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Abstract. Forecasting the flow of groundwater requires a
hydrostratigraphic model, which describes the architecture
of the subsurface. State-of-the-art multiple-point statistical
(MPS) tools are readily available for creating models de-
picting subsurface geology. We present a study of the im-
pact of key parameters related to stochastic MPS simulation
of a real-world hydrogeophysical dataset from Kasted, Den-
mark, using the snesim algorithm. The goal is to study how
changes to the underlying datasets propagate into the hy-
drostratigraphic realizations when using MPS for stochastic
modeling. This study focuses on the sensitivity of the MPS
realizations to the geophysical soft data, borehole lithology
logs, and the training image (TI). The modeling approach
used in this paper utilizes a cognitive geological model as
a TI to simulate ensemble hydrostratigraphic models. The
target model contains three overall hydrostratigraphic cate-
gories, and the MPS realizations are compared visually as
well as quantitatively using mathematical measures of simi-
larity. The quantitative similarity analysis is carried out ex-
haustively, and realizations are compared with each other as
well as with the cognitive geological model.

The results underline the importance of geophysical data
for constraining MPS simulations. Relying only on borehole
data and the conceptual geology, or TI, results in a signif-
icant increase in realization uncertainty. The airborne tran-
sient electromagnetic SkyTEM data used in this study cover
a large portion of the Kasted model area and are essential
to the hydrostratigraphic architecture. On the other hand, the
borehole lithology logs are sparser, and 410 boreholes were

present in this study. The borehole lithology logs infer local
changes in the immediate vicinity of the boreholes, thus, in
areas with a high degree of geological heterogeneity, bore-
holes only provide limited large-scale structural information.
Lithological information is, however, important for the in-
terpretation of the geophysical responses. The importance of
the TI was also studied. An example was presented where
an alternative geological model from a neighboring area was
used to simulate hydrostratigraphic models. It was shown
that as long as the geological settings are similar in nature,
the realizations, although different, still reflect the hydros-
tratigraphic architecture. If a TI containing a biased geolog-
ical conceptualization is used, the resulting realizations will
resemble the TI and contain less structure in particular areas,
where the soft data show almost even probability to two or
all three of the hydrostratigraphic units.

1 Introduction

Geological models are important from both a societal and
economic perspective, since they are used to locate essential
natural resources, such as freshwater, oil, metals, and rare
earth minerals. Additionally, they are used in risk assess-
ment related to natural hazards, such as earthquakes, sink-
holes, volcanic eruptions, and landslides. Building 3-D mod-
els depicting real-world subsurface geology is no trivial task.
Information from multiple sources is required, i.e., concep-
tual geological understanding, geological information, lithol-
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ogy logs, and geophysical data. Such data are sparse, uncer-
tain, and redundant. Dataset gaps force geoscientists to make
uncertain predictions or estimates, which carries over into
the resulting geological model. During the modeling proce-
dure, such problems are dealt with as best as possible. Gaps
in knowledge will render the resulting model uncertain, and
quantifying such uncertainty is essential to making better use
of the models and to making better predictions.

A common approach for building geological models is
cognitive modeling (e.g., Jørgensen et al., 2013; Royse,
2010). Here, the datasets containing borehole lithology logs
and geophysical models are co-interpreted by a professional
with experience in the fields of geoscience, geophysics, and
geological modeling, with a relevant regional conceptual
model in mind. This modeling approach is deterministic and
results in a single model realization. These specialists are
trained in assessing the uncertainty of the underlying struc-
tures, and qualitative uncertainty estimates are often made
on the structural model (e.g., indicating different levels of
uncertainty in different subparts of the model domain). How-
ever, qualitative uncertainty estimates are difficult to carry
over into the subsequent analysis, and the effect of the un-
certainty of the geological model can therefore not be quan-
tified in the resulting forecasts. If the forecasts are based on
a single geologic model, the prediction does not encase the
full complexity of the problem. Alternatively, if the model
uncertainty can be quantified, it enables the option to in-
clude it in the forecast. However, quantifying the uncer-
tainty in a cognitive modeling approach is difficult and te-
dious (Seifert et al., 2012). Another approach is stochastic
modeling using multiple-point statistics (MPS) methodolo-
gies, where ensembles of models are produced, e.g., Comu-
nian et al. (2012), Ferré (2017), He et al. (2016), Okabe and
Blunt (2005), and Pirot (2017). MPS provides a framework
which can integrate geophysical and borehole information,
as well as conceptual geological information via a so-called
training image (TI). Multiple model realizations are created
from the dataset, and the resulting model ensemble reflects
the uncertainty related to the underlying datasets and overall
modeling procedure.

Studying model uncertainty using MPS results in numer-
ous sets of model ensembles. Visual comparison of such a
large number of realization ensembles is tedious and subjec-
tive but offers an overall understanding of the geological real-
ism of the models (Barfod et al., 2018). Therefore, quantita-
tive measures of similarity are desirable. Barfod et al. (2018)
present a comparison of 3-D hydrostratigraphic models us-
ing the modified Hausdorff distance (dMH). However, the
dMH was proven to be computationally expensive. There-
fore, an alternative computationally feasible distance mea-
sure based on Euclidean distance transforms (EDT) (Mau-
rer et al., 2003) is used in this paper. Generally, numerous
mathematical methods for comparing images exist in the
computer vision literature, e.g., image Euclidean distance
(IMED) (Wang et al., 2005; Xiaofeng and Wei, 2008) and

scale-invariant feature transform (SIFT) (Lowe, 2004). How-
ever, these alternative distance measures are, to our knowl-
edge, an unexplored research avenue within comparison and
uncertainty analysis of ensembles of 3-D hydrostratigraphic
models.

Some types of forecasts are related to groundwater flow
and accurate geological models are crucial to accurate pre-
dictions of hydraulic flow, since subsurface hydraulic flow
is largely controlled by geological heterogeneity (e.g., Feyen
and Caers, 2006; Fleckenstein et al., 2006; Fogg et al., 1998;
Gelhar, 1984; LaBolle and Fogg, 2001; Zhao and Illman,
2017). Geological units, however, contain additional com-
plexities not related to hydrologic units; therefore, the con-
cept of hydrostratigraphic units is very useful. A detailed
definition of hydrostratigraphic classification is given by
Maxey (1964).

Stochastic geological modeling procedures like the MPS
methodology apply two overall types of data, i.e., geophysi-
cal data and borehole data. Associated with these data types
are the definitions of hard and soft data. Typically, hard data
are considered certain information without an associated un-
certainty, while soft data are uncertain information, which
can be associated with an uncertainty. Geophysical data are
typically considered soft data (Strebelle, 2002). Geophysi-
cal data are spatially dense and provide a smeared image
of the overall subsurface geology. Resolution decreases with
depth, especially beyond a specific depth, which is dependent
on the geophysical method. Geophysical instruments portray
bulk physical properties of the subsurface. Although geo-
physical data provide spatially dense information, it is not
possible to exhaustively sample the subsurface. The density
of the geophysical data will affect the final uncertainty. The
raw geophysical data goes through a processing and model-
ing step, where the raw data are translated into geophysical
models. During this step incorrect measurements, due to in-
strument error or interference, are identified and removed,
further decreasing the geophysical information density. Such
incomplete data can either be reconstructed or used as is dur-
ing modeling. Another consideration in regards to modeling
of geophysical data is the choice of inversion scheme and
thereby the choice of a priori information (e.g., Ellis and
Oldenburg, 1994; Tarantola and Valette, 1982). Here, several
approaches can be taken, which yield different geophysical
models. A common inversion scheme for airborne electro-
magnetic (AEM) data, such as SkyTEM data, is the spatially
constrained inversion (SCI) (Viezzoli et al., 2008). However,
this inversion approach does not represent the subsurface
properly, e.g., layer boundaries are smeared and extreme val-
ues are not represented properly. A so-called sharp inversion
scheme, suggested by Vignoli et al. (2015), tackles such is-
sues. Therefore, the choice of inversion scheme influences
the hydrostratigraphic model and should be considered as an
integral step in the hydrostratigraphic modeling process.

The other overall type of data source is borehole lithology
logs, which are commonly considered to be ground truth or

Hydrol. Earth Syst. Sci., 22, 5485–5508, 2018 www.hydrol-earth-syst-sci.net/22/5485/2018/



A. A. S. Barfod et al.: Contributions to uncertainty related to hydrostratigraphic modeling 5487

hard data (e.g., Gunnink and Siemon, 2015; Tahmasebi et al.,
2012). However, lithology logs are also uncertain. Generally,
the uncertainty of borehole lithology logs relates to a number
of parameters, such as drilling methods, the frequency with
which sediment samples are collected precision with which
the location is measured, the purpose of the borehole, and
the choice of drilling contractor – see Barfod et al. (2016)
and He et al. (2014) for more details. The resolution of bore-
hole lithology logs is especially dependent on the sampling
method. If a core is extracted for the entirety of the bore-
hole, the resolution is, in principal, unlimited. However, this
is expensive. It is more common to use either an auger drill,
a rotary drill, or a cable tool, which yields a relatively lim-
ited resolution, compared to core drilling, depending on how
samples are collected and handled.

We present a study of the uncertainty related to stochas-
tic MPS modeling of hydrogeophysical data. The goal is
(i) to understand the consequences of modifying the MPS
setup to reflect some of the biases related to real-world hy-
drogeophysical datasets and (ii) to study the propagation of
uncertainty in the resulting ensembles of stochastic hydros-
tratigraphic models. An essential choice during MPS mod-
eling is, for example, the choice of TI, or how to incorpo-
rate borehole and/or geophysical data. A hydrogeophysical
dataset, consisting of an airborne transient electromagnetic
survey, numerous lithological borehole logs, and 3-D cate-
gorical TIs, is used to assess how different choices during
MPS modeling influence the resulting uncertainty of the hy-
drostratigraphic model ensemble.

2 The Kasted study area

The Kasted area is located northwest of Aarhus, Denmark
(Fig. 1a), and has also been presented by Barfod et al. (2018),
Marker et al. (2017), and Høyer et al. (2015). The regional
geology of the Kasted area is dominated by a Quaternary
buried valley complex with complex abutting relationships
between the individual valleys. The buried valleys are infilled
with a combination of till and glacial meltwater deposits. The
valleys are incised into the substratum, which consists of
hemipelagic clay. The regional geology has been described
in detail by Høyer et al. (2015), who created a detailed cog-
nitive geological model of the area.

An important geological feature of the Danish subsurface
is the buried tunnel valleys (e.g., Jørgensen and Sandersen,
2006; Sandersen et al., 2009). The geological heterogene-
ity varies considerably across Denmark and can in some
places be quite complicated, such as in the Egebjerg area
(Jørgensen et al., 2010). In the Kasted area, the main buried
valleys are clearly outlined in the geophysical dataset thanks
to the significant resistivity contrasts between the infill of the
buried valleys and the underlying Paleogene clay (Høyer et
al., 2015). Therefore, the Kasted survey is ideal for studying

Figure 1. The Kasted survey area and resistivity–hydrostratigraphic
relationship histograms. (a) shows the geographical location of the
Kasted survey area and the Egebjerg model used as a secondary
TI. (b) shows the reconstructed resistivity–hydrostratigraphic rela-
tionship histograms for the three main hydrostratigraphic unit cate-
gories based on SkyTEM resistivity models and borehole lithology
logs. (c) shows the Kasted survey with the SkyTEM sounding and
borehole locations. Note that the SkyTEM soundings are sampled
so densely that the dots marking each individual sounding merge
into blue lines.

the uncertainty related to stochastic hydrostratigraphic mod-
eling using MPS methods.

The survey covers an area of 45 km2 and is composed of
a spatially dense SkyTEM survey with a total of 333 line km
(Sørensen and Auken, 2004), with a line spacing of 100 m.
The resulting SkyTEM soundings have been processed ac-
cording to the description by Auken et al. (2009). Finally
two sets of geophysical models were produced using either
the smooth spatially constrained inversion models (Consta-
ble et al., 1987; Viezzoli et al., 2008) or the sharp SCI (sSCI)
models (Vignoli et al., 2015). Furthermore, there are 948
boreholes scattered throughout the Kasted survey area, each
with a corresponding lithology log of a varying quality. The
quality assessment presented by He et al. (2014) and Bar-
fod et al. (2016) is used to divide the boreholes into quality
groups, ranking between 1 and 5. Only 410 of the boreholes
are above the selected quality threshold, i.e., within quality
groups 1–3, and contain lithological information relevant to
this study. An overview of the dataset is found in Fig. 1c and
described in further detail in Barfod et al. (2018) and Høyer
et al. (2015).
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3 Methods

3.1 Multiple-point statistics (MPS)

The multiple-point statistics framework stems from the gen-
eral geostatistics framework. Here, multiple-point (MP) in-
formation from a training image is used to condition simu-
lations to probable geological patterns (Journel and Zhang,
2007). The TI thus provides a conceptual geological under-
standing of a given area and can be viewed as a database
containing probable geological patterns, which are used to
condition the MPS simulation. The choice of TI is an im-
portant step in any MPS setup and influences the realization
results, as will be illustrated. The TI does not need to carry
locally accurate information – i.e., the TI does not need to
spatially or geographically overlap with real-world geologi-
cal units – and can be purely conceptual in nature. Together
with the TI, it is also possible to use geophysical datasets for
constraining MPS simulations, resulting in realizations that
reflect real-world regional geology. Today, MPS is a widely
used tool, which is used in a variety of geoscience fields,
including, but not limited to, reservoir modeling (e.g., Ok-
abe and Blunt, 2004; Strebelle and Journel, 2001), hydrology
(e.g., Le Coz et al., 2011; Hermans et al., 2015; Høyer et al.,
2017), and geological modeling (e.g., de Iaco and Maggio,
2011).

3.1.1 Single normal equation simulation (snesim)

The MPS method used in this paper is known as the sin-
gle normal equation simulation (snesim) framework (Stre-
belle, 2002), and is implemented in the Stanford Geosta-
tistical Modeling Software, or SGeMS. The snesim frame-
work allows for simulating a real-world categorical geolog-
ical model using a TI, constrained using soft geophysical
data and hard borehole data. The snesim algorithm scans the
entire TI, ahead of simulation, and stores the MP informa-
tion contained in the TI in a search-tree database. The MP
information can then be retrieved from the database dur-
ing simulation. The integration of soft geophysical data for
constraining the simulations is achieved by utilizing the tau
model, which will be described in detail in Sect. 3.2 (Journel,
2002; Krishnan, 2004). Here, the continuous soft data vari-
able needs to be translated into a probability grid, describ-
ing the probability of finding a given geological unit based
on the geophysical data; see Barfod et al. (2018). In order
to guarantee the reproduction of geological patterns at all
scales, snesim uses the multiple-grid formulation, presented
by Tran (1994).

3.1.2 Reconstructing incomplete datasets using direct
sampling

In the field of geoscience, we are always dealing with in-
complete datasets, since we cannot sample the subsurface
exhaustively. Several approaches exist for dealing with in-

complete datasets, of which two general approaches can be
defined. A common approach is to reconstruct incomplete
datasets using geostatistical tools (e.g., Goovaerts, 1997; Ma-
riethoz and Renard, 2010), which means that during the hy-
drostratigraphic modeling process no information is present
in the dataset gaps. However, it is important to emphasize that
the reconstructed information is not as valuable as the actual
measured geophysical information. The other common ap-
proach is to just use the incomplete dataset as is. This means
that no information is present in the dataset gaps during the
hydrostratigraphic modeling process, which, depending on
the modeling method, might result in large uncertainties.

In this study the MPS method called direct sampling (DS)
is used for stochastic reconstruction of incomplete datasets
(Mariethoz and Renard, 2010). The DS method uses the
dataset we wish to reconstruct both as a simulation grid and
a TI. This means that the patterns that are present in the
incomplete dataset are inserted into the simulation grid be-
fore reconstruction. It is, according to Mariethoz and Re-
nard (2010), important that the patterns we wish to recon-
struct are actually present in the incomplete dataset, since we
are borrowing the patterns from the TI, or incomplete dataset,
to stochastically reconstruct the dataset. If the patterns are not
present in the incomplete dataset they will, simply put, not be
inferred in the reconstructed dataset. Provided that enough
information on the overall patterns is available in the incom-
plete dataset, the DS method is a straightforward approach
for reconstructing incomplete datasets.

3.2 The tau model: combining conditional probabilities

Combining information from different sources is a frequent
challenge in subsurface modeling. A fundamental challenge
of the research conducted in this paper was to combine con-
ditional probabilities from different sources. In this paper we
used the common tau model approach (Journel, 2002). The
tau model generally combines the probability values from
different sources using Bayes’ theorem and a set of τ val-
ues, or τ weights, for determining how to weigh the proba-
bilities. The choice of τ weights is subjective, and assigning
these is not a trivial task. It is recommended to run a series
of exhaustive tests when assigning the τ weights.

We will now briefly introduce the tau model; for more de-
tails see Journel (2002). Firstly, we define a data event, Di ,
as a location vector, u, and a data value. Suppose we have
a set of such data events, Di i = 1, . . . , n, and the goal is to
estimate the probability that a hydrostratigraphic unit (A) is
present provided all data events:

P (A|D1, . . .,Dn) . (1)

The first step is then to define the prior probability distri-
bution, P (A). Generally the tau model can be applied to as
many different probability grids as desired, but for the pur-
pose of simplification two probability distributions are de-
fined as follows: P (A|D1) and P (A|D2). In this study we
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will consider D1 and D2 as 2-D or 3-D probability grids
from different sources. As an example D1 could be a prob-
ability grid from geophysical data and D2 a probability grid
from borehole lithology logs. The probability grids are trans-
lated into distance grids by applying the “probability-into-
distance” transform:

xo =
1−P (A)
P (A)

,x1 =
1−P (A |D1 )

P (A |D1 )
,

and x2 =
1−P (A |D2 )

P (A |D2 )
. (2)

Then the following distance ratio is computed using the
tau model expression:

x

x0
=

n=2∏
i=1

(
xi

x0

)τi
,τε [−∞;+∞] , (3)

where the tau values are [τ1, τ2]. The final conditional prob-
ability is computed as follows:

P (A|D1,D2)=
1

1+ x
, (4)

where the value of x is computed from Eq. (2), as follows:

x = x0 ·

(
x1

x0

)τ1

·

(
x2

x0

)τ2

. (5)

3.3 Comparing simulation results

Comparing a large set of extensive 3-D models is a common
problem encountered in stochastic MPS modeling. A com-
mon approach is visual comparison, which is not an objective
or quantitative comparison method. Each equiprobable hy-
drostratigraphic model in this study contains 1 187 823 cells.
Furthermore, a total of 400 MPS realizations were computed,
Table 1, which makes it difficult to visually compare model-
ing results. This, along with advances in stochastic modeling
tools such as MPS, motivated Tan et al. (2014) to develop a
framework in which multiple 2-D or 3-D realizations can be
compared quantitatively. The idea is to use a distance mea-
sure, which measures the distance between two realizations.
Realizations which are geometrically similar have small dis-
tance values, while dissimilar realizations have a large dis-
tance value. The comparison techniques in this study are
based on the principles presented by Tan et al. (2014). In
this study the distances between individual realizations are
based on the Euclidean distance transforms (Maurer et al.,
2003). The usage of EDT as a measure for similarity will be
described in more detail below. A full distance matrix is com-
puted containing distances between each individual realiza-
tion for all the different cases. The resulting 400 by 400 dis-
tance matrix is then interpreted by itself.

3.3.1 Ensemble mode ratio maps (EMR maps)

The visual comparison can be helped by creating so-called
ensemble mode ratio maps, or EMR maps. The idea is to

create a summary map portraying the mode ratio of a given
ensemble of models, ranging between 1/K and 1, whereK is
the number of hydrostratigraphic categories. The EMR maps
describe the certainty of the simulation based on the result-
ing realization ensemble. If the EMR map shows a value of 1,
then every single realization in the present ensemble has sim-
ulated the same category or, in this case, hydrostratigraphic
unit. On the other hand, if the EMR map shows a ratio of 1/K
the ensemble of realizations shows equal probability for each
of theK categories. Each realization is equiprobable, and the
EMR values of the categorical variables are computed from
the probability distribution of a given cell with location, u.
The probability that the attribute S is equal to sk , Pk(u), is
computed as follows:

Pk (u)=
1
N

∑N

i=1

(
sk,i (u)= sk

)
, (6)

where N is the number of realizations, sk is the state of at-
tribute S for which we are currently computing the probabil-
ity, and sk,i(u) is the state of the attribute at location u and
for the ith realization. The EMR values for a given cell, u,
can then be computed as follows:

rEMR (u)= (Pk (u)) , (7)

where Pk(u) denotes the probability for category k at loca-
tion u computed using Eq. (6).

The EMR values are then computed for each grid cell us-
ing Eqs. (6) and (7), which, simply put, is the occurrence
ratio of the mode category of a given ensemble containing
a given number of realizations, Nreals. In other words, at a
given location, u, if 45 out of 50 realizations yield the same
category, then the EMR value is 0.9, and the ensemble cer-
tainty for the given cell is high. On the other hand, with three
possible lithological categories, i.e., K = 3, the lowest pos-
sible certainty is 1/K = 1/3, which means there is an equal
probability of occurrence for each lithological category. This
means that P(s1)= P(s2)= P(s3)= 1/3, and therefore at
the given location, u, the rEMR = 1/3 and the simulation is
uncertain.

3.3.2 Euclidean distance transforms (EDT) –
measuring similarity between 3-D
hydrostratigraphic realizations

The hydrostratigraphic realizations are categorical and con-
tain three hydrostratigraphic units. Comparing two realiza-
tion grids, they first need to be transformed from a categorical
grid into continuous Euclidean distance grids by using EDT
(Maurer et al., 2003). The two 3-D EDT grids are then com-
pared by calculating the average difference in the respective
grids. Similar images have a small average EDT distance,
and dissimilar images have a large average EDT distance.
The EDT computes the Euclidean distances for all locations
of a binary grid, i.e., a grid containing only two states (codes
0 and 1). The EDT map is simply the Euclidean distance of
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Figure 2. A 2-D example of the Euclidean distance transforms (EDT) as a measure for the similarity between categorical MPS realizations.
In this example a set of 50 realizations, from the basic modeling setup, are compared based on the differences in EDT for sand and gravel
units. (a–d) show the hydrostratigraphic models for the TI, closest realization, 25th closest realizations, and farthest realization, respectively.
(e–h) show, in the same order as above, the binary images of the sand and gravel units of the 2-D hydrostratigraphic model layers. (i–l) show,
in the same order as above, the Euclidean distances layers computed from the 2-D sand and gravel binary layers.

the medium depicted by the state code 1, i.e., for grid cell at
location u:

dEDT (u)= (‖u− v‖2) , (8)

where v is a set of grid cells with a state code equal to 1.
The dEDT implementation presented by Maurer et

al. (2003) uses a computationally favorable method for com-
puting the exhaustive EDT at all locations in a binary grid.

To illustrate the dEDT approach for comparing realizations
a 2-D example case is presented. The basic modeling setup
contains 50 realizations, i.e., Nrealizations = 50, which are go-
ing to be compared to the cognitive model, which in this
case also happens to be the TI. The 2-D example is cre-
ated by selecting the horizontal cross section at 20 m b.s.l.,
for each of the 50 basic modeling setup realizations and the
single cognitive geological model (Fig. 2a–d). Each of the 2-
D layers are transformed into 2-D binary layers, portraying
sand and gravel as the main variable, and glacial clay and
hemipelagic clay as a background variable (Fig. 2e–h). The
2-D binary layers are then translated into 2-D dEDT layers by
using Eq. (8) to exhaustively compute the dEDT at each grid
cell for all of the 50 realizations. The resulting dEDT layers,
of which three are seen in Fig. 2i–l, are used to compute an
average Euclidean distance between each realization, mr,i ,
and the cognitive geological model, mcog:

1dEDT
(
mcog,mr,i

)
=

1
M

∑M

j=1

[
d
mcog
EDT

(
uj
)
− d

mr,i
EDT

(
uj
)]
, (9)

where i ∈ {1, . . .,N}, with N being the number of realiza-
tions, which in this case is N = 50, and M being the number
of cells in the simulation grid, or in this case, the 2-D layer.
The 1dEDT, Eq. (9), then describes the average difference
of the distance to the nearest active cell in the binary grid.
The 50 realizations are then ranked by the average Euclidean
distance differences, 1dEDT, as seen in Fig. 2, where the re-
alization which is closest to the cognitive geological model
(Fig. 2b, f and j) has a 1dEDT value of 240 m, the realization
which was ranked 25th closest (Fig. 2c, g and k) has a1dEDT
value of 280 m, and lastly the realization which was farthest
(Fig. 2d, h and l) has a 1dEDT value of 310 m. It should be
noted that the 1dEDT computation, described by Eq. (9), is
not limited to comparing a realization to a cognitive model
and can in fact be used to compare any pair of 3-D categor-
ical models. In fact, a generalized version of Eq. (9) can be
defined as follows:

1dEDT (mA,mB)=
1
M

∑M

j=1

[
d
mA
EDT

(
uj
)
− d

mB
EDT

(
uj
)]
, (10)

where the number of cells in model-A, mA, must be equal to
the number of cells in model-B, mB , i.e.,MmA =MmB =M .

From this point forward we leave the 2-D example behind
and will from here on only consider1dEDT computations on
3-D hydrostratigraphic grids. Furthermore, the 1dEDT com-
putations are carried out on a set of three binary grids, one for
each of the three hydrostratigraphic categories. The distance
value between two hydrostratigraphic grids is the summed
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Figure 3. A schematic diagram presenting the conversion of the
lithological logs into probability logs for the three hydrostrati-
graphic units: sand and gravel, glacial clay, and hemipelagic clay.
Step 1: the lithology log is translated into a hydrostratigraphic log.
Step 2: the hydrostratigraphic logs are resampled according to the
vertical modeling grid intervals and an interval probability is calcu-
lated for each of the hydrostratigraphic units.

distance for each of the three hydrostratigraphic categories,
ensuring that the distance values reflect the complexities re-
lated to each of the hydrostratigraphic categories.

3.3.3 Evaluating the distance matrix

The average Euclidean distance difference, 1dEDT, from
here on referred to as the distance between two realizations,
is exhaustively computed between all realizations and com-
piled into an exhaustive 400 by 400 distance matrix. The dis-
tance matrix, D, contains all distance values between all hy-
drostratigraphic realizations computed using Eq. (9) and is
defined as follows:

Di,j = dEDT
(
mr,i,mr,j

)
, (11)

where ij = {1, . . .,N}, with N being the number of realiza-
tions. The distance matrix, D, can be evaluated directly by
comparing the distances between individual realizations to

each other. Another option is to summarize the distance ma-
trix in a table representing the distances between the differ-
ent cases. This is achieved by organizing the distance matrix
according to which case they belong to. In this study the dis-
tance matrix is sorted according to the order of the individual
cases, as in Table 1. The distance matrix can then be sum-
marized by computing the average distance for each group
of realizations pertaining to a specific case. The concepts of
distance variability and distance to cognitive model were pre-
sented by Barfod et al. (2018) and are also used here. The
concept is that the variability pertaining to a specific case can
be determined by computing the average of the distances of
the 50 realizations for a given case ensemble. Another mea-
sure is the distance to the cognitive model. The distances be-
tween all realizations and the cognitive model are computed,
and this provides a reference point to which the realizations
are compared.

4 MPS modeling setup

The Kasted dataset used in this study is comprised of a
dense geophysical dataset acquired using the SkyTEM sys-
tem (Sørensen and Auken, 2004), borehole lithology logs and
a cognitive geological model (Høyer et al., 2015). We show
how uncertainty related to resistivity data, measured with the
SkyTEM system, and borehole lithology logs influences the
hydrostratigraphic modeling realizations. Two readily avail-
able MPS tools are showcased. The first tool is the direct
sampling method for reconstruction of incomplete datasets
(Mariethoz and Renard, 2010). The other MPS tool is the
single normal equation simulation, which is used for stochas-
tic hydrostratigraphic modeling (Strebelle, 2002). The MPS
modeling setup is similar to the one presented by Barfod et
al. (2018). However, the goal of this study is different. The
study is divided into a total of six cases, or eight sub-cases,
which are designed to study how perturbations of the under-
lying MPS setup affect the hydrostratigraphic realizations us-
ing snesim and study the propagation of uncertainties into the
hydrostratigraphic models. First the basic case (case 0), from
which the other cases are perturbed, uses a hydrostratigraphic
simplification of the 3-D cognitive model of the Kasted area
as a TI, the gap-filled SkyTEM data present as smooth inver-
sion models as soft data, and the borehole lithological logs as
hard data. Then, in case 1, the TI is substituted by two other
TIs. The cases 2 and 3 are related to the SkyTEM data, where
the incomplete SkyTEM data and sSCI inversion models are
used, respectively. The influence of the boreholes is studied
in case 4 either leaving out boreholes as hard data or chang-
ing them into soft data. Finally, in case 5 the SkyTEM data
are not used. In other words, one of the overall goals of this
study is to improve the Kasted model by using stochastic en-
semble modeling to quantify the uncertainty of the model,
such as suggested by Ferré (2017) and Pirot (2017). Further
details on the individual cases follow in the coming sections
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and Table 1 summarizes each case. First of all, the model
discretization and parameterization as well as construction
of hard and soft data grids are described.

The Kasted model covers an area of 12 km by 7 km, dis-
cretized on a modeling grid with 229 by 133 by 39 cells,
containing a total of 1 187 823 cells. Each cell has a size of
50 m by 50 m by 5 m. It is parameterized into three hydros-
tratigraphic units, listed as follows.

1. Sand and gravel: a combination of coarse lithological
units, including sand till, meltwater sand, gravel and
pebbles of glacial origin, late glacial freshwater sand,
and postglacial freshwater sand.

2. Glacial clay: this category contains silty and sandy
clays, including clay till and meltwater clay of glacial
origin.

3. Hemipelagic clay: a combination of fine grained con-
ductive clays, containing the extensive and homo-
geneous hemipelagic Paleogene and Oligocene clays
found in Denmark.

These three categories serve the purpose of simplifying the
geology of the Kasted area. The Kasted survey lithology logs
reveal a combination of 59 geological categories, which are
translated into a set of hydrostratigraphic logs (Step 1, Fig. 3)
using these hydrostratigraphic categories. Similarly, the 42
geological units in the cognitive geological model are di-
vided into the three abovementioned categories (Fig. 4a). The
vertical proportions of the three-category hydrostratigraphic
Kasted model can be viewed in Fig. 5a.

The borehole lithology logs need to be assigned to a 3-
D grid, which is carried out in three overall steps. The first
step is to translate the borehole lithology logs into hydros-
tratigraphic logs using the above mentioned three categories;
Step 1, Fig. 3. The second step is then to divide the hydros-
tratigraphic logs into intervals identical to the vertical inter-
vals of the model grid. At each resampled interval a proba-
bility value is directly calculated for each hydrostratigraphic
unit; Step 2, Fig. 3. The probability is simply the percent-
age of the given unit, which is present within the interval.
Finally, the last step is to assign the hydrostratigraphic prob-
abilities to a grid. The probability values are assigned to the
grid cell in which the given hydrostratigraphic log is present.
On the rare occasion that multiple logs are present within a
given cell, the probabilities are combined accordingly to one
representative probability value. The end result is a grid con-
taining the borehole probability values of each hydrostrati-
graphic unit: sand and gravel, glacial clay, and hemipelagic
clay. It is common to view borehole lithology logs as hard
information, or ground truth. The borehole probability grid
can therefore be translated into a hard data grid, by assigning
the most probable hydrostratigraphic unit in each grid cell.

The 1-D SkyTEM resistivity models are assigned to a 3-D
grid, identical to the modeling grid. The first step is to fill all

Figure 4. An overview of the training images (TIs) which are used
during MPS simulation. A horizontal slice and vertical cross sec-
tion is presented for each TI, portraying the hydrostratigraphic ar-
chitecture; (a) shows the Kasted TI, (b) shows the conceptual TI,
and (c) shows the Egebjerg TI, which is generally larger than the
Kasted model.

grid cells containing a resistivity model. This is carried out
using block kriging and results in an incomplete resistivity
grid of block average resistivities (Fig. 6a). The second and
final step is to stochastically reconstruct the incomplete re-
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sistivity grid using DS stochastic reconstruction (Mariethoz
and Renard, 2010) (Fig. 7). The reconstruction procedure
was originally presented by Barfod et al. (2018); however,
we have made some improvements for this study. Originally,
a simple kriging estimation approach was used to assign the
resistivity models to a 3-D modeling grid. This resulted in an
incomplete resistivity grid, which contained resistivity infor-
mation not only pertaining to grid cells containing a SkyTEM
sounding; i.e., the resistivity grid had already been partly re-
constructed in the proximity of the geophysical soundings.
To avoid this, block kriging estimation was used instead. The
block kriging method is also a variogram-based estimation
method, which estimates the average value of a rectangular
block (Goovaerts, 1997). For more details on reconstructing
incomplete resistivity grids see Barfod et al. (2018).

The SGeMS snesim framework utilizes the tau model
for soft data conditioning (Journel, 2002), which re-
quires the translation of resistivity grids into probability
grids. This requires information on the regional resistivity–
hydrostratigraphic relationship. Such knowledge is not al-
ways available, but if enough boreholes and electromag-
netic geophysical data are available, the framework for study-
ing the resistivity–hydrostratigraphic relationship, presented
by Barfod et al. (2016), can be used to create a set of
histograms. The resistivity–hydrostratigraphic histograms,
Fig. 1b, are compiled from available hydrostratigraphic logs
and SkyTEM resistivity models and are presented in more
detail in Barfod et al. (2016, 2018). The estimated histograms
(Fig. 1b) are then used to directly translate each resistivity
value, in a given resistivity grid, into three probabilities, one
for each hydrostratigraphic unit.

The general MPS workflow can be summarized in seven
overall steps as follows:

1. Using block kriging, the SkyTEM resistivity models are
assigned to a 3-D grid identical to the Kasted model
grid.

2. The incomplete resistivity grids (Fig. 6a) are stochasti-
cally reconstructed using direct sampling (Fig. 7a). The
result is an ensemble of 50 equiprobable reconstructed
resistivity grids.

3. The reconstructed resistivity grids are trans-
lated into probability grids using the resistivity–
hydrostratigraphic relationship histograms (Fig. 1b).

4. The borehole lithology logs are translated into hydros-
tratigraphic logs; Step 1, Fig. 3.

5. The hydrostratigraphic logs are resampled and three
probability values, one for each hydrostratigraphic unit,
are directly computed at each resampled interval; Step
2, Fig. 3.

6. The borehole probabilities are assigned to a grid identi-
cal to the cognitive Kasted model grid.

7. The borehole probability grid is translated into a hard
data grid, by assigning the most likely hydrostrati-
graphic unit to each grid cell.

A total of 400 realizations are created, with 50 realiza-
tions per sub-case (Table 1). In snesim a random number seed
needs to be manually selected for each realization to initialize
the random number generator and in particular define a ran-
dom path through the modeling grid. The random seed con-
vention chosen in this paper was to apply the same random
seed vector to each sub-case. The vector contains 50 linearly
increasing random seed numbers, ensuring consistency when
comparing realizations from the individual sub-cases.

4.1 Basic modeling setup

The basic modeling setup is designed to act as the base from
which all other cases are built. The different sub-cases are
simply modified versions of the basic modeling setup, each
designed to study how modification to the base setup relates
to hydrostratigraphic MPS modeling. The basic modeling
setup uses the borehole data as hard information, SCI models
with smooth inversion constraints as soft data, and the cog-
nitive hydrostratigraphic Kasted model as a TI (Fig. 4a), for
which the global proportions are listed in Table 2 and vertical
proportions are displayed in Fig. 5a.

4.2 Case 1 – conceptual geological understanding

The basic modeling setup uses the actual cognitive geolog-
ical model of the Kasted survey area as a TI (Høyer et al.,
2015). In Denmark, it is common practice to build 3-D cog-
nitive geological models of the near-subsurface. Many cogni-
tive models exist and are publicly available. Such models can
easily be adapted and used as 3-D TIs to simulate new survey
areas, provided the geological settings are similar. Case 1 is
divided into two sub-cases. The first sub-case, case 1a, uses
the basic setup, but, in place of the cognitive Kasted model,
the cognitive geological model of the Egebjerg area (Fig. 1a)
is used as a TI (Fig. 4c). The geologic setting in Egebjerg is
relevant since it is partly dominated by a buried valley com-
plex (Jørgensen et al., 2010).

The Egebjerg model consists of a total of 72 geological
units which are categorized accordingly to reflect the three
hydrostratigraphic units of the Kasted hydrostratigraphic
model. Egebjerg additionally contains undesired features,
such as local Miocene complexes. Two such local geologi-
cal environments, which do not reflect the geological setting
of the Kasted area, are present. One is found south of the
buried valley complex and the other to the west. By crop-
ping the model and rotating it 90◦ counterclockwise, a rel-
evant TI without undesired geological architecture is pro-
duced (Fig. 4c); this is referred to as case 1a. It is clearly seen
by comparing Fig. 4a and c that the Kasted and Egebjerg TIs
are different. The Kasted TI is smaller and contains smooth
geological features, while the Egebjerg model is larger and
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Table 1. An overview table showing information on the MPS cases along with information on the number of realizations for each case or
sub-case, and a brief description of each case.

Number of Total number of
Case name Sub-case names realizations realizations Case description

Basic setup Basic modeling setup 50 50 The basic setup uses boreholes as hard data,
smooth resistivity models as soft data, and the
cognitive Kasted model as a TI.

Case 1a (a) Egebjerg TI 50 100 Two different TIs are used to study the uncer-
tainty related to the choice of TI, which reflects
the conceptual geological understanding.

Case 1b (b) Conceptual TI 50
Case 2 Incomplete soft data grid 50 50 The uncertainty related to the reconstruction of

the resistivity grid is studied by running simula-
tions with an incomplete resistivity grid.

Case 3 Sharp resistivity models 50 50 The sharp resistivity models are used for sim-
ulations instead of the smooth models to study
how the choice of resistivity model influences
the hydrostratigraphic models.

Case 4a (a) No borehole data 50 100 Simulations are run without hard data to see how
much the hard data influences the results.

Case 4b (b) Soft borehole data 50 The borehole data are used as soft information
instead of hard by combining the borehole prob-
ability grid with the SkyTEM probability grid
using the tau model.

Case 5 No soft resistivity data 50 50 Simulations are run using only the hard data and
the cognitive Kasted TI.

Total – – 400 –

Table 2. The global proportions related to each of the three TIs
presented in Fig. 4.

Sand and Glacial Hemipelagic
gravel clay clay

Kasted TI 0.17 0.21 0.62
Conceptual TI 0.17 0.22 0.61
Egebjerg TI 0.10 0.22 0.68

contains coarse, block-like geological features. The impor-
tant features, in relation to hydrostratigraphic modeling, are
the buried valley complexes, which are present in the Egeb-
jerg model (Fig. 4c). The global proportions of the Egebjerg
TI (Table 2) are similar to the ones found in the Kasted TI.
However, the vertical proportions of the Egebjerg TI (Fig. 5c)
are different, especially in the upper part of the TI where
glacial clay units dominate.

The second sub-case, case 1b, utilizes a purely conceptual
TI. The conceptual TI is created by using a set of hyperbolic
secant functions to populate a 3-D matrix and is purely math-
ematical in nature. The conceptual TI can be seen in Fig. 4b
and is designed to have three overall buried valleys eroded
into a hemipelagic clay substratum. There are two narrow
and shallow glacial clay valleys, and a broad and deep sand

and gravel valley. One of the glacial clay valleys is a younger
valley that is eroded into the older sand and gravel valley
and they run roughly parallel to each other. The last glacial
clay valley is almost orthogonal to the other valleys, and also
erodes into the sand and gravel valley. The upper part of the
TI contains a cover layer of glacial clay (Fig. 5b). The sim-
ple conceptual TI is designed to contain the main geologi-
cal architecture of the Kasted area, namely the buried val-
ley complexes. The sand and gravel valley, trending west–
northwest to east–southeast, was chosen on purpose to study
what happens when oversimplified and smooth MP informa-
tion is added to a TI. The global proportions of the concep-
tual TI are consistent with the other TIs, while the vertical
proportions for sand and gravel and glacial clay units show a
significantly different pattern (Fig. 5b).

4.3 Case 2 – incomplete soft data

During reconstruction of the resistivity grid, it is assumed
that the patterns in the incomplete dataset contain informa-
tion regarding the content of the dataset gaps. This is true
only when the incomplete grid contains a sufficient amount
of data. Sufficient, in this case, means that the parameter
space is sampled densely enough to reflect the patterns we
wish to reconstruct (Mariethoz and Renard, 2010). If the grid
is too sparse, then limited or no information which can help
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Figure 5. The vertical proportions of the three training images for
each of the hydrostratigraphic categories, where (a) portrays the
Kasted TI, (b) the conceptual TI, and (c) the Egebjerg TI.

reconstruct missing patterns is present. Signs of mediocre
data density are seen in the incomplete grids (Fig. 6a). Ar-
tifacts from the DS reconstruction are present in the com-
pleted resistivity grids. The resistive valley to the west in the
horizontal slices and vertical cross sections in Fig. 7a and b
reveal a striated pattern. An alternative to reconstructing the
resistivity grid beforehand is to use the incomplete resistiv-
ity grids for simulation, meaning no information is present
in the resistivity dataset gaps. Grid cells containing a resis-
tivity model are translated into three probability values us-
ing the resistivity–hydrostratigraphic relationship histograms
(Fig. 1b, 6b–d). Areas without soft resistivity data rely on the
TI during simulation, emphasizing the fact that no actual in-
formation is present between soundings. The overall setup is
identical to the basic setup; the only difference is the recon-
structed soft data grids are interchanged for the incomplete
soft data grid (Fig. 6b–d).

4.4 Case 3 – choice of resistivity model

The choice of inversion algorithm results in different
SkyTEM resistivity models. The purpose of this case is to
study how using sSCI (Vignoli et al., 2015) models influ-
ences the modeling results. A common inversion approach is
SCI, where a smooth regularization is used (Constable et al.,
1987). Such resistivity models have a smooth transition from
resistive to conductive features, and vice versa. Geological
layer boundaries are rarely smooth in nature, meaning such
soft transitions in resistivities seldom reflect reality. Further-
more, extreme resistivity values are not presented correctly in
the smooth model inversions. Vignoli et al. (2015) propose
an alternative SCI approach, employing a minimum gradi-
ent support regularization term instead. Such sSCI models

produce resistivity models with sharp layer boundaries and a
better representation of extreme values. The setup in case 3
is identical to the basic setup, except that the SCI models are
interchanged for sSCI models. The DS grid reconstruction
is then conducted on the sSCI models, which are then trans-
lated into probability grids. Finally, these grids are used as
soft data for simulation using the snesim method.

The sharp resistivity models are different from the smooth
models, but no particularly sharp layer boundaries are re-
flected in the reconstructed resistivity grid (Fig. 7b).

One of the obvious differences is found in the resistivity
patterns of the sand and gravel valley to the far west of the
survey area. The valley itself is not significantly different;
however, the small resistive patch, west of the large valley, is
more pronounced in the sharp model and has an overall more
pronounced fingerprint (Fig. 7b). The sharp resistivity mod-
els better estimate the true bulk resistivity values of specific
geological units, such as the resistive patch accentuated here.
The ensemble standard deviation grid, Fig. 7c and d, shows a
general reduction in the ambiguity of the reconstructed sharp
resistivity models. This is clear from the reduction areas with
large standard deviation, shown in red colors, which are over-
all reduced in size.

4.5 Case 4 – borehole lithology logs

This case is dedicated towards how the borehole data are
handled and how they influence the hydrostratigraphic mod-
eling results. The hard borehole data are normally sparse,
relative to geophysical data. Boreholes are commonly con-
sidered ground truth since they directly sample the subsur-
face sediments or petrological units. This case is divided into
two sub-cases. The first sub-case, case 4a, portrays what hap-
pens when hard data are not included in the snesim simula-
tion. The model setup is therefore identical to the basic MPS
setup, but without including the borehole data.

The second sub-case, case 4b, incorporates the borehole
lithology logs as soft data. The certainty of a lithological log
varies depending on a range of factors, e.g., drilling method,
the purpose of the borehole, and sampling frequency (e.g.,
Barfod et al., 2016; He et al., 2014). The hydrostratigraphic
probability logs, introduced in the basic modeling setup (Step
2, Fig. 3), are utilized in place of the hard borehole grid. The
boreholes are assigned a lateral footprint, so the information
is not only found at the borehole locations. The borehole
footprint is assigned by creating a grid where the borehole
probability values have been estimated in a radius of 200 m
around each borehole using simple kriging with a search ra-
dius of 200 m and a mean of 1/K = 1/3, where K is the
number of unique hydrostratigraphic units (Fig. 8d–f) (for
additional information see Sect. A1 in the Appendix). The
tau model is then used to combine the SkyTEM (Fig. 8a–
c) and borehole (Fig. 8d–f) probability grids (e.g., Journel,
2002; Krishnan, 2004; Remy et al., 2014). The first step is
then to define the prior probability distribution, P (A), which
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Figure 6. A presentation of the incomplete resistivity grid. Each grid is portrayed as a horizontal slice at 20 m b.s.l. and a vertical cross
section intersecting at YUTM 6 230 100 m. (a) shows the resistivity grid which is translated into three probability grids using the resistivity–
hydrostratigraphic relationship histograms (Fig. 1b). Grid cells without SkyTEM soundings are not assigned a probability value. (b–d) show
the sand and gravel, glacial clay, and hemipelagic clay probability values, respectively.

in this case is the vertical proportion taken from each layer of
the cognitive Kasted TI (Fig. 5a). Then the probability dis-
tributions are defined as follows: P (A|Dr) and P (A|Db),
where Dr is the resistivity probability grid and Db the bore-
hole probability grid. The 3-D probability grids are translated
into distance grids by applying the probability-into-distance
transform and computing the distance ratio using Eqs. (2)
and (3), where the tau values were assigned based on a se-
ries of exhaustive tests. The final tau values were selected
based on the criteria that the transitions in areas where both
borehole and resistivity information is available should be
as smooth as possible in the resulting combined probability
grid, as seen in Fig. 8. Based on the tests, the resulting tau
values were [τr,τb]= [2.0,1.0]. The final conditional prob-
ability was computed using Eq. (4) and resulted in the three
hydrostratigraphic probability grids, as seen in Fig. 8g–i. The
combined probability grids replace the smooth probability
grids used in the basic setup.

4.6 Case 5 – excluding the soft resistivity data

The final case, case 5, illustrates the consequences of not in-
cluding the soft SkyTEM resistivity information in the MPS
simulation routine. The basic setup is simply run without the

inclusion of soft data; i.e., the setup only uses the cognitive
Kasted TI and hard borehole information.

5 Results

5.1 Visual comparison of hydrostratigraphic
realizations and ensemble mode ratio maps

For each of the presented cases two hydrostratigraphic re-
alizations are presented (Fig. 9), along with an EMR map
(Fig. 10). The EMR maps show the occurrence ratio of the
most likely simulated category for each grid cell based on
50 realizations. The two realizations and EMR map of the
basic modeling setup, Figs. 9a and 10a, reveal the same
overall trends as the cognitive geological model, Fig. 4a:
namely the western sand and gravel valley striking∼N40◦ E,
the glacial clay valley striking ∼E30◦ S, the large mixed
sand and gravel and glacial clay valley striking ∼N20◦ E
to the south, and the small subsidiary glacial clay valley
striking ∼N50◦ E to the south. However, even though the
main hydrostratigraphic architecture of the cognitive geolog-
ical model is similar, there are still differences between the
snesim realizations and the cognitive geological model. The
cognitive model shows clear-cut, smooth, and ordered hy-
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Figure 7. An overview of the key differences between reconstructing the resistivity grid using smooth and sharp inversion resistivity models.
Each grid is portrayed as a horizontal slice at 20 m b.s.l. and a vertical cross section intersecting at YUTM 6 230 100 m. (a) shows the
smooth reconstructed resistivity grid. (b) portrays the sharp reconstructed resistivity grid. (c) shows the standard deviation calculated from
50 stochastic reconstructions of the smooth resistivity grid. (d) shows the standard deviation calculated from 50 stochastic reconstructions of
the sharp resistivity grid.

drostratigraphic units. The basic modeling setup realizations
reveal sporadic and random patterns. The sand and gravel
units are placed in small lumps throughout the glacial clay
units, but are not present within the homogenous hemipelagic
clay. Patches of uncertain glacial clay units are, however,
found in the homogeneous hemipelagic clay, especially in the
southeast corner of the Kasted survey area (Figs. 9a, 10a).
The same sporadic picture is seen in the vertical slices of
the realizations (Fig. 9a), although here an additional trend
is revealed. The sand and gravel valley to the far west and
at XUTM 570 900 m is not consistently filled with sand and
gravel (Fig. 9a) as in the cognitive geological model (Fig. 4a).
Furthermore, the EMR map reveals that the valley margins
are subject to a larger degree of ambiguity (Fig. 10a); in
fact at some locations the rEMR value is close to 1/3, which
means that for the model ensemble the occurrence of either
hydrostratigraphic unit is possible.

The case 1a realizations (Fig. 9b, 10b), which use the
Egebjerg TI (Fig. 4c), show the same overall trends as in
the basic modeling setup. The subset of buried valleys men-
tioned above is present; however, an obvious difference is the
coarse and block-like appearance of the case 1a realization
ensemble. This appearance is similar to the block-like ap-
pearance of the Egebjerg TI (Fig. 4c). Furthermore, the hori-
zontal slice of the realizations and EMR map reveals that the
glacial-clay-dominated area to the east has a generally larger

occurrence ratio and is thus more certain. The realizations
are clearly influenced by the choice of TI, especially when
case 1b is also considered (Fig. 9c). The hydrostratigraphic
realizations of case 1b (Fig. 9c, 10c) clearly depict the same
overall buried valley trends, but the valleys in the central part
of the model are largely filled with the opposite of the valley
filling hydrostratigraphic units. Furthermore, the occurrence
ratio seems quite low in certain areas, such as to the south
of the model, which means the ambiguity has increased. Fi-
nally, the realizations also reveal an absence of small-scale
patterns, which corresponds to the conceptual TI that only
contains homogenous hydrostratigraphic units.

The importance of reconstructing the incomplete resistiv-
ity grid is seen in case 2 (Fig. 9d, 10d). The two realiza-
tions in Fig. 9d show the main buried valley features, e.g.,
the western sand and gravel valley. However, the hydrostrati-
graphic units are sporadic, especially in areas with no data.
Patches of sand and gravel and glacial clay are randomly
spread throughout the presented horizontal slice and verti-
cal cross section (Fig. 9d). The EMR map also reveals an
increase in low occurrence ratios in areas without soft data
(Fig. 10d).

The uncertainty related to the choice of geophysical mod-
eling procedure is portrayed by case 3. Here, snesim realiza-
tions are constrained to sharp resistivity models. Generally,
the realizations (Fig. 9e) are quite similar to the basic mod-

www.hydrol-earth-syst-sci.net/22/5485/2018/ Hydrol. Earth Syst. Sci., 22, 5485–5508, 2018



5498 A. A. S. Barfod et al.: Contributions to uncertainty related to hydrostratigraphic modeling

Figure 8. A visual representation of the tau model procedure for combining the soft resistivity and borehole grids. Each grid is portrayed as
a horizontal slice at 20 m b.s.l. and a vertical cross section intersecting at YUTM 6 230 100 m. (a–c) show the sand and gravel, glacial clay,
and hemipelagic clay probability maps, respectively, for one DS reconstructed resistivity grid; d–f show the 200 m radius kriged borehole
probability; and (g–i) show the combined resistivity grid, which has been combined using a tau model with the values [τr,τb] = [2, 1].

eling setup realizations (Fig. 9a). However, a key difference
is the significant reduction or absence of patches of glacial
clay in the homogeneous hemipelagic clay. In fact only one
patch is found in the first realization (Fig. 9e) in the south-
west corner, while it is not present in the second realization,
and the EMR map further reveals a reduction of the occur-
rence ratios generally, especially along the southern margin
of the realizations (Fig. 10e).

Case 4 shows the influence that the hard data have on
the hydrostratigraphic realizations in two sub-cases: case 4a,
where snesim simulations are run without hard data; and
case 4b, where the borehole data are treated as soft infor-
mation. Fig. 9f and g shows two hydrostratigraphic realiza-
tions without hard data and with soft borehole data, respec-
tively. These realizations do not differ significantly from the
basic modeling setup realizations and in fact are quite simi-
lar. One key difference is the central glacial clay valley strik-
ing ∼E30◦ S, which does not contain any sand and gravel
to the west (Fig. 9f and g). The EMR maps reveal that with-
out boreholes (Fig. 10f) the occurrence ratios generally de-
crease, making the realizations more ambiguous. The usage
of the borehole data as soft information also seems to reduce
the occurrence ratios compared to the basic modeling setup.
Generally, leaving out the borehole data, or treating it as soft

data, results in local changes in areas with a high density of
boreholes.

The final case, case 5, illustrates the importance of the
SkyTEM soft data. The snesim simulations are run using
only hard data and the cognitive geological model as a TI.
The output realizations (Fig. 9h) portray smooth and large-
scale hydrostratigraphic units. The hydrostratigraphic archi-
tecture of the buried valleys is not reflected. However, the
sand and gravel valley, to the west, does seem to protrude
slightly in the realizations (Fig. 9h) and the EMR map reveals
a significant decrease in the occurrence ratio and thus an in-
crease in the ambiguity of the model ensemble (Fig. 10h).

5.2 Quantitative comparison using differences in
object-based Euclidean distances as a measure for
similarity

The distances between each of the 400 realizations have been
computed using Eqs. (8) and (10). The full distance matrix
is presented in Fig. 11a. The distances between each real-
ization and the cognitive geological models have also been
computed and plotted in Fig. 11b. To aid the interpretation
of the distance matrix and distances to the cognitive model a
summary table, Table 3, has been compiled.
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Figure 9. Each case is displayed by two realizations: realization no. 1 of 50 and realization no. 30 of 50. Each realization is portrayed as
a horizontal slice at 20 m b.s.l. and a vertical cross section intersecting at YUTM 6230100 m. (a) shows the realization results for the basic
modeling setup, (b) shows the realization results for case 1a, (c) shows the realization results for case 1b, (d) shows the results for case 2,
(e) shows the results for case 3, (f) shows the results for case 4a, (g) shows the results for case 4b, and (h) shows the results for case 5. For
more details on individual cases the reader is referred to Table 1.

The basic modeling setup constitutes a common snesim
setup, with the geophysical data as soft data, boreholes as
hard data, and a 3-D geological conceptualization encased in
a TI. The ensemble average variability is computed accord-
ing to the equations presented by Barfod et al. (2018), and the
resulting ensemble average variability is 10.1 m, with an av-
erage distance to the cognitive model of 24.3 m. This means
that the Euclidean distance mismatch between the individual
realizations related to basic modeling setup is 10.1 m, and
the average difference in Euclidean distance to the nearest
active cell between the realizations and the cognitive model
was 24.3 m.

The 3-D geological conceptualization contained in the TI
influences the final hydrostratigraphic realizations as illus-
trated in case 1, which is divided into two sub-cases: case 1a
and case 1b. In case 1a, using a 3-D cognitive geological
model from the Egebjerg area as a TI for hydrostratigraphic
simulation increases the average distance to the cognitive
model to 24.9 m (Fig. 11a, Table 3). Furthermore, the average

variability has increased to 13.6 m (Fig. 11b, Table 3). The
other sub-case revolves around using an entirely conceptual
geological model as a TI. The conceptual TI was designed to
reflect the overall geology, yet still contains some bias. The
results reflect the bias, with increased distances to the cog-
nitive geological model, which are now centered on 25.6 m
(Fig. 11a, Table 3). The ensemble variability has increased to
14.8 m (Fig. 11b, Table 3).

The importance of proper reconstruction of the incomplete
resistivity grid is illustrated in case 2, where the incomplete
resistivity grid was used for simulation. The resulting real-
ization ensemble has a large ensemble variability centered on
24.1 m (Fig. 11a, Table 3). The distance to the cognitive ge-
ological model is also large, with an average value of 33.1 m
(Fig. 11b, Table 3).

In case 3 the sharp SCI models were used for simulation in
place of the smooth SCI models. The realizations related to
case 3 were the closest to the cognitive model with an average
value of 21 m (Fig. 11b, Table 3). The variability of the case 3
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Figure 10. A presentation of the ensemble mode ratio (EMR) maps,
computed for the different case ensembles of hydrostratigraphic
models. Each EMR map is presented as a horizontal slice centered
on 20 m b.s.l. and a vertical cross section intersecting at YUTM
6 230 150 m. (a–h) present the EMR-type uncertainty map for each
of the different cases, which are summarized in Table 1. The EMR
values portray how certain the ensemble of MPS realizations are;
i.e., if rEMR = 1/3 then the realization is uncertain, and we have
equal probability of finding either hydrostratigraphic unit since
P(s1)= P(s2)= P(s3)= 33 %. On the other hand, if rEMR = 1,
then each realization of the given ensemble contains the same hy-
drostratigraphic unit at the given grid cell.

realization ensemble, i.e., the distances between the realiza-
tions pertaining to case 3, is small, with an average value of
9.4 m – see Table 3. Recalling the raw hydrostratigraphic re-
alizations (Fig. 9e) and the EMR map (Fig. 10e), the large
reduction in distances could partly be related to the removal
of non-hemipelagic clay units along the southern border of
the model and an overall increase in confidence along the
southern and southeastern border of the model.

The influence of the borehole lithology logs on the hy-
drostratigraphic realizations is reflected in case 4, which is
divided into two sub-cases. In the first sub-case, case 4a, the

borehole information is not used as hard data, and the real-
izations are created only using soft geophysical data and the
Kasted TI. However, the borehole data are still used for cre-
ating the resistivity–hydrostratigraphic histograms (Fig. 1b),
which are used for creating the probability grids. The ensem-
ble average variability is 10.7 m (Fig. 11a, Table 3) and the
average distance to the cognitive model is 24.3 m (Fig. 11b,
Table 3). In the second sub-case, case 4b, the boreholes are
used as soft information to reflect the uncertainty of the bore-
hole information. The ensemble average variability is 10.9 m,
and the average distance to the cognitive model is 24.3 m.
This illustrates how the snesim realizations are not particu-
larly sensitive towards the sparse borehole hard data.

Not including the geophysical soft data in the snesim sim-
ulations, case 5, resulted in the largest ensemble average
variability of 40.0 m (Fig. 11a, Table 3). The average dis-
tance between case 5 realizations and the cognitive model
was 59.3 m. This means that the realizations of case 5 are the
most different from the rest of the realizations. The snesim
realizations are sensitive towards not including the geophys-
ical data, or using the incomplete resistivity grid. This under-
lines the importance of the geophysical soft data in relation to
hydrostratigraphic modeling using the snesim methodology.

6 Discussion

The cognitive geological model was created based on smooth
SkyTEM resistivity models and lithological logs (Høyer et
al., 2015) as well as the conceptual geological understand-
ing of the area. The model was simplified from a full 3-D
geological model containing a total of 42 unique geological
units to a hydrostratigraphic model containing only 3 hydros-
tratigraphic units. The cognitive geological model, although
detailed and extensive, is not the true geological model. The
ensemble realizations should not directly reflect the cogni-
tive model, yet the cognitive model can be thought of as a
reference point in modeling space, which we would prefer
our models to resemble.

The results revealed the importance of the SkyTEM
dataset. Not including the resistivity models in the MPS sim-
ulations, case 5, yielded realizations which were both the
least similar to the cognitive geological model and had the
largest variability between the individual realizations. In-
cluding the incomplete resistivity grid, case 2, improved the
realization results compared to not including them at all. Yet,
the ensemble variability was large and resulting realizations
were ranked second least similar to the cognitive geologi-
cal model. The realization ensemble which was closest to the
cognitive geological model belongs to case 3. Here, the resis-
tivity grid was reconstructed from the sharp SCI models that,
in this case, increased the fingerprint of resistive extreme val-
ues, which in turn results in less ambiguous reconstructed re-
sistivity grids; compare Fig. 7c and d. It should be noted that
the usage of block kriging for assigning the sharp resistivity
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Table 3. A summary table showing the average distance value for each 50 by 50 square representing a given case in the distance matrix
(Fig. 11a). The final column, labeled Distancecog, summarizes the distances to the cognitive geological model, presented as the average
of each colored point cloud in Fig. 11b. The distances in parenthesis represent ensemble variabilities, and the remaining values represent
average distances between different ensembles. The unit of the average distances is meter.

Distance (m) Basic setup Case 1a Case 1b Case 2 Case 3 Case 4a Case 4b Case 5 Distancecog

Basic setup (10.1) 12.9 16.9 24.0 12.7 11.1 11.2 49.6 24.3
Case 1a 12.9 (13.6) 18.3 26.0 15.1 14.0 13.9 51.7 24.9
Case 1b 16.9 18.3 (14.8) 27.9 17.8 18.1 18.1 52.5 25.6
Case 2 24.0 26.0 27.9 (24.1) 23.5 25.0 24.9 45.2 33.1
Case 3 12.7 15.1 17.8 23.5 (9.4) 13.6 13.6 49.6 21.6
Case 4a 11.1 14.0 18.1 25.0 13.6 (10.7) 11.1 50.7 24.3
Case 4b 11.2 13.9 18.1 24.9 13.6 11.1 (10.9) 50.6 24.3
Case 5 49.6 51.7 52.5 45.2 49.6 50.7 50.6 (40.0) 59.3

models to the modeling grid resulted in smoothing of sharp
vertical boundaries otherwise found in sSCI models. These
three cases together reveal the importance of the geophysical
soft data when using the snesim setup presented in this study.

In relation to case 5, it can be argued that, even though the
SkyTEM resistivity models are not used as soft data, they are
still included indirectly since the TI, or cognitive geological
model, was created using smooth SkyTEM resistivity mod-
els. However, the realizations related to case 5 revealed an
ensemble of realizations, which did not replicate the overall
geological architecture, implying the importance of using the
SkyTEM models as soft data.

On the other hand, the cases related to studying the sen-
sitivity towards borehole information, case 4a and case 4b,
revealed that the large-scale hydrostratigraphic architecture
was not changed significantly. The distance measure used
in this study observes similarities or dissimilarities of large-
scale hydrostratigraphic architecture and is not sensitive to-
wards local changes in small-scale patterns. The amount of
geophysical information is relatively large, meaning the rel-
ative influence of (few) borehole data becomes less signifi-
cant. This does not mean that the borehole data are not impor-
tant; they both contain locally accurate information and are
used to estimate the regional resistivity–hydrostratigraphic
relationship (Fig. 1b). In other surveys, where the contrast
between geophysical and lithological information is smaller,
the importance of the borehole data will likely increase. In
relation to this study, such small-scale changes are insignifi-
cant. Yet if the realizations are to be used for flow simulations
or predictions on a smaller scale, such smaller scales might
suddenly have an important impact on prediction accuracy.
Additionally, if such small-scale patterns are important, the
size of the model grid cells should be smaller to accommo-
date simulations of these variations. Discretizing hydrostrati-
graphic and groundwater models with relatively small grid
cells can be CPU demanding, depending on the total number
of grid cells.

In case 4b, the borehole data were used as soft information
as in the study by Høyer et al. (2017). This was done since

boreholes are associated with uncertainty related to a number
of factors, as described above. Therefore, the soft borehole
probability values derived during the assigning of the bore-
holes to the modeling grid are combined with the SkyTEM-
based probability grids using the tau model. This approach
enables the borehole probability to alter the final probability
grid, while still conditioning the SkyTEM data. Combining
the information rather than letting the borehole data count
as ground truth, i.e., hard data, allows the borehole data to
influence the realizations, especially if the soft borehole in-
formation disagrees with the soft geophysical data (Fig. 8).

The conceptual geological understanding has always been
considered an integral part of geological modeling. In this
case the conceptual geological understanding is implemented
via the TI, which makes it easy to change the underlying con-
ceptual geological understanding of a given model. A total of
three different TIs were used for simulation in this study: the
Kasted, Egebjerg, and conceptual TIs. The results showed
that models simulated using the Egebjerg TI, case 1a, por-
trayed the same overall hydrostratigraphic architecture. This
opens for the possibility of using 3-D cognitive geological
models as TIs for new survey areas, as long as the geological
settings are similar. One key difference between the mod-
els, however, was the more block-like and coarse nature of
the realizations using the Egebjerg TI, due to the coarseness
of the Egebjerg TI. An important observation is that, when
a spatially dense and extensive geophysical dataset, such as
SkyTEM, is present, the snesim realizations are not as sensi-
tive towards the choice of TI when the TI is relatively similar
to the expected scenario. However, as illustrated by case 1b,
a TI which has significantly differing vertical proportions in
comparison with the actual model, which in this case is as-
sumed to be the cognitive model (Fig. 5a, b), causes a conflict
between the TI and the soft data. In such a case the TI dom-
inates the realizations and simulates improbable hydrostrati-
graphic units in places where the soft data reveal low prob-
ability for those specific units. In Figs. 9c and 10c, it can
be seen that the glacial clay valley, both present in the soft
data variable (Fig. 8b) and the cognitive Kasted geological
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Figure 11. A presentation of the average Euclidean distance calcu-
lations. (a) shows the full distance matrix; (b) shows the average
Euclidean distances between each individual hydrostratigraphic re-
alization and the cognitive geological model.

model (Fig. 4a), is represented as sand and gravel. This leads
to the conclusion that one needs to pay attention to the con-
struction of the TI, as also witnessed in the study by Høyer
et al. (2017). Furthermore, the large-scale and homogenous
nature of the hydrostratigraphic architecture in the concep-
tual TI results in realizations which reflects the homogeneity.
In comparison with the realizations based on the TIs derived
from cognitive models, the realizations contain much fewer
small-scale patterns.

Small-scale patterns are present in the realizations al-
though they are not at the same degree present in the TIs.
This can be explained by the fact that the simulations are
probabilistic in nature and are based on random processes.
At the beginning of the simulation a random path is drawn
so that the simulation grid is filled by visiting each grid cell

only once. The small-scale patterns are partly due to the hard
data that are inserted into the simulation grid before the sim-
ulation commences, which is excluded from the simulation
path. As the grid is filled out, the hard borehole data might
suggest a certain category but the soft data suggest another
category. As the grid is filled out the overall category from
the soft data dominates and, if the random path visits the grid
cells near the hard data point towards the end of the random
path, then we are left with a small intercalation (Hansen et
al., 2018). The intercalations are also inherent in the sim-
ulations without hard data, which is mainly due to process
randomness related to how the snesim algorithm draws from
a cumulative density function (Strebelle, 2002).

The Kasted model and TI are influenced by non-
stationarity, which has not been dealt with in the MPS setup.
Even though the models are influenced by non-stationarity,
the simulations result in models which overall resemble the
cognitive model, e.g., cases 1–4. However, once the geophys-
ical data are removed in case 5, the resulting MPS mod-
els are increasingly random and are heavily influenced by
non-stationarity. It is important to note that the increasing
amounts of soft geophysical data generally decrease the ef-
fects of non-stationarity, due to the increased conditioning of
the soft data.

The reconstruction of the resistivity grid is an important
step of the MPS setup presented in this study. This was il-
lustrated in case 2, where the incomplete resistivity grid was
used instead of the reconstructed resistivity grid, resulting in
larger realization variability and distance to the cognitive ge-
ological model. These realizations could have been improved
by increasing the prior knowledge provided to snesim before
simulation. One such option is to provide so-called vertical
proportions, in place of solely the target global proportions.
The global proportions simply give a percentage fraction of
the different hydrostratigraphic units in the outcome real-
izations. The vertical proportions are defined for each sim-
ulation grid layer and determine the proportions as a func-
tion of depth. This makes sense if the different units in the
realizations are clearly linked to geological units, which in
turn have clear stratigraphic layering. In our case, this would
have impacted the realizations by not allowing the presence
of hemipelagic clay at the top of the model. Furthermore,
sand and gravel and glacial clay would not be allowed at the
bottom of the model. However, vertical proportions were not
used in any other cases and were therefore not used in case 2.
The usage of vertical proportions for conditioning could also
improve the results of case 5.

Part of the considerations of this study was to utilize
the DeeSse code for direct sampling simulation. Whereas
Chugunova and Hu (2008) present an MPS method for con-
straining a categorical simulation using continuous auxiliary
data, DS is much more flexible and allows multivariate simu-
lations reproducing spatial statistics within and between vari-
ables, which can be categorical or continuous. DS requires
the construction of a multivariate TI, and it is important that
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every variable reflects the spatial relationship to be modeled.
In our context, one could envision creating a bivariate TI
consisting of a hydrostratigraphic model and a continuous
auxiliary variable reflecting an AEM dataset. It is no trivial
task, and, to our knowledge, no studies have been presented
where an auxiliary variable is created for a 3-D AEM dataset.
However, Lochbühler et al. (2014) presented a generalized
example on creating auxiliary variables for tomographic im-
ages, i.e., 2-D images. Generally, the requirements for the
geophysical modeling procedure are twofold. Firstly, the cat-
egorical TI needs to be populated with resistivity values, e.g.,
as in Christensen et al. (2017) where a Bayesian Markov
chain Monte Carlo (MCMC) algorithm is used to create 1-D
resistivity models drawn from a posterior probability distri-
bution. This is no straightforward task. Secondly, the popu-
lated resistivity model then ideally needs to be forward mod-
eled using full 3-D forward modeling code, which is compu-
tationally expensive. Alternatively, approximate 1-D forward
modeling is also an option. The correct system parameters of
the AEM instrument and data processing parameters have to
be taken into account. Thirdly, the synthetic data obtained by
forward modeling must be inverted using the same procedure
as the field dataset. To our knowledge, such usage of an aux-
iliary variable for constraining soft geophysical models is not
widespread within the domain of AEM geophysical methods.
In this study, DS was only used to reconstruct the incomplete
AEM dataset (a univariate case with the dataset as a TI, and
hard data; see Sect. 3.2) and the snesim method was used for
hydrostratigraphic modeling, due to its usage of the τ model
(Journel, 2002). The τ model proved a more straightforward
approach when combined with the method for creating the
resistivity–hydrostratigraphic histograms presented by Bar-
fod et al. (2016).

The study presented by Barfod et al. (2018) used the alter-
native modified Hausdorff distance measure for comparing
realizations. Due to the computational burden of the method,
it was difficult to create exhaustive distance computations,
i.e., where all information from individual realizations is
used. The usage of differences in EDT of binary transla-
tions of the categorical realizations for comparing the indi-
vidual realizations proved to be a more computationally fea-
sible approach. In this paper an efficient algorithm for com-
puting the EDT was used (Maurer et al., 2003). This com-
putationally advantageous approach for computing the dis-
tance between two realizations allows for a full analysis of
the realizations. Each realization is then compared based on
each of the hydrostratigraphic categories and on the entire
3-D objects, resulting in a detailed comparison. The result-
ing distance matrix (Fig. 11a) was able to differentiate be-
tween the realizations pertaining to the different cases. The
random number seed between cases was chosen so the first
realization of each case has the same random seed and the
second realization has the same seed. This can be seen in
the distance matrix (Fig. 11a), where off-diagonal cases have
smaller distance values along the diagonal within the given

50 by 50 sub-matrix. An example is the 50 by 50 sub-matrix
between the basic setup and case 1a, where the diagonal is
clearly marked by lower distances relative to the remaining
sub-matrix.

7 Conclusion

A hydrogeophysical dataset from Kasted in Denmark was
used for stochastic hydrostratigraphic simulation using the
snesim algorithm. The main goal of this study was to improve
our understanding of ensemble hydrostratigraphic modeling
variability related to stochastic MPS modeling. The study
was divided into eight sub-cases designed to reflect the im-
pact related to key components of the hydrostratigraphic
modeling setup, i.e., the TI, borehole lithology logs, and
SkyTEM resistivity models. The results revealed that the hy-
drostratigraphic realizations were sensitive first and foremost
to the geophysical dataset due to its extensive nature. Not in-
cluding the geophysical data in the realizations resulted in
an average Euclidean distance variability of 40 m and a dis-
tance to the cognitive model of 59 m, which was, by far, the
largest distance of all realizations. Furthermore, the geophys-
ical modeling procedure influences the resulting realizations.
It was shown that choosing so-called sharp inversion models
(sSCI), in place of smooth inversion models (SCI), resulted
in a realization ensemble which had similar distance-based
variabilities, 9.4 and 10.1 m, respectively. However, using
sSCI models decreased the distance to the cognitive geolog-
ical model from 24.3 to 21.6 m. The choice of a TI contain-
ing a relevant geological conceptualization is important. The
cognitive Egebjerg model was used as a TI to simulate the
hydrostratigraphic Kasted model, which yielded similar real-
izations to the case where the cognitive Kasted model was
used as a TI. The Egebjerg TI contained relevant geolog-
ical architecture, but if a conceptual TI is introduced con-
taining significantly different vertical proportions, the result-
ing realizations will reflect these differing vertical propor-
tions. Finally, it was seen that the borehole lithology logs
did not significantly influence the realizations. The lithol-
ogy logs only carry information in the immediate vicinity of
the borehole and are sparse in comparison to the resistivity
data. The boreholes therefore only have a minor influence on
the realizations. The comparison measures used here mainly
compare the overall large-scale architecture components of
the realizations and do not reflect small-scale changes. In re-
lation to this study the usage of the lithology logs as hard
data does not show a significant impact on the MPS realiza-
tions. However, if the hydrostratigraphic models are used for
predicting groundwater flow, the boreholes might be impor-
tant. However, it should be mentioned that the resistivity–
hydrostratigraphic histograms, which are used extensively in
this research, are created from the borehole information.
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Data availability. Both the geophysical models and the borehole
data used in this research paper are publicly available. The borehole
data can be found in the national borehole database of Denmark
(http://www.geus.dk/produkter-ydelser-og-faciliteter/data-og-kort/
national-boringsdatabase-jupiter/adgang-til-data/, last access:
23 October 2018), and the geophysical models can be found in
the national geophysical database (http://www.gerda.geus.dk, last
access: 23 October 2018).
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Appendix A

Table A1. Simple kriging parameters for creating borehole proba-
bility grids (case 4)

Variogram model type
exponential

meanSK = 1/3

Search ellipsoid

Max Med Min

Ranges 200 200 10
Angles 0 0 0

Variogram

Contribution= 1

Max Med Min

Ranges 1000 1000 50
Angles 0 0 0

Table A2. General SGeMS parameters used for the snesim realiza-
tions.

Property name Value/count

algorithm name snesim_std
use_pre_simulated_gridded_data 0
Use_ProbField 1
ProbField_properties count=3, value=”sg_0;ct1;pc2”
TauModelObject [1 1]
use_vertical_proportion 0
Cmin 5
Constraint_Marginal_ADVANCED 0
resimulation_criterion −1
resimulation_iteration_nb 1
Nb_Multigrids_ADVANCED 5
Debug_Level 0
Subgrid_choice 0
expand_isotropic 1
expand_anisotropic 0
aniso_factor NA
Use_Affinity 0
Use_Rotation 0
Nb_Facies 3
Marginal_Cdf 0.19 0.24 0.57
Max_Cond 100
Search_Ellipsoid [750 750 0 0 0 0]

Marginal cdf

Sand and gravel Glacial clay Hemipelagic clay

Value 0.19 0.24 0.57
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