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Antioxidant proteins have been found closely linked to disease control for its ability to

eliminate excess free radicals. Because of its medicinal value, the study of identifying

antioxidant proteins is on the upsurge. Manymachine-learning classifiers have performed

poorly owing to the nonlinear and unbalanced nature of biological data. Recently, deep

learning techniques showed advantages over many state-of-the-art machine learning

methods in various fields. In this study, a deep learning based classifier was proposed

to identify antioxidant proteins based on mixed g-gap dipeptide composition feature

vector. The classifier employed deep autoencoder to extract nonlinear representation

from raw input. The t-Distributed Stochastic Neighbor Embedding (t-SNE) was used for

dimensionality reduction. Support vector machine was finally performed for classification.

The classifier achieved F1 score of 0.8842 and MCC of 0.7409 in 10-fold cross

validation. Experimental results show that our proposed method outperformed the

traditional machine learningmethods and could be a promising tool for antioxidant protein

identification. For the convenience of others’ scientific research, we have developed a

user-friendly web server called IDAod for antioxidant protein identification, which can be

accessed freely at http://bigroup.uestc.edu.cn/IDAod/.

Keywords: antioxidant proteins, deep learning, g-gap dipeptide, feature selection, webserver

INTRODUCTION

Free radicals are a series of atoms, molecules or ions containing unpaired electrons, including
reactive oxygen species (ROS such as hydroxyl radicals, superoxide anion and hydrogen peroxide)
as well as reactive nitrogen species (RNS such as NO). Both ROS and RNS can be produced in
cells via non-enzymatic reaction (e.g., Fenton reaction) or enzymatic catalytic reaction requiring
NADPH oxidase, xanthine oxidase (XOD) or induced NO synthase etc. Appropriate amount of free
radicals is essential for performing some physiological functions such as respiratory burst and liver
detoxication. However, once the organisms suffer from environmental stresses, the level of ROS or
RNS will be increased significantly in cells. The presence of excess free radicals will not only result
in oxidative damage to proteins, DNA/RNA and the polyunsaturated fatty acids, but also regulate
the activity of some protein kinases or transcription factors. Finally, it may cause changes in the
expression of some genes and induce diseases such as diabetes, atherosclerosis, arthritis, cancer,
and aging (Urso and Clarkson, 2003; Lee et al., 2004; Li et al., 2014). Obviously, the elimination of
free radicals will greatly favor the treatment of these diseases.
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It is generally known that the free radicals can be scavenged
by various antioxidants (e.g., ascorbic acids, carotenoid,
glutathione) and the antioxidant enzymes (such as Superoxide
dismutase SOD, Catalases CAT, Peroxidase POD, and
Glutathione peroxidase) within the cells. Numerous evidences
have showed that different antioxidant proteins have different
antioxidant mechanisms. For example, peroxiredoxins are one
family member of thiol-containing POD which can remove
H2O2 through the oxidation of cysteine residues to form -S-S
bonds (Staudacher et al., 2018). SOD is a kind of Cu2+ or Mn2+-
coordinated metalloenzyme, and it can effectively eliminate
the harmful superoxide anion (Case, 2017). Different from
SOD, CAT utilizes the cofactor (iron heme) to convert H2O2

to H2O and O2 (Alfonso-Prieto et al., 2009). These complexity
and diversities make it time-consuming to identify antioxidant
proteins through biochemical experiments. There is therefore
the urgent need to draw support from computational methods.

A few studies have been done to identify antioxidant
proteins automatically. Feng et al. adopted Naïve Bayes to
predict antioxidant proteins (Feng et al., 2013) which achieved
a performance accuracy up to 66.88% and sensitivity of
72.04% in jackknife test. Subsequently, they proposed a support
vector machine (SVM) classification model based on dipeptide
composition to predict antioxidant proteins (Feng et al., 2016).
This model achieved higher accuracy of 74.79% in the jackknife
test but its result in 10-fold cross validation showed poor ability
to identify antioxidants. Besides, its feature selection method
ANOVA may be oversimplified and the model was trained on
single g-gap feature. Afterward an ensemble model was adopted
based on secondary structure information, mutation probability
and solvent accessibility (Zhang et al., 2016). The model achieved
accuracy of 86.3% and sensitivity of 87.8% on independent
testing dataset. However, all extracted features were completely
dependent on software developed by others, leading to restricted
versatility of the model. In addition, the features they used are
more complicated including secondary structure information
and amino acid mutations. In conclusion, there is still a long way
to go in developing reliable and effective computational methods
for antioxidant proteins identification.

Recently, deep learning makes a hit because of its
extraordinary performance on the field of image processing.
Compared with traditional machine learning methods that
rely on feature engineering, deep learning is proved to have
advantages of automatically discovering representations needed
for classification from raw data (LeCun et al., 2015). In
bioinformatics, deep learning also has been successfully applied
to predict protein structure, gene prediction and protein function
(Spencer et al., 2015; Zhang S. W. et al., 2017; Zou et al., 2017;
Wei et al., 2018).

Thus, this study raised a deep learning method to identify
antioxidant proteins based on feature extraction method called
g-gap dipeptide composition. The whole model was built in four
steps: (1) Extract a mixed g-gap feature vector from the sequence
information of each sample. (2) Build a deep autoencoder and
full connect (FC) neural network on the g-gap feature vector to
learn its compact representation. (3) Reduce the dimension of
compact representation through t-SNE. (4) Identify antioxidant
proteins using SVM classifier. To evaluate the performance of

model, 10-fold cross validation was performed. Furthermore,
we established a free online server called IDAod based on the
proposed method to provide convenient service for scholars.

MATERIALS

Raw dataset was collected from UniProt database (release
2014_02). In consideration of redundant sequences, the following
process was implemented to improve quality of datasets: (1)
Retain sequences confirmed to obtain antioxidant activity
in biological experiment. (2) Eliminate sequences containing
nonstandard letters except 20 familiar amino acid alphabets
for the reason of ambiguous meanings. After processing, 710
antioxidant protein sequences were regarded as positive samples
and remaining 1,567 protein sequences as negative samples.

Furthermore, studies have shown that redundant samples
will lead to unreliable training results (Chou, 2011). To avoid
homology bias and redundancy, the CD-HIT program (Fu et al.,
2012) was used to remove sequences that were more than 60%
similarity to any sequence in positive and negative samples.
Furthermore, proteins containing nonstandard letters, like “B,”
“X,” or “Z,” were excluded for their ambiguous meaning. Finally,
the dataset contains 250 antioxidant protein sequences (positive
samples) and 1,551 non-antioxidant protein sequences (negative
samples).

METHODS

Feature Extraction
The function of protein is mainly decided by structure, amino
acid composition of the sequence and the orders of residues
(Hensen et al., 2012). Protein has the secondary structure and
tertiary structure because of hydrogen bonding, hydrophobic
bond, Van der Wasls forces and so on (Berg et al., 2002;
Chen et al., 2014). The biological activity and physicochemical
properties of proteins are mainly determined by the integrity
of the spatial structure (Kim et al., 2003). Though protein
primary sequence can’t directly represent complete information,
the researches (Zhu et al., 2015; Chen et al., 2016; Tang et al.,
2016; Yang et al., 2016; Lai et al., 2017) on protein structure
and function prediction using the information from primary
sequence of protein indicate that protein primary sequence
contains adequate information to predict the biological, physical
and chemical properties of protein molecules. Thus, the feature
described protein samples were also derived from protein
primary sequence.

A protein with L amino acids can be formulated by
R1R2R3R4 . . .RL−2RL−1RL, where each Ri represent the ith
residue of the protein. To extract the information from protein
primary sequence as more as possible, we adopt g-gap dipeptide
composition to transform a primary sequence to a vector. In
secondary and tertiary structure, two non-adjoining residues are
maybe connected by hydrogen bond. Thus, g-gap dipeptides
compositions can reflect information about not only adjacent
amino acids in sequence but also adjacent amino acids in space
because of the hydrogen bonds. In detail, g is an integer ranging
from 0 to 9. Each g-gap dipeptide feature vector Pg contains
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20× 20= 400 dimensions and can be formulated as:

Pg = [f
g
1 f

g
2 · · · f gi · · · f g400]

T
(1)

where each element f
g
i represent the frequency of the ith g-gap

dipeptide in the protein sequence and is defined as:

f
g
i =

n
g
i

∑400
i=1 n

g
i

=
n
g
i

(L− g − 1)
(2)

where n
g
i is the number of ith g-gap dipeptide in sequence. Let

A1,A2, . . . , A20 represent 20 different kinds of amino acid, then
0-gap and 1-gap dipeptides can be expressed as AiAj and Ai ∗ Aj

respectively, where “∗” represents any kind of amino acid. 0-gap
dipeptide describes the correlation of two proximate residues.
Generally, g-gap dipeptide indicates the correlation between two
residues with the interval of g residues. In this study, only 0-
gap dipeptide features and 1-gap dipeptide features are employed
to form the input feature vector P which has 800 (400+400)
dimensions for our model.

Performance Evaluation
To obtain reliable and stable model, cross validation (CV) is
used to measure performance of models by splitting dataset into
training set and validation set (Lin, 2008). Training set is used to
build up model and validation set is used to measure properties
of the model. Cross-validation is generally divided into three
categories: 10-fold CV, jackknife CV and independent data test.
10-fold CV is finally put into use for the reason that jackknife CV
is time consuming, and independent data is difficult to collect. In
10-fold CV, the whole dataset was equally split into 10 parts, and
one part was chosen as the validation dataset while the remaining
9 parts was used as the training set to build the model.

For binary classification problem, the sensitivity (Sn),
specificity (Sp), and accuracy (Acc) are often used to measure
performance of classifier. Sn (Sp) is also called recall of
positive(negative) class.











Sn = TP
TP+FN

Sp = TN
TN+FP

Acc = TP+TN
TP+FN+TN+FP

(3)

where TP, FP, TN, and FN represent true positive, false positive,
true negative, and false negative of all samples, respectively.

Usually, Sp and Sn tend to restrain each other, high Sn leads
to low Sp and vice versa. Thus another index, F1 score, is the
harmonic mean of precision and sensitivity, to measure the
quality of a model. F1 score is formulated as:

F1 score =
2× precision× Sn

precision+ Sn
(4)

where precision is defined as:

Precision =
TP

TP + FP
(5)

Matthews correlation coefficient (MCC) is another index to
describe performance of machine learning model defined as
following:

MCC =
TP × TN − FP × FN

√
(TP + FN)(TP + FP)(TN + FP)(TN + FN)

(6)

In this study, antioxidant protein is referred as positive class and
no-antioxidant protein as negative class.

Feature Selection
Our integral model IDAod is composed of three parts: encoder
and FC layers part to learn the compressed representation
of the g-gap feature vector, t-Distributed Stochastic Neighbor
Embedding (t-SNE) part for reducing data dimensions (Maaten
and Hinton, 2008) and SVM classifier part for the final
identification of antioxidant proteins. Figure 1 shows the
pipeline of our integral model.

Feature Learning
Feature reduction and learning are effective for precision
improvement. They have been applied successfully in many
bioinformatics problems (Zou et al., 2016; Tang et al., 2017; Wei
et al., 2017). For the feature learning, we first built an autoencoder
(AE) (Vincent et al., 2010) that the input layer followed by an
encoder and decoder then connected to the output layer. For
reconstructing its original inputs, the output layer has the same
number of nodes as the input layer. We then pre-trained the
autoencoder to learn a dense representation of the input feature
vector P that we obtained in section Feature Extraction. After the
pre-training, we removed the decoder part of the autoencoder,
and stack three layers of FC neural network on top of the encoder
part of the autoencoder. After building themodel, the deep neural
network is fine-tuned, and the class label of the data servers as the
target value. The deep neural network structure corresponding
to feature learning was shown in Figure 2. The numbers at the
top of Figure 2 indicate the number of nodes in each layer. The
red After the feature learning, the output of the first FC layer
was the final low-dimensional feature representation of the 800
dimensions of the input feature vector P.

Autoencoder(AE)
AE is an unsupervised dimensionality reduction method. It
has been widely used to discover more abstract features of the

FIGURE 1 | Our integral model’s pipeline.
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FIGURE 2 | The deep neural network structure corresponding to feature

learning.

raw data, which is specifically beneficial to the performance
of the prediction and classification. A classical autoencoder
is comprised of three layers: input layer, encoder layer and
decoder layer. Encoder layer performs compression operation,
and decoder layer performs uncompressing operation based on
the output of encoder layer to reconstruct the original input.

Deep autoencoder is a kind of transformation of traditional
AE. AE can only pre-train one encoder and decoder after
each training, therefore we stacked multiple encode layers and
corresponding decoder layers together to form a deep AE
network. Afterwards the deep AE was trained jointly, with all the
parameters optimized to minimize global reconstruction error
between input and final decoder layer output. The architecture
of our deep AE was showed as Figure 3.

In this paper, the deep AE consisted of 7 layers. The input
layer with 800 nodes corresponded to 800 dimensions of the
input feature vector P. Nodes’ number of three encoder layers
were 650, 500, and 300, respectively. Three decoder layers have
500, 650, and 800 nodes correspondingly. In the encoder and
decoder framework, rectified linear network (ReLu) function was
used as activation function. As learning is far easier in deep
rectified linear network than in deep networks, we used sigmoid
as activation function (Glorot et al., 2011).

The goal of autoencoder was to minimize the discrepancy
between input and the reconstruction, thus the loss function
can be defined as reconstruction error of original input P to
reconstruction P′:

L(P, P′) = ||P − P′||2 (7)

Adadelta optimizer was employed to tune parameter in model to
minimize the loss function (Zeiler, 2012). It can be seen from the
loss function that samples of a large number of categories have
a greater impact on the loss function. In our case of training
dataset, the number of negative samples was around 6 times
that of positive samples. In order to ease the excess impact from

FIGURE 3 | The architecture of the seven-layers’ deep autoencoder. The

number on the left side indicates the number of nodes in each layer.

negative samples, we reassigned sample weight to 6 for each
positive sample and to 1 for every negative sample.

Full Connect Neural Network
After layer-wise unsupervised pre-training of deep autoencoder,
3 encoder layers were initialized with appropriate weights. Our
goal was to identify antioxidant proteins, and 3 layers of FC
neural network were thus stacked on top of autoencoder network
to play the role of prediction. Node numbers of 2 hidden FC
layers are 50 and 25 respectively. The output layer was a logistic
regression classifier which consists of one node. After building,
the deep neural network model for feature learning was fine-
tuned on complete datasets where the class label of the input
feature vector P served as the target value. The parameters of
the whole model for feature learning will be tuned to minimize
the gap between target values and the predicted values, and
binary cross entropy is employed as loss function. Among total
N samples, let ti and yi represent target label and predicted label
of the ith sample respectively. Thus the binary cross entropy of
dataset was defined as below:

L
(

t, y
)

= −
∑N

i=1

{

ti ln yi + (1− ti)ln(1− yi)
}

(8)

A tanh function was used as activation function for two
FC hidden layers. We adopted mini-batch gradient descent
optimizer (Li et al., 2014), a variant of Stochastic Gradient
Descent (SGD), to adjust parameters with the settings
(lr = 0.0025, decay = 1e-6, monument = 0.6, batch size = 12),
where lr was the learning rate, decay was a parameter reducing
learning rate over each update to decrease vibration phenomenon
for oversize learning rate. Monument setting was a trick to speed
up training process by increasing update scale of parameters.
Batch size was number of training data included to compute
gradient of loss function. In SGD, batch size was 1. Unlike
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autoencoder initialized by unsupervised pre-training, weights of
each FC layers were initialized randomly from −0.05 to 0.05 and
biases are initialized to 0.

To improve generalization performance, dropout technique
(Srivastava et al., 2014) was put into use in 2 hidden FC layers
which was set to 0.2 and 0.3, respectively. In addition, we applied
max norm constraints on weights of FC layers, the constraints
limited the length of weights to less than or equal to 3.

Just as we did in the pre-training of AE, in the fine-tuning
process, we re-weighted the ratio of positive sample to negative
sample from 1:1 to 6:1.

t-Distributed Stochastic Neighbor
Embedding
Based on neural network shown in Figure 2, we reduce
dimension of its output to two using t-SNE. t-SNE is a technique
for dimensionality reduction that is well suited for visualization
of high-dimensional datasets. Thus we convert each protein
sequence into a point in two-dimensional space. Lastly, SVM
plays the role of a classifier.

To show how raw data will be transformed through each layer,
we visualized outputs of hidden layers that have been reduced to
2 dimensions through t-SNE. The outputs of hidden layers were
shown in Figure 4.

From the t-SNE transformation of hidden layers’ outputs, we
found that data points of two classes were mixed together after
the first encoder layer. After transforming following encoder
layers, data points of two classes gradually split. In the first FC
layers, samples of two classes were almost separated obviously.

The process shows autoencoder and FC neural network indeed
extracts discriminate features and output of the first FC layers
can be separated through t-SNE, thus the following classifier can
play good performance based on those features.

Support Vector Machine(SVM)
SVM is a powerful classifier for classification of linear and
nonlinear classification problems (Adankon and Cheriet, 2009)
and has been widely used in bioinformatics (Feng et al., 2013;
Ding et al., 2014; Chen et al., 2016, 2018; Zhao et al., 2017;
Su et al., 2018). Therefore, we used it to predict label on two-
dimensional data transformed by t-SNE. Considering the small
amount of data we have, linear kernel was used. Other parameters
including penalty parameter C of the error term and class weight
of two classes was tuned to reach the highest F1 score in 10-
fold cross validation experiment. Finally, C was set to 2, and
class weight of positive and negative class was set to 5:1. The

TABLE 1 | Comparison of our model with other methods.

Methods Sn (%) Sp (%) Acc (%) F1 score MCC

AodPred 35.97 98.52 94.84 0.4959 0.4951

Logistic 53.23 80.38 76.39 0.3831 0.2695

Decision Tree 52.69 71.79 68.78 0.3230 0.1817

Random Forest 30.09 92.96 84.33 0.3465 0.2620

Ensemble Model 87.80 86.00 86.30 0.6699 0.6170

IDAod 81.27 99.59 97.05 0.8842 0.7409

FIGURE 4 | t-SNE visualization of the output of each layer in the deep neural network. Positive and negative samples are marked as green and red points,

respectively. (A) input layer; (B) the first encoder layer; (C) the second encoder layer; (D) the third encoder layer; (E) the first FC layer; (F) the second FC layer.
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SVM implement was based on method of freely available package
scikit-learn (Pedregosa et al., 2012).

RESULTS AND DISCUSSION

Prediction Accuracy
To evaluate the predictive performance of the final model, we
compared our proposed model IDAod with AodPred (Feng et al.,
2016), other frequently used classifiers like logistic, decision tree,
random forest implemented in WEKA (Frank et al., 2004), and
the ensemble model proposed by Zhang et al. (Zhang et al.,
2016). In order to facilitate the comparison of experimental
results, we reproduced AodPred in 10-fold cross validation.
The 10-fold CV results of these classifiers based on 0-gap and
1-gap features of benchmark dataset are shown in Table 1.

It’s clearly reflected from the table that IDAod outperforms
AodPred and other traditional machine learning methods with
Sn of 81.27%, Sp of 99.59%, F1 score of 0.8842 and MCC of
0.7409. What’s more is, IDAod based on simple g-gap dipeptide
composition extracted directly from the primary sequence still
outperforms the ensemble model that uses more complicated
features including secondary structure information and amino
acid site mutation information, etc.

Apart from the fact that the Ensemble Model attains the
highest sensitivity (Sn) among all compared methods as is shown
in Table 1, our IDAod method outperforms all other benchmark
classifying methods on most performance indices, including Sp,
Acc, F1 score, and MCC. There’s usually a trade-off between
sensitivity and specificity. In other words, to achieve high TPR
(true positive rate), the sacrifice of TNR (true negative rate) is
often needed, which means negative samples are more likely
to be wrongly predicted to be positive, and thus more wet-lab
experiments are needed in practice to perform the verification.
Compared with using Ensemble Model, the sensitivity (Sn)
using our method drops from 87.8 to 81.27% since our method
performsmore “rigorous” prediction for positive samples, and we
pay more attention to the “average” score like accuracy, F1 score
and MCC indicators for the sake of fairness. The results show
IDAod outperforms the other classifiers. It reflects that IDAod
can learn more abundant and discriminative features frommixed
g-gap dipeptide composition. Therefore, IDAod can be a more
advanced antioxidant protein identification too.

Hyperparameters in Network
The network architecture design is significantly important when
adopting deep learning method. The selection of ANN types,
layers, nodes, dropout, learning rate and so froth could be
a tedious task. We performed a lot of experiments to find
intuition on network designing, basically, usingmanual attempts.
After the main architecture (autoencoder + FC + t-SNE)
has been decided, we applied one of Bayesian optimization
methods (Snoek et al., 2012) to determine the hyperparameters.
Bayesian optimization is an automatic tuning approach for
optimizing the performance of a given learning algorithm by
modeling the algorithm’s generalization performance through
sampling the hyperparameters from a Gaussian process. For
each model, a small subset of training data was used to
train different models with different hyperparameters suggested

iteratively by the Bayesian optimization. After enough iterations,
the best performance will not improve and the optimal
hyperparameters which get the best performance were used in
the final model. By rigorous cross validation our model showed
reliable and optimizing result in the last line of Table 1 named
IDAod.

Web Server
Generally, user-friendly and publicly accessible web-servers (Lin
et al., 2014, 2017; Tang et al., 2016, 2017; Yang et al., 2016; Chen
et al., 2017; Li et al., 2017; Feng et al., 2018) or databases (He et al.,
2015; Cui et al., 2017; Feng et al., 2017; Liang et al., 2017; Yi et al.,
2017; Zhang T. et al., 2017) represent the future bioinformatics
direction. Thus, for the convenience of fellow researchers, an
online web server called IDAod is provided at http://bigroup.
uestc.edu.cn/IDAod. The input of the web server is a set of
protein sequences, which can either be uploaded as a single file or
copied/pasted into the input textbox. Note that the input protein
sequence should be in the FASTA format. The FASTA format
sequence consists of a single initial line beginning with a greater-
than symbol (“>”), followed by lines of amino acid sequence.
After submitting the protein sequences and clicking the “Submit”
button, the predicted results will be shown on a new webpage.
Instruction for prediction is presented on a new webpage if users
click the “About” button. Datasets used in our experiment can be
downloaded through “Data” button.

Conclusion and Future Work
In this study, a deep learning-based classifier was proposed based
on mixed g-gap dipeptide composition to predict antioxidant
protein. Compared with existing methods, the designed classifier
can achieve automatic extraction of features from raw input,
and the mixed g-gap dipeptide features build good foundation
for deep learning to extract more discriminative features than
single g-gap dipeptide features. Besides, t-SNEwas adopted in the
model to reduce dimensions, and thus ease common over-fitting
problem in deep learning. In the final result comparison, F1 score
was put into use since it has taken both precision and recall into
account. Comparison with AodPred shows that our experimental
results in a 10-fold cross validation increased 78.3% on F1 score.
The deep learning model was built on simple protein primary
sequence and yielded good performance, suggesting that it may
become a practical tool in antioxidant protein identification.
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