers of colonies were counted and compared to the control 
group.

Wound healing assays
Wound healing assays were carried out to estimate the migration and proliferation rates of the cells. 

The cells were plated in a 6-well plate at 5×105 cells per well and incubated at 37 °C overnight to obtain a 
100% confluent cell monolayer. Twenty-four hours after incubation, a line was scratched with a pipette tip 
to destroy a small area of the cell layer. After washing with PBS, the cells were incubated in a serum-free 
medium. The open gaps were later examined using a microscope over a time range of 0, 24 or 48 hours, and 
the sizes of the gaps were measured with ImageJ software at 6 to 8 different points.

Cell invasion assays
A coating buffer (containing 0.01M Tris pH 8.0, 0.7% NaCl and filtered through a 0.2-μm sterile filter 

unit) was prepared before the experiment. Any pipettes, syringes, or containers that came into contact with 
the Matrigel were chilled prior to use. The aliquot of the Matrigel matrix was placed on ice at 4°C overnight. 
The Matrigel was subsequently diluted with serum-free 1640 medium at a 1:6 ratio, and 100 μl were 
applied to each permeable support well of a 24-well plate. This plate was incubated at 37°C for 4 hours. 
The remaining coating buffer was removed from the permeable support membrane without disturbing the 
Matrigel layer. Next, 100 μl and 600 μl of serum-free 1640 medium were added to the inside and outside of 
the support well, respectively, followed by incubation at 37°C for 30 minutes. The coated invasion chambers 
were then ready for use. The cells were trypsinized and re-suspended in serum-free culture medium. After 
that step, 100 μl of the cell suspension (containing 1×104 cells) was added to each of the 24-well invasion 
chambers and 600 μl of medium containing 10% FBS was added to the outside of the chamber.

Twenty-four hours after incubation at 37°C, the non-invading cells were removed using a cotton 
swab and both sides of the chambers were washed twice with 1X PBS. The cells were fixed with 4% 
paraformaldehyde at room temperature for 15 minutes and stained with 0.1% crystal violet for 5 minutes. 
After washing with 1X PBS, the filters were cut off and mounted on slides. The cells were observed and 
imaged, and the numbers of invaded cells were counted under a microscope.

Flow cytometric analysis of cell apoptosis
After 24 more hours of incubation in serum-free medium for starvation, the cells were trypsinized 

with EDTA-free trypsin. After washing with PBS, the cells were re-suspended in 1X binding buffer (10 mM 
HEPES/NaOH [pH 7.4], 140 mM NaCl, 2.5 mM CaCl2). The cell density was adjusted to 3 5 x 105 cells/ml. After 
that step, 5 μl of Annexin V‐FITC solution was added to the 100 μl of cell suspension and incubated at room 
temperature in the dark. Next, 10 μl of 20 μg/ml propidium iodide (PI) was added for two more minutes 
of double staining. The results were analyzed with a flow cytometer (BD FACSC anto II, BD Biosciences, 
San Jose, CA, USA). The viable cells were negative for both PI and Annexin V, while the apoptotic cells were 
positive for Annexin V and negative for PI. Late apoptotic cells showed both Annexin V and PI positivity. The 
apoptotic rate was calculated using the BD FACSDiva software.
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Immunohistochemical analysis
An EliVisionTMplus kit (KIT-9902) was used for the immunohistochemical analysis. The tissue sections 

were dewaxed using xylene and rehydrated with an ethanol gradient. Antigen retrieval was completed by 
boiling the sections two times in sodium citrate for 10 minutes. The slides were treated with 3% H2O2 for 10 
minutes followed by washing with TBS. After blocking for 1 hour at room temperature, primary antibodies 
were applied to the sections, and they were incubated for 1 hour at room temperature. The slides were 
developed with DAB developer and doubled stained with hematoxylin, dehydrated with gradient ethanol 
and mounted with neutral resins. The slides were examined under an OPTIKA B-150 microscope and the 
images were analyzed with Image Pro Plus6.0 (Media Cybernetics).

Under the 40X objective, 3–5 fields of view were randomly chosen. The staining was scored as A: 0 
for no staining, 1 for light yellow, 2 for light brown, and 3 for dark brown. The ratios of the stained cells 
were scored as B: 1 for 1%–10%, 2 for 11%–50%, 3 for 51%–80%, and 4 for over 80%. The final score was 
calculated by multiplying A x B. A score of 0 would be considered negative, 1–4 as light positive and over 4 
as strong positive.

Statistical analysis
The statistical analysis was completed using the SPSS 18.0 software. The results were expressed as 

means ± standard deviations (SD), as indicated in the figure legend. The data are representative of three 
independent experiments performed in triplicate. Student’s t-test was used to determine the significance 
for all pairwise comparisons of interest. The differences were considered to be statistically significant when 
P<0.05.

Results

MARCH8 expression in gastric cancer
MARCH8 was reported to mediate 

the ubiquitination and downregulation of 
immune regulatory cell surface molecules 
in immune cells [24, 25, 30-33] and to 
control cell surface expression of some 
additional proteins [34, 35]. We looked up 
the expression of MARCH8 in the online 
tool Gene Expression Profiling Interactive 
Analysis (GEPIA), which is based on the 
Cancer Genome Atlas (TCGA) and the 
Genotype-Tissue Expression (GTEx) 
dataset for transcriptomic analysis [36], 
which includes 408 GC samples and 211 
controls. As shown in Fig. 1, the expression 
level of MARCH8 is significantly higher in 
GC samples at P<0.05. This observation 
suggests the possibility that MARCH8 is 
involved in the tumorigenesis of GC and 
is a potentially good candidate for GC 
treatment.

MARCH8 could be used as a prognostic 
marker in gastric cancer
The online Kaplan-Meier plotter 

(www.kmplot.com) can assess the survival 
effect of a gene or a combination of genes 
in lung, breast, ovarian and gastric cancer. 
Gene expression data and relapse-free and 

Fig. 1. Boxplot of the mRNA expression levels of 
MARCH8 in gastric cancer and controls. The red 
and gray boxes represent gastric cancer and normal 
tissues, respectively. The data were obtained from 
the TCGA database, including 408 gastric cancer 
samples and 211 controls. The y-axis indicates the 
log2-transformed gene expression levels.

0
1

2
3

4
5

6
0

1
2

3
4

5

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

*

STAD
(num(T)=408; num(N)=211)

Figure 1

http://dx.doi.org/10.1159%2F000492882


Cell Physiol Biochem 2018;49:306-321
DOI: 10.1159/000492882
Published online: 23 August, 2018 311

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Yin et al.: sh-MARCH8 Inhibits Gastric Cancer by PI3K

Fig. 2. Survival probability of the gastric cancer patients with high and low MARCH8 mRNA expression 
levels. The data were obtained from www.kmplot.com. (A) Survival curves are plotted for all gastric cancer 
patients (n = 876). (B) Survival curves are plotted for intestinal-type cancer patients (n = 320). (C) Survival 
curves are plotted for diffuse-type cancer patients (n = 241).

overall survival information were downloaded from the GEO (Affymetrix microarrays only), 
EGA and TCGA databases. The effect of MARCH8 mRNA expression on the survival of GC 
patients was determined using the Kaplan-Meier plotter; 876 GC samples were included, of 
which there were 320 intestinal-type cancer samples and 241 diffuse-type cancer samples 
with 33 months of follow-up. The valid Affymetrix ID of MARCH8 is 231933_at. The Kaplan-
Meier survival curves for the low and high MARCH8 expression patient groups are shown 
in Fig. 2. The plots showed poorer prognosis rates for the GC (HR=1.5, 95%CI 1.2–1.86, 
P=0.00032) and intestinal-type GC patients (HR=2.2, 95%CI 1.52–3.18, P=1.7e-5) with 
higher MARCH8 expression.

The correlation of MARCH8 expression with various clinical factors was analyzed, 
including clinical stage, HER2 status, pathological grade and treatment method (Table 1). 
The MARCH8 mRNA expression level is significantly correlated with HER2 status, clinical 
stage, and surgery treatment at P<0.05.

Expression of MARCH8 is remarkably increased in gastric cancer tissues
We first detected the endogenous level of MARCH8 in para-carcinoma tissues and GC 

tissue samples obtained from the same patient using a tissue microarray. There is strong 
immunohistochemical staining of MARCH8 in GC tissue, while its expression is considerably 
lower in normal tissues (Fig. 3). The correlation of MARCH8 expression and the relationship 
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Table 1. The correlation of MARCH8 mRNA expression with clinical factors in gastric cancer patients. 
Sample information Cases HR 95% CI P 
HER status negative 641 1.53 1.17-2 0.0017 

positive 425 1.65 1.13-2.39 0.0082 
pathological grades Ⅰ 166 1.39 0.86-2.24 0.18 

Ⅱ 67 1.49 0.77-2.87 0.23 

clinical stages 
1 69 1.81 0.58-5.64 0.3 
2 145 2.04 1.1-3.8 0.021 
3 319 1.64 1.12-2.4 0.01 
4 152 1.59 1.06-2.38 0.025 

Treatment 
surgery alone 393 1.45 1.08-1.95 0.013 
5-FU-based adjuvant 158 0.65 0.21-1.96 0.44 
other adjuvant 80 0.33 0.13-0.79 0.0086 
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between the clinical pathological features of GC patients were analyzed and listed in Table 2. 
MARCH8 expression is significantly higher in patients with tumors greater than 5 cm than in 
patients with tumors less than or equal to 5 cm (P=0.0285).

Transfection of the sh-MARCH8 plasmid efficiently inhibited the expression of MARCH8 in 
MKN-45 and AGS cells
The efficiency of the MARCH8 knockdown by the p-Super sh-MARCH8 plasmid was 

determined in two GC cell lines, MKN-45 and AGS. The MARCH8 RNA levels in both sh-
MARCH8-transfected cell lines were significantly reduced (Fig. 4 A). Accordingly, the protein 
levels in both cell lines were decreased, as demonstrated by the protein band intensities (Fig. 
4 B, left), which were standardized to GAPDH as shown in the bar graph (Fig. 4 B, right).

Table 2. MARCH8 expression and the relationship between clinical pathological features of gastric cancer 
patients. * In some cases, the clinical pathological information is not complete, so the total cases of lymph-
node metastasis and pathological grade was less than 31 cases, but no influence on the reliability of the 
experimental results

 
 
 

Clinicopathologic feature Cases 
(n) 

MARCH8 level 
P High-expression 

(n) 
Low-expression 
(n) 

Age     ≤60 17 7 10 0.2001 >60 14 9 5 
Sex     Male 18 9 9 0.654 Female 13 7 5 
Tumor sizes    ≤5cm 20 7 13 0.0285 >5cm 11 9 3 
Lymph-node metastasis*     With 13 7 6 0.8548 Without 10 5 5 
Pathological grade*     
Ⅰ-Ⅱ 11 8 3 0.1333 
Ⅲ 12 5 7 

 
 
 
 

Fig. 3. Endogenous levels of MARCH8 
in para-carcinoma tissues and gastric 
cancer tissues were detected by tissue 
microarray. (A) MARCH8 expression 
in the tissue adjacent to carcinoma 
in patients with gastric cancer (100); 
(B) MARCH8 expression in cancer 
tissue in patients with gastric cancer 
(100); (C) MARCH8 expression in the 
tissue adjacent to the carcinoma in 
patients with gastric cancer (400); 
(D) MARCH8 expression in cancer 
tissue in patients with gastric cancer 
(400).
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Reduction of MARCH8 significantly inhibited gastric cancer cell proliferation
As sh-MARCH8 efficiently decreases the expression of MARCH8, we next measured the 

effect of MARCH8 knockdown on the proliferation of the MKN-45 and AGS GC cells. CCK8 
assays and colony formation assays were performed to evaluate whether the reduction of 
MARCH8 may affect the proliferation of MKN-45 and AGS cells. As shown by the CCK8 assays, 
MARCH8 knockdown significantly decreased the viability of both MKN-45 and AGS cells (Fig. 
5 A and B). Also, the colony formation assays showed that transfection of the sh-MARCH8 
vector resulted in decreased proliferation of both MKN-45 and AGS cells in comparison to 
the si-NC transfection control (Fig. 5 C and D).

Knockdown of MARCH8 inhibited migration and invasion of MKN-45 and AGS cells
Transwell assays were performed to investigate the effect of MARCH8 knockdown on 

cancer cell migration and invasion in vitro. The migration and invasion assays provide an 
in vitro system to study cell invasion by malignant and normal cells. The numbers of crystal 
violet-stained cells in sh-MARCH8-transfected wells are considerably lower than those of 
the control groups (Fig. 5 E and F). The numbers of migrated cells and invasive cells were 
significantly decreased in the sh-MARCH8-transfected wells for both the MKN-45 and AGS 
cells (Fig. 5 G and H).

Down-regulation of MARCH8 induced apoptosis of gastric cancer cells and affected the 
expression of apoptosis‑related proteins
GC cell apoptosis was analyzed by flow cytometry. The cells were transfected with the 

sh-MARCH8 plasmid or the control plasmid (sh-RNA) for 48 hours and later double stained 
with Annexin V and PI. Early apoptotic cells were identified by Annexin V-positive and PI-
negative staining. Late apoptotic cells were positively stained by both dyes. The transfection 
of sh-MARCH8 significantly increased the rate of apoptosis of both the MKN-45 and AGS cells 
compared with the control cells (Fig. 6 A and B).

Fig. 4. Sh-MARCH8 plasmid can inhibit MARCH8 expression in MKN-45 and AGS cells. (A) The expression 
of MARCH8 mRNA in sh-MARCH8-transfected MKN-45 and AGS cells was detected by quantitative PCR. 
(B) The protein levels of MARCH8 in both cell lines were detected by Western blot analysis (left) and were 
standardized to GAPDH (right).
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Fig. 5. Down-regulation of MARCH8 significantly inhibited cell proliferation, migration and invasion in 
gastric cancer. (A) and (B) The time curves showed that the proliferation of both MKN-45 and AGS cells was 
decreased after MARCH8 knockdown. (C) The viability of the MKN-45 and AGS cells and (D) the cologenic 
ability. (D) The influence of MARCH8 on clone numbers was evaluated by a clone formation efficiency assay. 
The error bars indicate ± SDs. *P<0.01 by Student’s t-test. (E) and (F) Crystal violet-stained cells show the 
migration and invasion of cells transfected with sh-MARCH8 and the corresponding sh-NC control. (G) and 
(H) The numbers of migrating and invading cells were significantly decreased in sh-MARCH8-transfected 
MKN-45 and AGS cells (P<0.01).
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To determine the mechanism of apoptosis induction by sh-MARCH8, a Western 
blot analysis was performed. As previous studies have shown that the expression of the 
anti‑apoptotic BCL2 and pro‑apoptotic BAX proteins are critical factors for initiating 
apoptosis via the mitochondria [43, 44], we examined the expression of BCL2 and BAX 
in the sh-MARCH8 plasmid-transfected MKN-45 and AGS cells by Western blot analysis. 
Compared with the control group, the sh-MARCH8-transfection decreased BCL2 expression 
while simultaneously increasing BAX expression (Fig. 6 C, D and E). These results indicated 
that sh-MARCH8 increased the BAX/BCL2 ratio in gastric cancer cells and suggested that 
MARCH8 knockdown may trigger the mitochondrial apoptotic pathway in these cells. Next, 

Fig. 6. sh-MARCH8 induced apoptosis of gastric cancer cells and affected the expression of apoptosis‑related 
proteins. (A) MKN-45 (upper) and AGS (lower) cells were harvested and stained with Annexin V-fluorescein 
isothiocyanate (FITC) and PI, and cell apoptosis was analyzed by flow cytometry. Flow cytometry staining 
revealed a significant shift in Annexin V-FITC-positive cells in the sh-MARCH8 transfected cells. (B) The 
percentage of apoptotic cells was significantly increased by sh-MARCH8 (*P<0.01). (C) MKN-45 (left) and 
AGS (right) cell lysates were separated by SDS-PAGE and analyzed by Western blotting with the indicated 
antibodies. GAPDH was used as a loading control. (D and E) The values of the band intensities represented 
the densitometric estimation of each band normalized to GAPDH (*P<0.01).
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we measured the expression levels of caspase‑3 p17 and showed that transfection of sh-
MARCH8 robustly increased the expression of caspase‑3 p17 (Fig. 6 C, D and E).

sh-MARCH8 suppressed the activation of the PI3K and ß-catenin stat3 signaling pathways 
in gastric cancer cells
To elucidate the molecular mechanism of sh-MARCH8 on GC inhibition, we examined the 

effect of sh-MARCH8 on the PI3K pathway in both MKN-45 and AGS cells. The PI3K pathway 
is implicated in many cellular processes including cell growth, survival, and the promotion of 
angiogenesis. After being activated at the cell membrane, PI3K phosphorylates PIP2, leading 
to an accumulation of PIP3 [45]. This lipid second messenger recruits AKT and PDK1 to 
the cell membrane, where AKT is phosphorylated by PDK1 [46]. Phosphorylated AKT 
regulates cellular processes by phosphorylation of a number of substrates, including BclxL/
BCL2-associated death promoter (BAD) [47]. Another AKT substrate, mTOR, has the most 
significant role in tumorigenesis [48]. Once activated, mTOR increases mRNA translation 
by phosphorylation of the downstream molecule P70-S6 kinase [49]. The PI3K-AKT-mTOR 
pathway can be negatively regulated by the tumor suppressor PTEN [50].

Our results showed that in the sh-MARCH8-transfected group, there was no change in 
the expression of AKT; however, the level of the phosphorylated form p-AKT decreased (Fig. 
7 A, C and D). mTOR has the same expression pattern as AKT (Fig. 7 A, C and D). These 
data suggested that MARCH8 knockdown inhibited PI3K and caused the decreases in the 

Fig. 7. sh-MARCH8 suppressed the activation of the PI3K signaling pathway in gastric cancer cells. (A) 
and (B) MKN-45 (left) and AGS (right) cell lysates were separated by SDS-PAGE and analyzed by Western 
blotting with the indicated antibodies. GAPDH was used as a loading control. (C) and (D) The values of the 
band intensities represented the densitometric estimation of each band normalized to GAPDH from the 
MKN-45 (C) and AGS (D) cells (*P<0.01).
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Fig. 8. sh-MARCH8 inhibited the activation of the β-catenin 
stat3 signaling pathway in gastric cancer cells. (A) MKN-45 
(left) and AGS (right) cell lysates were separated by SDS-PAGE 
and analyzed by Western blotting with the indicated antibodies. 
GAPDH was used as a loading control. (B) and (C) The values of 
the band intensities represented the densitometric estimation of 
each band normalized to GAPDH from the MKN-45 (B) and AGS 
(C) cells (*P<0.01).

phosphorylated forms of AKT 
and mTOR. The expression 
levels of P70 and VEGF were also 
decreased after transfection of 
sh-MARCH8 (Fig. 7 B, C and D).

To further confirm this 
conclusion, we examined 
the effect of sh-MARCH8 
on the expression levels of 
members of the ß-catenin stat3 
signaling pathway,  including 
ß-catenin, E-cadherin, Cyclin 
D1 and p-STAT3. Our results 
showed increased expression 
of E-cadherin and decreased 
expression of ß-catenin, Cyclin 
D1 and p-STAT3 (Fig. 8). The 
decreased Cyclin D1 expression 
in the sh-MARCH8-treated 
group was consistent with 
AKT inhibition and mTOR 
phosphorylation. Since PI3K 
activation inhibits GSK3β, 
the increased expression of 
GSK3β suggested that the PI3K 
expression was inhibited by sh-
MARCH8 transfection.

Discussion

In this study, we report the effects of sh-MARCH8-induced knockdown of endogenous 
MARCH8 in human GC cells, indicating that appropriate levels of MARCH8 expression are 
essential for the survival and maintenance of GC cells. Cancer is a multifactorial process, and 
many molecular alterations have been shown to influence tumor initiation and development 
through abnormal gene expression or protein alterations. In 2017, more than 1.5 million 
cases of GC are expected in the world, 38% of which are expected to occur in China and 
44% in 24 countries that belong to the International Agency for Research On Cancer (IARC) 
[51]. Although the prevalence is declining, GC is the fourth most common cancer worldwide, 
accounting for approximately 10% of invasive cancers, making it the third leading cause of 
cancer mortalities.

Due to the difficulty of GC diagnosis and its low survival rate [51], new treatment 
strategies are needed. MKN-45 and AGS are human GC cell lines that are resistant to tumor 
necrosis factor and to other cytotoxic drugs. MARCH8 is a member of the MARCH family of 
membrane-bound E3 ubiquitin ligases (EC 6.3.2.19). MARCH enzymes add ubiquitin (see 
Online Mendelian Inheritance in Man [OMIM] database, omim.org, ID is 191339) to their 
target lysine residues in substrate proteins, thereby signaling these proteins’ vesicular 
transport between membrane compartments. MARCH8 induces the internalization of several 
membrane glycoproteins [23, 24]. In our study, we used MKN-45 and AGS cells to investigate 
the effects of sh-MARCH8 on their proliferation, migration and invasion. Our results showed 
a remarkable increase in MARCH8 expression in GC, which makes it a potential prognostic 
marker of GC. In MKN-45 and AGS cells, transfection of the sh-MARCH8 plasmid efficiently 
inhibited the expression of MARCH8. The reduction of MARCH8 significantly inhibited the 
proliferation of MKN-45 and AGS GC cells, and decreased both their migration and invasion. 
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Down-regulation of MARCH8 induced apoptosis of GC cells and altered the expression of 
apoptosis‑related proteins. Our results suggested that the mechanism underlying these 
phenotypes involves sh-MARCH8 suppressing the activation of the PI3K and ß-catenin stat3 
signaling pathways in gastric cancer cells. These results reflected a potential pathological 
role of this protein in GC.

Mitochondria-mediated cell apoptosis is the major apoptotic pathway and is most 
commonly mediated by a variety of protein-membrane and protein-protein interactions 
of the B-cell lymphoma 2 protein (BCL2) family. BCL2-associated X (BAX), a member of 
the BCL2 family, is a pro-apoptotic protein. Overexpression of BAX triggers the release of 
mitochondrial proteins that cleave caspase-3, thereby activating it to induce apoptosis [52]. 
In our study, we found that sh-MARCH8 transfection increased the BAX/BCL2 ratio in both 
MKN-45 and AGS cells and also increased the expression of caspase‑3 p17. These results 
suggest that the loss of MARCH8 triggered apoptosis via a mitochondrial pathway. However, 
the BCL2 family proteins are regulated by many signaling pathways such as PI3K, wnt/β-
catenin and p53. In our study, MARCH8 knockdown changed the expression of BCL2 family 
proteins; however, there was no evidence showing that MARCH8 could directly regulate their 
expression levels. We concluded that MARCH8 regulated the apoptosis proteins indirectly 
through other signaling pathways.

To elucidate the mechanism of MARCH8’s inhibition of MKN-45 and AGS cells, we studied 
the effects of sh-MARCH8 on PI3K pathway members. The PI3K/AKT/mTOR pathway is 
implicated in numerous cellular processes ranging from cell growth and survival to the 
promotion of angiogenesis [44, 53]. The serine/threonine kinase AKT inhibits apoptosis 
and mediates cell survival by activating PI3K [54]. Another kinase, mTOR, is expressed in 
most mammalian cells [55], and it is involved in the inhibition of autophagy and acts as a 
cellular sensor of nutrients and growth factors. Furthermore, mTOR is also an important 
effector in the PI3K signaling pathway [56]. ß-catenin stat3 signaling proteins belong to a 
family of secreted proteins that plays important roles in the development and maintenance 
of many tissues, and include ß-catenin E-cadherin, Cyclin D1 and stat3. ß-catenin stat3 
signaling proteins also control kinase-signaling pathways. We discovered that sh-MARCH8 
transfection decreased the amounts of the phosphorylated forms of p-AKT and mTOR via the 
phosphorylation of PI3K. Since PI3K activation inhibits GSK3β, the increased expression of 
GSK3β and the decreased expression of P70 further confirmed this conclusion.

Conclusion

Our findings indicated that MARCH8 could be considered a potent GC inhibitor and could 
be potentially used as a supplementary agent in GC therapy. The underlying mechanism 
of the interaction between MARCH8 and conventional cancer therapies requires further 
research in the future.
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