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Background: Neuroimaging techniques are a cornerstone for diagnosing and

investigating cognitive decline and dementia in the elderly. In frailty research, the physical

as opposed to the cognitive domain of the aging process, neuroimaging studies are less

common. Here we systematically review the use of neuroimaging techniques in frailty

research.

Methods: We searched PUBMED for any publication reporting the association between

neuroimaging markers and frailty, following Fried’s original definition, as well as its

determining phenotypes: gait speed, grip strength, fatigue and recent weight loss in the

non-diseased population older than 65 years.

Results: The search returned a total of 979 abstracts which were independently

screened by 3 reviewers. In total, 17 studies met the inclusion criteria. Of these, 12

studies evaluated gait speed, 2 grip strength, and 3 frailty (2 Fried Frailty, 1 Frailty

Index). An association between increased burden of white matter lesions, lower fractional

anisotropy, and higher diffusivity has been associated consistently to frailty and worse

performance in the different frailty components.

Conclusions: White matter lesions were significantly associated to frailty and frailty

components thus highlighting the potential utility of neuroimaging in unraveling the

underlying mechanisms of this state. However, considering small sample size and design

effects, it is not possible to completely rule out reverse causality between frailty and

neuroimaging findings. More studies are needed to clarify this important clinical question.

Keywords: frailty, neuroimaging (anatomic and functional), review, gait speed, grip strength

INTRODUCTION

The number of older people in the global population is rapidly growing. From 2013 to 2060
the percentage of the population aged over 65 years is projected to increase from 18 to 28%
and the proportion of those aged over 80 years will rise from 5 to 12% (1). Increased longevity
raises social and economic challenges and has deep implications for the planning and delivery
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of healthcare. Indeed, as the number of older people rises, so does
the number of people with age-related disability and dependence
that require support with daily activities, healthcare services
and/or institutionalization.

The transition from a robust status to one of age-related
disability is usually preceded by a physiological state termed
frailty (2, 3). Although frailty can be characterized using
classical clinical phenotypes and laboratory-based biomarkers, a
universally accepted definition of frailty remains to be agreed
upon (4, 5). The most widely accepted definition of frailty
is “an age-associated biological syndrome, characterized by a
decrease of the biological reserve and resistance to stress due
to a decline in several physiological systems. This places the
individual in a special risk category when facing minor stressors
and is associated with poor outcomes (disability, hospitalization
and death)” (6). The most prominent approach used to assess
frailty is using Fried′s Frailty Criteria (7). Following this model,
frailty is diagnosed based on the presence of at least three of the
five physical attributes and capabilities of an individual. These
include: weight loss (unintentional weight loss of 4.5 kg or more
in the last year), exhaustion (self-reported), physical inactivity,
slow walking speed, and weakness (low grip strength).

Many research initiatives, including the large scale European
FRAILOMIC initiative, investigate OMIC factors associated to
frailty (4, 8). In a recent seminar published in the Lancet (6), the
authors discuss under the subheading ≪The Frail Brain≫ only
the structural and physiological changes taking place in the brain
that are known to be associated with chronological age but not
with frailty specifically. They reference the relationship between
frailty and cognition as an example of the frail brain rather than
answering which specific structural and physiological changes in
the brain are associated with frailty.

In this scoping review the objective is to summarize the
use of neuroimaging techniques in investigating Fried Frailty
in the non-diseased, elderly population. In addition, we want
to narratively outline whether current knowledge supports an
overlap with dementia research.

METHODS

Following PRISMA methodology, for this scoping review we
searched PubMed looking for works published prior to February
2018 (9–11).

We used the following query:
Neuroimaging [MESH] AND (Frailty OR (gait velocity OR

gait speed) OR (grip strength OR muscle strength) OR fatigue
OR weight loss)

We restricted the result set to those investigating humans
using the PubMed filter functionality and adults older than 65
years. Nine Hundred and Seventy-Nine abstracts were reviewed
independently by three researchers (SW, RB, and NP) with
the help of abstrackr software without using the prediction
algorithm (12). We excluded 958 papers, including those that
investigated the relationship between neuroimaging markers
and frailty parameters such as gait speed or grip strength only
in diseased populations (e.g., Parkinson′s Disease, Stroke, etc.)

after reviewing the abstract. Of the remaining 21 papers that
passed through full text screening, 13 were excluded for different
reasons: not investigating frailty or its components (n= 6), study
design not restricted to a population of 65 years of age or older
(n = 5), inadequate study design (n = 1) and not including a
neuroimaging marker (n = 1). When reviewing the references
from the 21 articles originally deemed eligible after abstract
screening, 9 studies were further considered eligible (Figure 1).

RESULTS

Of the 17 studies that fulfilled the inclusion criteria (Table 1),
3 studied frailty (2 Fried Frailty, 1 Frailty Index), 2 studies
investigated grip strength, and 12 studies investigated gait speed
or gait parameters. All but three studies were cross-sectional
in nature. Table 2 lists the details of the outcome assessment,
the imaging risk factors studied, the application of confounder
control, and the conclusions for each of the studies included in
this review.

In total, a maximum of 7,026 independent individuals
participated in the studies evaluated, with the median study size

FIGURE 1 | PRISMA flow diagram.
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TABLE 1 | Descriptive overview of reviewed studies.

References Year N (% female)* Age (mean, SD) Design Outcome Imaging technique

FRAILTY

(13) 2017 176 (40.0%) 75.0 (5.2) Cross-sectional Frailty Structural (T1-weighted MRI incl. DTI)

(14) 2014 87 (62.1%) Median 78 (IQR

74-83)

Frailty Structural (T2-weighted MRI)

(15) 2001 4735 (42.8%) 72.7 (4.33) Cross-sectional Frailty Structural MRI (Image weighting not specified)

GRIP STRENGTH

(16) 2015 191 (53.4%) 70.3 (4.8) Cross-sectional Grip Strength Functional MRI (Resting State)

(17) 2016 165 (51%) 70.15 (4.50) Cross-sectional Grip Strength Structural (T1-weighted MRI incl. DTI) and

Functional (Resting State)

GAIT SPEED

(18) 2010 148 (56.1%) 79 (IQR 76 - 83) Cross-sectional Gait Speed Structural (T1-weighted MRI)

(19) 2012 214 (64.5%) 72.82 (3.77) Cross-sectional Gait Speed Structural (T1-weighted MRI)

(20) 2010 795 (58.9%) 75.6 (5.5) Cross-sectional Gait Speed Structural (T1-weighted MRI)

(21) 2016 265 (57%) 82.9 (2.7) Cross-sectional Gait Speed Structural (T2-weighted MRI incl. DTI)

(22) 2015 30 (55.17%) 72.5 (5.22) Cross-sectional Gait Speed Functional MRI (Resting State)

(23) 2008 104 (61.5%) 85.1 (5.6) Longitudinal Gait Speed Structural MRI (T1 and T2-weighted)

(24) 2009 1702 (60.6%) 72.4 (4.1) Longitudinal Gait Speed Structural MRI (T1 and T2-weighted)

(25) 2007 327 (56.5%) 78.2 (3.9) Cross-sectional Gait Speed Structural (T1 and T2-weighted MRI)

(26) 2005 2450 (57%) 74.4 (4.7) Longitudinal Gait Speed Structural (T1 and T2-weighted MRI)

(27) 1999 50 (62%) 85.1 (7.2) Cross-sectional Gait Speed Structural (T1-weighted MRI)

(28) 2003 97 (40.2%) 78–79 Cross-sectional Gait Speed Structural (T2-weighted MRI)

(29) 2000 390 (0%) 72.37 (2.96) Cross-sectional Gait Speed Structural MRI (Image weighting not specified)

*The n refers to the source population for which the descriptive statistics % female and mean age are reported.

being of 191 participants, ranging from as low as n = 30 for the
functional MRI study of gait speed (22) to n = 2,450 for the
study with participants from the Cardiovascular Health Study
(CHS) (26) published in 2005. None of the studies estimated a
population effect by reweighting to the source or even general
population (30).

Findings by Frailty and Frailty Components
Frailty
In total, 3 studies were identified that investigated the association
of structural brain parameters with frailty using MRI (13, 15, 31).
Two of these, Avila-Funes et al. and Newman et al., analyzed
directly the frailty phenotype originally proposed by Linda Fried
(7), and Jung et al. reported in a letter the association between
white matter abnormalities and a Frailty Index conceptualized
as a combination of basic and instrumental activities of daily
living, physical performance, cognitive function and serum
albumin level. This index showed a significant correlation
(Spearman′s= 0.49, p< 0.001) with Fried Frailty (14). All studies
conclude that a higher burden of White Matter Lesions (WML)
volume was associated with the prevalence of frailty. In addition,
the original study from Newman et al. in participants from the
above-mentioned CHS found evidence for a higher number of
infarct lesions and increased ventricular size in frail participants
but no association with sulcus size. Furthermore, Avile-Funes
et al. found that white matter integrity assessed using diffusion
tensor imaging was less preserved in frail participants from
the AMIage study (13). This study investigated the relationship

between fractional anisotropy (FA, lower in frail vs. non-frail
participants), axial diffusivity (AD, higher), radial diffusivity (RD,
higher), and mean diffusivity (MD, higher) across white matter
tracts including the corpus callosum, anterior limb of internal
capsule, external capsule, and posterior thalamic radiations.

All these studies adjusted for major confounders such as age,
gender, and major age-associated diseases and were nested in
longitudinal cohort studies.

Grip Strength
Hirsiger et al. evaluated the association between grip strength
and structural/functional connectivity in the cingulum during
resting state as obtained from DTI and fMRI respectively in 165,
cognitively normal older participants (mean age 70.15) from the
longitudinal healthy aging brain (LHAB) project of theUniversity
of Zurich, Switzerland (17). They found that an increase in
FA in the cingulum bundle was positively associated with grip
strength (p = 0.022) while an increase in mean diffusivity was
negatively associated with grip strength (p = 0.018) in models
adjusted for age, gender, education, and diastolic blood pressure.
Resting state functional connectivity in the cingulum, more
concretely the correlation between posterior cingulate cortex and
medial prefrontal cortex BOLD signals, was not associated to grip
strength (p= 0.270).

Seidler et al. evaluated the same study sample as Hirsiger et al.
but looking at individual regions-of-interest (ROIs), using left
primary motor cortex, left putamen and right cerebellum lobules
V and VIII, all of them associated to hand motor performance
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TABLE 2 | Outcome, Imaging Risk Factors, and Conclusions from reviewed studies.

References Year Study acronym

or name

(location)

Outcome assessment Imaging risk factor Confounder

control

Conclusion

FRAILTY

(13) 2017 AMImage Fried Frailty White Matter Hyperintensities and

Integrity: Fractional Anisotropy (FA),

Axial Diffusivity (AD), Radial Diffusivity

(RD), and Mean Diffusivity (MD).

Yes Frail people have higher white matter

hyperintensity volume and loss of

white matter integrity.

(14) 2014 Seoul National

University

Frailty Index estimated from: Score in

daily activies, cognitive function,

physical performance and serum

albumin test.

White Matter Lesions (WML). Yes Higher frailty score in those subjects

with more WML, thus they conclude

both variables to be associated.

(15) 2001 CHS Fried frailty. WML, Infarct-like Lesions, Sulcal

Prominence and Ventricular Size.

Yes Frail subjects showed more infarct

lesions, increased white matter

abnormalities and increased

ventricular size, no effect on sulcus

size was found.

GRIP STRENGTH

(16) 2015 LHAB Grip Strength with hydraulic hand

dynamometer.

Functional Connectivity between Left

Motor Cortex, Left Putamen, Right

Lobule V, R Lobule VIII.

No Sensorimotor cortex connectivity is

positively associated with grip

strength.

(17) 2016 LHAB Grip Strength with hydraulic hand

dynamometer.

White Matter Integrity: FA, MD, RD,

AD in Cingular Bundle; approximated

Default Mode Network Connectivity

Yes RD was significantly associated to

grip strength, resting state functional

connectivity was not.

GAIT SPEED

(18) 2010 MCSA Gait Speed using a 4.88m digitized

walkway system.

White Matter Hyperintensities. No Higher white matter intensity volumes

across all regions were associated to

lower gait speed.

(19) 2012 CHS Gait Speed using a 4.57m course

and the average of 2 measurements.

Gray Matter Volume of the Prefrontal

Area.

Yes Smaller prefrontal area gray matter

volume is associated with slower gait

speed.

(20) 2010 AGES Gait Speed using a 6m course and

the average of 2 measurements.

Magnetization Transfer Ratio, White

Matter Hyperintensities, Brain

Athrophy and Brain Infarcts.

Yes Lower magnetization transfer ratio,

higher white matter intensity volume

and generalized brain atrophy but not

brain infarcts were associated to

slower gait speed.

(21) 2016 HealthABC Gait Speed using an 8m

computerized walkway.

White Matter Hyperintensities and FA. Yes Higher white matter lesion volume

was associated with slower gait

speed, a significant interaction was

observed between white matter

hyperintensities and FA. In high FA

individuals, the association was

non-significant.

(22) 2015 CCMA Gait Speed on 6.10m computerized

walkway.

rs-FMRI and ICA Decomposition. No Gait Speed associated with

well-established sensorimotor, visual,

vestibular, and left fronto-parietal

resting-state networks in older adults.

(23) 2008 Oregon Brain

Aging Study

Gait Speed using a 9m course. Periventricular, Subcortical and Total

WMH, Total Brain Volume,

Hippocampal Volume, CSF Volume.

Yes Higher baseline total and

periventricular white matter

hyperintensities was related to more

pronounced change in gait speed and

number of steps during follow-up.

Higher rate of periventricular white

matter hyperintensities accumulation

was associated with increased gait

slowing.

(24) 2009 3C study France Gait Speed using a 6m course. White Matter Lesions. Yes Periventricular WML volume was

associated with slow gait speed in

those subjects above 90th percentile

of WML volume, deep WML volume

was not. Baseline total WML volume

predicted walking speed decline in

follow-up.

(Continued)
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TABLE 2 | Continued

References Year Study acronym

or name

(location)

Outcome assessment Imaging risk factor Confounder

control

Conclusion

(25) 2007 CHS Gait Speed using a 4.57m course

and Balance checking the ability to

hold semitandem position for at least

10 s.

Gray Matter Volume of ROIs known to

be associated with mobility.

Yes Smaller gray matter volumes

remained associated with slow gait

and poor balance after cofounder

control in LH smaller cerebellum and

dorsolateral prefrontal regions (slower

gait) and RH basal ganglia, superior

posterior parietal cortex and

cerebellum (balance difficulty).

(26) 2005 CHS Gait Speed using a 4.57m course. Ventricular Enlargement, White Matter

Hyperintensities, Subcortical and

Basal Ganglia Small Brain Infarcts.

Yes Presence of structural brain

abnormalities was associated with

greater risk of incident functional

impairment and greater risk of gait

speed decline after cofounder control.

(27) 1999 Oregon Brain

Aging Study

Gait Speed using a 9.14m course. Total Brain Volume, Intracranial

Volume, Ventricular Volume,

Periventricular High Signal, Deep High

Signal.

Yes Ventricular volume and periventricular

white matter high signal volume, but

not total brain volume or deep white

matter high signal, were correlated

gait speed independent of age.

(28) 2003 ABC 1921 Study Gait Speed using a 6m course. WML, Periventricular Lesions and

Brain Stem Lesions.

No Decreased gait speed correlated

significative with an increased grade

of brain stem lesions.

(29) 2000 NHLBI Twin Study Gait Speed using a 2.43m course

(faster of two walks).

White Matter Hyperintensities, Total

Cranial Brain Volume (TCB).

Yes Above the median total brain volume

but not white matter hyperintensity

volume was associated with higher

gait speed.

(16). They found that resting state connectivity between the
motor cortex, bilateral sensorimotor cortex and supplementary
motor area was greater in participants with higher grip strength.
They also found stronger connectivity between the putamen
region, medial frontal cortex and precuneus, as well as between
the cerebellar seeds, the frontal cortex and temporal regions
associated with higher grip strength. In addition, cerebellar lobule
V showed increased connectivity with lobules VIIIa and VIIIb
with greater grip strength.

Gait Speed
Twelve studies using data from 9 population studies investigated
gait speed. 11 studies used structural MRI imaging for testing,
among other aspects, the association between WML (n = 9)
(18, 20, 21, 23, 24, 26–29) and gray matter (n = 2) (19, 25) with
gait speed, while one study evaluated resting state networks using
fMRI and their association with gait speed (22).

In each study relating gait speed to neuroimaging markers,
gait speed was assessed differently. Nevertheless, all but one
study used velocity in units of distance (m or cm) per second
as outcome measure rather than time in seconds for walking a
predefined distance.

Nine studies investigated the relationship between gait speed
and WML. Generalized measures of WML were associated
with slower gait in models adjusted for major confounders
in eight out of nine studies. Only the NHLBI Twin Study,
one of the earliest neuroimaging studies from the year 2000,
did not report a significant effect, although the tendency

was consistent with the other works. Some studies (23, 24,
27) also analyzed the effect of periventricular WML burden
coming to the same conclusions. In these studies, deep WML
volume was not associated with gait speed. In addition, Silbert
et al. examined the effect of change in WML volume and
concluded that the accumulation of WML was associated
with increased gait slowing during follow-up. Rosario et al.
additionally investigated the possibility of an interaction effect
between WML and white matter integrity measured by FA in
participants from The Health, Aging and Body Composition
Study (HealthABC) and found that the association between
WML volume and gait speed was not significant in high FA
individuals.

Two studies by Rosano et al. (19, 20) in participants from the
CHS and Age, Gene/Environment Susceptibility (AGES) study
investigated the association between gray matter volume and
gait speed. Using a ROIs approach of areas a priori known to
be associated to mobility, they identified an association between
small volumes in cerebellum and dorsolateral prefrontal regions
(25) and prefrontal gray matter volume (19) with slower gait. In
addition, brain atrophy—defined by an atrophy index computed
as (intracranial volume–brain volume)/intracranial volume—but
not cerebral infarcts were associated with reduced gait speed in
the AGES study.

The only study investigating resting state connectivity via
functional MRI in participants from the Central Control of
Mobility in Aging (CCMA) study confirmed an association
between well-established sensorimotor, visual, vestibular, and left
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fronto-parietal resting state networks and gait speed in older
adults.

DISCUSSION

Neuroimaging techniques and in particular functional
neuroimaging, a cornerstone for diagnosing and investigating
cognitive decline and dementia in the elderly, are hardly
used to identify biomarkers and risk factors associated
to frailty. This is surprising given the close link between
frailty and cognitive decline which has led to ≪cognitive
frailty≫ becoming a major research topic (32–34). As of
end of January 2018, only 3 studies directly assessed the
association between frailty and neuroimaging markers
identifying a relationship between an increased burden of
white matter hyperintensities, lower fractional anisotropy
and higher diffusivity with a higher prevalence of frailty.
None of these studies evaluated connectivity or any other
functional metric. Furthermore, among these studies, the
different frailty components have received uneven attention
with many more studies focusing in the relationship
between neuroimaging markers and gait speed compared
to handgrip strength. A higher burden of white matter
hyperintensities has been associated to lower gait speed.
Furthermore, lower fractional anisotropy and an increase in
mean diffusivity were associated to low gait speed and grip
strength.

More white matter hyperintensities and lower white matter
structural integrity were found to be associated with an increased
prevalence of frailty, lower grip strength and slower gait in all
studies that investigated this neuroimaging risk factor and were
considered for this review. These results support investigative
efforts into the role of the central nervous system and vascular
damage as possibly being implicated in the pathophysiology of
frailty. Findings supporting these results highlight the association
between structural changes and WML with physical fitness and
activity (35). In fact, white matter hyperintensities, possibly
the result of arteriosclerotic processes, are almost ubiquitous
in the elderly (36) and their presence is facilitated by the
exposure in mid-life to well-known risk factors such as smoking,
hypertension, diabetes mellitus, and chronological age (37). They
are also consistently associated with cognitive impairment (37).
However, to be associated with global cognitive decline, the
presence of other lesions is required and by themselves they
cannot be used as an indicator of dementia (38). As such, it is
problematic to infer the role of WML in the development of
frailty from the knowledge available to date, particularly since
most of the studies reviewed here and all that directly investigated
the frailty phenotype are cross-sectional and the reported
findings could be a result of reverse causation. Accumulating
longitudinal evidence in the fields of stroke, dementia and
mortality, supports the role of white matter hyperintensities as
a risk factor for these endpoints. But the associations reported
for frailty, whether causal or not, might not be sufficient to back
the classification of WML as a risk factor useful in the diagnosis
or prognosis of frailty. Whether or not WML can provide useful

information in combination with other biomarkers from the
brain or OMICs remains to be evaluated.

White matter microstructure has been associated to frailty and
its defining phenotypes in this review. DTI has emerged as a
technique allowing the study of white matter changes occurring
at a microscopic level before its macroscopic manifestations
are visible on a structural MRI (39). DTI seeks to evaluate the
loss of white matter microstructure integrity by characterizing
the degree of restriction to movement across different ellipsoid
axis (AD, RD, MD) as well as the relative degree of anisotropy
in a region of interest indicative of a preferential diffusion
path. DTI’s sensitivity to subtle abnormalities has encouraged its
application to the study of the aging brain under both healthy and
pathological conditions, yet only two of the studies considered
in this review deal directly with the microstructural alterations—
as extracted from the exploration of DTI parameters—regarding
frailty condition (13) or frailty-related components (17). The first
study informed of a greater loss of WM integrity (lower FA and
higher diffusivity values) in frail participants. Local decreases
in FA have been also observed in normal aging—involving
frontal WM and anterior cingulum—while DTI abnormalities
found in participants undergoing cognitive decline (MCI) or
neurodegenerative disease (AD) are also significant in posterior
regions signaling a loci of irregularities that could be related to
an Alzheimer’s disease type pathology [for a systematic review,
see (40)]. One of the regions reported in Avila-Funes et al. to
exhibit a lower FA in frail older adults is the anterior limb of
the internal capsule. This region has been subjected to some
discrepancy in the MCI and AD literature. Some authors do not
find significant reductions in FA (41, 42) while others do (43).
The later suggest that motor dysfunction is part of the incipient
process of AD but as this is not often clinically supported is
thought to represent an uncommon subgroup within AD patients
(40) that could be related to those individuals manifesting both
a cognitive decline and a frailty condition. The anterior limb of
the internal capsule, pinpointed in the study of Avila-Funes et al.,
is involved in the connection of frontal regions with different
brain regions. Interestingly, frontal structural disconnection has
been linked to cognitive decline in older adults, which seems
to support the link between frailty and cognition. In Hirsiger
et al., reduced grip strength was associated to the loss of WM
microstructural integrity in the cingulum, a region whose fibers
have been reported to present a significant FA reduction in MCI
and even more in AD (44).

Many of the studies covered in this work agreed on the finding
that brain volume reductions — manifested as either ventricular
volume increase (15, 26, 27) or a diffuse reduction in total brain
volume (20, 29)—are associated to classical phenotypes of frailty.
However, the specific cortical atrophy pattern associated to
physical frailty is yet to be fully established as very little work has
addressed this question. In this vein, two of the studies reported
significant reductions in prefrontal volume linked to slower gait
speed (19, 25), which could shed some light in this regard. Gray
matter atrophy is a hallmark of dementia progression and is
closely linked to cognitive dysfunction (45). Interestingly, Silbert
et al. (23) failed to find any significant relationship between
gait speed and hippocampal volume, which is one of the first
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structures showing volume reduction in Alzheimer′s Disease
dementia (46). Nevertheless, it is important to bear in mind that
the specific pattern of gray matter atrophy is highly dependent
on the dementia cause. Interestingly, the comorbidity between
physical frailty and cognitive deterioration leading to dementia
observed in epidemiological studies, seems to be supported by
the fact that frailty has been consistently linked to gray matter
atrophy in the few neuroimaging studies available to date, which
is solidly known to be also a major risk factor for dementia
development (47).

Functional connectivity estimates the reciprocal interactions
between distant brain regions as a function of the statistical
dependence between their respective activity time courses.
Synchronous activity has been reported to be consistently
associated to cognitive (48) and even motor performance
(49). However, although its influence in cognitive deterioration
and dementia is receiving increasing attention, its role has
been very scarcely studied in the context of frailty. From
the reviewed literature only three works reported functional
connectivity metrics. Hirsiger et al. (17) failed to find any
statistical relationship between posterior cingulate cortex-medial
prefrontal cortex connectivity and grip strength. This particular
link represents one of the major features of the default mode
network (DMN), which is associated to internal processing
states and is a critically associated to dementia progression
(50). However, the other two studies employing FC metrics
(16, 22) included a larger set of regions in their analyses
obtaining in both cases similar results, highlighting a significant
hyposynchronization affecting particularly sensorimotor areas
and prefrontal regions. Although sensorimotor network is not
one of the key networks in dementia progression, fronto-
parietal network disruption (as reported by Yuon et al.) has
been extensively linked to cognitive deterioration, particularly
in attention and executive functions. This particular pattern
of alterations could underlie the observed relationship between
frailty and dementia risk. In general, functional neuroimaging
techniques, such as MEG, have shown great utility in detecting
the initial stages of dementia and its associations with amyloid-
beta [for a review see (51)], which could be an important factor
in explaining the link between frailty and dementia.

LIMITATIONS

This scoping review has important limitations. First, the
restrictions to the Fried phenotype and the non-diseased, elderly
(65+ years) population, might have significantly reduced the
study base. However as frailty phenotype is both more prevalent

and potentially impactful in the older population we focused our
review in that specific segment of the population. Nonetheless,
to the best of our knowledge, this is the first review addressing
the use of neuroimaging markers in frailty research, thus making
it important to focus on research that approaches frailty from a
broad perspective and in the non-diseased population to avoid
coming to conclusions biased by results from specific diseased
groups. Furthermore, although frailty definitions different from
the Fried phenotype model exist (6, 52), it is still the most
commonly employed. Second, as most of the studies reviewed
are cross-sectional, reverse causality cannot be excluded, and the
results reported here should be considered as mere statistical
associations. Third, as in all observational research, residual
confounding that artificially creates a statistical association
between neuroimaging markers and frailty due to a common,
unknown factor cannot be excluded. Fourth, as this review
was restricted to the general, non-diseased population, we did
not include different studies pinpointing a link between frailty
and beta-amyloid accumulation in AD-related regions in at-
risk population (53, 54). However, these studies could also be
considered a very promising direction for future research into
the relationship between dementia or cognitive dysfunction and
frailty.

In conclusion, current literature supports the association
between increased burden of white matter lesions, lower
fractional anisotropy, and higher diffusivity with frailty and an
overall worse performance in the different frailty components
(i.e., gait speed and handgrip strength). However, the overall
study base contributing to these findings is very small,
mostly cross-sectional and does not allow for generalizations.
Representative, longitudinal neuroimaging studies, structural
and functional, investigating frailty and the subgroup of people
that exhibit frailty and cognitive decline as comorbidity are
urgently needed to identify processes that are specific to frailty
or common to both frailty and cognitive decline and dementia to
facilitate the differential diagnosis in the clinical setting.
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