
Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018, 47–56, DOI: 10.15546/aeei-2018-0025 47

EXPERIMENTAL COMPARISON OF MATRIX ALGORITHMS FOR DATAFLOW
COMPUTER ARCHITECTURE

Jurij MIHELIČ, Uroš ČIBEJ
Laboratory of algorithmics, Faculty of Computer and Information Science, University of Ljubljana, Večna pot 113, Ljubljana,

Slovenia, E-mail: Jurij.Mihelic@fri.uni-lj.si, UroS.Cibej@fri.uni-lj.si

ABSTRACT
In this paper we draw our attention to several algorithms for the dataflow computer paradigm, where the dataflow computation

is used to augment the classical control-flow computation and, hence, strives to obtain an accelerated algorithm. Our main goal is
to experimentally explore various dataflow techniques and features, which enable such an acceleration. Our focus is to resolve one
of the most important challenges when designing a dataflow algorithm, which is to determine the best possible data choreography in
the given context. In order to mitigate this challenge, we systematically enumerate and present possible techniques of various data
choreographies. In particular, we focus our interest on the algorithms that use matrices and vectors as the underlaying data structure.
We begin with simple algorithms such as matrix and vector multiplication, evaluation of polynomials as well as more advanced ones
such as the simplex algorithm for solving linear programs. To evaluate the algorithms we compare their running-times as well as the
dataflow resource consumption.

Keywords: dataflow, choreography, matrix, algorithm, experiment, evaluation

1. INTRODUCTION

The von Neumann architecture is pervasive in modern
day computers, even though several alternatives exist [1].
One of them is the dataflow architecture [2], which was
once viewed as a competitor to the von Neumann architec-
ture, but is now considered more as a complementary one as
it is now more often used to augment the classical control-
flow paradigm in order to obtain algorithmic accelerations.

The dataflow computers were consider dead until re-
cently, when technological advances, driven mainly by
Maxeler [3], brought the dataflow paradigm back to life by
making it not only competitive with the control-flow pro-
cessors, but overtaking them in many aspects [4].

For example, in the era of BigData, the possibility to
manipulate huge amounts of data while at the same time
consuming significantly less energy than comparable solu-
tions based on control-flow processors [5,6] seems very lu-
crative.

Unfortunately, the speedups offered by the dataflow ap-
proach are not straightforward and the algorithms have to
be carefully re-engineered since the majority of the current
algorithms are tailored specifically for the control-flow ar-
chitecture. Many successful examples of such engineering
already exist in various application domains (mostly nu-
merical computation). However, some successes were also
achieved in semi-numerical applications such as sorting and
simplex algorithms [7–9].

With this paper we try to shift the focus to computa-
tional problems and application domains where dataflow
computation may not be deemed so successful due to sev-
eral reasons such as low data reuse and short loop bodies,
which basically results in less computation per input ele-
ment. We strive to explore various dataflow techniques us-
ing the approaches from algorithm engineering [10], exper-
imental algorithmics [11], and good practices [12] in order
to show their practical applicability. Many of the results al-
ready presented in [13] are discussed and evaluated here in
a much broader perspective.

In particular, our subject of interest are the algorithms
that use matrices and vectors as the underlaying data struc-
ture (for example, for storing data and representing higher
concepts such as polynomials or graphs). We look at these
problems from a practical point of view, where our main
method of investigation is based on experimental analysis,
comparison and evaluation of various indicators obtained
from the results of thorough experiments. In particular, we
evaluate a running-time performance of the algorithms and
we also give a discussion on the dataflow resource con-
sumption, which is deemed important from the feasibility
perspective.

Additionally, an important focus of this paper is to in-
vestigate various data representation techniques, i.e., how
the data is stored in the main computer memory, as well
as data streaming techniques, i.e., how the data is input
into the dataflow engine. Our approach is systematic in
the sense that we also consider approaches that seem to be
unpromising or inefficient from a theoretical point of view
in order to better pinpoint the differences between various
techniques.

The paper is structured as follows. In the next section,
we present the dataflow paradigm and computer architec-
ture. We briefly compare it to the classical control-flow
architecture and give advantages of augmenting the latter
with the former. We also discuss the dataflow paradigm
from the programmer’s point of view. In Section 3 we
first discuss the data representation in the computer main-
memory, followed by a presentation of various data stream-
ing options and techniques. Our main result is in Section
4 which contains experimental evaluation of the presented
choreography techniques. We base our evaluation on sev-
eral algorithms such as matrix multiplication and the sim-
plex algorithm. Finally, Section 5 concludes the paper and
gives some further directions.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201703011?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


48 Experimental Comparison of Matrix Algorithms for Dataflow Computer Architecture

2. DATAFLOW ARCHITECTURE

In this section we briefly describe the dataflow paradigm
and architecture as implemented by Maxeler. As opposed
to the control-flow architecture (see also Fig. 1), where the
operations to be executed by the processor are delegated
by the sequence of instructions, in the data-flow architec-
ture (see also Fig. 2), the operation is executed when its
operands are available. Hence, one of the main dataflow
programming challenges is to organize the data in such a
way that it is readily available and processed by the data-
flow processor.

Fig. 1 A conceptual representation of the control-flow computer
architecture

The dataflow architecture is based on the stream pro-
cessing paradigm [2, 14]. In particular, the dataflow pro-
cess has one or more inputs as well as outputs, where each
is a stream of (primitive) values, i.e., characters, fixed- or
floating-point numbers, etc. Such change in a way of data
availability requires a change in thinking about an algo-
rithm design.

In general, Maxeler’s dataflow architecture consists of
a set of dataflow engines. Each engine executes one or
more kernels, i.e., self-contained computing modules with
specified input and output. The execution of kernels is con-
trolled from the control-flow computer, and a dataflow en-
gines may be viewed at as a co-processors.

Fig. 2 A conceptual representation of the data-flow computer
architecture. The representation of dataflow computation is

greatly simplified.

Each dataflow computation can be viewed at as a di-
rected graph, where nodes represent operations and edges

represent paths for the data. An example of such a dataflow
graph can be seen in Fig. 2.

In order to develop an efficient algorithm for the
dataflow computer, the algorithm designer must carefully
think about the distribution of work between the control-
flow and the dataflow part. For the control-flow part, her
job is to implement the code (usually in the C programming
language) which controls the whole computational process.
The most common implemented scenario is to obtain the
input data, then pre-process it and send it to the dataflow
engine. When the dataflow engine finishes the computation
the result needs to be transfered back to the memory of the
control-flow part, and finally, present the result to the user.
Additionally, the control-flow part may also include a par-
tial implementation of the algorithm.

Considering the dataflow part, her job is use the MaxJ
programming language (a superset of Java) to implement
each dataflow kernel. This can be viewed as a construc-
tion of the dataflow graph, where nodes correspond to op-
erations and edges connect inputs and outputs of particular
operations. The dataflow computations can be traced fol-
lowing the paths from the input to the output nodes.

Additionally, the implementor must provide an imple-
mentation of the so-called manager part, which configures
the dataflow engine, i.e., specifies the interface to interact
with the control-flow part, connects the data streams and
interconnects the implemented kernels.

There are two main parallelization mechanisms avail-
able in the dataflow engines. The first is implicit in ev-
ery dataflow operation as each operation is automatically
pipelined by a compiler. Consequently, after initial delay to
fill in the pipeline, one may be able to obtain a new result
in each clock period.

The second must be explicitly considered by the imple-
mentor as there is a possibility to replicate the computa-
tion similarly to the thread-based control-flow paralleliza-
tion. Each such replication is called a pipe. It can be seen
as executing several kernels of the same type at once, each
with its own element from the input data stream. We ex-
plain pipes in more details in Section 3.3.

Another acceleration technique is to put the data closer
to the dataflow engine. Namely, instead of the main mem-
ory, one may use the large memory available for each
dataflow unit and thus exploit its greater data throughput.
Additionally, one may also consider using the fast mem-
ory, which is actually a part of each kernel and provides the
fastest access times.

3. DATA REPRESENTATION AND STREAMING

In this section, we describe the representation of data,
which is suitable for stream processing as used in the
dataflow architecture. We focus on vectors and matrices
and the way they are stored in the main memory of the
computer. Additionally, we also give a discussion of var-
ious techniques of streaming the data to the dataflow en-
gine. We base our techniques mostly on the matrix-vector
and matrix-matrix multiplication problems.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 49

3.1. Main-memory Storage

From a mathematical point of view the representation
of vectors and matrices is not important, as they are con-
sidered conceptual objects. To refer to its elements, one
simply uses subscript indices, i.e., vi refers to the i-the ele-
ment of the vector v while mi, j refers to the element in the
i-th row and j-th column of the matrix m. However, in the
computer science, the representation is of uttermost impor-
tance since it may have a profound effect on the algorithm
performance due to the specifics of a particular computer
architecture [10, 11].

Vectors are most often represented as a sequence (i.e.,
an array) of elements. In particular, if A denotes an array,
then the i-th element of A is denoted simply by ai = A[i].
(In all the examples we consider that indices start from 0.)

Another mathematical object that can be efficiently rep-
resented by a vector are polynomials: the coefficients (in-
cluding zeros) are listed in a vector in the increasing order
of term degrees. When there are many zero coefficients,
such polynomials are called sparse polynomials, and both
degrees and coefficients of the terms are listed either using
two vectors or a vector of pairs.

Two main representations exist for the matrices: the
row-major and column-major order [15]. In both, the ele-
ments are listed consecutively as they appear in the matrix,
but in the former they follow the rows from top to bottom
as well as from left to right inside each row, while in the
latter they follow the columns from left to right as well as
from top to bottom inside each row.

Let A denote the (zero-indexed) array to store the ma-
trix; thus, we have ai, j = A[i ·n+ j] in the row-major repre-
sentation, and ai, j = A[i+ j ·n] in the column-major repre-
sentation.

It is straightforward to convert a matrix between the
two representations using the matrix transposition opera-
tion. However, the in-place transposition for non-square
matrices may be much more elaborate. If A is a matrix then
AT denotes a transposition of A. If A is represented in row-
major order then AT is its column-major representation and
vice versa.

3.2. Rowwise Streaming

Assuming row-major representation, the easiest (from
a programmer’s point of view) is to stream the matrix el-
ements as stored in the memory. This results in the data
choreography as depicted in Fig. 4 a).

A disadvantage of such choreography is that it often
causes a static loop, i.e., a loop depending only on the com-
putation, in the resulting dataflow graph. Unfortunately,
such loop results in an immediate slowdown (proportional
to the length of the loop) of the whole kernel.

Fig. 3 A loop in the dataflow graph

For example, when multiplying a matrix with a vector,
several dot products of row-vectors with a given vector are
computed. Here, each addition operation in the dot product
has to wait for its result to become available as it is reused as
an input for the next operation. See also Fig. 3 for a simpli-
fied representation of the dataflow graph corresponding to
a calculation of a dot product. Here, one element from each
of the two input streams mat and vec is first multiplied and
then result is added to the accumulated sum. However, the
summation operation has a specific latency, thus its result
is not immediately available to be used for the succeeding
addition operation.

3.3. Replication of Computation

A common technique for creating dataflow implemen-
tations is, similarly to the thread-based control flow par-
allelization, to replicate a single stream computation (also
called a pipe) within a kernel in order to process several el-
ements at a time: p pipes have a p-fold potential speedup.
The replication may mitigate a slowdown caused by a loop
in the dataflow graph. Other factors, such as maximum
bandwidth of PCIe (Peripheral Component Interconnect
Express, [16]) bus may also effect the performance and po-
tentially slow-down the computation even further.

Let us now briefly discuss two options for paralleliza-
tion of rowwise processing, namely we discuss piped based
replication in the rowwise and columnwise direction. Both
options are graphically presented in Fig. 4 b) and c), re-
spectively.

Notice that, using p pipes, the general processing order
is still rowwise, i.e., the next p elements are taken in the
rowwise direction; however, either p elements in the corre-
sponding row (in the former) or column (in the latter) of the
matrix are processed at a time. The rowwise direction of
replication is straightforward to stream, i.e., no rearrange-
ment of the matrix in the main memory is needed, while a
small addition of code is needed in the dataflow kernel to
add the final p accumulated sums. The columnwise direc-
tion requires a rearrangement of the matrix elements as they
are stored in row-major order in the main memory, while
the kernels are straightforward to implement.

3.4. Columnwise Streaming

Often a loop in the dataflow graph, caused by a depen-
dence of consecutive operations, can be completely miti-
gated, e.g. in matrix-vector multiplication, using a colum-
nwise processing, where the elements are accessed sequen-
tially from the top to the bottom by columns, starting in
the top-left corner and ending in the bottom-right corner.
Assuming row-major representation in the main computer
memory, the input matrix must be transposed before it is
fed to the kernel. The data choreography is depicted in Fig.
4 d).

Obviously, the change in the choreography requires the
change in the dataflow kernel. In particular, algorithms such
as matrix-vector multiplication need to store the partial re-
sults of processing the previous column (i.e., accumulated
sums), when processing the current one. Fortunately, in

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



50 Experimental Comparison of Matrix Algorithms for Dataflow Computer Architecture

a) Row b) Row-row c) Row-column

d) Column e) Column-row f) Column-column

g) Stripes h) Stripped-row i) Stripped-column

Fig. 4 Various data choreographies: rowwise (top row), columnwise (middle row), and stripes (bottom row), and replication of
stream computation based od pipe parallelism: no replication (left column), rowwise replication (middle column), columnwise

replication (right column).

columnwise processing, these accumulated values are al-
ready available when needed since the latency of the re-
quired operations is (usually) lower then the column size.
Such dependence of data is called a dynamic loop in the
dataflow terminology because it depends on the input data,
e.g., the matrix size.

Again we explore the rowwise and columnwise possi-
bility of computation replication with pipes; see also Fig. 4
e) and f) for the respective data choreographies. Here, the
former processes the p elements at the time form the current
row (the matrix has to be preprocessed to be streamed in the
corresponding order) while the latter takes p elements at a
time from the current column.

3.5. Stripped Streaming

Both techniques presented in the previous two sections
have some drawbacks. The rowwise choreography contains
a static loop to overcome the latency of the addition oper-
ation, while the columnwise choreography produces a long
dynamic loop to store intermediate results. Hence, the for-
mer introduces a multi-fold kernel slowdown, and the latter
consumes significant amounts of FPGA resources. To mit-
igate these two issues, we present another technique which
is a combination of both techniques.

The main idea is to split a matrix into horizontal stripes,
which are furthermore processed in a columnwise fashion.
See Fig. 4 g) for a graphical representation of the chore-
ography. Thus, the speed of the columnwise technique is
retained, while the resource consumption is significantly
reduced. Observe also, that analogous choreography with
vertical stripes is also an option; see also Fig. 4 d) for an
example.

Denote with s the stripe width, i.e., the number of ele-
ments from a particular column. Since the stripe length is
n, we have sn elements in total for each stripe. There are
n/s stripes and for every stripe the whole vector must be
streamed. For the efficient re-streaming of the vector the
fast memory of DFE unit may be used.

Processing of each stripe may be additionally paral-
lelized using pipes. See Fig. 4 h) and i) for the two common
techniques, both of which are based on the same ideas as
already discussed in the previous two sections. Obviously,
the parallelization technique is applied to each stripe sepa-
rately. Finally, notice that, in rowwise parallelization s ≤ n
and p ≤ n while in columnwise parallelization p ≤ s ≤ n
must hold.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 51

3.6. Block-based Streaming

Now we present a choreography which is suitable for
problems such as matrix multiplication. First let us explain
what a block matrix is. It is a matrix that is interpreted as
having been composed of (non-overlapping) submatrices,
called blocks. One can also visualize such matrix with a
collection of vertical and horizontal lines that partition it
into a collection of smaller submatrices. In general, blocks
can be of different sizes, and, thus, there are several possi-
ble ways to interpret a particular matrix as a block matrix.

Consider matrices A = [ai, j] of dimension m × l and
B = [bi, j] of dimension l ×n. Now, a block matrix A with q
row partitions and s column partitions, and a block matrix
B with s row partitions and p column partitions are

A =


A1,1 A1,2 · · · A1,s
A1,1 A1,2 · · · A1,s

...
...

. . .
...

Aq,1 Aq,2 · · · Aq,s


and

B =


B1,1 B1,2 · · · B1,p
B1,1 B1,2 · · · B1,p

...
...

. . .
...

Bs,1 Bs,2 · · · Bs,p

 ,

respectively. The matrix product C = AB can be formed
blockwise, yielding a m×n matrix C with q row partitions
and r column partitions, where

Ci, j =
p

∑
k=1

Ai,k ·Bk, j

are block products and 1 ≤ i ≤ q and 1 ≤ j ≤ r.
Block product can only be calculated if blocks of ma-

trices A and B are compatible, i.e., when the number of
columns of the block Ai,k equals to the number of rows of
the block Bk, j, for each 1 ≤ i ≤ q, 1 ≤ j ≤ r, and 1 ≤ k ≤ p.
In what follows we consider m = n = l and p = q = r as
well as that p divides n; consequently, such blocks are al-
ways compatible.

4. EXPERIMENTAL COMPARISON

In this section we discuss several dataflow algorithms
for various problems, all of which use matrices and/or vec-
tors for their storage of data. Our main focus is on the ex-
perimental evaluation of different dataflow techniques and
data choreographies. First, we give a brief description of
settings we used for performing the experiments, followed
by the results and their evaluation.

4.1. Experimental Background

For the experiments we used Maxeler’s Vectis
MAX3424A PCI-express extension card, which contains
dataflow unit based on Xilinx Virtex 6 SXT475 field-
programmable gate array. The control-flow part of the com-
puter contained Intel i7-6700K processor with 8 MB and 64
GB of cache and main memory, respectively.

Test programs are written in the C programming lan-
guage and compiled using the highest optimization level,
while the dataflow kernels were programmed in the MaxJ
programming language. Benchmarking and results visual-
ization was automated using scripts. The source code is
publicly available in several GitHub repositories [17] or
upon a request to the authors. For the indicator of algorithm
efficiency we used wall-clock time.

4.2. Matrix-Vector Multiplication

First we discuss the problem of multiplying a matrix
with a vector from the dataflow perspective. Let A = [ai, j]
be a m×n matrix and B = [bi] a vector of size n. The result
of multiplying the matrix A with the vector B is a vector
C = [ci] of dimension m, where

ci =
n

∑
j=1

ai, jc j.

Either rowwise, columnwise, or stripewise processing
of the matrix may be used when considering dataflow algo-
rithm for the problem. In Fig. 5 we give plots of running
times versus matrix sizes for several variants of the stripe-
based processing using rowwise replication of computation.
The used stripe width is s = 128 while the number of pipes
is 1 (no replication, denoted with Stripe128), 2 (StripeRowP2),
4 (StripeRowP4), and 8 (StripeRowP8).

Fig. 5 Running-time performance for matrix-vector
multiplication using stripe-based streaming

Observe that, doubling the number of pipes effects in
halving the running-time, except for the 8 pipes (or more),
where no improvement is observable due to the maximized
PCIe bus throughput. In the comparison we excluded the
control-flow algorithm, which outperformed all dataflow
variants. Nevertheless, this is to be expected as there are
not enough operations per a streamed element [12].

Fig. 6 Running-time performance for multiplication of a matrix
with many vectors

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



52 Experimental Comparison of Matrix Algorithms for Dataflow Computer Architecture

Despite this, a use case to consider dataflow approach
can be found in the setting where many vectors are to be
multiplied with a given matrix. Here, the matrix is stored in
the large memory of the dataflow engine, which has signif-
icantly better throughput than PCIe bus.

In this case, the results are in favor of the dataflow ar-
chitecture. See Fig. 6 for a graphical comparison: the
left-hand side y-axis gives a running time in seconds while
the right-hand side y-axis gives the acceleration factor ob-
tained (about 4). In the experiment we run both algorithms
(dataflow and control-flow), where the number of vectors
varies from 1024 to 20480 in steps of 1024.

4.3. Matrix Multiplication

In this subsection we present the results of experimen-
tal evaluation of several matrix multiplication algorithms.
We evaluated various algorithms using the above presented
techniques (Section 3) for data choreography. In our exper-
iments we vary the matrix dimension n×n from n = 1024
to n = 3072 in steps of 128 for slower algorithms as well as
from n = 1024 to n = 10240 in steps of 512 for faster ones.

As expected, out of basic (i.e., no block matrices) ap-
proaches the stripe-based streaming gives the best results.
Here, we discuss stripe-based matrix access with rowwise
pipe replication of computation, which is employed for
streaming the left matrix of the multiplication problem
while the right matrix is streamed in the columnwise fash-
ion. Hence, we basically obtain n matrix-vector multiplica-
tion problems which are computed by the dataflow engine.

a) Streaming from the main memory (via PCIe)

b) Streaming from the large memory

Fig. 7 Running-time comparison of stripped matrix-access
depending to the number of pipes

In Fig. 7 a) we show the results of the experiment where
the data is streamed from the main memory to the dataflow
engine using the PCIe bus, and in Fig. 7 b) where instead
of the main memory the dataflow large memory is used. In
the latter case, the matrix is only transfered once from the
main memory to the large memory.

We can observe that the number of pipes has a desired
effect on the performance. However, in the former tech-
nique up to 16 pipes are used, but 4 or more pipes do not
exhibit any significant improvement because the throughput
of the PCIe bus is already maximized. In the latter case up
to 48 pipes are used, each increase in pipe count causing an
observable improvement in the performance. Here, the 48
pipes case is the last to give a performance improvement.

Now let us focus on the block-based matrix multipli-
cation, which also has the greatest potential. As can be
observed in Fig. 8 a) this group of algorithms was much
better. To show the scalability and practical usefulness of
the algorithm when used with larger matrices we also show
a graph of the running-time performance up to matrices of
size 10240. Obviously, the larger the block size the bet-
ter the performance achieved. See Fig. 8 b) for the cor-
responding graphical comparison, where the ordinate axis
uses logarithmic scale.

a) Small matrices

b) Large matrices (log scale)

Fig. 8 Running-time comparison of block-based matrix
multiplication depending on the block size

In Fig. 9 we give a comparison of a representative
data-choreography techniques. Namely, we include the best
from each group: rowwise replication with columnwise
(ColRowLP48) and stripe (StripesRowLP48) access, block-
multiplication with block sizes of 128 (Blocks128) and 384

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 53

(Blocks384) as well as the control-flow implementation of
the algorithm to give a better overview on the comparison.
Notice that, the control-flow implementation is not highly
optimized; however, we employed the classical technique
of transposing the second matrix before multiplication, in
order to get better performance of the cache memory due to
the decrease of cache misses.

Fig. 9 Running-time comparison of various data choreographies
for the matrix multiplication problem

All the (selected) dataflow algorithms are better in
running-time performance than the control-flow algorithm.
The columnwise and stripped-based techniques perform
very similarly with the same number of pipes while block
multiplication with the block size at least 128× 128 out-
performs all other algorithms. Observe also that, one of
the slowest block-based algorithm Block128 runs for about 6
seconds while the fastest stripped-based algorithms, Stripes-
RowLP96, runs for about 7 seconds, when the matrix size is
3072×3072.

Fig. 10 Acceleration of the dataflow-based approach for the
matrix multiplication algorithm

To finish with the comparison of the running time per-
formance, let us have a look on the potential accelera-
tion, which can be obtained with the dataflow-based al-
gorithm. See Fig. 10 for the plot of the running time
(left-hand side axis) and acceleration (right-hand side axis):
the control-flow algorithm (cpu) and the best dataflow algo-
rithm (dfe) are compared. Observe that, the acceleration of
the dataflow over control-flow algorithm is about 15-fold.

4.4. Evaluation of Polynomials

Let us now focus on the multi-point polynomial evalua-
tion problem. Here the input is a polynomial (i.e., either a
stream of coefficients if the polynomial is dense, or a stream
of exponents and coefficients if the polynomial is sparse),
and a stream of points in which the polynomials is to be
evaluated.

Control-flow solutions are usually based on the well-
known Horner algorithm [18]. Dataflow algorithms explore
the data choreography ideas similar to the ones presented
in Section 3. Here we leave the technical details out, and
present only the results of the experiments.

First, let us focus on the experiments with dense polyno-
mials, where we used polynomials with 1024 coefficients.
See Fig. 11 a) for the running-time plots, and Fig. 11 b)
for the acceleration plots. Three dataflow algorithms are
included: no pipes (dfe), 64 pipes (dfe64), and 128 pipes
(dfe128). Observe, that without pipe-based replication the
dataflow would be slower than the control-flow algorithm.
Nevertheless, using 64 or 128 pipes gives about 11- or 22-
fold acceleration, respectively.

a) Running time (log-log scale)

b) Acceleration (log-x scale)

Fig. 11 Running time and acceleration of dense polynomial
evaluation algorithms

Now we switch to sparse polynomials, where we per-
formed similar experiments. See Fig. 12 a) and Fig. 12
b) for running-time and acceleration plots, respectively.
Again, the dataflow approach with 32 pipes outperformed
the control-flow. In particular, the acceleration is about 70-
fold.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



54 Experimental Comparison of Matrix Algorithms for Dataflow Computer Architecture

a) Running time (log-log scale)

b) Acceleration (log-x scale)

Fig. 12 Running time and acceleration of the dataflow algorithm
for sparse polynomial evaluation algorithms

4.5. Simplex Pivoting

In this subsection we focus on a different problem,
which is the main part of the classical simplex algorithm
for finding the optimal solutions of linear programs. Here,
a linear program in a canonical form is to optimize cx con-
sidering the constraints Ax≤ b, where c is an n-dimensional
vector of the coefficients of a linear objective function, and
A is the matrix of the coefficients of linear constraints; sim-
ilarly b is a vector representing the coefficients of the right-
hand side of the constraints.

Fig. 13 Running-time comparison of various implementations of
the simplex pivoting

In order to solve such a linear system, the simplex al-
gorithm repeatedly transforms the matrix until the optimal
solution is found. Such transformations are based on the
pivoting operation, which recalculates the matrix based on
the selected (pivot) row and column.

We have implemented several versions of the pivoting
operations: both variants of streaming from the main mem-
ory and from the large memory as well as variations on the
number of pipes [9]. The results of the experiments are
shown in Fig. 13 for streaming from the main memory via
PCIe bus, and Fig. 14 for streaming from the large memory
of the dataflow engine.

Fig. 14 Running-time comparison of various implementations of
the simplex pivoting, where dataflow algorithms use the large

memory

As expected, the large-memory variant outperforms the
main-memory variant. However, the goal of our experiment
is to characterize this difference and determine the maxi-
mum number of pipes that still achieve the acceleration.

While the large-memory variant is able to achieve much
greater accelerations (by using up to 24 pipes) it is also
more complex to implement (consists of several kernels
since the selection of the pivot column is done by the
dataflow engine).

Fig. 15 Acceleration of various implementations of simplex
pivoting

Finally, see Fig. 15 for accelerations (over the control-
flow algorithm) of the dataflow algorithms streaming from
the large memory. Observe that 4 pipes are inadequate
for the dataflow to outperform the control-flow algorithm.
Hence, 8 or more are suggested while 24 already hit the
transfer rate bottleneck of the large memory.

In Fig. 16 we also give resource consumption compari-
son for all the implementations. Observe that large memory
variants require much more resources than the ones where
the data is streamed from the host. Additionally, increasing
the number of pipes also increases the needed resources.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



Acta Electrotechnica et Informatica, Vol. 18, No. 3, 2018 55

Fig. 16 Resource consumption of various implementations of
the simplex pivoting

5. CONCLUSION

For this paper we made a plethora of experiments with
various dataflow algorithms and their variations. Doing this
we focused on the algorithms and problems which theoreti-
cally seem unsuitable for the dataflow architecture. Despite
this we were able to show some of the advantages of the
dataflow-based algorithms.

Additionally, our goal was to determine the data chore-
ography techniques which work well with particular algo-
rithms and problems. We performed extensive experiments
in order to compare the algorithmic performance and re-
source consumption. In the paper we present the selected
set of the results, whereas full experimental setting as well
as the corresponding code is publicly available in several
GitHub repositories [17] or upon a request to the authors.

In our further work we would like to deal with more
dataflow algorithms and problems in order to put the
dataflow algorithm engineering and experimental algorith-
mics into a broader perspective. We believe that such an
overview of engineering, which we already initiated in [12],
would greatly benefit the dataflow scientific community.

ACKNOWLEDGEMENT

This work was partially supported by the Slovenian Re-
search Agency and the projects ”P2-0095 Parallel and dis-
tributed systems” and ”N2-0053 Graph Optimisation and
Big Data”.

Our gratitude goes to prof. Veljko Milutinovć who in-
troduced us to dataflow computing as well as Nemanja
Trifunović for allowing us to use the dataflow computer
and Ivan Milanković for helping us handling the computer.
Many of the tests were performed by Matej Žniderič (ma-
trix and vector multiplications) and Anže Sodja (polynomi-
als).

REFERENCES

[1] ŠILC, J. – ROBIČ, B. – UNGERER, T.: Processor
Architecture: From Dataflow to Superscalar and Be-
yond. Springer-Verlag Berlin Heidelberg, 1999.

[2] HURSON, A. R. – MILUTINOVIĆ, V.: Dataflow

Processing. In Advances in Computers, 96. Elsevier,
2015.

[3] Maxeler Technologies Inc. Maximum performance
computing. http://www.maxeler.com. Accessed:
2018-03-09.

[4] KOS, A. – TOMAŽIČ, S. – SALOM, J. – MILUTI-
NOVIĆ, V.: New benchmarking methodology and
programming model for big data processing. Interna-
tional Journal of Distributed Sensor Networks, 2015.

[5] FLYNN, M. J. – MENCER, O. – MILUTINOVIĆ, V.
– RAKOČEVIĆ, G. – STENSTROM, P. – TROBEC,
R. – VALERO, M.: Moving from petaflops to peta-
data. Communications of the ACM, 56(5):39–42,
2013.

[6] TRIFUNOVIĆ, N. – MILUTINOVIĆ, V. – SALOM,
J. – KOS, A.: Paradigm shift in big data supercom-
puting: Dataflow vs. controlflow. Journal of Big Data,
2(1):1–9, 2015.

[7] RANKOVIĆ, V. – KOS, A. – MILUTINOVIĆ, V.:
Bitonic merge sort implementation on the maxeler
dataflow supercomputing system. The IPSI BgD
Transactions on Internet Research, 9(2):5–10, 2013.

[8] KOS, A. – RANKOVIĆ, V. – TOMAŽIČ, S.: Sorting
networks on maxeler dataflow supercomputing sys-
tems. In Advances in Computers, 96:139–186, 2015.

[9] ĆIBEJ, U. – MIHELIČ, J.: Adaptation and Evalua-
tion of the Simplex Algorithm for a Data-Flow Archi-
tecture. In Advances in Computers, 106:63–105, El-
sevier, 2017.

[10] MÜLLER-HANNEMANN, M. – SCHIRRA, S.: Al-
gorithm engineering: bridging the gap between algo-
rithm theory and practice. Lecture Notes in Computer
Science. Springer Berlin Heidelberg, 2010.

[11] McGEOCH, C. C.: A guide to experimental algorith-
mics. Cambridge University Press, New York, NY,
USA, 1st edition, 2012.

[12] MIHELIČ, J. – ČIBEJ, U.: Experimental algorith-
mics for the dataflow architecture: Guidelines and is-
sues. IPSI BgD Transactions on Advanced Research,
13(1):1–8, 2017.

[13] MIHELIČ, J. – ČIBEJ, U.: Dataflow Processing of
Matrices and Vectors: Experimental Analysis. Pro-
ceedings of the IEEE 14th International Scientific
Conference on Informatics, Poprad, Slovakia, 2017.

[14] MILUTINOVIĆ, V. – SALOM, J. – TRIFUNOVIĆ,
N. – GIORGI, R.: Guide to DataFlow Supercomput-
ing: Basic Concepts, Case Studies, and a Detailed
Example. Computer Communications and Networks.
Springer International Publishing, 2015.

[15] KNUTH, D. E.: The Art of Computer Programming
Volume 1: Fundamental Algorithms, 3rd edition, sec-
tion 2.2.6. Addison-Wesley: New York, 1997.

[16] PCI-SIG: Peripheral component interconnect special
interest group. http://pcisig.com/, 2015. Accessed:
2018-03-09.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk



56 Experimental Comparison of Matrix Algorithms for Dataflow Computer Architecture

[17] Jurij MIHELIČ’s GitHub Profile and Repositories.
https://github.com/jurem, 2018. Accessed: 2018-03-
09.

[18] CORMEN, T. H. – STEIN,C. – RIVEST,R. L. – LEIS-
ERSON, CH. E.: Introduction to Algorithms, 2nd edi-
tion. McGraw-Hill Higher Education, 2001.

Received March 24, 2018, accepted July 23, 2018

BIOGRAPHIES

Jurij Mihelič received his doctoral degree in Computer
Science from the University of Ljubljana in 2006. Cur-

rently, he is with the Laboratory of Algorithmics, Faculty
of Computer and Information Science, University of Ljubl-
jana, Slovenia, as an assistant professor. His research in-
terests include algorithm engineering, combinatorial opti-
mization, heuristics, approximation algorithms, and uncer-
tainty in optimization problems as well as system software
and operating systems.

Uroš Čibej received his doctoral degree in Computer Sci-
ence from the University of Ljubljana in 2007. Currently,
he is with the Laboratory of Algorithmics. His research in-
terests include location problems, distributed systems, com-
putational models, halting probability, graph algorithms,
and computational complexity.

ISSN 1335-8243 (print) c© 2018 FEI TUKE ISSN 1338-3957 (online), www.aei.tuke.sk




