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Calcineurin (CN) is a Ca2+/calmodulin-dependent protein phosphatase with high
abundance in nervous tissue. Though enriched in neurons, CN can become strongly
induced in subsets of activated astrocytes under different pathological conditions where
it interacts extensively with the nuclear factor of activated T cells (NFATs). Recent work
has shown that regions of small vessel damage are associated with the upregulation of
a proteolized, highly active form of CN in nearby astrocytes, suggesting a link between
the CN/NFAT pathway and chronic cerebrovascular disease. In this Mini Review article,
we discuss CN/NFAT signaling properties in the context of vascular disease and use
previous cell type-specific intervention studies in Alzheimer’s disease and traumatic brain
injury models as a framework to understand how astrocytic CN/NFATs may couple
vascular pathology to neurodegeneration and cognitive loss.

Keywords: vascular contributions to cognitive impairment and dementia, Ca2+, glia, excitotoxicity, Alzheimer’s
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INTRODUCTION

Cerebrovascular pathology is one of the leading causes of cognitive loss and mortality. While stroke
is usually the most devastating form of cerebrovascular disease, other forms of vascular damage and
dysfunction including microinfarcts, microhemorrhages, cerebral amyloid angiopathy and cerebral
hypoperfusion are more insidious and can lead to chronic and progressive cognitive loss, especially
in aged individuals. These vascular contributions to cognitive impairment and dementia (VCID)
are the second leading cause of dementia, behind Alzheimer’s disease, and frequently co-exist
with other neurodegenerative conditions (O’Brien et al., 2003). Importantly, VCID comorbidities
appear to interfere with the treatment of Alzheimer’s disease-related functional deficits in animal
models (Weekman et al., 2016), highlighting the need to understand the cellular mechanisms
that link vascular dysfunction to neurodegeneration and impaired cognition (Snyder et al., 2015;
Horsburgh et al., 2018).

Brain ischemia results when stroke or other forms of VCID block the blood supply to parts of
the brain, resulting in depletion of oxygen and glucose. This depletion rapidly exhausts the energy
production of neural cells and their ability to maintain the normal balance of ions across cellular
membranes, thus causing excitotoxicity and Ca2+ overload, among other adverse effects (Choi,
1988; Horst and Postigo, 1996; Szydlowska and Tymianskia, 2010). Ca2+ overload originates from
a variety of sources and directly affects numerous intracellular signaling cascades, many of which
have been explored as potential treatment targets for stroke and other forms of cerebrovascular
disease (Harris et al., 1982; Infeld et al., 1999; Ray, 2006; Mattson, 2007; Rostas et al., 2017; Wu
and Tymianski, 2018). In most cases, Ca2+-signaling pathways have been investigated in neurons,
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which are the primary target of excitotoxic damage. In
the following Mini Review article, we will discuss the
importance of the Ca2+/calmodulin dependent protein
phosphatase, calcineurin (CN) and its dysregulation in
astrocytes as a pathological mechanism and potential target
for neurodegeneration and cognitive loss due to cerebrovascular
damage.

CN DYSREGULATION IN STROKE
MODELS

CN, or protein phosphatase 3, is the only phosphatase in
mammals that is directly activated by Ca2+/calmodulin. CN
consists of a catalytic subunit (PPP3CA) and a Ca2+ binding
regulatory subunit (PPP3R1). When cellular Ca2+ levels are
low, the phosphatase activity of CN is held in check by an
autoinhibitory domain located near the C terminus of the
catalytic subunit. The interaction of Ca2+ with the CN regulatory
subunit and calmodulin leads to a physical interaction between
the CN catalytic subunit and Ca2+/calmodulin, which, in turn,
displaces the AID and frees the catalytic core from inhibition.
When cellular Ca2+ levels fall, calmodulin is released from the
catalytic subunit and AID-mediated inhibition of phosphatase
activity is reinstated (Klee et al., 1998; Aramburu et al., 2000).
In healthy nervous tissue, CN provides an essential mechanism
for bidirectional synaptic plasticity through the induction and
maintenance of activity-dependent synaptic depression (Mansuy,
2003). In this capacity, CN is widely thought to link Ca2+

signaling to several forms of learning and memory, including
extinction learning (Baumgärtel et al., 2008; de la Fuente
et al., 2011; Rivera-Olvera et al., 2018). However, due to its
exquisite sensitivity to Ca2+, CN is also frequently identified
as a central player in numerous deleterious or maladaptive
processes arising from Ca2+ overload and/or dysregulation
(Uchino et al., 2008; Mukherjee and Soto, 2011; Reese and
Taglialatela, 2011; Furman and Norris, 2014; Sompol and Norris,
2018).

Large and/or sustained surges in Ca2+ can lead to calpain or
caspase-mediated proteolytic disruption of the CN AID (Wang
et al., 1989; Wu et al., 2004), which partially and irreversibly
uncouples CN from Ca2+, resulting in constitutive phosphatase
activity. Several acute and chronic neurodegenerative conditions
are associated with the generation of high activity CN proteolytic
fragments (∆CN), thus perpetuating de-phosphorylation of
the myriad of CN targets (Norris, 2014). Hypoxic/ischemic
insults appear to be particularly effective at triggering the
proteolysis of CN from its full length highly-regulated form
(60 kDa), to high activity fragments (∆CN) ranging in size
from 45 to 57 kDa (Shioda et al., 2006, 2007; Rosenkranz
et al., 2012). Conversely, blockade of CN typically provides
considerable neuroprotection during ischemia and other adverse
consequences of cerebrovascular damage. For instance, the CN
inhibiting immunosuppressant drug, tacrolimus (or FK506),
has been shown to reduce infarct size (Sharkey and Butcher,
1994; Butcher et al., 1997), suppress neuroinflammation
(Zawadzka and Kaminska, 2005) and promote recovery of
function (Sharkey et al., 1996) in middle cerebral artery

occlusion models of ischemic stroke. More recently, a CN
modulatory protein, known as regulator of CN (RCAN),
was found to favorably affect the pathogenesis of stroke
in vivo and hypoxia in vitro using both gene overexpression
and knockout approaches (Brait et al., 2012; Sobrado et al.,
2012). Together, these results suggest that CN proteolysis
(hyperactivation) is not only a biomarker, but also an
important mediator, of neurodegeneration resulting from
vascular damage.

NFATs

The exact mechanisms through which CN acts are complex and
multifaceted. CN has a broad and diverse range of substrates,
many of which have been implicated as downstream targets in
CN-mediated cellular dysfunction and neurotoxicity (Uchino
et al., 2008; Mukherjee and Soto, 2011; Reese and Taglialatela,
2011; Furman and Norris, 2014). Perhaps the best characterized
substrate of CN is the nuclear factor of activated T cells
(NFATs), a transcription factor related to NFκB/Rel-family
proteins (Rao et al., 1997). There are four CN-dependent NFAT
family members (NFATs 1–4), all of which are expressed in
nervous tissue (Nguyen and Di Giovanni, 2008; Vihma et al.,
2008). NFATs reside in the cytosol in their resting state, but
upon de-phosphorylation by CN, they translocate to the nucleus
where they can activate or suppress numerous gene expression
programs linked to immune/inflammatory signaling, Ca2+

regulation, and cell survival, among other things (Im and Rao,
2004). NFAT isoforms have different cellular distributions inside
and outside of the nervous system (Horsley and Pavlath, 2002;
Abdul et al., 2010) and appear to engage in both overlapping
and distinct transcriptional programs through interactions with
multiple other transcription factor families (Rao et al., 1997; Im
and Rao, 2004; Wu et al., 2006). Of the four isoforms, NFATs
1 and 4 seem to show a greater bias for glial cells where they
respond to many different kinds of inflammatory factors and
other noxious stimuli, including blood derived factors (Canellada
et al., 2008; Sama et al., 2008; Abdul et al., 2009; Nagamoto-
Combs and Combs, 2010; Serrano-Pérez et al., 2011; Neria et al.,
2013; Furman et al., 2016; Manocha et al., 2017; Sompol et al.,
2017).

HYPERACTIVE ASTROCYTIC CN/NFAT
SIGNALING: BIOMARKER FOR VASCULAR
DAMAGE?

Astrocytic CN/NFAT signaling may provide, and give rise
to, useful biomarkers for cerebrovascular damage. One of the
most striking changes in CN/NFAT expression following CNS
injury and disease is strong and selective expression in subsets
of activated astrocytes (Hashimoto et al., 1998; Norris et al.,
2005; Celsi et al., 2007; Serrano-Pérez et al., 2011; Lim et al.,
2013; Neria et al., 2013; Furman et al., 2016; Pleiss et al.,
2016; Sompol et al., 2017). For instance, the NFAT4 isoform,
which is weakly expressed in healthy nervous tissue, appears
at elevated levels in many activated astrocytes following kainic

Frontiers in Aging Neuroscience | www.frontiersin.org 2 September 2018 | Volume 10 | Article 287

https://www.frontiersin.org/journals/aging-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/aging-neuroscience#articles


Kraner and Norris Cerebrovascular Disease and Calcineurin/NFATs

acid lesions, cortical stab wounds and controlled cortical
contusion injuries (Serrano-Pérez et al., 2011; Neria et al., 2013;
Furman et al., 2016). NFAT4 expression in a mouse model
of Alzheimer’s disease also exhibited extensive co-localization
with activated astrocytes, increasing directly in proportion to
the expression of GFAP (Sompol et al., 2017). Using a custom
antibody to CN, based on calpain-dependent cleavage sites,
our lab recently observed intense labeling of a 45–48 kDa
∆CN fragment in activated astrocytes surroundingmicroinfarcts
in human neocortex (Pleiss et al., 2016). Labeling for ∆CN
was very faint throughout most brain areas examined, but
increased dramatically in GFAP-positive astrocytes around the
periphery of the lesion (Figure 1). These observations suggest
considerable molecular heterogeneity in astrocytes depending
on distance from vascular injury, consistent with studies in
other injury/disease models (Zamanian et al., 2012; Itoh et al.,
2018).

Several outstanding issues regarding the relationship
between astrocytic CN/NFAT and microinfarcts require further
clarification. Presently, it is unknown whether CN/NFAT
alterations occur immediately following microinfarct induction,
or are more characteristic of chronic changes that arise with

the formation of glial scars. The molecular phenotype of
∆CN-positive astrocytes has also yet to be elucidated. In primary
neural cultures, forced overexpression of ∆CN in astrocytes
induces the expression of numerous transcripts associated with
morphogenesis and immune response (Norris et al., 2005).
Studies are presently underway in our lab to determine the
time course of ∆CN expression in photothrombosis models
of microinfarct pathology (Risher et al., 2010; Masuda et al.,
2011; Summers et al., 2017; Underly and Shih, 2017) and to
determine if endogenous expression of ∆CN is associated with
transcriptional changes, reminiscent of forced overexpression
studies.

It deserves noting that many of the transcripts induced
by CN/NFAT activity in glial cells, and in other cell types,
encode releasable factors, such as cytokines and chemokines
(Norris et al., 2005; Canellada et al., 2008; Sama et al., 2008;
Nagamoto-Combs and Combs, 2010; Neria et al., 2013). Given
the intimate structural and functional interactions between
astrocytes and cerebral blood vessels, it seems likely that many
CN/NFAT-dependent factors released from activated astrocytes
could find their way into the bloodstreamnear regions of vascular
damage. Presence of these factors (or ∆CN itself) in blood

FIGURE 1 | ∆CN is intensely expressed in activated astrocytes surrounding microinfarcts in human neocortex. (A) Representative low magnification
photomicrograph from superior and middle temporal gyrus (SMTG) of a 90 year old human subject with multiple microinfarcts, but little-to-no Alzheimer’s pathology
(Braak stage II) ∆CN labeling is present around several microinfarcts (arrows and arrowhead). (B) Serial section through STMG stained by H&E to confirm the
presence of microinfarcts. The image shown is a high magnification of the region denoted by the arrowhead in Panel (A). (C) High power photomicrograph of the
region in (A; arrowhead) showing intense ∆CN antibody labeling of astrocytes. Higher magnification of the areas denoted by arrows are shown in panels (D,E).
(F) Merged confocal micrograph showing the colocalization of ∆CN (green) with GFAP around a microinfarct in human SMTG (red). (G–I) High magnification images
of the infarct in Panel (F) shown in individual channels (G,H) and merged (I). Co-localization of ∆CN with GFAP was most extensive in the region immediately
adjacent to the infarct. From Pleiss et al. (2016) used with permission.
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could then be used as potential biomarkers for the presence
of microinfarcts or other forms of vascular pathology. Indeed,
given the insidious nature of microinfarcts, the identification
of peripheral biomarkers would be most helpful for diagnostic
and/or prognostic screening purposes. Of course, additional
research will be necessary to assess these possibilities.

FUNCTIONAL IMPACT OF CN SIGNALING
IN ACTIVATED ASTROCYTES

Astrocyte activation is a complex process associated with both
neuroprotective and deleterious consequences for surrounding
nervous tissue (Khakh and Sofroniew, 2015; Pekny et al.,
2016; Verkhratsky et al., 2016). The increased expression of
CN/NFAT components in astrocytes associated with vascular
pathology may offer important targets that could be exploited for
determining the functional impact of these cells. Overexpression
of ∆CN in hippocampal astrocytes of intact healthy adult
rats causes reduced synaptic strength and hyperexcitability in
nearby neurons, which is consistent with other studies linking
activated astrocytes with impaired neuronal connectivity in
acute injury models (Wilhelmsson et al., 2004). In contrast,
astrocytic expression of ∆CN has also been found to reduce
amyloid pathology and improve cognitive function in mouse
models of Alzhieimer’s disease, consistent with other reports
that have found protective roles of activated astrocytes in
neurodegenerative conditions (Okada et al., 2006; Kraft et al.,
2013; Wanner et al., 2013; Tyzack et al., 2014). Whether CN
gives rise to beneficial or detrimental processes may depend
critically on the presence of different activating factors and/or
the recruitment of different transcription factor families (Furman
and Norris, 2014). For instance, the pro-inflammatory cytokine
TNF was shown to trigger the association of CN with the
transcription factors NFκB and FOXO3, which, in turn, induced
pro-inflammatory responses for promoting neurodegeneration
(Fernandez et al., 2012, 2016). In contrast, CN stimulation
by the insulin-like growth factor (IGF-I), has been proposed
to mediate neuroprotective responses of activated astrocytes
via interactions between NFκB and PPARγ (Fernandez et al.,
2012).

Blockade of CN interactions with NFAT transcription factors,
using the peptide VIVIT, has been associated with many
beneficial effects in cell culture and intact animal models of
neurodegeneration. VIVITmimics the CN-binding PxIxITmotif
found in the regulatory region of NFATs 1–4 (Aramburu
et al., 1999). When delivered to numerous cell types, VIVIT
prevents CN from binding to NFATs and therefore inhibits
NFAT nuclear localization, without inhibiting CN catalytic
activity per se. Expression of VIVIT in hippocampal astrocytes,
using adeno-associated virus (AAV) vectors equipped with the
human GFAP promoter Gfa2 (Lee et al., 2008), improved
synaptic strength and/or normalized synaptic plasticity in animal
models of Alzheimer’s disease and traumatic brain injury
(Furman et al., 2012, 2016; Sompol et al., 2017). Where
tested, AAV-Gfa2-VIVIT delivery to the hippocampus also
improved hippocampal-dependent cognitive function (Furman
et al., 2012; Sompol et al., 2017). In primary neural cultures,

VIVIT prevented the loss of astrocyte-enriched glutamate
transporters, primarily GLT1, in response to pro-inflammatory
cytokines and oligomeric Aβ, leading to reduced extracellular
glutamate levels, reduced neuronal excitability and greater
neuronal survival (Sama et al., 2008; Abdul et al., 2009).
VIVIT similarly restored GLT1 levels in intact 5xFAD mice—an
aggressive mouse model for Alzheimer’s disease (Sompol
et al., 2017). Mice treated with AAV-Gfa2-VIVIT showed
greater GLT1 expression, measured via immunofluorescent
microscopy and Western blot. VIVIT-treated 5xFAD mice also
exhibited fewer and shorter-duration spontaneous glutamate
transients (measured in vivo), healthier neurite morphology,
reduced synaptic hyperexcitability, and normalized NMDA-
to-AMPA receptor activity ratios (Sompol et al., 2017).
Together, these observations suggest that hyperactive CN/NFAT
signaling underlies a neurotoxic activated astrocyte phenotype
characterized by glutamate dysregulation and excitotoxicity.

Interestingly, many of the same telltale signs of glutamate
toxicity, including a loss of GLT1 and neuronal hyperactivity,
have been noted in experimental models of ischemia and
stroke (Maragakis and Rothstein, 2004; Soni et al., 2014).
Moreover, glutamate dysregulation would not only influence
the behavior and viability of surrounding neurons, but may
also be expected to negatively affect the cerebrovascular unit as
well. For instance, functional knockdown of GLT1 in otherwise
healthy animals can lead to reduced cerebral blood flow

FIGURE 2 | Putative role for astrocytic CN/nuclear factor of activated T cell
(NFAT) in vascular dysfunction and neurodegeneration. Ischemia arising from
vascular degeneration or disruption leads to increased expression of ∆CN and
hyperactivation of NFAT4 in astrocytes. The CN/NFAT pathway induces
numerous cytokines and other inflammatory mediators linked to
neuroinflammation. Some of these factors may target blood vessels, leading
to perivascular inflammation. CN/NFAT signaling also leads to the
downregulation of GLT1 glutamate transporters resulting in elevated
extracellular glutamate levels. Glutamate causes excitotoxicity at synaptic
connections and disrupts astrocyte endfeet and/or blood brain barrier (BBB)
integrity, leading to further vascular dysfunction and/or degeneration.
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and/or impaired neurovascular coupling (Petzold et al., 2008).
Other work has shown that hyperexcitable neural networks
and/or excitotoxic insults compromise the structural integrity
of vascular endothelial cells and perivascular astrocyte endfeet,
and precipitate blood brain barrier (BBB) leakage (Bolton and
Perry, 1998; Parathath et al., 2006; Alvestad et al., 2013; Gondo
et al., 2014; Ryu andMcLarnon, 2016) leading to perivascular and
parenchymal neuroinflammation.

SUMMARY AND FUTURE DIRECTIONS

Cerebrovascular pathology is one of the leading causes of
dementia and a frequently identified comorbid factor in many
neurologic diseases, such as Alzheimer’s disease. Numerous
studies have reported a role for CN hyperactivity in the
pathophysiologic sequelae coupling vascular disruption and
damage to neuronal death and cognitive loss. Mounting evidence
suggests that CN/NFAT signaling may play a particularly
important role in neural changes that arise with astrocyte
activation in many different neurodegenerative diseases,
including cerebrovascular disease. However, no studies to date
have tested the specific involvement of astrocytic CN/NFAT
signaling in either global ischemia models, models characterized
by localized damage to microvessels, or in models that develop
chronic vascular inflammation and microhemhorrages. Based

on the observations discussed above, we hypothesize that acutely
and chronically developing vascular damage will lead to the
activation of astrocytes and hyperactivation of CN/NFAT
signaling (Figure 2). In this scenario, increased CN/NFAT
activity would lead to the induction and release of numerous
immune/inflammatory factors and/or to the dysregulation of
astrocytic glutamate uptake, resulting in impaired synaptic
function, excitotoxicity, impaired neuronal viability and
neuroinflammation. These deleterious actions, could, in turn,
promote further vascular damage and inflammation and
hasten neurodegeneration and cognitive loss as part of vicious
positive feedback cycle. Of course, this hypothesis will require
extensive testing using astrocyte-specific targeting strategies in
experimental models of stroke and/or VCID.
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