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Metal binding proteins or metallo-proteins are important for the stability of the protein and also serve as co-factors in various 
functions like controlling metabolism, regulating signal transport, and metal homeostasis. In structural genomics, prediction 
of metal binding proteins help in the selection of suitable growth medium for overexpression’s studies and also help in 
obtaining the functional protein. Computational prediction using machine learning approach has been widely used in 
various fields of bioinformatics based on the fact all the information contains in amino acid sequence. In this study, random 
forest machine learning prediction systems were deployed with simplified amino acid for prediction of individual major metal 
ion binding sites like copper, calcium, cobalt, iron, magnesium, manganese, nickel, and zinc.
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Introduction

Amino acids play a central role in the building block of 
protein. The primary structure of the protein is determined 
by the arrangement of 20 naturally occurring amino acids. 
The function of a protein is determined from their amino 
acids and also they depend upon interaction with cofactors, 
binding with metal ions and interaction with other proteins. 
The proteome of all the organism share significant metal 
ions and metal binding cofactors to carry out its essential 
function. It has been estimated that approximately 30% of all 
proteins contain at least one metal. The proteins play a vital 
role in biological processes and in the stability of the protein 
by binding with metal ions or metal containing-cofactors [1]. 
The proteins bind with major metal ions like transition 
metals, alkali, and alkaline metals. The frequent metal ions 
that bind with proteins are sodium, copper, iron, magne-
sium, manganese, potassium, and zinc ions respectively. In 
in-vitro condition, the unfolded polypeptide may are 
observed to interact with metal ions that direct the 
polypeptide folding process [2]. Identification of metal 

binding through experimental procedures like the use of 
metal ion affinity column chromatography [3, 4], 
electrophoretic mobility shift assay [5, 6], absorbance 
spectroscopy [7], gel electrophoresis [8], nuclear magnetic 
resonance spectroscopy [9-11], and mass spectrometry [3, 
12] require tedious steps and specific instruments, making 
them expensive and may be unsuitable for unknown targets. 
In this aspect, there is a need for computational predictors of 
protein binding metal ion in order to reduce time and cost. 
For example, predictions of protein metal binding ions are 
useful in structural genomics, to select proper growth 
medium for overexpression studies and for the easy 
interpretation of electron density maps. But fortunately, 
metal-binding ability are encoded in the amino acidic 
sequences and these primary sequences help in protein 
structure formation. Through genomic projects various 
organism genomic sequences have been annotated 
somehow along with metalloproteins contained in them [1]. 
Bioinformatics has been extensively used to predict 
metal-binding ability from amino acid sequences. Various 
computational methods like artificial neural networks [13], 
support vector machines [14], decision tree algorithm [15], 
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Fig. 1. Construction of dataset used for prediction.

graph theory [16], FoldX force field [17], CHED [18, 19], 
and geometry algorithm methods [16]. These methods 
depend upon either only sequence information or the use of 
both sequence and structure information. However, most of 
the available prediction methods are either based on the 
knowledge of the apoprotein structure or restricted to few 
specific cases, like the metal binding of histidines/cysteines. 
Most of these methods have been implemented as stan-
dalone software or web servers to the research community 
[15, 20]. 

Due to the availability of cheap and advancement of 
sequencing instruments, the sequence of proteins has 
increased rapidly over when compared to protein structure 
data. This due to the fact that experimental determining the 
three-dimensional of protein is difficult and expensive. 
Through various theoretical and experimental studies, it is 
proved that minimal set of the amino acid is sufficient for 
protein folding [21]. The minimal set of representative 
residues with similar features can be achieved by grouping 
together the 20 amino acids by clustering. This method is 
called as reduced or simplified amino acid alphabet. Several 
simplified amino acid alphabets have been proposed, which 
have been applied to pattern recognition method in the 
prediction of protein structure [22], for generation of 
consensus sequences from multiple alignments, and for 
protein folding prediction [23]. Various computational 
predictor has used simplified amino acids to predict the 
solubility on overexpression, remote homology detection 
[19], and identify the defensin peptide family [24], effects of 
cofactors on conformation transition [25], DNA-binding 
proteins [26], heat shock protein families [27], inter-residue 
interaction [28], protein adaptation to mutation [29], and 
protein disorder [30]. In the present study, a random forest 
algorithm has been deployed to predict metal ion binding 
protein based on the simplified amino acids proposed by 
Murphy et al. [21].

Methods
Dataset construction

All the protein sequences were downloaded from the 
UniProt database [31] available at http://www.uniprot.org/. 
The downloaded sequences, annotated as metal containing, 
were grouped into eight subsets. Each of the subsets, 
containing one of the metal species viz., calcium, cobalt, 
copper, iron, magnesium, manganese, nickel, and zinc was 
considered to be metal-containing while all other entries 
were considered to be metal-free. Redundancy among the 
amino acid sequences was removed by clustering analysis 
using the cd-hit program [32] with the threshold of 50% 
level of percentage of identity, analogous by the UniRef 50 

list [33] available in the UniProt database.
This resulted in eight data sets containing 186 calci-

um-containing proteins, 69 cobalt-containing proteins, 215 
copper-containing proteins, 315 iron-containing proteins, 
961 magnesium-containing proteins, 386 manganese-con-
taining proteins, 74 nickel-containing proteins, and 1,716 
zinc-containing proteins. All proteins containing calcium, 
cobalt, copper, magnesium, manganese, nickel, or zinc were 
then subtracted from the UniRef50 list, resulting in a 
collection of non-metalloproteins. The workflow of dataset 
construction is shown in Fig. 1. The problem of the im-
balanced dataset can be solved as proposed by Cohen et al. 
[34]. Firstly, they pre-processes the data to re-establish class 
balance (either by upsizing the minority class or downsizing 
the majority class). Secondly, they modify the learning 
algorithm itself to copy with imbalanced data. In this study, 
we pre-processed the data which contains a balanced set of 
metal and non-metal ions. For this construction, non‒me-
tallo-proteins datasets sequences were randomly selected in 
order to have balanced set of metal and non-metal binding 
proteins for each metal ion, respectively.

Feature extraction by simplified amino acid 
alphabets

In order to investigate the effect of a particular class of 
amino acids on metal ion binding, the 20 amino acids were 
grouped into various classes based on certain common 
properties and the composition of the reduced sets of amino 
acids was considered. Feature extraction is done using the 
simplified amino acid alphabet. It estimates that reduced 
alphabets containing 10‒12 letters can be used to design 
foldable sequences for a large number of protein families. 
This estimate is based on the observation that there is little 
loss of the information necessary to pick out structural 
homologs in a clustered protein sequence database when a 
suitable reduction of the amino acid alphabet from 20 to 10 
letters is made. 
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Table 1. The 18 variables, obtained by merging three simplified 
alphabets of amino acid residues used to represent protein 
sequences

Variable Residues

V1 CMQLEKRA
V2 P
V3 ND
V4 G
V5 HWFY
V6 S
V7 TIV
V8 CFILMVW
V9 AG
V10 PH
V11 EDRK
V12 NQSTY
V13 FWY
V14 CILMV
V15 H
V16 ST
V17 EDNQ
V18 KR

A simplified amino acid alphabet of 18 characters was 
used (Table 1). It is based on three independent amino acid 
classifications. 

Conformational similarity
Conformational similarity indices are proposed by Chak-

rabarti and Pal [28] based on different residues are computed 
using the distribution of the main-chain and side-chain 
torsion angles and values have been used to cluster amino 
acids in proteins. In this method, the conformational 
similarity of the 20 amino acids based on torsion angles, 
which contains seven clusters ([CMQLEKRA], [P], [ND], 
[G], [HWFY], [S], and [TIV]) are used to represent variables.

BLOSUM 50 substitution matrix
The BLOSUM-50 matrix is proposed by Cannata et al. 

[35]. The matrix is deduced from amino acid pair 
frequencies in aligned blocks of a protein sequence database 
and is widely used for sequence alignment and comparison. 
The BLOSUM 50 matrix that they group together on the 
basis of the possibility of foldable structures and consists of 
the clusters: [P], [KR], [EDNQ], [ST], [AG], [H], [CILMV], 
and [YWF].

Hydrophobicity 
The hydrophobicity scale by Rose et al. [36] is correlated 

to the average area of buried amino acids in globular 
proteins. This results in a scale which is not showing the 
helices of a protein, but rather the surface accessibility. It is 

based on the hydrophobicity scale which consists of the 
following cluster: [CFILMVW], [AG], [PH], [EDRK], and 
[NQSTY].

Random forest predictions

Random forest is a classification algorithm [37] that uses 
an ensemble of tree-structured classifiers. The random 
forest is a popular algorithm that has been used in designing 
computational predictors for various biological problems. 
Random forest is an ensemble learning method for classi-
fication. The random forest classifies a new object with an 
input vector, the input vector is predicted by each decision 
tree in the forest. Each tree provides a classification with 
votes and the class with most votes will be output as the 
predicted class. It is implemented by using Weka package 
[38, 39]. To ensure that parameter estimation and model 
generation of random forest is completely independent of 
the test data, a nested cross-validation procedure is per-
formed. Nested cross-validation [40] means that there is an 
outer cross-validation loop for model assessment and an 
inner loop for model selection. In this study, the original 
samples are randomly divided into k = 10 parts in the outer 
loop. Each of these parts is chosen one by one for 
assessment, and the remaining nine of 10 samples are for 
model selection in the inner loop where a type of 
cross-validation using the so-called out-of-bag samples is 
performed.

Measurement of classifier's performance

When the predictor was focused on the problem of 
distinguishing proteins containing a certain type of metal ion 
from proteins that do not contain any type of metal, it is 
important that both sets contain the same number of 
proteins; otherwise, several figures of merit that are com-
monly used to monitor the prediction reliability would be 
seriously biased. The reliability of the predictions was 
monitored with the following quantities. If a protein of type 
1 must be distinguished from a protein of type 2, a prediction 
was considered to be a true-positive if type 1 was correctly 
predicted; it was considered to be a true-negative if type 2 
was correctly predicted; it was considered to be a 
false-negative if a type 1 protein was predicted to be a type 2 
protein; and it was considered to be a false-positive if a type 
2 protein was predicted to be a type 1 protein. Consequently, 
the following figures of merit, the sensitivity, the specificity, 
the accuracy, the Mathews correlation are computed [41] as 
shown in the Eq. (1) below.

     
  

,
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Table 3. Feature selection of variables in improving the performance of copper ion prediction against proteins that lack metal ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.746 0.815 0.781 0.563
AG 0.762 0.809 0.786 0.571
CMQLEKRA 0.794 0.804 0.799 0.599
NQSTY 0.779 0.814 0.796 0.593
EDNQ 0.796 0.797 0.796 0.592
CFILMVW 0.785 0.803 0.794 0.588
TIV 0.785 0.798 0.792 0.583
PH 0.774 0.801 0.788 0.576

Table 2. Overall prediction performance of the classifier in 
predicting individual metal ion binding sites

Metal Sensitivity Specificity Mathews 
correlation Accuracy

Ca 0.769 0.739 0.507 0.754
Co 0.884 0.823 0.708 0.853
Cu 0.746 0.815 0.563 0.781
Fe 0.772 0.740 0.512 0.756
Mg 0.766 0.714 0.481 0.740
Mn 0.729 0.647 0.378 0.688
Ni 0.945 0.869 0.817 0.907
Zn 0.740 0.640 0.382 0.690

  


,

  


 
       

 ×    × 
  

(1)

Results and Discussion

By using a simplified amino acid alphabet based on three 
independent amino acid classifications, amino acid cluster 
variables were obtained. Conformational similarity contains 
seven clusters: [CMQLEKRA], [P], [ND], [G], [HWFY], 
[S], and [TIV]. BLOSUM 50 substitution matrix contain [P], 
[KR], [EDNQ], [ST], [AG], [H], [CILMV], and [YWF]. The 
hydrophobicity scale contains [CFILMVW], [AG], [PH], 
[EDRK], and [NQSTY]. Out of 20 amino acid clusters, 
cluster [P] and [AG] which are present in more than one 
simplified alphabet were considered only once and these 
results in 18 variables (Table 1). The 18 variables are 
represented with percentage of occurrence as follows. 

   

 
, (2)

The percentage of occurrence pcaa,i of the amino acid aa in 
the ith protein was computed for each of the 20 types of amino 
acids in each protein as per Eq. (2). The protein sequences 
represented by the amino acid percentage of occurrence 
using 18 variables were employed with random forest 
algorithm using Weka suite. The metallo-proteins were 
identified using all the 18 variables with high accuracy 
ranging from 69% for zinc and 90% for nickel (Table 2). 
Moreover, prediction performance was studied by feature 
selection method by removing one variable at a time and 
maintaining the highest value in performance indices. 
Measurements are removed until there is an unacceptable 
degradation in system performance. The use of feature 
selection method will eliminate alphabets which are 
irrelevant or redundant features, and thus it improves the 
accuracy of the learning algorithm. To select an optimal 
subset of variables, we first analyzed how individual 
attributes from the initial set of 18 variables, contributed to 
predictive accuracy. For feature selection, we employed the 
wrapper approach as it uses the learning algorithm to test all 
existing feature subsets. The wrapper method will use a 
subset of features to train the model. Based on the 
inferences, the feature can be added or removed to improve 
the accuracy of the learning algorithm. We used a backward 
feature elimination, by starting with the full set and deleting 
attributes one at a time for searching the feature space [42, 
43]. 

The specific steps of the wrapper approach followed in this 
study.

(1) Partitioning the data with 10-fold cross-validation (k = 
10).

(2) On each cross-validation training set, the learning 
machine was trained by using all 18 variables, to produce a 
ranking of the variables according to the importance. The 
cross-validation test set predictions were recorded.

(3) Then the variables are removed which are least 
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Table 4. Feature selection of variables in improving the performance of calcium ion prediction against proteins that lack metal ions 

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.769 0.738 0.754 0.507
P 0.783 0.758 0.770 0.541
EDNQ 0.788 0.751 0.770 0.541
EDRK 0.796 0.758 0.777 0.554
PH 0.785 0.756 0.770 0.541
CILMV 0.801 0.754 0.777 0.556
AG 0.790 0.749 0.770 0.539
CFILMVW 0.789 0.765 0.777 0.554
NQSTY 0.785 0.767 0.776 0.552
CMQLEKRA 0.780 0.765 0.772 0.545

Table 5. Feature selection of variables in improving the performance of cobalt ion prediction against proteins that lack metal ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.884 0.823 0.853 0.708
CILMV 0.903 0.842 0.872 0.747
CFILMVW 0.899 0.837 0.868 0.737
ND 0.894 0.828 0.861 0.724
EDNQ 0.884 0.833 0.858 0.717
PH 0.894 0.847 0.870 0.741
ST 0.903 0.837 0.870 0.742
NQSTY 0.860 0.833 0.846 0.693

Table 6. Feature selection of variables in improving the performance of iron ion prediction against proteins that lack metal ions 

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.772 0.740 0.756 0.512
NQSTY 0.778 0.731 0.754 0.509
S 0.786 0.727 0.757 0.514
PH 0.786 0.724 0.755 0.511
CMQLEKRA 0.785 0.720 0.753 0.507
CFILMVW 0.787 0.734 0.761 0.523
AG 0.790 0.720 0.755 0.511
TIV 0.780 0.725 0.753 0.507
HWFY 0.790 0.735 0.762 0.525

important one by one and another learning machine was 
trained based on remaining variables, the cross-validation 
test set predictions were once again recorded. This step is 
repeated by removing each variable until at small number 
remain. 

(4) Aggregate the predictions from all 10 cross-validation 
test sets and compute the aggregate accuracy at each step 
down in a number of variables.

By the following the above steps, feature selection of 
variables was done by wrapper approach employing random 
forest machine learning algorithm. Based on aggregate 
accuracy, the important variables for copper ion prediction 
are PH variable and least preferred variables are AG and 

CMQLEKRA (Table 3). Based on Table 3, it is understood 
that removing PH variable decrease the accuracy of the 
classifier whereas removing AG and CMQLEKRA improves 
the accuracy of the classifier. For calcium ion prediction, the 
least important variable is P and EDNQ; removing these 
variable improves the performance of the classifier (Table 4). 
Similarly, for cobalt ion prediction, the variable CILMV is the 
least preferred variable as it affects the performance of the 
classifier (Table 5). For iron ion prediction, removing 
variable CFILMVW improves the performance of the 
classifier (Table 6). For magnesium, ion prediction variable 
ST and ND are least preferred variables (Table 7). For 
manganese ion prediction, removing variable FWY improves 
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Table 7. Feature selection of variables in improving the performance of magnesium ion prediction against proteins that lack metal ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.766 0.714 0.740 0.481
ST 0.779 0.714 0.746 0.494
ND 0.774 0.720 0.747 0.494
NQSTY 0.767 0.717 0.742 0.485
S 0.772 0.711 0.742 0.484
HWFY 0.770 0.716 0.743 0.487
PH 0.777 0.709 0.743 0.487
CMQLEKRA 0.775 0.708 0.741 0.484

Table 8. Feature selection of variables in improving the performance of manganese ion prediction against proteins that lack metal 
ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.729 0.647 0.688 0.378
FWY 0.731 0.717 0.734 0.474
EDNQ 0.741 0.656 0.698 0.398
CMQLEKRA 0.750 0.647 0.698 0.399
AG 0.750 0.643 0.697 0.396
S 0.739 0.660 0.700 0.400

Table 9. Feature selection of variables in improving the performance of nickel ion prediction against proteins that lack metal ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.945 0.869 0.907 0.817
EDRK 0.950 0.887 0.918 0.838
G 0.931 0.892 0.917 0.824
NQSTY 0.923 0.887 0.905 0.810
ST 0.941 0.878 0.909 0.821
EDNQ 0.936 0.865 0.900 0.803
FWY 0.918 0.860 0.889 0.780
HWFY 0.931 0.865 0.898 0.800
TIV 0.927 0.869 0.898 0.797

Table 10. Feature selection of variables in improving the performance of zinc metal ion prediction against proteins that lack metal
ions

Variable removed Average sensitivity Average specificity Average accuracy Average Mathews correlation

None 0.740 0.640 0.690 0.382
HWFY 0.751 0.638 0.695 0.391
CMQLEKRA 0.750 0.636 0.692 0.386
AG 0.747 0.638 0.693 0.388
ST 0.743 0.644 0.693 0.389
EDNQ 0.743 0.636 0.689 0.381

the accuracy of the classifier (Table 8). For nickel ion 
prediction, variable EDRK is the least preferred one (Table 
9). For zinc ion prediction, the least preferred variable is 
HWFY (Table 10).

For example, cobalt metal binding protein can be 

discriminated from non-metal ions with all 18 variables with 
the accuracy of 85% (Fig. 2). It can be seen that, on removing 
variable V14 (CILMV) from the subset, the accuracy of the 
predictor improves from 85% to 87%. After removing of 
variables V8 (CFILMVW), V3 (ND), V17 (EDNQ), V10 
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Fig. 2. The performance graph of the Random forest classifier using 
feature selection (10-fold cross validation for cobalt ion prediction).

(PH), and V16 (ST), the accuracy values are in the range 
from 86% to 87%. There is a drastic decrease in accuracy of 
the classifier by removing the variable V12 (NQSTY) to 84%. 
No further reduction of the set was possible, as the 
performance of random forest classifier dropped if any 
further attributes were eliminated. It can be seen that 
accuracy of prediction of metal binding proteins can be 
improved (e.g., calcium from 74% to 77%, cobalt from 83% 
to 85%, and nickel from 69% to 77%) by elimination of 
certain noisy features, up to certain limit and further 
improvement is then impossible. According to this 
backward strategy of feature selection, it can be observed 
that the prediction performance can be slightly improved. 
Some common variables rejected are V14 (CILMV) in 
calcium and cobalt, V8 (CFILMVW) in copper and iron.

In this work, a new random forest based approach is 
developed combining hybrid feature of simplified amino acid 
alphabets for prediction of metal ion binding sites of iron, 
copper manganese, magnesium, nickel, calcium, cobalt, and 
zinc from amino acid sequence data. The result indicates that 
the random forest model has a high prediction accuracy in 
predicting metal ion binding sites. These metal binding 
prediction methods are helpful to avoid the selection of 
‘impossible’ targets in structural biology and proteomics.
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