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Abstract. This paper focuses on predicting the severity of freeway traffic accidents by employing twelve accident-
related parameters in a genetic algorithm (GA), pattern search and artificial neural network (ANN) modelling meth-
ods. The models were developed using the input parameters of driver’s age and gender, the use of a seat belt, the type 
and safety of a vehicle, weather conditions, road surface, speed ratio, crash time, crash type, collision type and traffic 
flow. The models were constructed based on 1000 of crashes in total that occurred during 2007 on the Tehran–Ghom 
Freeway due to the fact that the remaining records were not suitable for this study. The GA evaluated eleven equations 
to obtain the best one. Then, GA and PS methods were combined using the best GA equation. The neural network used 
multi-layer perceptron (MLP) architecture that consisted of a multi-layer feed-forward network with hidden sigmoid 
and linear output neurons that could also fit multi-dimensional mapping problems arbitrarily well. The ANN was ap-
plied during training, testing and validation and had 12 inputs, 25 neurons in the hidden layers and 3 neurons in the 
output layer. The best-fit model was selected according to the R-value, root mean square errors (RMSE), mean absolute 
errors (MAE) and the sum of square error (SSE). The highest R-value was obtained for the ANN around 0.87, dem-
onstrating that the ANN provided the best prediction. The combination of GA and PS methods allowed for various 
prediction rankings ranging from linear relationships to complex equations. The advantage of these models is improv-
ing themselves adding new data.
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1. Introduction

As the world population grows and cars become increas-
ingly common, the number of traffic crashes worldwide 
is increasing. Traditional measures to reduce crashes 
include improved geometric design, congestion man-
agement strategies and better driver education and en-
forcement. While these measures are generally effective, 
they are often not feasible or prohibitively expensive to 
implement. Many factors are involved in traffic crashes, 
and some of those have a profound impact on one an-
other, thus preventing transportation safety designers 
from using only one parameter to fully explain traffic 
accident severity. Studying parameters involved in traf-
fic crashes using combined modern models that include 
the interactions of input and output variables can lead 
to a decrease in the number of traffic crashes. The model 

of crash prediction (also called the safety performance 
function) is one of the most important techniques for 
investigating the relationship between crash occurrence 
and risk factors associated with various traffic entities. 
More than 28000 people are killed per year on Iranian 
roads with economic and social consequences. Factors 
with a profound impact on traffic accident severity in-
clude the demographic or behavioural characteristics of 
the driver (vehicle speed, driver’s age and gender, seat 
belt use), environmental factors and roadway conditions 
at the time of the crash (crash time, weather conditions, 
road surface, crash type, collision type, traffic flow) and 
technical characteristics of the vehicle itself (vehicle type 
and safety). The primary goal of this study is to com-
pare various models and select the most accurate one 
to predict traffic accident severity based on selected pa-
rameters; in addition, this research provides a possibility 



of modifying itself with new added data with regard to 
twelve parameters and three injury severity levels se-
lected as input and output variables.

This paper investigates three modelling techniques 
for achieving high predictive accuracy. Artificial neural 
networks are capable of capturing highly nonlinear rela-
tionships between predictor variables (crash factors) and 
the target variable (severity level of injuries). This aspect 
of neural networks is particularly useful when the rela-
tionship between the variables is unknown or complex 
and therefore difficult to handle statistically.

The second model is a genetic algorithm used for 
solving both constrained and unconstrained optimiza-
tion problems based on natural selection, which is the 
process that drives biological evolution. The third model 
we investigate is a model combining the genetic algo-
rithm (GA) and pattern search (PS) models. The use of 
GA and PS models in transportation safety studies is 
relatively new; therefore, we are going to combine these 
models in order to improve prediction accuracy.

Past research analyzing accident frequencies has 
mainly relied on statistical models such as linear regres-
sion models, Poisson regression and/or negative binomi-
al regression models because the occurrence of accidents 
on a highway section can be regarded as a random event.

2. Background

The main focus of the prior studies has been to identify 
a defensible statistical relationship between crash counts 
and exposure. The negative binominal (NB) model aris-
es mathematically (and conveniently) by assuming that 
unobserved crash heterogeneity (variation) across sites 
(intersections, road segments, etc.) is Gamma distrib-
uted while crashes within sites are Poisson distributed 
(Washington et al. 2010). Bayesian empirical methods 
have also been developed (Mahalel et al. 1982; Ng, Sayed 
2004; Wright et  al. 1988). Poisson, Poisson-Gamma 
(NB) and other related models are called generalized lin-
ear models. Hosseinlou and Aghayan (2009) used fuzzy 
logic to predict traffic accident severity on the Tehran–
Ghom freeway in Iran.

Artificial neural networks (ANN) have been veri-
fied to be efficient in many fields. Neural networks are 
commonly used for non-linear modelling and forecast-
ing. In traffic safety, some studies have applied ANNs to 
predicting crash rates and analyzing crashes, but none 
have used twelve parameters, including important fac-
tors with detail. Thus, this study attempted to incorpo-
rate all relevant parameters into the models to achieve 
a high percentage of crash forecasting. Mussone et  al. 
(1999) applied artificial neural networks to analyze ve-
hicular crashes that occurred at an intersection in Mi-
lan, Italy. A number of studies have attempted to identify 
groups of drivers at a greater risk of being injured or 
killed in traffic crashes (Zhang et al. 2000; Valent et al. 
2002). Bédard et al. (2002) applied multivariate logistic 
regression analysis to investigate the effects of a driver, 
crash and vehicle characteristics on fatal crashes. Ivan 

et al. (2000) investigated single and multi-vehicle high-
way crash rates and their relationships with traffic densi-
ty while controlling for land use, the time of the day and 
light conditions. Temporal effects were also considered 
for single-vehicle crashes. Lord et al. (2005) conducted 
analysis on the relationship among crash, density (ve-
hicles per km per lane) and v/c ratio. They found that 
along with an increase in v/c ratio, fatal and single-vehi-
cle crashes decreased after some point, and crash rates 
followed U-shaped relationship. Artificial neural net-
works have scarcely been used as a modelling approach 
in the analysis of crash-related injury severity. More 
recent applications in the transportation field using the 
ANN have included traffic prediction (Yin et al. 2002; 
Zhong et al. 2004), the estimation of traffic parameters 
(Tong, Hung 2002), traffic signal control (Zhang et al. 
2001), incident detection (Jin et  al. 2002; Yuan, Cheu 
2003), travel behaviour analysis (Subba Rao et al. 1998; 
Hensher, Ton 2000; Vythoulkas, Koutsopoulos 2003) 
and traffic accident analysis (Mussone et al. 1996, 1999; 
Sohn, Lee 2003; Abdel-Aty, Pande 2005). For example, 
Abdelwahab and Abdel-Aty (2001) used artificial neural 
networks for modelling the relationship between driver 
injury severity and crash factors related to the driver, 
vehicle, roadway, and environmental characteristics. 
Their study focused on classifying accidents into one 
of three injury severity levels using the readily available 
crash factors. These authors limit their domain of study 
to two vehicle accidents that occurred at intersections 
with signals. The predictive performance of a multi-layer 
perceptron (MLP) neural network was compared to the 
performance of the ordered logit model. The obtained 
results showed that MLP achieved better classification 
(correctly classifying 65.6 and 60.4% of cases for training 
and testing phases respectively) than the ordered logit 
model (correctly classifying 58.9 and 57.1% of cases for 
training and testing phases respectively). Abdel-Aty and 
Pande (2005) applied a probabilistic neural network 
(PNN) model for predicting crash occurrence on the 
Interstate–4 corridor in Orlando, Florida. The average 
and standard deviation from speed around crash sites 
were extracted from loop data as input variables. The 
results of this analysis showed that at least 70% of the 
crashes could be correctly identified by the proposed 
PNN model.

Genetic algorithms are powerful stochastic search 
techniques based on the principle of natural evolution. 
These algorithms were first introduced and investigat-
ed by Holland (1992). According to Chang and Chen 
(2000), regression models generated by genetic pro-
gramming (GP) are also independent of any model 
structure. According to Deschaine and Francone (2004), 
the GP is observed to perform better than classification 
trees with lower error rates and also outperforms neural 
networks in regression analysis. Several studies (Park 
et  al. 2000; Ceylan, Bell 2004; Teklu et  al. 2007) have 
used GP methods in the traffic signal system and net-
work optimization.

354 M. M. Kunt et al. Prediction for traffic accident severity: comparing the artificial neural network ...



3. Methodology
3.1. Artificial Neural Network
Neural networks are composed of simple elements oper-
ating in parallel inspired by biological nervous systems. 
As in nature, connections between elements largely de-
termine the network function. A neural network can be 
trained to perform a particular function by adjusting the 
values of connections (weights) between elements.

We used the architecture of a multi-layer percep-
tron (MLP) neural network that consisted of a multi-lay-
er feed-forward network with sigmoid hidden neurons 
and linear output neurons. Multi-layers of neurons and 
the non-linear transfer function allow the network to 
learn non-linear and linear relationships between input 
and output vectors. The linear output layer allows the 
network to produce values outside the range from –1 
to +1 so that this network with biases, a sigmoid layer 
and a linear output layer are capable of approximating 
any function with a finite number of discontinuities. 
This network can fit multi-dimensional mapping prob-
lems arbitrarily well given consistent data and enough 
neurons in its hidden layer. The network will be trained 
applying Levenberg-Marquardt back propagation algo-
rithm. This structure essentially consists of a collection 
of non-linear neurons organized and connected to each 
other in a feed-forward multi-layer structure using di-
rected arrows as coefficients (commonly called weight 
and bias in neural network terminology). The structure 
usually consists of input nodes, a hidden layer including 
some neurons and output nodes. The hidden layer is the 
network layer, which is not connected to the network 
output (for instance, the first layer of a two-layer feed 
forward network). This pattern is known to be well-suit-
ed to prediction and classification problems.

3.2. Genetic Algorithm
A genetic algorithm is a method for solving both con-
strained and unconstrained optimization problems and 
is based on natural selection, the process that drives bio-
logical evolution. Genetic algorithms repeatedly modify 
a population of individual solutions. At each step, the 
genetic algorithm selects individuals at random from the 
current population to be parents and uses them to pro-
duce children for the next generation. Over successive 
generations, the population ‘evolves’ toward an optimal 
solution. Genetic algorithms can be applied to solve a 
variety of optimization problems that are not well-suited 
to standard optimization algorithms, including problems 
in which the objective function is discontinuous, non-
differentiable, stochastic or highly nonlinear. This meth-

od was developed by Holland (1992) over the course of 
the 1960s and 1970s and was finally popularized by one 
of his students, Goldberg, who was able to solve a dif-
ficult problem for his dissertation involving the control 
of gas-pipeline transmission (Goldberg 1989). Holland 
was the first to try to develop a theoretical basis for 
GAs through his schema theorem. The work of De Jong 
(1975) demonstrated the usefulness of GAs for function 
optimization and was the first concerted effort to opti-
mize GA parameters.

GA operators are mutation (changes in a randomly 
chosen bit of a chromosome) and crossover (exchanging 
randomly chosen slices of a chromosome).

Fig. 1 shows a genetic cycle of the GA where the 
best individuals are continuously selected and operated 
on by crossover and mutation.

3.3. Pattern Search
Direct search is a method of solving optimization prob-
lems and does not require any information about the 
gradient of the objective function. Unlike more tradi-
tional optimization methods that use information about 
the gradient or higher derivatives to search for an op-
timal point, a direct search algorithm searches a set of 
points around the current point, looking for one point 
where the value of the objective function is lower than 
the value at the current point. Direct search can be used 
for solving problems when the objective function is not 
differentiable or even not continuous. Pattern search al-
gorithms are direct search methods well-suited for the 
global optimization of highly nonlinear, multi-parame-
ter and multimodal objective functions (Lewis, Torczon 
1999). The current paper tests a pattern search algorithm 
based on GPS Positive Basis 2N (Lewis, Torczon 1999; 
Audet, Dennis 2003).

Pattern Search functions include two main algo-
rithms called the generalized pattern search (GPS) algo-
rithm and the mesh adaptive search (MADS) algorithm. 
Both are pattern search (PS) algorithms that compute a 
sequence of points that approach an optimal point. Pat-
tern search algorithms are direct search methods that 
are capable of solving global optimization problems of 
irregular, multimodal objective functions without the 
need to calculate any gradient or curvature information, 
especially to address problems for which the objective 
functions are not differentiable, stochastic or even dis-
continuous (Torczon 1997).

At each step, the algorithm searches for a set of 
points called a mesh around the current point that 
was computed in the previous step of the algorithm.  

Fig. 1. The general structure of genetic algorithms

Initialization Evaluation Convergence Best Individual

Generation

Mutation Crossover Selection
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The mesh is formed by adding the current point to a 
scalar multiple of a set of vectors called a pattern. If the 
pattern search algorithm finds a point in the mesh that 
improves the objective function at the current point, the 
new point becomes the current point in the next step of 
the algorithm. The MADS algorithm is a modification 
of the GPS algorithm. The algorithms differ in how the 
mesh is computed. The GPS algorithm uses fixed direc-
tion vectors, whereas the MADS algorithm uses a ran-
dom selection of vectors to define the mesh. The MADS 
algorithm uses the relationship between mesh size m∆  
and an additional parameter called the poll parameter, 

p∆ , to determine stopping criteria.
For positive basis N+1, the poll parameter is  

N mΝ ∆  , and for positive basis 2N, the poll parameter is 
m∆ . The relationship for the MADS stopping criterion 

is m∆ ≤  mesh tolerance, where Δm is the mesh size.
At each iteration pattern search polls the points in 

the current mesh by computing the objective function at 
the mesh points to see if any points have function val-
ues less than the current value. The pattern that defines 
the mesh is specified by the poll method option. GPS 
positive basis 2N consists of the following 2N directions, 
where N is the number of independent variables for the 
objective function. Pattern searches sometimes run 
faster using GPS positive basis Np1 as the poll method 
rather than GPS positive basis 2N because the algorithm 
searches fewer points at each of the iterations. MADS 
positive basis Np1 is also faster than MADS positive ba-
sis 2N (Lewis, Torczon 2002).

4. Measures for Goodness-of-Fit Regression Model

Goodness-of-fit (GOF) statistics is useful for comparing 
results across multiple studies, for examining competing 
models within a single study and for providing feedback 
on the extent of knowledge about uncertainty involved 
in the phenomenon of interest. Four measures of the 
GOF model are discussed: the sum of squares due to 
error (SSE), root mean square error (RMSE), correla-
tion coefficient (R), MAE (mean absolute error) (Draper, 
Smith 1998).

4.1. Sum of Squares Due to Error
This statistics measures the total deviation of response 
values from fit to response values. It is also called the 
summed square of residuals and is usually labelled as 
SSE by Eq. (1) in which iy is response value (target out-
put) and ˆiy is prediction response value:

2
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n

i i i
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w y y
=

= −∑
 

(1)

SSE value closer to 0 indicates that the model has 
a smaller random error component and that the fit will 
be more useful for prediction.

4.2. Root Mean Squared Error
This statistics is also known as the fit standard error and 
the standard error of regression. RMSE is an estimate 
of a standard deviation from the random component in 
data and is defined as Eq. (2):

RMSE MSE,S= =  (2)

where: MSE is the mean square error or the residual 
mean square, Eq. (3):

SSEMSE
v

= . (3)

Just as with SSE, MSE value closer to 0 indicates a 
fit more useful for prediction, and the root mean square 
error (RMSE) is a frequently-used measure of differ-
ences between the values predicted by a model or an 
estimator and the observed values.

4.3. Mean Absolute Error (MAE)
The average error of estimator ( )kf x



with respect to 
estimated parameter ky  is defined as the mean of the 
absolute difference between the estimator and real value, 
Eq. (4):

1

1 ( )
n

k k
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f x y
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4.4. Correlation Coefficient (R)
The correlation coefficient matrix represents the normal-
ized measure of the strength of the linear relationship 
between variables.

Matrix R of correlation coefficients was calculated 
from input matrix X the rows of which are observations 
and columns are variables. Matrix R is related to covari-
ance matrix C = cov(X) by Eq. (5):

C( , )R( , ) .
C( , )C( , )

i ji j
i i j j

=

 
(5)

The correlation coefficients range from –1 to 1, 
where values close to 1 suggest that there is a positive 
linear relationship between data columns. The values 
close to –1 suggest that one column of data has a nega-
tive linear relationship to another column of data (anti-
correlation), and the values close to or equal to 0 suggest 
that no linear relationship exists between data columns 
(Bevington, Robinson 2002).

5. Typical Steps in Designing a Model

Fig. 2 describes the principles of the employed mod-
els. Initially, 1000 records collected from police records 
were used for constructing objective functions for these 
models. Then, the models were able to modify the objec-
tive function with regard to each of those 1000 records 
added to preliminary data. In addition, the optimum 
coefficients of the objective function (for new records) 
were the initial optimum vector in combined GA and 
PS models (for the last records). To achieve optimal re-
sults from the ANN model, new weights and biases were 
calculated from the preliminary weight matrix and bias 
vector. Therefore, the ANN and GA a well as combined 
GA and PS models were able to find the minimum even 
with less than optimum choice for the initial range. Fi-
nally, the errors of objective functions were calculated 
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applying these models, and the most appropriate error 
with respect to its type in each model was selected to 
determine the final objective function. The advantage of 
this structure is the ability of the model to improve itself 
with new added data.

6. Data Description

The dataset used in this study was derived from a total 
of 1063 reported traffic crashes in Tehran, the capital of 
Iran. We selected these crashes from the total number 
of crashes that occurred on the Tehran–Ghom freeway 
in 2007 because these were the only complete crash re-
cords. These data were used as training and testing data 
for the artificial neural network, genetic algorithm and 
combined GA and PS methods. The predictions of these 
three models were compared. The majority of crashes 
(74.8%) involved two vehicles. The distribution of driver 

injuries made 14% of fatal injuries, 38.4% of evident in-
juries and 47.6% contained no injuries.

Three injury levels were considered for this study 
(i.e. no injury, evident injury or disabling injury/fatali-
ty), and twelve variables were selected from the obtained 
data. The vehicle speed in police reports was calculated 
by a camera or breaking distance. Speed ratio was used 
as one of the input variables defined as the ratio of esti-
mated speed at the time of a crash to posted speed limit 
at the crash location. Road geometry parameters were 
not taken into consideration because the selected road 
had a desirable geometry common to all crashes in the 
dataset. The input variables have either numerical or 
dummy values to be used in the program. Table 1 shows 
coding input and output variables. MATLAB software 
was used for comparing the performance of three mod-
elling approaches (ANN, GA, and combined GA and 
PS) discussed earlier.

Fig. 2. The flowchart of the processes carried out in a typical run

START

Data N =1000 Records0

Floor (N /1000) > Floor (N /1000)new last

Determine Formula

Determine Output of Accident Type

END

Genetic Algorithm
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Pattern Search
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Neural Network

Determine Network
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RMSE , MAE , SSE , R0 0 0 0
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RMSE , MAE , SSE , R2 2 2 2
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Max(R)

Yes
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Table 1. A description of study variables

Input Variables
Variable Coding/Values Data

Parameters Subdivided 
Parameters

1 2 Driver’s Gender
Man= (1, 0) 97.56%

Woman= (0, 1) 2.44%

2 1 Driver’s Age Year

20–34=39%

35–49=44%

50–64=10%

65–79=7%

3 2 Use of Seat Belt
In use= (1, 0) 78.66%

Not in use= (0, 1) 21.34%

4 3 Type of Vehicle

Passenger car= (1, 0, 0) 83.54%

Bus= (0, 1, 0) 2.44%

Pick-up= (0, 0, 1) 14.02%
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7. Models Used For Analysis
7.1. Multilayer Perceptron Neural Networks
The MLP model consisted of two layers having weight 
matrix W, bias vector b and output vector ip that 1i >  . 
Fig. 3 shows the selected final model for each of these 
layers in the MLP model. The number of the layer was 
appended as a superscript to the variable of interest.

Superscripts were used for identifying the source 
(second index) and destination (first index) of various 
weights and other elements of the network.

The weight matrix connected to input vector 1p  
was labelled as input weight matrix (IW1,1) having 
source 1 (second index) and destination 1 (first index).
The elements of layer 1such as its bias, net input and 
output have superscript 1 to represent that they were as-
sociated with the first layer.

The matrices of layer weight (LW) and input weight 
(IW) were used in the MLP model. Data were randomly 
divided into three parts: training, testing and validating 
The MLP model had 12 inputs, 25 neurons in the first 

Input Variables
Variable Coding/Values Data

Parameters Subdivided 
Parameters

5 2 Safety of Vehicle
High standard= (1, 0) 31.71%
Low standard= (0, 1) 68.29%

6 4 Weather Condition

Clear= (1, 0, 0, 0) 56.71%
Snowy= (0, 1, 0, 0) 7.93%
Rainy= (0, 0, 1, 0) 10.37%
Cloudy=(0, 0, 0, 1) 25%

7 3 Road Surface
Dry= (1, 0, 0) 75%
Wet= (0, 1, 0) 17.68%

Snowy/Icy= (0, 0, 1) 7.32%
8 1 Speed Ratio km/hr / km/hr

9 2 Crash Time
Day= (1, 0) 65.85%

Night= (0, 1) 34.15%

10 2 Crash Type
With vehicle= (1, 0) 74.81%

With multiple vehicles= (0, 1) 25.19%

11 3 Collision Type
Rear-end= (1, 0, 0) 51.95%

Right-angle= (0, 1, 0) 30.24%
Sideswipe= (0, 0, 1) 17.80%

12 1 Traffic Flow veh/h
Output variables

1 3 Driver Injury Severity
Fatality= (1, 0, 0) 14.02%

Evident injury= (0, 1, 0) 38.41%
No injury= (0, 0, 1) 47.56%

End of Table 1

Fig. 3. The structure of the final Multi-Layer Perceptron neural network model
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layer and 3 neurons in the second layer. The output layer 
of the MLP model consisted of three neurons represent-
ing three levels of injury severity. 70% of the original 
data were used in the training phase. Validation and 
testing data sets each contained 15% of the original data.

Constant input 1 was fed to the bias of each neuron. 
Note that the outputs of each intermediate layer were the 
inputs to the following layer. Thus, layer 2 can be ana-
lyzed as one-layer network having 25 inputs, 3 neurons 
and 3×25 weight matrix W2; under such circumstances, 
input layer 2 is 2p . All the vectors and matrices of layer 
2 have been identified. The layer can be treated as a sin-
gle-layer network on its own. The layers of a multi-layer 
network play different roles in the prediction process. 
This kind of two-layer network was used extensively in 
backpropagation. This study suggested that the output of 
the second layer, 3p , was the network output of interest 
and was labelled as y (Rumelhart et al. 1986).

The objective of this network is to reduce error e, 
which is the difference between t and ip  in which 1i >  
and t is the target vector. The perceptron learning rule 
calculates desired changes (target output) in the weights 
and biases of the perceptron, given input vector 1p  and 
associated error e. Thus, the goal is to minimize the aver-
age of the sum of these errors. The Least Mean Square Er-
ror (LMS) algorithm adjusts the weights and biases of the 
linear network so as to minimize this mean square error.

The error at output neuron j at iteration t can be 
calculated by the difference between the desired out-
put (target output) and the corresponding real output, 

( ) ( ) ( )j j je t d t y t= − . Accordingly, Eq. (6) is the total er-
ror energy of all output neurons.

21( ) ( )
2 jJ ct e t∈ε = ∑ .

 
(6)

Referring to Fig. 3, the output of the k-th neuron 
in the l-th layer can be calculated by Eq. (7) in which 

2 log sigf =  and 3 purelinf = :
1

1

1
( . ),

ln
l l l

k jk jk
j

y f w y
−

−

=
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where: 1 3l≤ ≤ , nl refers to the number of neurons in 
layer l. For the input layer thus holds 1l = , 1

j jy x= , for 
the output layer – 3l = , 3

j jy y= . The mean square error 
(MSE) of the output can be computed by:

2
3 3 25

2 3 2
3

1 1 1

1 1( ) . .
2 2j j j ij i

j j i
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(8)

The steepest descent of MSE can be used to update 
weights by Eq. (9) (Yeung et al. 2010):

3 3
3

( 1) ( ) .ij ij
ij

Ew t w t
w
∂

+ = −η
∂

 
(9)

The mean square error performance index for the 
linear network is a quadratic function as shown in Eq. (8). 
Thus, the performance index will either have one global 
minimum, weak minimum or no minimum, depending 
on the characteristics of input vectors. Specifically, the 
characteristics of input vectors determine whether or not 
a unique solution exists (Hagan et al. 1996).

The results of the MLP model are presented in Ta-
ble 2 in the form of a prediction table. Table 2 depicts 
the prediction level of injury severity patterns in train-
ing, testing and validation phases.

Table 2. Prediction table of the MLP model

R No Injury Evident 
Injury Fatality Overall

Training 0.9091 0.9029 0.8966 0.9125

Validation 0.8187 0.7613 0.6974 0.7863

Test 0.8372 0.6936 0.7587 0.7737

All 0.8849 0.8513 0.8372 0.8731

Fig. 4 shows regression plots for the output with 
respect to training, validating and testing data. The value 
of the correlation coefficient (R) for each phase was cal-
culated. The R-value was around 0.87 for the total re-
sponse in the MLP model.

Fig. 5 plots training errors, validation errors and 
testing errors to find validation error in the training 
window. The best validation performance occurred at 
iteration 7, and the network at this iteration was re-
turned. The plot in Fig. 5 shows the mean squared error 
of the network starting at a large value and decreasing 
to a smaller value, which means that network learning 
is improving. The plot has three lines, because 1000 in-
put and target vectors were randomly divided into three 
sets. 70% of the vectors were used for training the net-
work. 15% of those were used for validating how well 
the network was generalized. Training vectors continues 
as long as training reduces the network error on valida-
tion vectors. After the network memorized the training 
set (at the expense of generalizing more poorly), train-
ing is stopped. This technique automatically avoids the 
problem of over fitting, which plagues many optimiza-
tion and learning algorithms. Finally, the last 15% of the 
vectors provide an independent test of network generali-
zation about data that the network has never seen.

7.2. Genetic Algorithm
The genetic algorithm (GA) is an optimization and 
search technique based on the principles of genetics 
and natural selection. The genetic algorithm starts with 
a population of solutions (chromosomes) represented by 
coded strings (typically 0 and 1 binary bits) as the un-
derlying parameter set of the optimization problem. GAs 
generate successively improved populations of solutions 
(better generations) by applying three main genetic op-
erators: selection, crossover and mutation. The selection 
function chooses parents for the next generation based 
on their scaled values from the fitness scaling function 
where the stochastic uniform selection function was 
used. Crossover is achieved by exchanging coding bits 
between two mated strings. The chromosomal mate-
rial of different parents can be combined to produce an 
individual that could benefit from the strength of both 
parents. In this case, the applied crossover function was 
scattered.
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Mutation occasionally provides and recovers useful 
material for chromosomes through the random altera-
tion of the value of a string bit (in the binary case, from 
0 to 1 and vice versa). In our case, Gaussian mutation 
function was used. The following formula was obtained 
from 1000 police records, and therefore the system was 
able to modify the formula based on the added records. 
The goal is to find the solution in the set with the high-
est (optimum) performance according to our measure of 
‘goodness’. An objective function can be defined to rep-
resent the severity of traffic crash and prediction target 
that we seek to optimize. The objective functions were 

selected by checking the values of R, MAE RMSE, and 
SSE as shown in Table 3.

Thus, we conclude that the objective function given 
in Eq. (6) has the best results for the GA model, with the 
R-value around 0.78 because the GA starts up creating 
a random initial population that contains an individual 
vector related to the population. The GA process stops 
when stopping criteria such as the maximum number of 
generation, stall time, stall generation and fitness limit 
are met or reach function tolerance values (1.0×10–6). In 
Table 3, the objective function having higher R is in the 
first row, and therefore we can change it. By checking 
the optimized objective function having different initial 
populations, vectors and stopping criteria, we can get 
better coefficients related to our model. After checking 
the multiple of these situations for getting better results 
of the coefficient, we received the R-value of 0.79.
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where: x is the coefficient of the optimized objective 
function and b and out parameters are related to input 
and output variables respectively. Table (4) presents 
modified coefficients of the objective function.

Fig. 6 displays the best and mean values of the fit-
ness function at each generation. In addition, the best 
and mean values in the current generation are shown at 
the top of Fig. 6.

Fig. 5. The validation error in the MLP model

Fig. 4. Regression plots for training, testing and validation phases and the total response in the MLP model
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7.3. Combination of the Genetic Algorithm  
and Pattern Search
We combined GA and PS models to determine whether 
this combined method would achieve better results than 
the genetic algorithm. This paper is based on GPS Posi-
tive Basic 2N, which enhances the performance of pat-
tern search algorithms.

The initial point of this method was obtained from 
the optimum point of the GA shown in Table 4. Table 5 
presents the modified coefficients of the combined mo-
del. The combined GA and PS model has the R-value of 
around 0.79.

Fig. 7 shows the value of the objective function at 
the best point considering each of the iterations. Typical-

ly, the value of the objective function improves rapidly 
in early iterations and then level off as they approach 
the optimal value. The initial point of this graph is the 
optimum final result of the GA.

The convergence curve in Fig. 7 is typical of pattern 
search algorithms. The initial convergence occurred after 
the first 800 iterations, followed by progressively slower 
improvements as the optimal solution was approached.

Fig. 8 displays mesh size at each iteration as it in-
creased after each successful and decreased after each 
unsuccessful iteration. The best point did not change 
following an unsuccessful poll.

As a result, the algorithm halves mesh size with a 
contraction factor set to 0.5. The computed objective 

Fig. 6. The best and mean values of the fitness function at each generation in the GA model
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Table 3. Objective functions used in the GA model
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Table 4. Modified coefficients of the objective function in the GA model

x1 –0.10386 x8 –1.61021 x15 –0.1684 x22 0.67988 x29 –0.14108 x36 0.07376 x43 –1.41873

x2 –1.18334 x9 1.24933 x16 –1.84944 x23 0.26354 x30 0.13037 x37 4.31879 x44 0.16222

x3 0.30521 x10 –0.63851 x17 0.79854 x24 –0.97961 x31 –0.57707 x38 0.91677 x45 –0.29329

x4 0.80627 x11 0.20228 x18 0.43804 x25 –0.20209 x32 –0.26776 x39 –0.28983 x46 0.64982

x5 –0.61428 x12 –0.40444 x19 0.41867 x26 0.78213 x33 0.86287 x40 0.69897 x47 0.15646

x6 0.55561 x13 0.04129 x20 0.87691 x27 0.49914 x34 –1.98046 x41 2.90065 x48 0.2271

x7 0.81175 x14 2.74527 x21 –2.6484 x28 0.20184 x35 0.10735 x42 –0.04085 x49 0.17168

Table 5. Modified coefficients of the objective function in the combined GA and PS model

x1 –0.10374 x8 –1.61021 x15 –0.17632 x22 0.67988 x29 –0.14139 x36 0.06993 x43 –1.69779

x2 –1.18334 x9 1.24933 x16 –1.84944 x23 0.26354 x30 0.12699 x37 4.31879 x44 0.18301

x3 0.30910 x10 –0.62458 x17 0.79854 x24 –0.97961 x31 –0.57707 x38 0.91677 x45 –0.32155

x4 0.80627 x11 0.20228 x18 0.43804 x25 –0.20335 x32 –0.27866 x39 –0.28983 x46 0.64787

x5 –0.60150 x12 –0.40445 x19 0.41916 x26 0.78213 x33 0.86268 x40 0.71681 x47 0.15646

x6 0.55622 x13 0.07327 x20 0.87691 x27 0.49914 x34 –1.98046 x41 2.90065 x48 0.21438

x7 0.81175 x14 2.74527 x21 –2.64840 x28 0.18443 x35 0.10735 x42 –0.03879 x49 0.17168

Fig. 7. The function value at each iteration in the combined GA and PS model

Fig. 8. Mesh size at each iteration in the combined GA and PS model
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function value at iteration 2 was less than the value at 
iteration 1 in Fig. 1, which indicates that the poll at itera-
tion 2 is successful. Thus, the algorithm doubles mesh 
size with the expansion factor set to 2 in Fig. 8. Clearly, 
the poll at iteration 4 was unsuccessful. As a result, the 
function value remained unchanged from iteration 3, 
and mesh size was halved.

As shown in Fig. 9, after 1297 iterations were com-
pleted, the pattern search algorithm performed approx-
imately 98000 function evaluations to locate the most 
promising region in the solution space containing the 
global minima.

8. Discussion

This study used an artificial neural network, a genetic al-
gorithm, combined genetic algorithm and pattern search 
method to predict the severity of traffic accidents. The 
final results showed that the ANN performed better than 
the GA and combined GA and PS models.

Table 6 presents correlation coefficient (R), mean 
absolute error (MAE), RMSE and SSE values. These re-
sults demonstrate that the constructed ANN is promis-
ing for modelling traffic injury severity.

Fig. 10 compares the real output values of crash se-
verity with the predicted values of three models tested in 
our case. This graphical presentation depicts a consider-
able overlap between real and predicted graphs show-
ing that the models successfully predict traffic accident 
severity with high accuracy.

Fig. 11 shows regression plots for the output with 
regard to fatality, evidence injury and no-injury; in addi-
tion, the value of correlation coefficient (R) for each level 
of crash severity was estimated. The R value of no-inju-
ry was higher than others which means that the results 
were compatible with the number of records.

Table 6. The final results of the objective function in each 
model

Algorithm
Error GA GA-PS ANN

R 0.792411 0.793479 0.87319

MAE 0.323436 0.321709 0.16178

RMSE 0.43992 0.437782 0.22979

SSE 175.628 173.9248 123.4373

Fig. 9. Function evaluation per interval in the combined GA and PS model

Fig. 10. Comparing real and predicted values

100

90

80

70

60

50

40

30

20

10

0
0 200 400 600 800 1000 1200 1400

Iteration

Total Function Evaluations: 98000

F
u
n
ct

io
n

e
va

lu
a
ti
o
n
s

p
e
r

in
te

rv
a
l

0 120 240 360 480 600 720 840 960 1080

3.5

3

2.5

2

1.5

1

0.5

GA GA-PS ANN Real

Transport,  2011, 26(4): 353–366 363



9. Conclusions

1. This study used the GA, combined GA and PS, and 
the ANN with MLP architecture to predict traffic in-
jury severity using twelve input parameters and three 
levels of injury severity. The performance of these 
methods was compared to find the most suitable 
method for predicting crash severity at three levels: 
fatality, evident injury, and no injury.

2. The ANN was applied for training, testing and vali-
dation and had 12 inputs, 25 neurons in the hid-
den layers and 3 neurons in the output layer. Data 
on training, validation and testing of applying the 
ANN represented 70%, 15% and 15% of all data on 
crashes, respectively. The R-value of the ANN was  
around 0.87.

3. The GA alone as well as combined with the PS model 
were used for predicting accident severity. The ANN 
provided the highest prediction accuracy with the 
R-value of around 0.87 followed by the combination 
of the GA and PS with the R-value of around 0.79 
and GA of 0.79. Therefore, for this dataset, the ANN 
constructs a better relationship between twelve input 
parameters of the model and crash severity. On the 
other hand, the advantage of using the GA or the 
combined GA and PS model is that the functions and 
coefficients of relationships are known. Thus, each 
model has its own advantage, and therefore using 
more than one method may provide a better under-
standing of the relationship between input and output  
variables.

4. The constructed models were able to incorporate ad-
ditional data. Moreover, the optimum coefficients of 
the objective function are the initial optimum vector 
in the combined GA and PS model. In order to reach 
optimum results using the ANN model, new weight 
and bias are calculated from the preliminary weight 
matrix and bias vector.

5. The use of more than one model suggested in this re-
search provided a complete understanding of the re-
lationship between input and output variables (combi-
nation of the GA and PS) and allowed for high predic-
tion accuracy (ANN).
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