
REVIEW
published: 27 September 2018

doi: 10.3389/fimmu.2018.02233

Frontiers in Immunology | www.frontiersin.org 1 September 2018 | Volume 9 | Article 2233

Edited by:

Georgia Fousteri,

San Raffaele Hospital (IRCCS), Italy

Reviewed by:

Guido Ferrari,

Duke University, United States

Karin Schilbach,

Universität Tübingen, Germany

*Correspondence:

Peter P. Lee

plee@coh.org

Constantinos Petrovas

petrovasc@mail.nih.gov

Specialty section:

This article was submitted to

T Cell Biology,

a section of the journal

Frontiers in Immunology

Received: 10 May 2018

Accepted: 07 September 2018

Published: 27 September 2018

Citation:

Poultsidi A, Dimopoulos Y, He T-F,

Chavakis T, Saloustros E, Lee PP and

Petrovas C (2018) Lymph Node

Cellular Dynamics in Cancer and HIV:

What Can We Learn for the Follicular

CD4 (Tfh) Cells?.

Front. Immunol. 9:2233.

doi: 10.3389/fimmu.2018.02233

Lymph Node Cellular Dynamics in
Cancer and HIV: What Can We Learn
for the Follicular CD4 (Tfh) Cells?
Antigoni Poultsidi 1, Yiannis Dimopoulos 2, Ting-Fang He 3, Triantafyllos Chavakis 4,

Emmanouil Saloustros 5, Peter P. Lee 3* and Constantinos Petrovas 2*

1Department of Surgery, Medical School, University of Thessaly, Larissa, Greece, 2 Tissue Analysis Core, Immunology

Laboratory, Vaccine Research Center, NIAID, NIH, Bethesda, MD, United States, 3Department of Immuno-Oncology,

Beckman Research Institute, City of Hope Comprehensive Cancer Center, Duarte, CA, United States, 4 Institute of Clinical

Chemistry and Laboratory Medicine, Technische Universität Dresden, Dresden, Germany, 5Department of Internal Medicine,

Medical School, University of Thessaly, Larissa, Greece

Lymph nodes (LNs) are central in the generation of adaptive immune responses. Follicular

helper CD4T (Tfh) cells, a highly differentiated CD4 population, provide critical help for the

development of antigen-specific B cell responses within the germinal center. Throughout

the past decade, numerous studies have revealed the important role of Tfh cells in Human

Immunodeficiency Virus (HIV) pathogenesis as well as in the development of neutralizing

antibodies post-infection and post-vaccination. It has also been established that tumors

influence various immune cell subsets not only in their proximity, but also in draining lymph

nodes. The role of local or tumor associated lymph node Tfh cells in disease progression

is emerging. Comparative studies of Tfh cells in chronic infections and cancer could

therefore provide novel information with regards to their differentiation plasticity and to

the mechanisms regulating their development.
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INTRODUCTION

Given the important role the lymphatic system has in combating foreign pathogens, changes
in Lymph Node (LN) architecture/cellularity have been recognized in a variety of infectious
diseases. In Human Immunodeficiency Virus (HIV) infection, LNs play a central role for disease
pathogenesis. Early studies revealed the covert infection of CD4T cells in the LN and its role in
the depletion of these cells throughout disease progress (1, 2). From a prognostic point of view,
the degree of follicular structure damage has been used for classification of disease progress (3, 4).
Current vaccine strategies targeting the humoral arm of the immune system have revealed the need
for a comprehensive understanding of follicular dynamics. Given the role of T follicular helper
(Tfh) cells as an HIV reservoir (5) and as critical “helpers” in the development of antibodies (6),
understanding their biology is of great interest.

Besides infectious diseases, LNs are involved in various forms of neoplasia, either as metastasis
or as primary disease sites (i.e., lymphomas). It is of critical importance to distinguish between
infectious etiologies of lymphadenopathy vs. neoplastic causes (7). In non-hematopoietic neoplastic
disease, LNs are involved in disease progression (a) as part of the regional disease, contributing
to local morbid phenomena when infiltrated by the tumor, (b) as metastatic disease per se–
(N status in the Tumor Node Metastasis staging system)–affecting the treatment/management
of patients, and (c) as a mediator for propagating further distant metastasis. Although LN
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involvement has major prognostic implications for the patient
and is thus incorporated in the staging strategies of neoplasms
(8), the clinical management of the lymphatic system draining
a malignancy is an area of ongoing research and trends are
shifting accordingly. For example, in breast cancer patients
attention has been drawn to the Sentinel Lymph Node (SLN)
(9), which is defined as the first LN or group of LNs that
interstitial fluid and cells from the tumor microenvironment pass
through on their route to the venous circulation via lymphatic
vessels (10–12). Despite the different etiology and specific
pathways/molecular factors operating selectively in cancer or
infectious diseases, the comparative analysis of LN immune-
dynamics could provide important information regarding the
development and maintenance of Tfh cells.

LYMPH NODES: ORGANIZATION, TFH
CELLS

LNs provide the site of initiation of adaptive immune responses
and are strategically placed along lymphatic vessels (13).
Antigen presenting cells (APCs) initiate immune responses via
interactions with T and B cells that gain access to specific regions
of the LN (14). Functionally, the LNs can be separated into
lobules (13). The structural backbone of the lobule is comprised
of Fibroblastic Reticular Cells (FRCs) and their fibers, which
support the parenchyma, provide routes for the migration of
lymphocytes, and facilitate the interaction between lymphocytes
and APCs (4). The inter-follicular regions of the cortex and the
paracortex are mainly populated by T cells, which gain access to
the parenchyma by migrating through high endothelial venules
(HEVs), following the CCR7/CCL19, CCL21 axis (4). These cells
interact with dendritic cells (DCs) that have reached the LN via
the afferent lymphatic vessels and HEVs (4). Primary follicles
(located in the cortex) contain mainly naïve B cells, whereas
secondary follicles are recognized by the formation of a germinal
center (GC) (13). GCs, the antibody production factory of the
body, are populated by antigen stimulated B cells, follicular
dendritic cells (FDCs), Tfh cells, and macrophages- among other
cell types (15, 16). FDCs can present antigens and stimulatory
signals to GC B and T cells, as well as produce CXCL-13, the
ligand for CXCR5 (17), while tingible body macrophages are
capable of phagocytizing dying cells (13).

Tfh cells provide critical signals for the activation, isotype
switching, affinity maturation, and differentiation of B cells into
memory B cells and plasma cells via surface bound receptors
(i.e., PD-1, ICOS, CD40) (18, 19) and secreted factors like IL-21
and IL-4 (20, 21), that support the GC responses by regulating
the differntiation of both Tfh and B cells through the activation
of STAT signaling pathways (21–25). The spatial organization
of Tfhs cells is regulated, at least, by (i) chemokine gradients
(i.e., CXCL-13 and CXCL-10/IP-10, a chemokine produced by
macrophages and acting on CXCR3) enabling their trafficking
toward GC (17, 26). and (ii) function of signaling pathways
mediating their retention within the follicular/GC areas. GC
homing is accomplished via downregulation of CCR7 and
upregulation of CXCR5- a process mediated by Bcl-6, a critical

transcription factor for Tfh cell differentiation (27, 28). Once
inside the GC, S1PR1 family receptors aid in Tfh cell retention
in GCs- this is accomplished by downregulation of S1PR1 and
upregulation of S1PR2 (29–31). Dynamic positioning inside the
GC is influenced by the local production of factors, one of
which is CXCL-12/SDF-1 that acts on CXCR4 (32, 33). The
unique PD-1hiCXCR5hi phenotype has been widely used for the
identification of Tfh cells (34, 35). In line with this, imaging
studies have shown the highly skewed localization of PD-1hi

CD4T cells within the GC areas (GC-Tfh cells) (35–37). High
expression per cell (judged by Mean Fluoresense Intensity-MFI)
of other surface receptors (like ICOS and TIGIT), is selectively
found on the vast majority of GC-Tfh cells (35, 37, 38). The
differential expression of surface receptors like CD150 and
CD57 can further delineate GC-Tfh subpopulations (35, 37,
39). For example, Tfh cells expressing lower levels of CD150
(SLAM) secrete higher levels of IL-4 and are thought to be
more differentiated than Tfh cells expressing higher levels of
CD150 (37, 39). The presence of PD-1dimCXCR5hi (non-GC)
Tfh (34), the differential expression of CXCR3 (Th1-like Tfh
cells) (40, 41), or Tfh master regulators like Bcl-6 (5, 28, 35),
further adds to the heterogeneity of the Tfh pool. We should
emphasize, though, that different follicular CD4T cell subsets are
presumably exposed to different local signals within the follicle.
Delineation of these signals, as well as the connection between
phenotype and function of Tfh cell subsets, is an important step
toward the comprehensive understanding of Tfh cell biology and
their role in human diseases.

A separate group of CD4T cells located in the follicle/GC- and
particularly the T-B area border (42)- are T follicular regulatory
(Tfr) cells (43), which possibly originate from thymic T regulatory
(Treg) cells, after adaption of their gene expression profile to
include -apart from FoxP3- factors and receptors expressed in
Tfh cells, such as Bcl-6 and CXCR5 (38, 44, 45). A mutual
regulation between Tfh and GC B cells through the function
of receptor/ligand axes (such as CD40/CD40L, ICOS-ICOSL)
has been proposed (46–48). In a similar manner, Tfr cells can
suppress GC reactivity (43) either by altering such mutual
regulation- a process mediated in part by CTLA-4 (49)- or by
directly affecting B or Tfh cells (43, 50). Although they represent
a small minority of follicular CD4T cells, the presence of Tfr
cells aids in limiting the GC response to prevent uncontrolled
B cell proliferation and the consequences thereof, such as the
production of antibodies that recognize “self ” antigens (37, 44).

LYMPH NODES IN NEOPLASMS

The Concept of SLNs
From an immunological perspective, SLNs are the site where
tumor antigen loaded APCs encounter naïve T and B cells,
leading to the generation of immune responses against neoplasms
(51–53). A relatively smaller distance from the primary tumor
site presumably increases the possibility for the SLN to be
affected by the tumor than downstream draining LNs (DLNs) are,
potentially leading to the variable immune responses observed
in DLNs depending on the distance from the primary tumor
(54). Factors which modulate these responses may tip the balance
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from control to tolerance/spread of the neoplasm (51–53). Most
research has focused on SLNs in the context of melanoma and
breast cancer patients, but knowledge is expanding about SLNs in
other types of neoplasms -such as genitourinary, pulmonary, and
gastrointestinal tumors (11). However, accurate identification of
SLNs can be very challenging (55). Rerouting of lymphatic flow
or the presence of tumor cells in the subcapsular sinus may
affect the ability to detect the SLN with the help of dyes (55,
56). Lymphangiogenesis and alterations of lymph flow dynamics
induced by the tumor may also alter lymphatic drainage (55).
Therefore, a false negative SLN (up to 9.8% in breast cancer)
could result in under-staging and mistreating patients (57, 58).

Structural Alterations of SLNs Induced by
Tumors
Tumors can affect structural components in the SLNs and DLNs
even before metastasis to these sites has occurred, creating an
environment fostering tumor cell invasion to the SLN (59–
61). Major structural SLN changes have been described, related
to (a) increased lymphatic drainage from the tumor to the
LNs (55), which can induce biophysical remodeling/changes
of the LN matrix (62) and potentially lead to the activation
of signaling pathways [i.e., transforming growth factor (TGF)-
β pathway] associated with tumor spreading/induction of
immune suppression in the LNs, in a similar fashion to
what has been observed in primary tumor sites (63), (b)
increased lymphangiogenesis and angiogenesis induced by
vascular endothelial growth factors (VEGFs) originating from
the tumor environment, which can ultimately contribute to the
spreading of tumor cells to the SLN and beyond (55, 60, 64–
66), and (c) a “flatter” morphology of the endothelial cells of the
HEVs, which can potentially lead to impaired access of naïve T
cells to the LN parenchyma (53). Overall, these structural changes
in the lymphatics and the vasculature can set the stage for future
metastasis of cancer cells to SLNs (Figure 1).

Non-follicular Immune Dynamics in SLNs
Apart from structural changes, modulations of immune cell
subsets have also been observed to precede actual metastasis
of tumor cells to SLNs. Several studies suggest a compromised
capacity to induce a “favorable” Th-1 response against the tumor
due to (i) decreased DC density and clustering in paracortical LN
regions (67–70) and (ii) compromised DC function (60, 70–72).
Conversely, other studies have advocated increased presence of
activated DCs in SLNs, prior to the appearance of metastatic cells
(73–75). However, transition to a mature DC phenotype and Th-
1 cytokine response was noted after metastasis of breast tumor
cells to the SLN, possibly reflecting antigenic stimulation against
these cells (72) (Figure 1). Emerging studies have investigated
the role of LN NK cells (76) and monocytes/macrophages in
anti-tumor immunity (77, 78) and their targeting for adjuvant
immunotherapies that could improve treatment of patients with
metastatic cancer. Regarding adaptive immunity, alterations in
cell types with prognostic implications (68) have been observed
in SLNs and DLNs. Reduced numbers of CD4 and CD8T cells
(60, 64, 68) with an immunosuppressed profile (79) was found
in SLNs, a profile associated with accumulation of FoxP3+

Treg CD4 cells in LNs harboring metastases (80–83) and worse
prognosis/more widespread nodal disease in melanoma, breast,
and gastric cancer (82–85). Various cytokines (GM-CSF, IL-2) are
being investigated as a way to reverse this immune suppression
and assist in the immune system’s effort to combat the neoplastic
cells (53).

Follicular Dynamics in SLNs and Tertiary
Lymphoid Structures (TLSs)
In contrast to extrafollicular cell dynamics, much less is known
about follicular/B cell dynamics in the context of neoplastic
disease. In SLNs, B cells- via the secretion of VEGF-A-
could induce lymphangiogenesis and angiogenesis (61, 86, 87),
potentially promoting the spread of tumors via lymphatics (55).
However, an extended lymphatic network can lead to increased
recruitment of DCs from the periphery to the LN (86), which
could ultimately benefit the development of anti-tumor adaptive
immunity. A trend toward improved 5-year survival was noted
in melanoma patients, whose SLNs demonstrated follicular
hyperplasia/GC accumulation (88). Besides their prognostic
value for disease-free survival in breast cancer patients (89),
SLN B cells is the source of affinity matured B cell clones that
produced anti-tumor immunoglobulins detected in the blood
(90). Investigation of such antibodies could potentially lead to
the recognition of tumor antigens recognized by the immune
system, which can subsequently be targeted in the context of
immunotherapies (90). Furthermore, these findings imply that
development of tumor-specific Tfh cells could be a critical
factor for an effector response to a tumor. The progressive
differentiation of Tfh cells within the follicular area, associated
with differential localization and an orchestrated production of
IL-21 and IL-4, provide critical signals for the isotype switching
and differentiation of GC B cells by modulating transcription
factors like Bcl-6 and Blimp-1 (21, 24, 91). In a mouse tumor
model, accumulation of Tfh cells was noted in DLNs, along with
a concomitant increase in IL-4 produced by these cells (92). On
the other hand, recent studies have shown a beneficial role of
IL-21 in cancer immunotherapy strategies (93, 94), possibly by
modulating CD8T cell response (95–97). Therefore, Tfh cells
could potentially support antitumor immunity in ways extending
past the help they provide to B cells.

The role of B cell infiltration in primary tumors is not
clear (98, 99), with studies showing both a negative (100,
101) or a positive (102–105) effect on the antitumor immune
responses. However, B cells contribute to the formation of
tertiary lymphoid structures (TLSs) - defined as accumulations
of lymphocytes in proximity to the primary tumor—which are
associated with better prognosis (99) (Figure 1). Similar to B
cells, an increased presence of Tfh cells in the primary tumor site
has been associated with better clinical outcomes in breast (106)
and non-small cell lung carcinoma (107). High expression of
molecules like CXCL-13 and IL-21 (106, 108) by TLS associated
Tfh cells contributes to the formation/organization of TLSs in
the primary breast tumor and potentially contribute to the
immune systems’ reaction (109). Presumably, TLSs facilitate the
in situ production and secretion of anti-tumor antibodies that
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FIGURE 1 | Main Lymph Node cell dynamics in cancer (left) and HIV (right). Cancer causes lymphangiogenesis and vasculature reorganization in SLNs. Metastasis is

associated with accumulation of DCs and rercuitment of moncytes/macrophages and NK cells. Follicular hyperplasia associated with the development of Tfh cells has

also been observed in SLNs and particularly in TLSs. Chronic HIV/SIV infection is characterized by extensive loss of FRC and naive CD4T cells, accumulation of

monocytes/macrophages, particularly in the area surrounding the follicle, as well as accumulaiton of effector CD8T cells in the extrafollicular area (T cell zone). Within

the follicle, accumulation of Tfh cells is associated with loss of their polarized positioning in the light zone, loss of FDC network and accumulation of follicular Treg

CD4T cells (Tfr).

could represent a mechanism to maximize the efficiency of
adaptive immunity against tumors (99). A variety of regulatory
cell subsets have the ability to influence Tfh cell function. In
breast cancer, LN Treg cells can promote malignancy through
a TGFβ-1 mediated upregulation of the oncogenic receptor
IL17rb (110). A coevolution of Treg cells and CXCL-13hi Tfh
cells in the TLSs was found, with the ratio between these two
populations being a critical factor for tumor control by benefiting
the development of an anti-tumor humoral response (109).
Furthermore, the presence of myeloid-derived suppressor cells
within the LN could potentially be a negative regulator for Tfh
cells (111, 112), adding to the complexity of the regulation
of these cells. Characterization of relevant cytokine producers
and their spatial positioning within anatomically separated
LN areas would be highly informative in understanding their
potential role in regulating Tfh cell dynamics in SLN and
TLSs.

Several reports have been focused on the characterization of
circulating CXCR5hi CD4T (cTfh) cell subsets as a counterpart of
the LN bona fide Tfh cells (113, 114). The lineage origin of cTfh
cells and their direct association to LN Tfh cells is not clear (115,
116). Lower cTfh cells in the blood of hepatocellular carcinoma
patients were associated with worse prognosis (117), while a
higher frequency of “Th-1” CXCR3hi cTfh cells was negatively
associated with survival in gastric cancer (118). In breast cancer,
a higher frequency of “exhausted” Tim-3hi cTfh cells associated
with higher expression of PD-1 per cell base was found -
interestingly, in vitro blocking of Tim-3 increased the production
of IL-21 and CXCL-13 by peripheral blood mononuclear cells
(119). Future investigation of cTfhs in cancers of different

etiology could provide important information regarding their use
as a biomarker, as well as their relationship to LN or TLS Tfh cells.

FOLLICULAR IMMUNE DYNAMICS:
LESSONS FROM HIV/SIV (SIMIAN
IMMUNODEFICIENCY VIRUS)

Structural Alterations
HIV infection leads to dramatic and progressive changes of
LN architecture, especially evident during the chronic phase of
infection (4). In reality, the degree of tissue damage has been
used for the staging of disease (120). A major contributor to
this damage is the extensive deposition of collagen (fibrosis) in
the extrafollicular area (121), a process facilitated by increased
levels of secreted TGF-β1 from accumulated Treg cells (122,
123) and the activation of spatially associated fibroblasts (124,
125). Fibrosis leads to a vicious circle of naïve T cell pool and
FRC network depletion (126, 127)- a network that provides
the scaffold for cell migration (128) and vital signals for the
recruitment (CCR7) (129, 130) and survival (IL-7) (130, 131)
of naïve T cells (Figure 1). LN damage is associated with the
persistent immune activation and tissue inflammation found in
HIV/SIV (4). Despite the partial normalization of immunological
parameters- such as CD4 counts, immune activation, and
suppressed viremia- LN structure abnormalities persist in
combination antiretroviral therapy (cART)-treated individuals
(132–134), presumably affecting the development and function
of LN relevant T cells -such as Tfh cells- in the context of new
infections or vaccination (36).
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Non-follicular Immune Dynamics
Besides tissue architecture, HIV/SIV infection has a major
impact on the cellular dynamics within the extrafollicular
areas. Monocytes/macrophages that express low levels of CD4
and other HIV coreceptors (135) can contribute to HIV/SIV
pathogenesis by (i) supporting the viral reservoir, particularly
in advanced disease or immunocompromised states (136, 137),
and (ii) secreting inflammatory mediators like IL-6 and IL-
10 (138), which play an important role in the development of
GC responses (139). The accumulation of monocytic-lineage
and plasmacytoid dendritic cells (pDCs) in LNs during acute
SIV infection (140–143) is followed by their impaired function
(leading to decreased production of cytokines like IFN-a and
IL-12, which in vitro support T cell proliferation) during the
chronic phase of infection (144–146). Despite the loss of both
pDCs and myeloid DCs (mDCs) from lymphoid tissues and
blood in chronic infection, LN-derived mDCs retain their
functionality, especially the induction of Treg cells- an important
regulator of Tfh cell function and GC reactivity (147, 148).
Chronic HIV/SIV is characterized by the relative loss of LN
CD4 cells- mainly attributed to loss of naïve CD4T cells
(39, 126, 149)- accompanied by an increased frequency of
effector CD8T cells (149) (Figure 1). Besides the direct killing
of infected CD4T cells, the cellular and molecular mechanisms
regulating the LN T cell dynamics in HIV/SIV are not well
understood. Structure damage, immune activation, inflammatory
signals, and altered tissue chemokine gradients could all play
an important role in this process. Recent studies have shown
that chronic HIV/SIV infection is associated with sequestration
of monocytes/macrophages around the follicular areas (150).
Their possible role in LN CD8T cell dynamics is supported by
their (i) correlation with LN CD8T cell in chronic SIV (149),
(ii) spatial proximity to accumulated CD8T cells in LN areas
(149, 150), and (iii) potential to change local chemokine gradients
through the secretion of chemokines like CXCL-9 and CXCL-10
(IP10) (151, 152), ligands for the CXCR3 receptor that is broadly
expressed on LN CD8T cells (149). Such altered chemokine
gradients could contribute to LN T cell dynamics by modulating
their (i) recruitment from the circulation (153, 154) and (ii) intra
lymph node trafficking (26).

Follicular Dynamics
Understanding the follicular/GC- and particularly Tfh cell-
immune dynamics in HIV/Simian Immunodeficiency Virus
(SIV) infection is of great importance for (i) the identification of
molecules/pathways associated with the development of broadly
neutralizing antibodies that could inform the design of novel
vaccine strategies targeting relevant GC cell populations and
(ii) understanding the establishment and maintenance of a
major viral reservoir (5), even in cART treated donors (155).
To this end, the non-human primate (NHP) SIV model has
provide invaluable information regarding the Tfh cell dynamics
during infection. A relatively delayed development of Tfh cells
during acute SIV has been described in peripheral LNs (39).
Interestingly, different kinetics between spleen and LN associated
Tfh cells has been found, indicating a differential regulation
of Tfh cells in different lymphoid organs (156, 157). Chronic

HIV/SIV infection is associated with an altered (a) frequency
(39), (b) function and signaling (39, 156), (c) molecular profile
(39, 158), and (d) localization/distribution within the follicular
areas (159) of Tfh cells (Figure 1). The dynamics of LN Tfh
cells- associated with follicular hyperplasia in the LNs and
hypergammaglobulinemia in the plasma (39, 160–162)- have
been linked to progression to AIDS (162, 163), as well as to
immune activation and associated cytokines—such as IL-6 and
IFN-γ (19, 39, 161). The dependence of Tfh cells on immune
activation and tissue inflammation is further supported by their
downregulation in cART individuals (5, 160) and by the lack of
accumulation of Tfh cells in LNs from infected African Green
Monkeys (AGMs) (149), a natural host of the virus with no signs
of immune activation (164). Apart from the altered frequency,
SIV infection has a significant impact on the molecular signature
of Tfh cells- characterized by upregulation of IFN-γ and TGF-
β related genes (39)- indicating an increased response of Tfh
cells to relevant stimuli and a role of TGF-β as regulator of
Tfh cell dysfunction in chronic infection. The combination of
(i) an increased expression of CXCL-13 in Tfh cells (39), (ii)
a favorable phosphorylation of STAT3 (a positive regulator of
Tfh cells (39, 158)) over STAT1 (39), and (iii) an increased
expression of the IL-6/IL-6R axis found in chronic SIV (39)
provides a molecular basis for the accumulation of Tfh cells
in chronic HIV/SIV. Besides Bcl-6, SIV infection induces the
expression of c-Maf (157), a master regulator of Tfh cells (139).
Interestingly, a higher expression of T-bet (a Th-1 regulator)
was found selectively in LN Tfh cells (157), in line with the
accumulation of Th1-like Tfh cells in chronic SIV (165). The
relative presence of such Tfh populations could have a significant
effect on HIV/SIV pathogenesis (165).

Despite the accumulation of Tfh cells (5, 39) and GC B cells
(39, 156), themajority of HIV-infected individuals do not develop
broadly neutralizing antibodies against HIV (166), pointing to a
perturbation of the Tfh-B cell interaction within the GC (167).
Increased frequencies of Gag-specific compared to Env-specific
Tfh cells found in chronic HIV (5, 39) could reflect a preferential
development of Gag-specific Tfh cells or increased turnover of
Env-specific Tfh cells. Application of cutting-edge technologies
like single cell deep sequencing would be highly informative to
this end. Analysis of Simian-Human immunodeficiency virus
(SHIV) infected NHPs revealed that besides the frequency,
the quality (judged by the expression of IL-21 vs. IFN-γ)
of Env-specific Tfh responses was strongly associated with
the development of broadly neutralizing antibodies in those
animals (168). The increased expression of IL-21 found in
HIV-specific Tfh cells (5, 160), could be counterbalanced by a
reduced expression of IL-4 by Tfh cells (39), indicating that
the development of broadly neutralizing analysis requires the
orchestrated expression and activity of relevant cells and soluble
mediators.

Other mechanisms that could contribute to the impaired
functionality of Tfh cells in chronic HIV/SIV include (i) the
high expression of PD-L1 on germinal center B cells, interacting
with the highly expressed PD-1 on Tfh cells (52), (ii) the relative
accumulation of potential suppressor Tfr cells (169) and (iii)
the presence of follicular regulatory CD8T cells (170). Besides
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the frequency and quality of relevant cells, preservation of the
follicular structure is a critical determinant for the development
of GC responses in HIV infection- which is characterized by the
loss of the Follicular Dendritic Cells (FDC) network and factors
secreted by this network, such as CXCl-13 (36). Recent imaging
studies revealed that preservation of FDC was associated with
maintenance of Tfh cells and preservation of their function in
HIV infection, manifested by the response of infected individuals
to vaccination (36) and possibly with their distribution within the
GC (Figure 2).

HIV/SIV infection affects the dynamics of other LN cells,
including CD8T cells. An increased frequency of follicular
CD8T cells (149, 150, 165) - even within intact follicles (149)-
has been observed, implying that infection counteracts local
“firewalls” that naturally keep CD8T cells outside the follicular
area. Although the naturally induced HIV-specific cytotoxic CD8
lymphocytes are relatively excluded from the GC area (171), the
increased overall presence of follicular CD8T cells provides an
opportunity for novel CD8-based immunotherapies, i.e., the use
of bispecific antibodies to redirect these cells to kill HIV-infected
cells (149, 172). Immune activation and tissue inflammation
are important factors for the dynamics of both follicular CD4
and CD8T cells in chronic infection (149). The excessive
immune activation, however, possibly leads to a generalized,
non-cognate driven expansion of these cell populations. One
could hypothesize that these dynamics could potentially affect the
function of virus-specific Tfh responses, i.e., through the aberrant
production of Tfh-cytokines.

CONCLUDING REMARKS, FUTURE
DIRECTIONS

Comparative studies using Tfh cells from diseases with different
etiologies represent one way to better understand the molecular
and cellular basis for their generation and maintenance.
Specifically, such studies between HIV and cancer could inform
for:

1. The mechanisms of Tfh development/maintenance in the
settings of a chronic disease. Besides the relative frequency and
spatial positioning, HIV/SIV infection changes the molecular

profile of Tfh cells too (39). Is this profile of chronically in vivo
stimulated Tfh cells unique for HIV/SIV or there is a core,
preserved molecular signature during Tfh cell development
under different stimuli like cancer neoantigens? Does the
etiology/type of cancer have an impact on this profile?
Relevant studies will provide critical information about the
plasticity of the Tfh cell differentiation program.

2. The role of tissue inflammation in the development of
human Tfh cell responses. Despite the expected differences
between HIV and cancer-including, among others, the (a)
nature of antigenic stimulation (viral proteins compared
to neoantigens), (b) magnitude/type of tissue architectural
changes, (c) presence of virus within the follicle and
its ability to infect Tfh cells per se in HIV infection-
inflammation plays an important role in the pathogenesis of
both diseases (172–174). Comparative investigation of LNs
from HIV infected individuals and cancer patients could
inform for the presence, spatial distribution and possible role
of specific pro-inflammatory cellular/molecular mediators for
the recruitment of T cell to LNs and their trafficking between
LN compartments. General, non-cognate driven activation of
LN CD4T cells could differ between cancer and a chronic viral
infection like HIV, with a presumably differential impact in the
generation of Tfh cell responses. Therefore, the development
of methodologies allowing for the detection of antigen-specific
Tfh cells, especially at tissue level, is of great importance.

3. The impact of tissue structure alterations on Tfh cell dynamics
and the and local interplay between adaptive immunity and
Tfh cells. Tissue changes like vasculature reorganization and
extracellular matrix organization are less studied in HIV
compared to cancer LNs. On the other hand, common
tissue structure alterations like fibrosis could contribute to
Tfh cell dynamics by affecting the dynamics of innate and
adaptive immune cells in the extrafollicular areas (167).
HIV/SIV is characterized by the accumulation of LN and
particularly follicular CD8T cells (148, 149). The regulation
of these dynamics as well as the role of fCD8T cells in
GC B cell responses is not well understood. Conversely, the
role of cytokines, like IL-21 produced by Tfh cells too, as
regulators of LNCD8T cells is not clear either. Understanding
the interplay between LN CD8T cells and Tfh cells is of

FIGURE 2 | Chronic HIV infection is associated with disturbed follicular organization. Reactive follicles from a healthy axillary (left), a breast cancer SLN (middle) and a

HIV viremic axillary LN (right). The CD20 (blue), CD4 (green), and PD-1 (red) markers are shown.
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great importance for LN immune responses both in HIV
and cancer, particularly within TLSs, where sequestration of
effector CD8T cells in proximity to the tumor site could have
an impact on disease progression.

4. The “anatomical compartmentalization” of Tfh cell responses.
Are all Tfh cells across the human body the same? Recent
studies have shown a differential regulation of Tfh cells
between LNs and spleen in SIV infection (156). Is this the
case for LN Tfh cells from different anatomical sites too?
How that could affect the role of adaptive immunity responses
developed in LN in the progression of cancer with different
topology?

5. The assessment of human Tfh cell quality. Comparison of
Tfh cells between HIV donors with broadly neutralizing
antibodies and cancer donors with anti-tumor B cell response
correlating with good prognosis could help define the spatial
organization, the functional characteristics, and molecular
signature of an “effective” Tfh cell response.

Given the limited, if any, access to LN tissues, especially
from different time points throughout the course of disease,
the discovery of circulating biomarkers recapitulating the
germinal center reactivity is of great importance. Investigation
of molecules like CXCL13 (37, 173) or cTfh cells (113) represents
one direction in the hunt for biomarkers i.e., for monitoring the
efficacy of vaccination protocols (175). Are cancers of different
etiology associated with a particular phenotype/subset of cTfh
cells? How do these cells compare to cTfh subsets found in HIV?

An in depth understanding of the Tfh cell development is
a prerequisite for the designing of novel in vivo interventions
aimed at boosting their function and developing effective
B cell responses, particularly in HIV. Many questions are
still open; how the prime/boost vaccination scheme affects
the quality and breath of immunogen-specific Tfh responses?
Combining optimal structure-based designed immunogens with
new generation adjuvants or interventions targeting specific
molecules/pathways involved in the generation of high quality
Tfh cells could lead to more efficient vaccine strategies. On
the other hand, any therapeutic intervention has to take in

consideration the best short and long-term oncological outcome,
as well as survivors’ quality of life. Surgical interventions may
be associated with morbidity/mortality. For example, axillary
LN dissection in the context of breast cancer might result
in an increased incidence of lifetime lymphedema (up to
21%), decreased arm mobility, and arm paresthesia (174).
However, recent clinical trials are challenging the need for
axillary surgery for tumors up to 2 cm (175, 176). New
therapeutic schemes are urgently needed. The success of
cancer immunotherapy in melanoma, lung cancer, renal cell
carcinoma and other solid tumors has placed the power of T
cell immunity into the armamentarium of cancer therapeutics.
Similar immune therapies for patients with breast cancer are
beginning to come to fruition, with most promising the use
of PD-1 (e.g., pembrolizumab) and PD-L1 (e.g., avelumab)
monoclonal antibodies (177, 178). However, the toxicity and
cost of immunotherapies has revealed the need for predictive
biomarkers. Potential biomarkers should be evaluated in the
primary tumor, in the metastases, or in circulation. Given their
role in breast cancer, the search for novel biomarkers at a LN
and follicular level could be of great support for the decision of
relevant surgical procedures.
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