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As a sophisticated computing unit, the pyramidal neuron requires sufficient metabolic

energy to fuel its powerful computational capabilities. However, the majority of previous

works focus on nonlinear integration and energy consumption in individual pyramidal

neurons but seldom on the effects of metabolic energy on synaptic transmission and

dendritic integration. Here, we developed biologically plausible models to simulate the

synaptic transmission and dendritic integration of pyramidal neurons, exploring the

relations between synaptic transmission and metabolic energy and between dendritic

integration and metabolic energy. We find that synaptic energy not only drives synaptic

vesicle cycle, but also participates in the regulation of this cycle. Release probability of

synapses adapts to synaptic energy levels by regulating the speed of synaptic vesicle

cycle. Besides, we also find that to match neural energy levels, only a part of the synapses

receive presynaptic signals during a given period so that neurons have a low action

potential frequency. That is, the number of simultaneously active synapses over a period

of time should be adapted to neural energy levels.

Keywords: synaptic transmission, dendritic integration, metabolic energy, release probability, connection number,

biologically plausible models, synaptic vesicle cycle

INTRODUCTION

The widely distributed pyramidal neurons in the cerebral cortex of mammals are highly critical
to cognition and memory (Spruston, 2008). Synaptic transmission and dendritic integration are
two important steps in information processing in a single pyramidal neuron. During synaptic
transmission, action potentials from the axon initial segment (AIS) induce synaptic vesicles
to release neurotransmitter into synaptic clefts. Then, the released neurotransmitter binds to
receptors on the postsynaptic membrane, causing a change in the postsynaptic membrane
potential (Engelman and Macdermott, 2004). Subsequently, the intricate dendrites of postsynaptic
neurons efficiently collect thousands of presynaptic signals and integrate them through both linear
and nonlinear mechanisms (Silver, 2010; Grienberger et al., 2015; Stuart and Spruston, 2015).
Existing studies have shown that synaptic transmission and dendritic integration are metabolically
expensive, while the metabolic energy of neurons is limited (Attwell and Laughlin, 2001; Lennie,
2003; Howarth et al., 2012; Yi et al., 2017). Therefore, neurons in the central nervous system (CNS)
should coordinate the relation between these neural activities and metabolic energy levels during
synaptic transmission and dendritic integration (Hasenstaub et al., 2010). Unfortunately, few
previous studies focus on this relation. During synaptic transmission, the higher release probability
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of synapses means that more information can be transmitted
to postsynaptic neurons, but many experiments show that the
majority of synapses maintain a relatively low release probability
to obtain optimal energy efficiency (Goldman, 2004; Volgushev
et al., 2004; Harris et al., 2012). A large number of synaptic
connections can ensure that neurons produce high-frequency
action potential signals, but some studies indicate that regardless
of how the dendrites of pyramidal neurons bifurcate, homeostatic
plasticity can maintain the frequency of action potentials within
a fixed range (Turrigiano, 1999; Spruston, 2008). Therefore,
we believe that stable relations may exist between the release
probability of synapses and metabolic energy levels and between
the number of simultaneously active synapses over a period of
time and metabolic energy levels. In this paper, we first propose
a novel synaptic transmission model to explore the relation
between synaptic vesicle cycle and metabolic energy levels, and
then establish a multi-compartment model to study the relation
between the number of simultaneously active synapses over a
period of time and metabolic energy levels.

METHODS

Model of the Synaptic Vesicle Cycle
Synaptic vesicles containing neurotransmitters are mainly
distributed in the reserve pool, the recycling vesicle pool and
the readily releasable pool (RRP) (Rizzoli and Betz, 2005).
Recent evidence indicates that vesicles in the recycling and
reserve pools are intermixed to a considerable degree (Sudhof,
2004; Rizzoli and Betz, 2005; Südhof, 2013). Therefore, our
synaptic transmission model only considers the recycling pool
and the readily releasable pool, as shown in Figure 1. Synaptic
transmission involves sophisticated synaptic vesicle cycle, which
can be roughly divided into three stages (Sudhof, 2004;
Schweizer and Ryan, 2006): (1) synaptic vesicles moving from
the recycling pool to the RRP and preparing for exocytosis;
(2) synaptic vesicles fusing with the presynaptic membrane and
releasing neurotransmitters; and (3) synaptic vesicles recycling
neurotransmitters and returning to the recycling pool. Here, we
establish a novel synaptic transmission model to describe all the
stages of synaptic transmission.

First, only prepared synaptic vesicles in the RRP are generally
believed to be able to release neurotransmitters (Sudhof, 2004;
Schweizer and Ryan, 2006). Once prepared synaptic vesicles fuse
with the presynaptic membrane, the same number of synaptic
vesicles from the recycling pool quickly move to refill the RRP
(Rizzoli and Betz, 2005; Alabi and Tsien, 2012). The number of
synaptic vesicles in the RRP accounts for approximately 5∼10%
of the total number of synaptic vesicles in a presynaptic terminal
(Alabi and Tsien, 2012). Assuming that the RRP contains at most
NRRP synaptic vesicles, the preparation of synaptic vesicles for the
release of neurotransmitters can be described as follows:

τs
dsi

dt
+ si = sm, (si|t=0 = 0, i = 1, 2, · · · ,NRRP) (1)

where si represents the state of the i-th synaptic vesicle at time t,
and si = 0 and si = sm represent its initial state and its state ready
for release, respectively. For any RRP synaptic vesicle, si increases

FIGURE 1 | The synaptic vesicle cycle. Prepared synaptic vesicles are marked

with a dark color, while unprepared ones are marked with a light color. Once

action potentials arrive at synaptic terminals, vesicles in RRP successively

move to presynaptic membrane to fuse with release sites and release

neurotransmitters into the cleft. Meanwhile, vesicles from the recycling pool

quickly move to refill the RRP. Then, the released neurotransmitters bind to

receptors on the postsynaptic membrane to complete signal transmission.

Finally, most of the released neurotransmitters are transported back to the

presynaptic terminals directly or via astrocytes (blue arrows) and taken up into

synaptic vesicles for a new round of exocytosis.

from 0 to sm during the preparation for exocytosis, where sm is
a dimensionless constant whose value can be any real number
greater than 0. The time constant τs determines the change rate
of the state of RRP synaptic vesicles. When the time constant
τs is larger, the state value changes more slowly; otherwise, the
state value changes more quickly. In other words, the rate of the
vesicles preparing for exocytosis in our model depends uniquely
on the value of the time constant τs.

Second, after preparation is complete, synaptic vesicles fuse
with the free release sites and release neurotransmitters (Sudhof,
2004; Schweizer and Ryan, 2006). In this stage, the number
of release sites is limited and ATP concentration has little
influence on this phase (Heidelberger et al., 2002; Neher, 2010).
For simplicity, the maximum usage per release site and the
maximum usage of a synapse both can be assumed to be fixed.
The maximum usage per release site refers to the maximum
number of synaptic vesicles which can release neurotransmitter
through a release site per second, and the maximum usage of
a synapse refers to the maximum number of synaptic vesicles
which can release neurotransmitter through all release sites of
a synapse per second. Furthermore, action potentials induce
a large amount of Ca2+ to pour into neuron terminals. The
synaptic vesicles can release neurotransmitters only when the
total Ca2+ concentration in synaptic terminals reaches a certain
level (Sheng et al., 1998; Schweizer and Ryan, 2006). After
entering synaptic terminals, the majority of Ca2+ quickly binds
to proteins at plasma membranes, while the remaining free Ca2+

is rapidly excluded by 3Na+/Ca2+ ion pumps and Ca2+-ATPase
(Helmchen et al., 1997). The rising phase of the free Ca2+

concentration is much shorter than the counterpart descending
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stage. In the proposed model, the free Ca2+ concentration is
calculated as follows (Helmchen et al., 1997; Lu et al., 2016),

[Ca2+]i =

{

[Ca2+]rest +1[Ca2+]AP · e
−t/τCa , (t ≥ tAP)

[Ca2+]rest , (t < tAP)
(2)

where [Ca2+]i is the free Ca
2+ concentration, and [Ca2+]rest is

the free Ca2+ concentration at rest. 1[Ca2+]AP is the change
in the free Ca2+ concentration in response to a single action
potential, and tAP is the time at which an action potential arrives
at the synaptic terminal. τCa is the decay time constant of the
free Ca2+ concentration. Every action potential can cause the
free Ca2+ concentration to increase quickly and then to decline
exponentially. It takes approximately 100ms for the free Ca2+

concentration to recover to its original level before the action
potential arrives (Helmchen et al., 1997). The change in the total
Ca2+ concentration is calculated as follows (Helmchen et al.,
1997; Lu et al., 2016),

1[Ca2+]total = 1[Ca2+]AP ·
(

1+ Ks + K
′

B

)

(3)

where 1[Ca2+]total is the total Ca2+ concentration, Ks is the
endogenous Ca2+ binding ratio, and K

′

B is the incremental
Ca2+ binding ratio for the exogenous Ca2+ buffer. 1[Ca2+]AP
is the same as in Equation (2). Previous studies have shown
that the neurotransmitter release is initiated by influx of Ca2+

within 200 µs of the action potential arriving at the synaptic
terminal, and the exocytosis of vesicles requires high Ca2+

concentration, with a threshold of 20∼50 µmol/L (Sheng et al.,
1998; Fernándezalfonso and Ryan, 2004). For simplicity, the total
Ca2+ concentration in the model is regarded as an indicator
that determines whether neurotransmitters can be released or
not. When the total Ca2+ concentration exceeds the threshold,
synaptic vesicles start cycling and neurotransmitters are released.
Otherwise, synaptic vesicles stop cycling and neurotransmitters
cannot be released. It is worth noting that in the proposed
model, the total Ca2+ concentration below the threshold does
not mean that synaptic vesicles are inactive. Although synaptic
vesicles cannot release neurotransmitters when the total Ca2+

concentration is below the threshold, they are still preparing
for neurotransmitter release and slowly fusing with release
sites. These prepared synaptic vesicles can immediately release
neurotransmitters as soon as the total Ca2+ concentration
exceeds the threshold again. Besides, when an action potential
arrives at the synaptic terminal, the total Ca2+ concentration will
remain above the threshold for a period of time during which the
neurotransmitter can be released.

Third, most released neurotransmitters are transferred back
to presynaptic terminals directly or via astrocytes and then are
taken back by empty synaptic vesicles that are returning to the
recycling pool (Schweizer and Ryan, 2006). ATP hydrolysis is
also required in this process (Chapman, 2008). Furthermore, the
existing research results indicate that the return rate of synaptic
vesicles to the recycling pool decreases as the number of synaptic
vesicles approaches the maximum capacity of the recycling pool

(Heidelberger et al., 2002). Therefore, the return process of
synaptic vesicles can be approximately described as follows

vr · τr = hm − h (t) , if vr > vrm, vr ← vrm (4)

where vr and vrm represent the actual return rate and the
maximum return rate of synaptic vesicles to the recycling pool,
respectively, and hm and h(t) represent the maximum number
and the actual number of synaptic vesicles in the recycling pool,
respectively. The return rate of vesicles to the recycling pool
is closely related to the actual number of vesicles in the pool.
A greater difference between the actual and maximum number
of vesicles indicates a greater return rate. The time constant
τr determines the change rate of the return rate vr . When the
time constant τr is larger, the return rate changes more slowly;
otherwise, the return rate changes more quickly. It is worth
noting that the return rate cannot increase without limit. For
example, in the calyx of Held nerve terminals, the maximum
endocytosis rate of empty synaptic vesicles is 1.8 per second at
37◦C (Neher, 2010). Therefore, we assume that the return rate
of synaptic vesicles to pools must be less than the maximum rate
vrm.

Different numbers of synaptic vesicles are stored in different
types of pools (Rizzoli and Betz, 2005). However, for a given
vesicle pool, the capacity of the pool remains at a constant
level, and the actual number of vesicles in the pool is dependent
on time. The depletion kinetics of the recycling pool can be
described as follows

h (t) = hm +

∫ t

0
(vr (τ )− vs (τ )) dτ (5)

where vr , hm and h(t) are the same as in Equation (4), and vs
represents the rate of synaptic vesicles leaving the recycling pool.
The integral of the difference between vr and vs in a period
represents the change in the number of vesicles in the recycling
pool during the period.

To describe a complete synaptic vesicle cycle, we use the
above four formulas to construct a novel synaptic transmission
model in which the input is the number of action potentials
and the output is the number of synaptic vesicles. The biological
experiments show that the energy expended per vesicle of
neurotransmitter released is 1.64 × 105 ATP molecules (Attwell
and Laughlin, 2001; Yu et al., 2017). Therefore, the energy
consumption over a period of time can be described as follows

Eatrans = 1.64× 105 · Nvesicle (6)

where Eatrans and Nvesicle represent the actual energy consumption
of synapses and the number of released vesicles over a period of
time, respectively. Note that it is difficult to estimate the number
of calcium ions and recycled neurotransmitters when action
potentials continuously arrive at synaptic terminals. Therefore,
for simplicity, the calculation for the energy consumption of
calcium ions and neurotransmitter recycling is ignored, and the
total energy expended per vesicle of neurotransmitter released
is treated as a constant. We also pay attention to the release
probability of synapses. For a synapse with a single release site,
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the release probability refers to the probability that a single action
potential arrival at synapse will result in neurotransmitter release
(Stevens, 2003; Harris et al., 2012). In our model, the average
number of released vesicles induced by a single action potential
is computed, and then the release probability of synapses is
computed as follows

rp =
Q

N
(7)

where rp represents the release probability of synapses. N
represents the number of release sites contained by a synapse. Q
represents the average number of released vesicles induced by a
single action potential over the period of time. Note that under
physiological conditions, a release site can only release a single
vesicle following arrival of an action potential (Stevens, 2003;
Harris et al., 2012). That is, the release probability is certainly
less than 1.0. However, in the synaptic transmission model, it is
possible that the release probability is greater than 1.0. In this
case, the release probability is thought to be abnormal. Based
on previous studies (Rizzoli and Betz, 2005; Neher, 2010), a
single synapse in the model is assumed to contain 200 synaptic
vesicles and 5 release sites in total. The optimal range of the
release probability of synapses in the model is set to 0.25∼0.5
according to the existing experimental findings (Harris et al.,
2012). In addition, because the maximum usage per release site
is ∼3.5 vesicles per second (Neher, 2010), the maximum usage
of a synapse is assumed to be 20 vesicles per second. Synaptic
transmission model is implemented in MATLAB and its code is
available upon request.

Regulation on Synaptic Vesicle Cycle by
Metabolic Energy in Synaptic Transmission
Model
To investigate the effects of metabolic energy on synaptic
transmission, a necessary and fundamental step is to develop a
framework in which the cycling of synaptic vesicles is closely
associated with synaptic energy level. As we know, in the
process of synaptic vesicle cycle, synaptic vesicles preparing for
exocytosis and returning to the recycling pool both need ATP
hydrolysis to provide metabolic energy, which means that these
two processes are affected by metabolic energy (Heidelberger
et al., 2002). Besides, existing studies also show that the synaptic
function of neurons must be matched with their metabolic
energy level at synapses, and metabolic energy could exert
constraints over the synaptic function of neurons at different
levels (Göbel et al., 2010; Rangaraju et al., 2014). Therefore, a
constraint is introduced into the model to achieve the regulation
on synaptic vesicle cycle by metabolic energy. In the model,
although synaptic vesicles preparing for exocytosis and returning
to the recycling pool both present large ATP demands, the
regulation of these two processes exerts different effects on the
energy consumption at synapses. Before the synaptic vesicles
in the recycling pool are depleted, regulating the process of
synaptic vesicles preparing for exocytosis could change synaptic
energy consumption, while regulating the process of synaptic
vesicles returning to the recycling pool would exert little effect

on synaptic energy consumption. In fact, under physiological
conditions, the synaptic vesicles in the recycling pool are rarely
depleted (Fernándezalfonso and Ryan, 2004). Therefore, for
simplicity, only the process of synaptic vesicles preparing for
exocytosis is regulated by metabolic energy in our model.

These raise a question about how to regulate the process of
synaptic vesicles preparing for exocytosis according to synaptic
energy levels. Here, from the optimization principle, we derive
an essential equation which describes the basic relation between
synaptic vesicle cycle and synaptic energy level. In our model,
the time constant τs defined in Equation (1) uniquely determines
the rate of synaptic vesicle preparing for exocytosis, which also
indicates that the speed of synaptic vesicle cycle is closely related
to the time constant τs. Therefore, we can regard the energy
consumption of synaptic vesicle cycle over a period of time as
a function of the time constant τs. The energy optimization of
synaptic vesicle model can be abstracted as a constraint

min f (τs)

st.f (τs) =

∣

∣

∣
Eatrans − Edtrans

∣

∣

∣
, (8)

Eatrans > 0,Edtrans > 0.

where Eatrans and Edtrans represent the actual energy consumption
and desired energy consumption at synapses over a period
of time, respectively. The desired energy consumption is set
manually to reflect the level of metabolic energy at synapses.
According to optimization principles, we can use gradient
descent algorithm

τ
(k+1)
s = τ

(k)
s − λk · ∇f

(

τ
(k)
s

)

(9)

to iteratively update τs to minimize f (τs), where λk is the iterative
step size. Unfortunately, from an engineering point of view,
synapse is a complex nonlinear time-varying system, and we
cannot obtain accurate analytical formula of f (τs). We note
that a shortage of synaptic energy can result in the deceleration
of the cycle, which in turn promotes the recovery of synaptic
energy (Heidelberger et al., 2002). Obviously, there is a negative
relationship between the cycle and synaptic energy. Therefore,
we can infer that τs is inversely proportional to Eatrans, and
(

Eatrans − Edtrans

)

is proportional to ∇f
(

τ
(k)
s

)

. To avoid the need

to obtain accurate analytical formula of f (τs),
(

Eatrans − Edtrans

)

is used to replace ∇f
(

τ
(k)
s

)

. Considering the large difference in

magnitude between
(

Eatrans − Edtrans

)

and ∇f
(

τ
(k)
s

)

, we modify
(

Eatrans − Edtrans

)

and finally get

τ
(k+1)
s = τ

(k)
s + λk ·





2

1+ e
−

(

Eatrans−E
d
trans

) − 1



 (10)

Obviously, a value of
(

Eatrans − Edtrans

)

less than 0 indicates a

lower ATP concentration at synapses, so the time constant τs
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should decrease in the next period; otherwise, the time constant
τs should increase. According to Equation (10), we can conclude
that changes in synaptic vesicle cycle result in fluctuations
in synaptic energy level, which in turn affects the cycle of
synaptic vesicles. The constraint of synaptic transmission model
is implemented in MATLAB, and its code is available upon
request.

Measurement of the Information Quantity
and Energy Consumption of a Spike Train
After the synaptic transmission described above, presynaptic
signals transmitted through innumerable synapses located at
different dendritic branches are propagated into the soma and
integrated in linear, supra-linear and sub-linear manners (Magee,
2000; Vetter et al., 2001; Branco and Häusser, 2011; Xu et al.,
2012). To study the relation between metabolic energy and
dendritic integration, a traditional multi-compartment model
is established here (see Supplementary Material). We obtain
the action potentials at different frequencies by changing the
number of simultaneously active synapses in the model and
then calculate the information quantity and energy consumption
of a spike train over a period of time according to the action
potential frequency. During dendritic integration, pyramidal
neurons generate an action potential until the membrane
potential reaches the threshold potential; subsequently, ion
pumps quickly restore various ion concentrations on both sides
of the neuronal membrane to prepare for the next action
potential. According to recent studies, action potentials are
more energetically efficient than previously thought, and the
energy consumption of a single action potential is mainly in
the range of (1.1∼1.5) × 108 ATP molecules (Harris and
Attwell, 2012; Howarth et al., 2012; Yu and Yu, 2017; Yu
et al., 2017). Here, for simplicity, the energy consumption of
a single action potential is fixed to 1.2 × 108 ATP molecules.
Obviously, a higher action potential frequency is indicative
of a larger number of ions actively transported per second;
consequently, the pyramidal neurons consume energy more
rapidly. The information quantity and energy consumption of a
spike train can be calculated, respectively, as follows (Harris et al.,
2012)

Iinfo =
−f δlog2

(

f δ
)

−
(

1− f δ
)

· log2
(

1− f δ
)

δ
(11)

Eainteg = 1.2× 108 · f (12)

where f is the frequency of action potential generated
by the model. Due to the refractory period, there is a
time interval between adjacent action potentials. Here,
we use δ to represent the minimum time interval, in
which a single action potential is either generated or
not. Iinfo and Eainteg represent the information quantity

and energy consumption of a spike train per second,
respectively.

RESULTS

Release Probability of Synapses Adapts to
Energy Level by Regulating the Speed of
the Vesicle Cycle
Numerous experimental and theoretical studies have
demonstrated that a low release probability at hippocampal
synapses can maximize the ratio of information transmitted to
ATP consumed during synaptic transmission (Levy and Baxter,
2002; Goldman, 2004; Harris et al., 2012). Undoubtedly, the
release probability is closely related to the synaptic energy. To
investigate the relationship between the release probability and
the synaptic energy, a comparative simulation is performed using
the synaptic transmission model.

First, we simulate synaptic vesicle cycle in the case of not
considering the effects of synaptic energy. Two types of action
potential sequences (4 and 100Hz) lead to periodic changes
in the free Ca2+ concentration (Figure 2A). In both cases,
the number of synaptic vesicles in the recycling pool declines
until the rate of synaptic vesicles returning to the recycling
pool gradually rises to the rate of synaptic vesicles leaving the
recycling pool (Figures 2B,C). Once the stimulation stops, the
number of synaptic vesicles in the recycling pool gradually
returns to the level before the arrival of the action potential.
For the 4Hz stimulation, synaptic vesicles leave the recycling
pool at a rate of only 17 synaptic vesicles per second, and
the release probability of synapses is about 0.86, while for the
100Hz stimulation, the leaving rate reaches the maximum usage
of a synapse, and the release probability of synapses is about
0.039. This value implies that for the 100Hz stimulation, all
release sites are busy releasing neurotransmitters, and some
prepared synaptic vesicles must wait for available release sites.
In fact, in the synaptic transmission model, the relative relation
between the rate of synaptic vesicles leaving the recycling pool
and the usage of a synapse determines the release probability
of synapses at different stimulus frequencies. If the rate of
synaptic vesicles leaving the recycling pool is greater than the
maximum usage of a synapse, the limited number of release
sites in the pyramidal neuron leads to the loss of some action
potentials.

From Figure 2D, we can find that as the stimulus frequency
increases, the rate of synaptic vesicles leaving the recycling
pool generally rises with large initial fluctuations and gradually
becomes stable until it approaches the maximum usage of
a synapse. Meanwhile, the release probability quickly decays
as the stimulus frequency increases. Obviously, the release
probability heavily depends on the action potential frequency.
It is worth noting that the release probability is quite high at
low stimulus frequency (Figure 2D). This is inconsistent with
existing experimental findings that the release probability of
most synapses can always stay within a range of 0.25∼0.5 to
optimize energy efficiency (Levy and Baxter, 2002; Goldman,
2004; Harris et al., 2012). This conflict between the simulation
results and the biological experimental findings is attributed
to the absence of the regulation of synaptic energy. Without
considering the effects of synaptic energy, the model cannot be
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FIGURE 2 | Simulation of the synaptic transmission model without the constraint. (A) Fluctuations in the free Ca2+ concentration induced by action potentials with 4

and 100Hz frequencies. (B,C) The model receives 4 and 100Hz stimulation, respectively. Initially, the rate of synaptic vesicles leaving the recycling pool is larger than

the rate of synaptic vesicles returning to the recycling pool, so the number of synaptic vesicles in the recycling pool declines. Once vs equals vr , the number of

synaptic vesicles maintains a dynamic balance. After the end of the stimulation, the number of synaptic vesicles in the recycling pool gradually recovers. Notably,

synaptic vesicles leave the recycling pool at intervals. (D) Action potential sequences with different frequencies are input to the model. Clearly, when the frequency is

higher, the release probability is lower, while the leaving rate gradually approaches the maximum usage of a synapse.

optimized according to synaptic energy levels and not necessarily
optimal for arbitrary input. Thus, the simulation results is
normal for some inputs and abnormal for others, as shown in
Figure 2D.

Subsequently, we repeat above simulations in the case of
considering the effects of synaptic energy. In this case, the
model can be optimized according to synaptic energy levels.
From Figure 3A, we can find that due to the regulation from
synaptic energy, the rate of synaptic vesicles leaving the recycling
pool gradually decreases and then remains stable. Clearly, in
the first 10 s of the simulation, more than 100 vesicles leave
the recycling pool, and then the rate of vesicles leaving the
recycling pool gradually decreases to approximately 50 vesicles
per 10 s. On the contrary, the return rate of vesicles to the
recycling pool increases from zero and then changes with
the leaving rate until it is equal to the leaving rate. As we
know, the number of vesicles in the recycling pool depends
on the leaving rate and return rate. During the initial period
of time, the leaving rate is significantly greater than the return
rate, so the number of vesicles in the recycling pool drops
rapidly. Subsequently, as the return rate gradually rises and
equals the leaving rate, the number of vesicles in the recycling
pool ceases to drop and maintains dynamic balance. It can
be found from Figure 3B that the regulation can continuously
narrow the gap between the actual energy consumption and
the desired energy consumption at synapses. Besides, during

this process, the time constant τs gradually increases and then
remains stable. As we know, the larger the time constant
τs, the more time the vesicles spend on the preparation for
exocytosis. Therefore, we can conclude that release probability
of synapses adapts to synaptic energy level by regulating the
speed of synaptic vesicle cycle. Finally, we repeatedly input
action potential sequences whose frequency obeys a Gaussian
distribution into the model. It can be found from Figure 3C that
under the regulation from synaptic energy, the time constant
gradually increases and the difference between the actual
energy consumption and desired energy consumption gradually
approaches zero. Obviously, the regulation from metabolic
energy enables synaptic vesicle cycle to quickly adapt to any given
ATP concentration at synapses and have a corresponding release
probability.

To validate the proposed model, the simulation results are
compared with experimental results. We first set the number
of vesicles in the recycling pool to zero and then measure the
recovery of vesicles in the recycling pool. The experimental
results indicate that the recovery of vesicles in the recycling
pool can be fitted as an exponential curve with a time constant
6.5 (Heidelberger et al., 2002). Exactly, our simulation results
are consistent with the trend of the exponential curve, as
shown in Figure 3D. Full recovery of vesicles in the recycling
pool requires about 20 s. Next, the synaptic energy level is set
to different values while keeping the input signal unchanged.

Frontiers in Computational Neuroscience | www.frontiersin.org 6 September 2018 | Volume 12 | Article 79

https://www.frontiersin.org/journals/computational-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/computational-neuroscience#articles


Yuan et al. Effects of Energy on Neurons

FIGURE 3 | Simulation of the synaptic transmission model with the constraint. (A) Due to the constraint, the rate of synaptic vesicles leaving the recycling pool

gradually declines to maintain the release probability within the range of 0.25∼0.5. The rate of vesicles returning to the recycling pool varies with the rate of vesicles

leaving the recycling pool. Once vs equals vr , the number of synaptic vesicles maintains a dynamic balance. (B) Under the constraint, the time constant τs gradually

increases so that the difference between the actual metabolic energy consumption and the desired energy consumption (8.2 × 105 ATP/s) tends to zero. (C) The

model is repeatedly stimulated by action potential sequences. Each stimulation lasts for 50 s. The frequency of action potential sequences in each stimulation obeys

an N(4, 1) Gaussian distribution. After the input of approximately three hundred stimuli, the synapse model gradually adapts to the stimulus signal. (D) The recovery of

the recycling pool in which the vesicles are completely exhausted. The red curve represents the simulation results, and the dark blue curve represents the

experimental results (Heidelberger et al., 2002). (E) Spike signals with the frequency of 4Hz are continuously input into the model. When the number of vesicles in the

recycling pool reaches dynamic balance, the ratio of the actual vesicle number to the maximum capacity of the pool varies with different synaptic energy level. (F) In

the case that the frequency of action potential remains unchanged, the larger the time constant τs, the smaller the release probability.

We find that when the number of vesicles in the recycling
pool reaches dynamic balance, the ratio of the actual vesicle
number to the maximum capacity of the recycling pool varies
with different synaptic energy levels (Figure 3E). As biological
experiments reveal, without ATP hydrolysis, synaptic vesicles
stop cycling and stay in the recycling pool (Heidelberger et al.,
2002). In addition, we also find that when the number of
vesicles in the recycling pool reaches dynamic balance, the
ratio of the actual vesicle number to the maximum capacity
of the pool is generally larger than 40%. When the ratio
approaches 40%, it remains almost unchanged even if the
synaptic energy level in the model increases continuously.
This means that the vesicles in the pool are hard to be
exhausted under physiological conditions (Fernándezalfonso
and Ryan, 2004). In the end, the time constant τs is set
to different values and the corresponding release probability
is measured (Figure 3F). Obviously, as the time constant τs
increases, the release probability decreases. As experiments
and theoretical studies reveal, the release probability which
can optimize energy efficiency generally stay within a range
of 0.25∼0.5 (Heidelberger et al., 2002; Harris et al., 2012).
According to our simulation results, the time constant τs should
stay within the range of 0.5∼1.0 s to ensure release probability
stay within a range of 0.25∼0.5 (Figure 3F). Then, we can
roughly calculate that each vesicle takes about 12 s to complete
a cycle. Existing experiments show that the maximum time for
reuse of a given vesicle is 13∼30 s (Neher, 2010). Based on
above analyses, the simulation results obtained by our model is
reasonable.

Dendritic Energy Efficiency Varies
Nonlinearly With the Number of
Simultaneously Active Synapses
The rat hippocampal CA1 pyramidal neuron receives a large
number of excitatory and inhibitory synapses, but not all of
them receive signals from presynaptic neurons at the same time.

At a given time, some synapses become active for receiving
presynaptic signals, while the rest remain silent (Jeff and Subutai,

2016). Why neurons own thousands of synaptic connections and
what factors affect the number of simultaneously active synaptic
connections remain unclear.

In the case of different numbers of active synapses, many

action potential sequences generated by postsynaptic neurons
are recorded in our simulations. The simulations are performed
on a traditional multi-compartment model which has been
successfully used for capturing the complex firing patterns of

neurons (Keren et al., 2005; Saraga et al., 2010; Kispersky et al.,
2012). This model contains a set of compartments defined by

differential equations, and each compartment involves several
gating variables, such as sodium conductance and potassium

conductance (see Supplementary Material). For simplicity, all
synapses in the model are assumed to be excitatory synapses
receiving action potentials at 10Hz, and their interspike intervals
obey a Poisson distribution. According to Equations (11) and
(12), the information quantity and energy consumption of a spike
train can be calculated.

As the number of active synapses in a compartment gradually
changes, the relations between the number of active synapses and
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the action potential frequency as well as between the number of
active synapses and the energy consumption of integrating each
bit of information are shown in Figure 4. Because the majority
of excitatory synapses are located in the basal dendrites, distal
trunk, prolonged trunk, trunk branches and distal tuft (Table 1),
only the compartments corresponding to these dendrites are
illustrated in Figure 4. It can be clearly found that as the number
of active synapses located in the basal dendrites or the proximal
trunk branches increases, the frequency of the action potentials
can increase to more than 100Hz. In contrast, with increasing
numbers of active synapses located in other dendrites, such as
the distal trunk, prolonged trunk, medial trunk branch, and distal
trunk branch, the frequency of action potentials first decreases
and then increases but remains less than 100Hz. As an exception,
for increasing numbers of active synapses in the distal tuft, the
frequency of action potentials first decreases and then remains
constant. Our simulation results have confirmed that (a) a change
in the number of active synapses in any compartment can cause
a nonlinear change in the frequency of action potentials, and
(b) the closer to the AIS the synapses are, the bigger their
contribution to the generation of action potentials. Besides,
from our simulation results, we can also find that the energy
consumption of integrating each bit of information exhibits the
same trend as the frequency of action potentials with a change
in the number of active synapses in each compartment. That is,
the energy consumption of integrating each bit of information is
clearly proportional to the frequency of the action potentials.

In fact, different numbers of synapses are distributed in
different compartments simultaneously. In the next step of our
simulations, two or more different compartments are chosen
to further study the relations between the action potential
frequency and the number of active synapses as well as between

the energy consumption of integrating each bit of information
and the number of active synapses. The simulation results are
illustrated in Figure 5, in which we use different colors to
represent the magnitude of action potential frequency and the
energy consumption of integrating each bit of information. The
closer the color of a region is to red, the higher the frequency
of action potentials and the energy consumption of integrating
each bit of information; otherwise, the lower the frequency
and energy consumption. Obviously, as the number of active
synapses located in distal trunk, distal basal dendrites, medial
trunk branch, proximal trunk branch, or distal tuft increases,
the frequency of action potentials can increase to more than
100Hz (Figures 5A,C,G). In contrast, with increasing numbers
of active synapses located in other dendrites, such as prolonged
trunk and distal trunk branch, the frequency of action potentials
first decreases and then increases but remains less than 100Hz
(Figure 5E). Besides, we also find that if two compartments are
approximately equidistant from the AIS, the equal frequency
curves are approximately ¼ of a cycle, as shown in Figure 5E.
Otherwise, the equal frequency curves present an irregular
shape, as shown in Figures 5A,C,G. In addition, the energy
consumption of integrating each bit of information exhibits the
same trend as the frequency of action potentials with a change
in the number of active synapses (Figures 5B,D,F,H). That is,
when the frequency of action potentials is higher, the energy
required to integrate one bit of information is greater. It is
worth noting that the changes in the frequency and energy
consumption caused by the increase in the number of active
synapses in different compartments show different trends. The
increase in the number of active synapses in some compartments
causes an increase in the frequency and energy consumption (e.g.,
Figures 5B,D), while for other compartments, the frequency

FIGURE 4 | Relations between the action potential frequency and the number of active synapses in individual compartments as well as between the energy

consumption of integrating each bit of information and the number of active synapses in individual compartments. Only eight compartments corresponding to the basal

dendrites, distal trunk, prolonged trunk, trunk branches, and distal tuft are illustrated here. The values on the horizontal axes indicate the number of active synapses in

each compartment. (A) The change in the frequency and the energy consumption when the synapses on distal basal dendrites become active. (B) The change when

the synapses on proximal basal dendrites become active. (C) The change when the synapses on distal trunk become active. (D) The change when the synapses on

prolonged trunk become active. (E) The change when the synapses on proximal trunk branch become active. (F) The change when the synapses on medial trunk

branch become active. (G) The change when the synapses on distal trunk branch become active. (H) The change when the synapses on distal tuft become active.
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TABLE 1 | Parameters of the pyramidal neuron structural model (Megías et al., 2001).

Type Percentage of length Diameter (µm) Spine density (/µm) Excitatory input (/µm) Inhibitory input (/µm)

Proximal basal dendrite 0.033 0.7 0.64 0.64 0.61

Distal basal dendrite 0.33 0.3 3.08 3.08 0.11

Proximal trunk 0.01 2.1 0.03 0.03 1.69

Medial trunk 0.01 2.0 2.37 2.37 0.54

Distal trunk 0.027 1.2 6.98 6.98 0.15

Trunk branches 0.355 0.5 3.52 3.52 0.11

Prolonged trunk 0.025 1.1 1.72 1.72 0.28

Medial tuft 0.053 0.6 0.6 0.69 0.12

Distal tuft 0.157 0.2 0.37 0.48 0.10

and energy consumption first decreases and then increases
(Figures 5E,F). The reason why this situation occurs is that
action potentials generated in AIS can also propagate back into
dendrites (Nevian et al., 2007). In this situation, the current
transferred from dendrites to AIS is offset by the current
transferred from AIS to dendrites, which results in a decrease
in the frequency and energy consumption. This phenomenon
is related to many factors, such as the spiking frequency and
the feature of compartments, and does not occur in every
compartment.

Biological experiments have revealed that most of neurons
in CNS generate action potentials at a low frequency (Attwell
and Laughlin, 2001; Harris et al., 2012). According to our
simulation results, it can be found that the energy consumption
of integrating each bit of information is less than 5.0 × 107

ATP. When the action potential frequency is less than 50Hz, the
energy consumption is relatively low, and when the frequency
is greater than 50Hz, the energy consumption increases rapidly.
The energy consumption of integrating each bit of information
during dendritic integration is proportional to action potential
frequency. Therefore, we can naturally infer that the limited
metabolic energy may not allow individual neurons to process
information with high-frequency action potentials, and only
a part of the synapses receive presynaptic signals during a
given period so that neurons have a low action potential
frequency. Although each pyramidal neuron receives thousands
of excitatory synapses in the dendritic tree, only a few synapses
receive presynaptic signals at the same time. These findings
raise the question of why neurons have these morphological
and integrative properties. We learn from the above analysis
that although a large number of active synaptic connections can
effectively generate action potentials, a large amount of metabolic
energy is consumed. Therefore, a trade-off is needed between the
number of active connections and the consumption of metabolic
energy (Niven et al., 2007).

DISCUSSION AND CONCLUSIONS

Metabolic Energy Could Exert Regulation
on Synaptic Vesicle Cycle of Neurons
In this paper, based on the latest research findings, we propose
a biologically plausible synaptic transmission model that enables
us to vividly simulate the process of action potentials inducing

synaptic vesicles to release neurotransmitters. In addition, from
the perspective of optimization principles, we derive an essential
equation which can describe the relationship between synaptic
vesicle cycle and synaptic energy level. Based on this essential
equation, the synaptic vesicle cycle in ourmodel changes synaptic
energy level, and synaptic energy level in turn regulates the
synaptic vesicle cycle, which is one of the contributions in our
work.

The synaptic vesicle cycle is simulated without and with
the effects of synaptic energy, respectively. There are huge
differences between the simulation results in both cases. In
the case of not considering the effects of metabolic energy,
the release probability of synapses exhibits large fluctuations
as the frequency of input signals changes. Undoubtedly, this
is inconsistent with biological experimental findings that the
release probability of most synapses stay within a range of
0.25∼0.5 to optimize synaptic energy efficiency (Harris et al.,
2012). Conversely, when considering the effects of metabolic
energy in the model, the cycle of synaptic vesicles becomes stable.
Regardless of how the frequency of input signals changes, release
probability could always stay within the range of 0.25∼0.5.
Therefore, it is clear that the metabolic energy at synapses not
only drives synaptic vesicle cycle, but also participates in the
regulation of this cycle. From the simulation results, it also can
be found that the time constant τs continually changes as the
release probability gradually approaches to the range of 0.25∼0.5.
As we know, the time constant τs determines how long vesicles
spend on the preparation for exocytosis. Therefore, we can
further conclude that release probability of synapses adapts to
energy level by regulating the speed of synaptic vesicle cycle. In
addition, compared with previous studies, another contribution
in our work is that the proposed model can simulate synaptic
vesicle cycle under different conditions and even show how
synaptic energy regulate the cycle of synaptic vesicles. We study
the recovery of depleted recycling pools, as well as the cycle
of synaptic vesicles under different ATP concentrations. The
simulation results are in good agreement with the biological
experiment results, which means that our model is biologically
plausible.

However, these findings raise some questions about what
biological mechanisms probably account for the adaptation of
synaptic vesicle cycle to synaptic energy levels. The adaptability
of synaptic vesicle cycle is probably caused by a variety of
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FIGURE 5 | Relations between the action potential frequency and the number of active synapses in two compartments and between the energy consumption of

integrating each bit of information and the number of active synapses in two compartments. The horizontal axis and vertical axis indicate the number of active

synapses in each compartment. (A,B) The change in the frequency and the energy consumption when the synapses on distal basal dendrites and distal truck

become active. (C,D) The change when the synapses on distal basal dendrites and medial truck branch become active. (E,F) The change when the synapses on

prolonged trunk and distal truck branch become active. (G,H) The change when the synapses on proximal trunk branch and distal tuft become active.

biochemical reactions, such as the production of soluble adhesion
protein complexes, the movement of motor proteins, and
the metabolic cooperation between astrocytes and neurons,
etc. During the process of synaptic vesicles moving from
the recycling pool to the RRP and preparing for exocytosis,
with the participation of calcium ions, proteins on vesicle
membrane bind to proteins on active zones to produce soluble
adhesion protein complexes, which need ATP hydrolysis to
provide energy (Heidelberger et al., 2002; Südhof, 2013). In
addition, the transportation of synaptic vesicles and protein
requires the participation of motor proteins, powered by the
hydrolysis of ATPs (Heidelberger et al., 2002). Undoubtedly,
biochemical reactions that heavily depend on the hydrolysis of
ATPs are also affected by ATP concentration. Increasing evidence
suggests that astrocytes are the major source of the energetic
substrates used by the synapses and play important roles in the
regulation of synaptic transmission (Newman, 2003; Jourdain
et al., 2007; Perea and Araque, 2007; Magistretti and Allaman,
2015; Bazargani and Attwell, 2016). It has also been demonstrated
that metabolic energy plays an important role in neuronal
synaptic functions through constraints (Göbel et al., 2010;
Rangaraju et al., 2014). As a consequence, from the perspective
of engineering, all neural mechanisms mentioned above lead
us to infer that synaptic metabolic energy exerts constraints on
synaptic vesicle cycle of neurons. Assuming that synapses initially
have a high release probability, high-frequency action potentials
could induce a large number of synaptic vesicles to release
neurotransmitters in a short time, leading to a sharp decrease in
metabolic energy at the synapses. Because the ability of astrocytes
to supply energetic substrates to neuronal terminals is limited,
a metabolic energy shortage could occur if a large number
of synaptic vesicles were to release neurotransmitters within a
short time. In this situation, the production of soluble adhesion
protein complexes as well as the movement of motor proteins

will decelerate, and synaptic vesicles will require a longer time
to prepare for exocytosis. For some arriving action potentials,
then, no synaptic vesicles will be available. Accordingly, the
release probability at the synapses will decrease. Conversely, for a
synapse with a very low release probability, sufficient energy can
promote the activities of the synaptic vesicles and increase the
release probability.

Recently, Lu et al. point out that the synapses with high release
probability show a more energy- efficient design for releasing
neurotransmitters (Lu et al., 2016). This seems to be contrary
to the viewpoint that most of synapses maintain a low release
probability to obtain optimal energy efficiency. However, it is
worth noting that the energy efficiency in Lu’s study is computed
only according to presynaptic energy consumption, while
postsynaptic energy consumption is neglected. Experimental
and theoretical studies have shown that postsynaptic energy
consumption far exceeds presynaptic energy consumption
during the release of neurotransmitters (Attwell and Laughlin,
2001; Howarth et al., 2012). In our model, both presynaptic and
postsynaptic energy consumption are taken into account when
computing the energy efficiency. Obviously, the energy efficiency
in Lu’s study actually refers to presynaptic energy efficiency,
whereas the energy efficiency in our model refers to the energy
efficiency of a synapse.

Existing studies have shown that a low release probability
can optimize the energy efficiency of the synapse (Levy and
Baxter, 2002; Harris et al., 2012). Lu’s study also suggests
that if presynaptic terminals really consume a negligible
proportion of synaptic energy budget, low release probability
synapses undoubtedly gain a greater advantage (Lu et al., 2016).
According to Lu’s study, a high release probability is needed
for presynaptic terminals to obtain optimal energy efficiency.
However, as our model reveals, when the action potential
frequency remains unchanged, a higher release probability can
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lead to a greater postsynaptic energy consumption, and the
magnitude of postsynaptic energy consumption is greater than
that of presynaptic energy consumption. When high release
probability makes presynaptic terminals reach the optimal energy
efficiency, the energy efficiency of the synapse will decrease
due to the greater postsynaptic energy consumption. Once the
energy efficiency of the synapse decreases, synaptic vesicle cycle
is immediately regulated and the release probability decreases
accordingly. This may be a reason why the release probability
corresponding to the optimal energy efficiency of the synapse is
lower than the release probability corresponding to presynaptic
optimal energy efficiency.

Metabolic Energy Is One of the
Determinants of the Number of
Simultaneously Active Synapses
In addition to synaptic transmission, dendritic integration is also
an important but metabolically expensive step in information
processing in pyramidal neurons. Therefore, based on the
simulation of a multi-compartment model in pyramidal neurons,
we also quantitatively study the relationship between dendritic
integration and metabolic energy. In the case of different
numbers of active synapses at different compartments, we record
the corresponding frequency of action potentials and the energy
consumption of integrating each bit of information. From our
simulation results, we show that (a) a change in the number of
active synapses in any compartment can cause a nonlinear change
in the frequency of action potentials, and (b) the closer to the AIS
the synapses are, the bigger their contribution to the generation
of action potentials. Our simulation results also confirm that the
energy consumption of integrating each bit of information is
clearly proportional to the frequency of the action potentials.

Our simulation results show that when the action potential
frequency is less than 50Hz, the energy consumption is relatively
low, and when the frequency is greater than 50Hz, the energy
consumption increases rapidly. Exactly, many studies have
revealed that most of neurons in CNS fire at a low frequency
(Attwell and Laughlin, 2001; Harris et al., 2012). Therefore,
from the perspective of energy, the limited metabolic energy
may not allow individual neurons to process information using
high-frequency action potentials. To match the neural energy
level, only a part of the synapses receive presynaptic signals
during a given period so that the neurons have a low action
potential frequency. That is, an excessive number of active
synapses over a period of time could increase the energy
burden on pyramidal neurons. This finding raise a question
why neurons have large number of synapses but only a part
of the synapses receive presynaptic signals over a period of
time. Studies have shown that the number of connection
patterns in pyramidal neurons increases with the number of
synapses, and a large number of connection patterns provides
powerful information processing capability for neurons (Jeff
and Subutai, 2016). Therefore, combing with our simulation
results, we can infer that the number of synapses is a trade-off
between the metabolic energy and the connection patterns of
pyramidal neurons. There is also another question about what

biological mechanisms probably account for the adaptation of
the number of synapses to neural energy levels. The answers
may be found through a further understanding for the roles of
astrocytes. Astrocytes emerge as essential participants in nearly
all aspects of neural development, such as promoting synapse
formation and pruning exuberant synaptic connections (Corty
and Freeman, 2013). Under the guidance of a unified principle,
the nervous system may manage synaptic connections through
astrocytes.

In the proposed models, we regard the energy consumption
of synaptic transmission and dendritic integration as a constant,
which is reasonable for the neurons at low firing frequency.
However, synaptic transmission and dendritic integration are
not instantaneous, and the corresponding energy would not
be consumed immediately. Therefore, there should be an
applicable frequency range of the proposed model. For dendritic
integration, a single action potential can last 1∼2ms, during
which metabolic energy is consumed to reset membrane
potential (Dayan and Abbott, 2001). This means that the energy
consumption corresponding to an action potential also lasts
1∼2ms. Besides, given that the refractory period of action
potentials also lasts a few milliseconds (Dayan and Abbott,
2001), it can be roughly estimated that the applicable frequency
range for the multi-compartment model is 0∼100Hz. For
synaptic transmission, the majority of energy is consumed by
postsynaptic action of the released neurotransmitters (Attwell
and Laughlin, 2001). Neurotransmitters lead to the activation
of the receptor channels on the postsynaptic membrane, and
a large number of ions pour into the postsynaptic membrane
through these channels. To pump out these ions, much energy is
consumed. During releasing neurotransmitters of a single vesicle,
the average open time of non-NMDA channels is ∼1.5ms, while
the average open time of NMDA channels is∼50ms (Attwell and
Laughlin, 2001). Therefore, it can be roughly estimated that the
applicable frequency range for the synaptic transmission model
is 0∼20Hz.
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