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ABSTRACT 

 
Nonparametric density estimation is of great importance when econometricians want to 
model the probabilistic or stochastic structure of a data set. This comprehensive review 

summarizes the most important theoretical aspects of kernel density estimation and 

provides an extensive description of classical and modern data analytic methods to 
compute the smoothing parameter. Throughout the text, several references can be found 

to the most up-to-date and cut point research approaches in this area, while econometric 

data sets are analyzed as examples. Lastly, we present SIZer, a new approach introduced 

by Chaudhuri and Marron (2000), whose objective is to analyze the visible features 
representing important underlying structures for different bandwidths. 
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1. INTRODUCTION 

 

The field of econometrics focuses on methods that address the probabilistic or stochastic 

phenomena involving economic data. Modeling the underlying probabilistic structure of the 

data, i.e., the uncertainty of the process, is a crucial task, for it can be used to describe the 

mechanism from which the data was generated. Thus, econometricians have widely explored 

density estimation, both the parametric and nonparametric approaches, to identify these 

structures and then make inferences about the unknown “true models”. A parametric model 

assumes that the density is known up to a finite number of parameters, while a nonparametric 

model allows great flexibility in the possible form, usually assuming that it belongs to some 

infinite collection of curves (differentiable with square integrable second derivatives for 

example). The most used approach is kernel smoothing, which dates back to Rosenblatt 

(1956) and Parzen (1962). The aim of this paper is to review the most import aspects of kernel 

density estimation, both traditional approaches and modern ideas. 

 

A large extent of econometric research concerning estimation of densities has shown that a 

well estimated density can be extremely useful for applied purposes. An interesting 

comprehensive review of kernel smoothing and its applications can be found in Bierens 

(1987). Silverman (1986) and Scott (1992) discuss kernel density estimation thoroughly, 

giving details about assumptions on the kernel weight, properties of the estimator such as bias 

and variance, and discusses how to choose the smoothness of the estimate. The choice of the 

smoothing parameter is a crucial issue in nonparametric estimation, and will be discussed in 

detail in Section 4. 
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The remainder of this paper is as follows. In Section 2 we describe the most basic and 

intuitive method of density estimation: the histogram. Then, in Section 3 we introduce kernel 

density estimation and the properties of estimators of this type, followed by an overview of 

old and new bandwidth selection approaches in Section 4. Finally, SiZer, a modern idea for 

accessing features that represent important underlying structures through different levels of 

smoothing, is introduced in Section 5. 

 

2. THE HISTOGRAM 

 

The grouping of data in the form of a frequency histogram is a classical methodology that is 

intrinsic to the foundations of a variety of estimation procedures. Providing useful visual 

information, it has served as a data presentation device, however, as a density estimation 

method, it has played a fundamental role in nonparametric statistics. 

 

Basically, the histogram is a step function defined by bin heights, which equal the proportion 

of observations contained in each bin divided by the bin width. The construction of the 

histogram is very intuitive, and to formally describe this construction, we will now introduce 

some notation. Suppose we observe random variables X1,...,Xn i.i.d. from the distribution 

function Fx, and that Fx is absolutely continuous with respect to a Lesbegue measure on . 

Assume that x1,...,xn are the data points observed from a realization of the random variables 

X1,...,Xn. Define the bins as Ij = [x0 + jh, x0 + ( j+1 )h) , j = 1,…,k , for a starting point x0. Note that 

  
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where ξ ∈ Ij and the last equality follows from the mean value theorem for continuous 

bounded functions. Intuitively, we can approximate the probability of X falling into the 

interval Ij by the proportion of observations in Ij, i.e., 
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Using the approximation in (2.2) and the equation in (2.1), the density function f(x) can be 

estimated by 
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The smoothness of the histogram estimate is controlled by the smoothing parameter h, a 

characteristic shared by all nonparametric curve estimators. Choosing a small bandwidth leads 

to a jagged estimate, while larger bandwidths tend to produce over smoothed histogram 

estimates (see Hardle, 1991). Figure 1 shows an example of two histograms of the same 

randomly generated data: the histogram on the left hand side was estimated with a small 

bandwidth and consequently has many bins, while the histogram on the right hand side was 

computed with a large bandwidth, producing a smaller number of bins. The choice of the 

bandwidth is discussed in more detail in Section 4. Note that in practice, the choice of k will 

determine h or vice versa (a rule of thumb for the choice of k is the Sturges’ rule: 

k·=·1·+·log2n·). 
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Figure 2.1 Histogram estimate with small bandwidth (left) and large bandwidth (right) 

 
 

When building a histogram, not only the bandwidth needs to be chosen, but also the starting 

point of each bin edge. These choices can produce different impressions of the shape, and 

hence different estimates. The bin edge problem is a disadvantage of the histogram not shared 

by other estimators, such as the kernel density estimator. Another disadvantage is that the 

histogram estimators are usually not smooth, displaying bumps that may have been observed 

only due to noise. 

 

3. KERNEL DENSITY ESTIMATION 

 

In econometrics, kernel density estimation is also known as the Parzen-Rosenblatt window 

method. It is an approach that is rooted in the histogram methodology. The basic idea is to 

estimate the density function at a point x using neighboring observations. However, instead of 

building up the estimate according to bin edges, the naive kernel method (adaptively) uses 

each point of estimation x as the center of the bin of width 2h. To express it more 

transparently, consider the weight function 
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called the kernel weight. Then, the kernel estimate (Rosenblatt, 1956) of f(x) is defined as 
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This kernel density estimator is specifically called naive because the kernel weight used is 

simply a bin of width 2h centered at x. See Silverman (1986) for a deeper discussion about 

this kind of estimator. 

 

Note that the estimator in (3.5) is an additive function of the kernel weight, inheriting 

properties such as continuity and differentiability. Hence, it is not continuous and has zero 

derivatives everywhere except on the jump points Xi ± h. Moreover, even with a good choice 

of h, estimators that use weights as in (3.4) most often do not produce reasonable estimates of 

smooth densities. This is because the discontinuity of the kernel weight gives the estimate 

function a ragged form, creating sometimes misleading impressions due to several bumps and 

constant estimates where few data points are observed. As an illustration, we consider the 
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CEO compensation data in 2012, containing the 200 highest paid chief executives in the U.S. 

This data set can be obtained from the Forbes website http://www.forbes.com/lists/2012 

/12/ceo-compensation-12_rank.html.  

 

For a better visualization of the plot, we excluded the number 1 in the ranking, with an 

income of US$131.19 mil, as it was an outlier. 

  
Figure 3.2 Estimated density of CEO compensation using the naive(solid line) and the Epanechnikov(dashed 

line) kernels  

 
 

Figure 3.2 shows two density estimators: the solid line represents the naive estimator, while 

the dashed line represents a more adequate kernel type, called Epanechnikov, which will be 

described later. The density estimated by the naive kernel appears to have several small 

bumps, which are probably due to noise, not a characteristic of the true underlying density. 

On the other hand, the Epanechnikov kernel is smooth, avoiding this issue. 

 
Figure 3.3 Kernel weight functions  

 

  

Kernel weight  K(x) 
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Epanechnikov 
)1|(|)1(

4

3 2  xIx  

Biweight 
)1|(|)1(

16

15 22  xIx  

Triweight 
)1|(|)1(

32

35 32  xIx  

 Table 3.1 : Kernel weight functions.

 
 

A usual choice for the kernel weight K is a function that satisfies ∫
∞

–∞ K(x)dx = 1. If moreover, it 

is assumed that K is a unimodal probability density function that is symmetric about 0, then 

the estimated density f̂ (x) is guaranteed to be a density. Note that the weight in (3.4) is an 

example of such choice. Suitable weight functions help overcome problems with bumps and 

http://www.forbes.com/lists/2012%20/12/ceo-compensation-12_rank.html
http://www.forbes.com/lists/2012%20/12/ceo-compensation-12_rank.html
http://www.forbes.com/lists/2012%20/12/ceo-compensation-12_rank.html
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discontinuity of the estimated density. For example, if K is a Gaussian distribution, the 

estimated density function f̂  will be smooth and have derivatives of all orders. Table 3.1 

presents some of the most used kernel functions and Figure 3.3 displays the format of the 

Epanechnikov, Uniform, Gaussian and Triweight kernels.  

 

One of the drawbacks of the kernel density estimation is that it is always biased, particularly 

near the boundaries (when the data is bounded). However, the main drawback of this 

approach happens when the underlying density has long tails. In this case, if the bandwidth is 

small, spurious noise appears in the tail of the estimates, or if the bandwidth is large enough 

to deal with the tails, important features of the main part in the distribution may be lost due to 

the over-smoothing. To avoid this problem, adaptive bandwidth methods have been proposed, 

where the size of the bandwidth depends on the location of the estimation. See Section 4 for 

more details on bandwidth selection. 

 

3.1. Properties of Kernel Density Estimators  

 

In this section, some of the theoretical properties of the kernel density estimator are derived, 

yielding reliable practical use. Assume we have X1,...,Xn i.i.d. random variables from a density 

f and let K() be a Kernel weight function such that the following conditions hold 

  ∫ K(u)du = 1, ∫ uK(u)du = 0, ∫ u
2
K(u)du = μ2(K) > 0   

 

Then, for a non-random h, the expected value of f̂ (x) is 

 














 
















 
 

 h

Xx
KE

hh

Xx
KE

nh
xfE i

n

i

i 11
))(ˆ(

1

 (3.6) 

   dyyhxfyKduuf
h

ux
K

n
)()(

1








 
   (3.7) 

It is easy to see that f̂  is an asymptotic unbiased estimator of the density, since 

E(f̂ (x))→·f(x)∫·K(y)dy = f(x) when h→0. It is important to note that the bandwidth strongly 

depends on the sample size, so that when the sample size grows, the bandwidth tends to 

shrink. 

 

Now, assume also that the second derivative f” of the underlying density f is absolutely 

continuous and square integrable. Then, expanding f (x+yh) in a Taylor series about x we have 
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Then, using the conditions imposed on the Kernel, the bias of the density estimator is 
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The variance of the estimated function can be calculated using steps similar to those in (3.6): 
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where R(g)=∫·g
2
(y)dy for any square integrable function g. From the definition of Mean 

Square Error (MSE), we have 
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It is straightforward to see that, in order for the kernel density estimation to be consistent for 

the underlying density, two conditions on the bandwidth are needed as n→∞: h→0 and 

nh→∞. When these two conditions hold, MSE(f̂ (x))→0, and we have consistency. Moreover, 

the trade-off between bias and variance is controlled by the MSE, where decreasing bias leads 

to a very noise (large variance) estimate and decreasing variance yields over-smoothed 

estimates (large bias). As has already been pointed out, the smoothness of the estimate 

depends on the smoothing parameter h, which is chosen as a function of n. For the optimal 

asymptotic choice of h, a closed form expression can be obtained from minimizing the Mean 

Integrated Square Error (MISE). Integrating the MSE over the entire line, we find (Parzen, 

1962) 
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and the bandwidth h that minimizes MISE is then 
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Using this optimal bandwidth, we have 
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A natural question is how to choose the kernel function K to minimize (3.11). Interestingly, if 

we restrict the choice to a proper density function, the minimizer is the Epanechnikov kernel, 

where μ
2

2(K)R
4
(K)=3

4
/5

6
. 

 

The problem with using the optimal bandwidth is that it depends on the unknown quantity f”, 

which measures the speed of fluctuations in the density f, i.e., the roughness of f. Many 

methods have been proposed to select a bandwidth that leads to good performance in the 

estimation, some of these are discussed in Section 4. 

 

The asymptotic convergence of the kernel density estimator has been widely explored. Bickel 

and Rosenblatt (1973) showed that for sufficiently smooth f and K, 

)(/|)()(ˆ|sup xfxfxfI  , when normalized properly, has an extreme value limit 

distribution. The strong uniform convergence of f̂ (x) 

 0|)()(ˆ|suplim  xfxfxn  a.e. (3.12) 

 

has been studied extensively when the observations are independent or weakly dependent. 

Nadaraya (1965) showed that if K is of bounded variation and if f is uniformly continuous, 
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then (3.12) holds as long as  1

2

m

mhne


for each γ > 0. Moreover, Stute (1982) derives a 

law of the logarithm for the maximal deviation between a kernel density estimator and the 

true underlying density function, Gine and Guillou (2002) find rates for the strong uniform 

consistency of kernel density estimators and Einmahl and Mason (2005) introduce a general 

method to prove uniform in bandwidth consistency of kernel-type function estimators. Other 

results on strong uniform convergence with different conditions can be found in several other 

papers, such as Parzen (1962), Bhattacharya (1967), Van Ryzin (1969), Moore and Yackel 

(1977), Silverman (1978) and Devroye and Wagner (1980). 

 

4. THE CHOICE OF THE SMOOTHING PARAMETER h 

  

Selecting an appropriate bandwidth for a kernel density estimator is of crucial importance, 

and the purpose of the estimation may be an influential factor in the selection method. In 

many situations, it is sufficient to subjectively choose the smoothing parameter by looking at 

the density estimates produced by a range of bandwidths. One can start with a large 

bandwidth, and decrease the amount of smoothing until reaching a “reasonable” density 

estimate. However, there are situations where several estimations are needed, and such an 

approach is impractical. An automatic procedure is essential when a large number of 

estimations are required as part of a more global analysis. 

 

The problem of selecting the smoothing parameter for kernel estimation has been explored by 

many authors, and no procedure has yet been considered the best in every situation. 

Automatic bandwidth selection methods can basically be divided in two categories: classical 

and plug-in. Plug-in methods refer to those that find a pilot estimate of f, sometimes using a 

pilot estimate of h, and ”plug it in” the estimation of MISE, computing the optimal bandwidth 

as in (3.10). Classical methods, such as cross-validation, Mallow’s Cp, AIC, etc, are basically 

extensions of methods used in parametric modeling. Loader (1999) discusses the advantages 

and disadvantages of the plug-in and classical methods in more detail. Besides these two 

approaches, it is possible to find an estimate of h based on a reference density. Next, we 

present in more detail the reference method and the most used automatic bandwidth selection 

procedures. 

 

4.1. Reference to a Distribution 

 

A natural way to overcome the problem of not knowing f” is to choose a reference density for 

f, compute f” and substitute it in (3.10). For example, assume that the reference density is 

Gaussian, and a Gaussian kernel is used, then 
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By using an estimate of σ, one has a data-based estimate of the optimal bandwidth. In order to 

have an estimator that is more robust against outliers, the interquartile range R can be used as 

a measure of the spread. This modified version can be written as 
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Figure 4.4 shows the estimated density of CO2 per capita in the year of 2008. The data set can 

be found at http://data.worldbank.org/indicator/EN.ATM.CO2E.PC/countries. Note that the 

estimated density that was computed with the robust bandwidth captures the peak that 

characterizes the mode, while the estimated density with the bandwidth that minimizes MISE 

smoothes out this peak. This happens because the outliers at the tail of the distribution 

contribute to hMISE be larger than the robust bandwidth hrobust. For more details on this 

estimator, see Silverman (1986) or Hardle (1991). 

 
Figure 4.4 Estimated density of CO2 per capita in 2008 using the bandwidth that minimizes MISE(solid line) 

and the robust bandwidth(dashed line)  

 
 

These methods are of limited practical use, since they are restricted to situations where a pre-

specified family of densities is correctly selected. Plug-in and classical methods, described 

below, do not suffer from this limitation. 

 

4.2. Plug-in Methods 

 

There are several papers that address the plug-in approach for bandwidth selection. Some of 

them study different ways to estimate R(f”), others explore ideas on how to select a pilot 

bandwidth to better estimate R(f”). The idea is that the only unknown part of (3.10) needs to 

be estimated, and hence the bandwidth estimator hMISE can be obtained. 

 

Scott, Tapia and Thompson (1977) proposed a sequential process: calculate 

))(ˆ()''(ˆ
2

xfRfR h  plug )''(ˆ fR  into (3.10) to obtain h3, and iterate until convergence of the 

bandwidth. Hall and Marron (1987) proposed estimating )(ˆ )( pfR  by 
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p ngKRfRfR  with g having the optimal rate given in Hall and Marron 

(1987). An improvement of Parzen and Marron (1990) method can be found in Sheather and 

Jones (1991). Hall, Sheather, Jones and Marron (1991) proposed to use a kernel of order 2 

and to take one extra term in the Taylor expansion of the integrated square bias, leading to 
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Since the minimizer of (4.13) is not analytically feasible, they proposed to estimate the 

bandwidth by 
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Several other plug-in methods have been proposed, and a review of the first procedures that 

address this type of methodology can be found in Turlach (1993). Modern research on plug-in 

methods have actually become somewhat hybrid, combining ideas of plug-in and classical 

approaches such as cross validation, see Biased Cross-Validation described below for 

example. More recently, inspired by developments in threshold selection, Chan, Lee and Peng 

(2010) propose to choose h = o(n
-1/5

) as large as possible, so that the density estimator has a 

larger bias, but smaller variance than )(ˆ xf
AMSEh . The idea is to consider an alternative kernel 
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Then, the choice for the smoothing parameter is 
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4.3. Classical Methods  

 

4.3.1. Least Squares Cross-Validation 

 

Cross-validation is a popular and readily implemented heuristic for selecting the smoothing 

parameter in kernel estimation. Introduced by Rudemo (1982) and Bowman (1984), least 

squares cross-validation is very intuitive and has been a fundamental device in recent 

research. The idea is to consider the expansion of the Integrated Square Error (ISE) in the 

following way 

   dxxfdxxfxfdxxfhISE hh )()()(ˆ)(ˆ)( 22
.  

 

Note that the last term does not depend on f̂ h, hence on h, so that we only need to consider the 

first two terms. The ideal choice of bandwidth is the one which minimizes 

   dxxfxfdxxfdxxfhISEhL hh )()(ˆ)(ˆ)()()( 22
 

The principle of the least squares cross-validation method is to find an estimate of L(h) from 

the data and minimize it over h. Consider the estimator 
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The summation in (4.14) has expectation 
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because E(f̂ h) depends only on the kernel and bandwidth, not on the sample size. It follows 

that E(CVLS(h)) = E(L(h)) and hence CVLS(h) + ∫ f 
2
(x)dx is an unbiased estimator of MISE 

(reason why this method is also called unbiased cross-validation). Assuming that the 

minimizer of CVLS(h) is close to the minimizer of E(CVLS(h)), the bandwidth 

 )(minarg hCVh LShLSCV    

is the natural choice. This method suffers from sample variation, that is, using different 

samples from the same distribution, the estimated bandwidths may have large variance. 

Further discussion on this method can be found in Bowman, Hall and Titterington (1984), 

Hall (1983) and Stone (1984). 

 

4.3.2. Biased Cross-Validation 

 

Biased cross-validation considers the asymptotic MISE 
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This method was suggested by Scott and Terrell (1987), and its main idea is to replace the 

unknown quantity R(f′′) by the estimator 
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Then, the bandwidth selected is hBCV = argmin BCV(h). This selector is considered a hybrid of 

cross-validation and plug-in, since it replaces an unknown value in AMISE by a cross-

validation kernel estimate )''(
~

fR . 

 

4.3.3. Likelihood Cross-Validation 

 

Suppose that in addition to the original data set X1,...,Xn, we have another independent 

observation X
*
 from f. Thinking of on f̂ h, as a parametric family depending on h, but with 

fixed data X1,...,Xn, we can view log f̂ (X
*
) as the likelihood of the bandwidth h. Because in 

reality no additional observation is available, we can omit a randomly selected observation 

from the original data, say Xi, and compute )(ˆ
, iih Xf  , as in (4.15). Note that there is no 
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pattern when choosing the observation to be omitted, so that the score function can be taken 

as the log likelihood average 

 
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Naturally, we choose the bandwidth the minimizes CV(h), which is known to minimize the 

Kullback-Leibler distance between )(ˆ xfh  and f(x). This method was proposed by Habbema, 

Hermans and van den Broek (1974) and Duin (1976), but other results can be found in 

Marron (1987), Marron (1989) and Cao, Cuevas and Gonzalez-Manteiga (1994). 

 

In general, bandwidths chosen via cross validation methods in kernel density estimation are 

highly variable, and usually give undersmooth density estimates, causing undesired spurious 

bumpiness. 

 

4.3.3. Likelihood Cross-Validation 

 

The Indirect Cross-validation (ICV) method, proposed by Savchuk, Hart and Sheather (2010), 

slightly outperforms least squares cross-validation in terms of mean integrated squared error. 

The method can be described as follows. First define the family of kernels 
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Note that this is a linear combination of two Gaussian kernels. Then, select the bandwidth of 

an L-kernel estimator using least squares cross-validation, and call it UCVb̂ . Under some 

regularity conditions on the underlying density f, hn and bn that asymptotically minimize the 

MISE of φ and L-kernel estimators, have the following relation 
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The indirect cross-validation bandwidth is chosen to be UCVICV bCh ˆˆ  . Savchuk et al. (2010) 

show that the relative error of ICV bandwidths can converge to 0 at a rate of n
1/4

, much better 

than the n
1/10

 rate of LSCV. 

 

4.4. Other Methods 

 

4.4.1. Variable Bandwidth 

 

Rather than using a single smoothing parameter h, some authors have considered the 

possibility of using a bandwidth h(x) that varies according to the point x at which f is 

estimated. This is often referred as the balloon estimator and has the form 
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The balloon estimator was introduced by Loftsgaarden and Quesenberry (1965) in the form of 

the k-th nearest neighbor estimator. In Loftsgaarden and Quesenberry (1965), h(x) was based 

on a suitable number k, so that it was a measure of the distance between x and the k-th data 
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point nearest to x. The optimal bandwidth for this case can be shown to be (analogue of, 3.10, 

for asymptotic MSE) 
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Another variable bandwidth method is to have the bandwidth vary not with the point of 

estimation, but with each observed data point. This type of estimator, known as sample point 

or variable kernel density estimator, was introduced by Breiman et al. (1977) and has the form 
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This type of estimator has one advantage over the balloon estimator: it will always integrate 

to 1, assuring that it is a density. Note that h(Xi) is a function of random variables, and thus it 

is also random. 

 

More results on the variable bandwidth approach can be found in Hall (1992), Taron et al. 

(2005), Wu et al. (2007) and Gine and Sang (2010). 

 

4.4.2. Binning 

 

An adaptive type of procedure is the binned kernel density estimation, studied by a few 

authors such as Scott (1981), Silverman (1982) and Jones (1989). The idea is to consider 

equally spaced bins Bi with centers at ti and bin counts ni, and define the estimator as 
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where the sum over m means summing over the finite non-empty bins that exist in practice. It 

is also possible to use a variable bandwidth in (4.19), yielding the estimator 
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Examples of other approaches and discussion on this type of estimation can be found in Hall 

and Wand (1996), Cheng (1997), Minnotte (1999), Pawlak and Stadtmuller (1999), 

Holmstrom (2000). 

 

4.4.3. Bootstrap 

 

A methodology that has been recently explored is that of selecting the bandwidth using 

bootstrap. It focuses on replacing the MSE by MSE
*
, a bootstrapped version of MSE, which 

can be minimized directly. Some authors resample from a subsample of the data X1,...,Xn (see 

Hall, 1990), others replace from a pilot density based on the data (see Faraway and Jhun, 

1990; Hazelton, 1996; Hazelton, 1999), more precisely, from 

 









 


n

i n

i

n

b

h
b

Xx
L

nb
xf

1

1
)(

~
 

where L is another kernel and bn is a pilot bandwidth. Since the bandwidth choice reduces to 

estimating s in h = n
–1/5

s, Ziegler (2006) introduces 
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Applications of the bootstrap idea can be found in many different areas of estimation, see 

Delaigle and Gijbels (2004), Loh and Jang (2010) for example. 

 

4.4.4. Estimating Densities on +  

 

It is known that kernel density estimators have larger bias on the boundaries. Many methods 

have been proposed to alleviate such problem, such as the use of gamma kernels or inverse 

and reciprocal inverse Gaussian kernels, also known as varying kernel approach. Chen (2000) 

proposes to replace the symmetric kernel by a gamma kernel, which has flexible shapes and 

locations on +. Their estimator can be described in the following way. Suppose the 

underlying density f has support [0, ∞) and consider the gamma kernel 
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where b is a smoothing parameter such that b® 0 and nb®¥. Then, the gamma kernel 

estimator is defined as 
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The expected value of this estimator is 
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where ξx is a Gamma(x/b+1,b) random variable. Using Taylor Expansion and the fact that 

E(ξx) = x + b and Var(ξx)= xb + b
2
 we have that 
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It is clear then, that this estimator does not have bias problems on the boundaries, since the 

bias is o(b) near the origin and in the interior. See Chen (2000) for further details. Other 

approaches on estimating the density on  can be found in Scaillet (2004), Mnatsakanov 

and Ruymgaart (2012), Mnatsakanov and Sarkisian (2012), Comte and V.Genon-Catalot 

(2012) and references therein. 

 

Some interest on density estimation research is on bias reduction techniques, which can be 

found in Jones, Linton and Nielsen (1995), Choi and Hall (1999), Cheng et al. (2000), Choi et 

al.(2000) and Hall and Minnotte (2002). Other recent improvements and interesting 

applications of the kernel estimate can be found in Hirukawa (2010), Liao et al. (2010), 

Matuszyk et al. (2010), Miao et al. (2012), Chu et al. (2012), Golyandina et al. (2012) and Cai 

et al. (2012) among many others. 

 

Â+
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4.4.5. Estimating the distribution function F(x)  

 

It is not uncommon to find situations where it is desirable to estimate the distribution function 

F(x) instead of the density function f(x). A whole methodology known as kernel distribution 

function estimation (KDFE) has been explored since Nadaraya (1964) introduced the 

estimator 
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where K is the distribution function of a positive kernel k, i.e, K(x) = ∫
x

–∞ k(t)dt. Authors have 

considered many alternatives for this estimation, but the basic measures of quality or this type 

of estimator are 

   )()()]()(ˆ[)( 2 xdFxWxFxFhISE h  and 

   )()()]()(ˆ[)( 2 xdFxWxFxFEhMISE h  

where W is a non-negative weight function. 

 

Sarda (1993) considered a discrete approximation to MISE, the average squared error 
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He suggests replacing the unknown F(Xi) by the empirical Fh(Xi) and then selecting the 

bandwidth that minimizes the leave-one-out criterion 
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As an alternative to this cross-validation criterion, Altman and Leger (1995) introduce a plug-

in estimator of the asymptotically optimal bandwidth. There is a vast literature on estimating 

kernel distribution functions, for example Bowman, Hall and Prvan (1998), Tenreiro (2006), 

Ahmad and Amezziane (2007), Janssen et al. (2007), Berg and Politis (2009), just to cite a 

few. 

 

4.5. Example of Bandwidth Selection Methods 

 

It is well known that plug-in bandwidth estimators tend to select larger bandwidths when 

compared to the classical estimators. They are usually tuned by arbitrary specification of pilot 

estimates and most often produce over smoothed results when the smoothing problem is 

difficult. On the other hand, smaller bandwidths tend to be selected by classical methods, 

producing under smoothed results. The goal of a selector of the smoothing parameter is to 

make that decision purely from the data, finding automatically which features are important 

and which should be smoothed away. 

 

Figure 4.5 shows an example of classical and plug-in bandwidth selectors for a real data set. 

The data corresponds to the exports of goods and services of countries in 2011, representing 

the value of all goods and other market services provided to the rest of the world. The data set 

can be downloaded from the world bank website (http://data.worldbank.org). 
 

 

  

http://data.worldbank.org/
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Figure 4.5 Estimated densities for bandwidths chosen using different methods 

 
 

The plug-in estimators a) rule of thumb for Gaussian and b) Seather and Jones selector 

produced a very smooth fit, while unbiased cross-validation selects a small bandwidth, 

yielding a highly variable density estimate. The hybrid method biased cross-validation, is the 

one that selects the largest bandwidth, hence its corresponding density estimate is very 

smooth, smoothing away information of the peak (mode). 

 

5. SiZer 

 

In nonparametric estimation, the challenge of selecting the smoothing parameter that yields 

the best possible fit has been addressed through several methods, as described in previous 

sections. The challenge is to identify the features that are really there, but at the same time to 

avoid spurious noise. Marron and Chung (1997) and other authors noted that it may be worth 

to consider a family of smooths with a broad range of bandwidths, instead of a single 

estimated function. Figure 5.6 shows an example of a density generated from a mixture of a 

Gaussian variable with mean 0 and variance 1 and another Gaussian variable, with mean 8 

and variance 2. The density was estimated with a Epanechnikov kernel using bandwidths that 

vary from 0.4 to 10. The wide range of smoothing considered, from a small bandwidth 

producing a wiggly estimate to a very large bandwidth yielding nearly the simple least 

squares fit, allows a contrast of estimated features at each level of smoothing. The two 

highlighted bandwidths are equal to 0.6209704 and 1.493644, corresponding to the choice of 

biased cross-validation (blue) and to Silverman’s rule of thumb (red) (see Silverman, 1986) 

respectively. 

 

The idea of considering a family of smooths has its origins in scale space theory in computer 

science. A fundamental concept in such analysis is that it does not aim at estimating one true 

curve, but at recovering the significant aspects of the underlying function, since different 

levels of smoothing may reveal different intrinsic features. Exploring this concept in a 

statistical point of view, Chaudhuri and Marron (2000) introduced a procedure called 

SIignificance ZERo crossings of smoothed estimates (SiZer), whose objective is to analyze 

the visible features representing important underlying structures for different bandwidths. 

Next, we briefly describe such method. 

 

Suppose that h ∈ H, where H is a subinterval of (0,∞), and x ∈ I, where I is a subinterval of 

(−∞, ∞). Then the family of smooth curves { )(ˆ xfh | h ∈ H, x ∈ I} can be represented by a 

surface called scale space surface, which captures different structures of the curve under 
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different levels of smoothing. Hence, the focus is really on ))(ˆ( XfE h  as h varies in H and x 

in I, which is called in Chaudhuri and Marron (2000) as ”true curves viewed at different 

scales of resolution”. 

 
Figure 5.6 Estimated density with several bandwidths 

 

 
 

A smooth curve )(ˆ xfh has derivatives equal to 0 at points of minimum (valleys), maximum 

(peaks) and points of inflection. Note that, before a peak (or valley), the sign of the derivative 

xxf h  /)(ˆ  is positive (or negative), and after it the derivative is negative (or positive). In 

other words, peaks and valleys are determined by zero crossings of the derivative. Actually, 

we can identify structures in a smooth curve by zero crossings of the m-th order of the 

derivative. Using a Gaussian kernel )2/exp()2/1()( 2xxK   , Silverman (1981) showed 

that the number of peaks in a kernel density estimate decreases monotonically with the 

increase of the bandwidth, and Chaudhuri and Marron (2000) extended this idea for the 

number of zero crossings of the m-th order derivative m

h

m xxf  /)(ˆ  in kernel regression. 

 

The asymptotic theory of the scale space surfaces and their derivatives studied by Chaudhuri 

and Marron (2000), which hold even under bootstrapped or resampled distributions, provides 

tools for building bootstrap confidence intervals and tests of significance for their features 

(see Chaudhuri and Marron, 1999). SiZer basically considers the null hypothesis 

 0/))(ˆ(:,
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h

mxh xxfEH   

for a fixed x ∈ I and h ∈ H. If xhH ,

0  is rejected, there is evidence that m

h
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location of x (horizontally) and h (vertically). The regions are shaded blue for significant 

increasing curve, red for significantly decreasing, purple for unable to distinguish and gray for 

insufficient data. Note that purple is displayed when the confidence interval for the derivative 

contains 0. There are a few options of software available, including java 

(http://www.wagner.com/SiZer/SiZerDownload.html), matlab (http://vm1.cas.unc.edu/stat-

or/webspace/miscellaneous/marron/Matlab7Software/Smoothing/) and R (SiZer package). 

 

Figure 5.7 shows an example of a color map obtained with SiZer. The data is the GDP per 

person employed in 2010 (downloadable at http://data.worldbank.org). It is easy to see that 

for large bandwidths, the density function significantly increases until about 16000, then after 

a small area that SiZer is unable to distinguish, it has a significant decrease, hence estimating 

a density with one mode at around 16000. Small bandwidths produce a map that is mostly 

gray, meaning that the wiggles in the estimate at that level of resolution can not be separated 

from spurious sampling noise. An interesting blue area appears, with a mid-level resolution, 

near 43000, indicating a slightly significant increase. This comes after and before a purple 

area, which SiZer is unable to distinguish if it is increasing or decreasing. Thus, with a mid-

level bandwidth, the estimated density would suggest 2 modes, one somewhere near 10000 

and another near 43000. 

 
Figure 5.7 SiZer example 
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