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Abstract
Extranodal natural killer (NK)/T cell lymphoma (ENKTL-NT or NKTCL), with its aggressive 
nature and poor prognosis, has been widely studied to discover more effective treatment 
options. Various somatic gene alterations have been identified by traditional Sanger 
sequencing. However, recently, novel gene mutations in NKTCL have been revealed by 
next-generation sequencing (NGS) technology, suggesting the potential for novel targeted 
therapies. This review discusses recurrent aberrations in NKTCL detected by NGS, which can 
be categorized into three main groups, specifically, tumor suppressors (TP53, DDX3X, and 
MGA), the JAK/STAT cascade, and epigenetic modifiers (KMT2D, BCOR, ARID1A, and EP300). 
Some epigenetic dysregulation and DDX3X mutation, which have been rarely identified by 
traditional sequencing technology, were recently uncovered with high frequencies by NGS. In 
this review, we summarize the mutational frequencies of various genes in NKTCL. In general, 
based on our analysis, BCOR is the most frequently mutated gene (16.9%), followed by TP53 
(14.7%), and DDX3X (13.6%). The characterization of such genes provides new insight into the 
pathogenesis of this disease and indicates new biomarkers or therapeutic targets.

Introduction

Extranodal NK/T cell lymphoma, nasal type (ENKTL-NT or NKTCL) is a rare but 
aggressive subtype of non-Hodgkin lymphoma [1], which most commonly affects the upper 
aerodigestive tract (nasal cavity, nasopharynx, paranasal sinuses, and palate) and sometimes 
involves extra-nasal tissues such as the skin, gastrointestinal tract, soft tissues, and testis. 
EB-virus (EBV) infection was found to be present in the vast majority of cases [2]. NKTCL 
is most prevalent in Asians and the native American population of Mexico, Central America, 
and South America [3]. Due to its distinct and massive necrotic lesions, it is difficult to obtain 
suitable specimens; thus, few molecular studies have been performed on this disease [4]. 
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Although multi-agent chemotherapy and involved-field radiotherapy are used, the survival 
rate of NKTCL remains poor [5]. Thus, novel treatment options such as targeted therapy are 
urgently needed, and accordingly, novel genetic aberrations must be identified to facilitate 
such strategies.

Genome sequencing technology has evolved quickly since the first publication of a 
DNA sequencing method by Sanger et al [6]. in 1977, which reported an epoch-marking 
method named Sanger sequencing. It was subsequently termed first-generation sequencing 
technology and is based on the dideoxy chain termination method, characterizing large 
clones by low-resolution mapping. In 2005, next-generation sequencing technology (NGS) 
emerged, which represented another landmark sequencing technology. NGS was based 
on the traditional Sanger sequencing approach but had undergone revolutionary changes 
in many aspects. It enables high-resolution sequencing of smaller subclones. With high-
throughput sequencing technology, billions of sequencing and detection reactions can be 
conducted simultaneously, instead of distinct processes; hence, enormous data sets have 
become available [7]. NGS has been performed for genetic and molecular studies such as 
identifying mutations and profiling gene expression, and can be used for laboratory research 
or clinical applications [8]. To date, three main sequencing platforms have been utilized, 
including Roche/454 FLX, Illumina/Solexa Genome Analyzer, and Applied Biosystems SOLID 
system [7]. With this efficient method, more reliable results are generated for human genome 
studies, disease diagnosis, and many other fields; this has significantly promoted human 
research [9, 10]. Thus, NGS technology, with its advantages of higher throughput and lower 
cost, compared to those with Sanger sequencing, is being widely used in various fields and is 
becoming the predominant sequencing technology. As such, studies on genetic alterations in 
NKTCL have been conducted using NGS, and some prominent mutations have been identified. 
These are summarized in this review and are classified into three main categories including 
tumor suppressors, the JAK/STAT cascade, and epigenetic modifiers.

Tumor suppressors

TP53
TP53 is a well-known tumor suppressor gene encoding a protein (p53) with 

transcriptional activation, DNA binding, and oligomerization domains. p53 performs 
its function by inducing G1 cell cycle phase arrest in DNA-damaged cells and promotes 
expression of the bax gene, which encodes a protein that induces apoptosis. Other functions 
include the regulation of DNA repair, apoptosis, senescence, and metabolism [11, 12].

Traditional Sanger sequencing technology revealed very high mutation frequencies of 
TP53 in NKTCL, specifically, 63% 
(17 of 27 cases) in Indonesia 
[13], 40% (eight of 20 cases) 
in China [14], 18.9% (six of 32 
cases) and 62% (36 of 58 cases) 
in Japan [15, 16], and 31% (13 
of 42 cases) in Korea [15]. These 
high frequencies were detected 
using polymerase chain 
reaction (PCR)-single strand 
conformation polymorphism 
(SSCP) followed by direct 
sequencing. This method can 
detect mutant DNA in as little 
as 3% of the total gene copies 
in a PCR mixture [17]. Recently, 
TP53 mutations in NKTCL 

Fig. 1. Locations of TP53 mutations identified by next-generation 
sequencing in extranodal natural killer (NK)/T cell lymphoma 
(NKTCL). Graphical view of P53 structure and available data 
regarding mutation sites.
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were also studied by NGS, but the 
frequencies were relatively lower 
at 13.3% (14 of 105 cases) among 
the Chinese population [11], and 
16% (four of 25) and 20% (one 
of five) in Japanese and Korean 
cohorts [18, 19], respectively. There 
is thus an apparent discrepancy 
in reported frequencies between 
the two methods. It seems that 
the PCR-SSCP followed by direct 
sequencing is more sensitive than 
NGS; however, many other factors 
including clinical background, 
diagnostic criteria, and analytical methods might also contribute to this difference.

Most TP53 mutations were found to occur at exons 4–8 [15], which comprise the 
functional domains including the transactivation region, sequence-specific DNA binding 
region, and proline-rich domain that play critical roles in the transmission of antiproliferative 
signals (Fig. 1) [20]. G:C to A:T transition was reported as the predominant TP53 mutation, 
resulting in the replacement of cytosine with thymine, which is associated with endogenous 
oxidative or spontaneous deamination of 5-methylcytosine [14, 15, 21]. In addition, TP53 
mutations were thought to be “gain-of-function” mutations [22-24], with the majority of 
which being missense mutations resulting in the expression of mutant p53 proteins. This 
type of protein not only exerts a negative effect on wild-type p53 and inhibits its function as 
a tumor suppressor [25, 26], but also exhibits new oncogenic functions including promoting 
cell proliferation, the evasion of apoptosis, metabolic changes, migration, invasion, 
angiogenesis, and metastasis [27-30]. Indeed, clinical studies have demonstrated that TP53 
alterations correlate with advanced stage and poor prognosis in NKTCL [11, 31].

DDX3X
DDX3X is a gene located on the X chromosome encoding a protein of the large DEAD-box 

protein family. DDX3X has ATP-dependent RNA helicase activity and RNA-independent ATPase 
activity. It plays important roles in the nucleus by regulating transcription, mRNP assembly, 
pre-mRNA splicing, and mRNA export, and in the cytoplasm by modulating translation, cellular 
signaling, and viral replication [32-34]. DDX3X has been reported to be a tumor suppressor 
in medulloblastoma and its dysregulation is thought to be involved in tumorigenesis [35]. 
A study of 25 Japanese individuals identified three (12%) DDX3X alterations in NKTCL by 
traditional Sanger sequencing [18]. However, another larger-scale study [11], comprising 105 
samples in China and using NGS, revealed a higher frequency (20%; 21 of 105 cases). Of these 
24 alterations, 11 (52%) were nonsense, splice-site, frameshift, and copy-loss mutations, 
causing truncation of the DDX3X protein, and nine (43%) were missense, single-nucleotide 
variants located near the RNA-binding site or close to the ATP site (Fig. 2). These alterations 
have disrupt the RNA-unwinding function of the protein. In addition, cells and tumors with 
DDX3X mutations were found to exhibit higher expression of nuclear RelB and p-ERK as 
well as upregulation of the NF-κB and MAPK pathways [11], indicating that mutations in 
DDX3X might result in a loss of function as a negative regulator of NK-cell proliferation [36, 
37]. Indeed, proliferation of cells with WT DDX3X was found to be significantly suppressed 
compared to that in cells with DDX3X mutations. Further, clinical studies revealed high 
expression of Ki67 and advanced stage in patients with DDX3X mutations [11]. These 
findings indicate that aberrations in this gene result in loss of RNA-unwinding function and 
suppression of cell proliferation, thus contributing to the pathogenesis and poor prognosis 
of NKTCL. It has been reported that DDX3X is an important target for the development of 
broad-spectrum antiviral agents [38]. In lung cancer, a small molecule inhibitor (RK-33) 
targeting DDX3X was found to be effective in inducing apoptosis and promoting sensitization 

Fig. 2. Locations of DDX3X mutations identified next-
generation sequencing in extranodal natural killer (NK)/T 
cell lymphoma (NKTCL). Square symbols indicate mutations 
causing truncation of the DDX3X protein; red circles, missense 
mutations; red triangle, in-frame indel.
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to radiation in DDX3X-overexpressing 
cell lines [39]. Similarly, targeted 
therapy for NKTCL based on mutant 
DDX3X is also promising considering 
its pathological role in this disease. 
And further studies are recommended.

DDX3X mutations seldom occur 
simultaneously with TP53 mutations, 
indicating that these two genes might 
be closely related in terms of biological 
processes. Indeed, recent studies have 
provided evidence that DDX3X is a 
target of p53, and that both cooperate 
in tumor suppressive functions [40, 
41]. Loss of DDX3X as a result of p53 
inactivation might promote tumor 
malignancy and lead to poor clinical 
prognosis in non-small cell lung carcinoma [41]. In NKTCL, based on a large-scale study [11], 
the prognosis (overall survival and progression-free survival) of patients with mutations in 
DDX3X and TP53 was much worse than that in individuals without these mutations. Taken 
together, the high n DDX3X and TP53 mutation frequencies, and the correlation between 
these alterations and advanced disease stage or poor clinical outcome might explain the 
aggressive phenotype of NKTCL.

MGA
MAX dimerization protein (MGA), was identified as a dual-specificity transcription factor, 

which contains a T-domain DNA-binding motif. Its function is mediated by heterodimerization 
with Max. MGA binds Max and inhibits MYC-dependent cell transformation [42]. Further, it 
is regularly inactivated in high risk chronic lymphocytic leukemia (CLL) [43], lung cancer 
[44], and colorectal cancers [45]. In a study on high risk CLL, three of 55 cases (5.4%) were 
identified as harboring MGA mutations (Fig. 3), including one in-frame intragenic deletion 
of 729 bp (c.6201_6929del729; p.E2067_E2310) disrupting the basic motif of MGA, one 
nonsense substitution (c.C3736T; p.R1246 ∗) and one frameshift deletion (c.7586delG; 
p.R2529fs ∗ 28) causing truncation of the C-terminal region of the MGA protein [43]. 
Recently, MGA mutations were identified in NKTCL by NGS. Specifically, these were reported 
in two of 25 cases (8%) in Japan [18], and nine of 105 cases (8.6%) in China [11]. However, 
the details regarding these mutations are not available, and their underlying significance in 
NKTCL have not been reported to date. Further studies on MGA mutations in NKTCL are thus 
recommended.

JAK/STAT cascade
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling 

pathway is associated with ligands that include diverse cytokines, growth factors, and other 
related molecules. It transmits signals involved in cell growth/proliferation, differentiation, 
and evasion of apoptosis, which are critical for normal hematopoiesis and immune responses. 
Molecule–receptor interactions at the cell surface lead to the activation of JAK family kinases, 
resulting in the phosphorylation of downstream STAT proteins. Phosphorylated STATs are 
crucial for the JAK/STAT pathway, and these proteins can move to the nucleus to direct the 
transcription of different genes involved in normal cellular functions [46]. Deregulation of 
the JAK/STAT signaling pathway causes persistent activation of JAKs or STATs, which strongly 
promotes cell survival and proliferation. Mutations involving genes of the JAK/STAT cascade 
have not only been reported in many hematologic malignancies including T-cell acute 
lymphoblastic lymphoma/leukemia, cutaneous T-cell lymphoma, mantle cell lymphoma, 
acute megakaryoblastic leukemia, and myeloproliferative diseases [47-56], but have also 

Fig. 3. Structure of MGA and mutation locations in chronic 
lymphocytic leukemia (CLL). TBOX, T-box DNA binding 
domain of the T-box family of transcriptional regulators; 
DUF4801, domain of unknown function; HLH, helix-loop-
helix DNA-binding domain. Mutation locations in high 
risk CLL are shown, of which data are not available in 
extranodal natural killer (NK)/T cell lymphoma (NKTCL).
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been found in some solid tumors 
including breast, stomach, and 
lung cancer [57].

JAK3
The JAK family comprises 

protein tyrosine kinases such 
as JAK1, JAK2, JAK3, and TYK2, 
each of which possesses seven 
domains (JH1–7). Among them, 
JAK1, JAK2, and TYK2 have 
been detected in most tissues; 
however, JAK3 is expressed only 
in myeloid and lymphoid cells 
[58]. Mutations in JAK3 has been 
reported with varying frequencies since they were first identified by Koo et al. [59]. In 
their study, whole exome sequencing detected two JAK3 mutations (JAK3A572V or JAK3A573V) 
from four cases of NKTCL in Singapore. Sanger sequencing was further performed on 61 
additional cases, and in total, 23 of 65 (35.4%) cases were found to be positive for JAK3 
mutations. This result was supported by a study of the French population by Bouchekioua et 
al [60]. who observed mutated JAK3 in one of four (25%) NKCL cell lines and four of 19 (21%) 
clinical samples (three of which were JAK3A573V) using NGS. However, research on a Japanese 
population by Kimura et al [61]. failed to detect JAK3 mutations in seven NK cell lines and 17 
clinical samples of NKTCL or in 10 cases of aggressive NK cell leukemia; however, sufficient 
information regarding the detection method were not available. Another larger-scale analysis 
of 105 Chinese individuals using NGS also did not detect JAK3 mutations [11]. Subsequent 
studies in Korean also showed low mutation frequencies, specifically 5.1% (2/39) and 7.0% 
(5/71) [62], in contrast to the aforementioned results. These discrepant proportions might 
result from differences in ethnicity, diagnostic criteria, and clinical backgrounds; sequencing 
methods could also a play critical role.

Previous studies suggested that JAK3A572V and JAK3A573V are hotspot mutations in NKTCL, 
and these residues are located in the JH2 pseudokinase domain [59, 62]. NKTCL cells with 
JAK3 alterations were shown to be more malignant; further, NK-S1 (a NKTCL cell line) cells 
with a homozygous JAK3A572V mutation can proliferate without IL-2 and these cells exhibit 
constitutive JAK3 phosphorylation and STAT5 expression [59]. Recently, two additional 
novel activating variants (JAK3H583Y and JAK3G589D) were detected (Fig. 4). Ba/F3 (a NKTCL 
cell line) cells transfected with the JAK3H583Y and JAK3G589D mutations were subsequently 
shown to proliferate without IL-3 stimulation [62]. Promisingly, treating cells harboring 
the aforementioned mutations with JAK3 inhibitors has proven to be efficient. Tofacitinib 
(CP-690550), which was shown to inhibit the growth of adult T-cell lymphoma/leukemia 
(ATLL) cells and ATLL xenograft tumors [63], and which also is used as a monotherapy for 
rheumatoid arthritis [64], proved to be useful for inhibiting STAT5 phosphorylation and 
reducing cell viability in JAK3-mutant NKTCL cell lines [59, 60].

STAT3
There are seven known mammalian STAT family members (STAT1, 2, 3, 4, 5a, 5b, and 6), 

among which, STAT3 and STAT5 have been most studied in NKTCL. Six functional domains in 
STATs have been identified to date, including the N-terminal, DNA-binding, Src homology 3 
(SH3)-like, Src homology 2 (SH2), transactivation, and C-terminal domains.

Mutations in STAT3 occur at a higher rate than those in JAK3. A study of 105 Chinese 
individuals revealed 11 STAT3 mutations (10.4%), which were clustered at the SH2 domain 
[11]. Another study of a Chinese population revealed an similar frequency of 12% (three 
of 25) [65]. This frequency was found to be higher in Korea (26.4%, nine of 34) [66] and 
slightly lower in Japan (8%, two of 25) [18]. STAT3 mutations were found to occur at several 

Fig. 4. Locations of JAK3 mutations in extranodal natural killer 
(NK)/T cell lymphoma (NKTCL).  Graphical view of the JAK3 
mutations, as detected by NGS, as well as hotspots revealed 
by traditional Sanger sequencing. Each circle indicates one 
identified mutation. Triangle symbols indicate hotspots 
instead of specific cases. JAK3 mutations are clustered at the 
pseudokinase domain.

http://dx.doi.org/10.1159%2F000492835


Cell Physiol Biochem 2018;49:1-16
DOI: 10.1159/000492835
Published online: 22 August, 2018 6

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Zhang et al.: Recurrent Mutations in Natural Killer/T Cell Lymphoma

different sites (Fig. 5) [18, 
66]. Previous studies revealed 
mutational hot spots in 
large granular lymphocytic 
leukemia, including Y640F 
in 13 (17%) cases, D661V in 
seven (9%), D661Y in seven 
(9%), and N647I in three 
(4%) [67]. Interestingly, all 
mutations were located in 
the SH2 domain, which is 
critical for STAT activation 
[59]. Mutations in JAK3 and 
STAT3 result in persistent 
phosphorylation of STAT3 
(P-STAT3), which is a critical 
process required for the JAK-STAT signaling. The activation of Stat3 can be mediated by 
extrinsic or intrinsic cues. EBV, which is intimately-associated with NKTCL, was thought to 
be one such extrinsic activator of STAT signaling [68]. The novel fusion gene LEP, which 
produces a protein product that was found to activate JAK2/3 and STAT3 by stimulating 
tyrosine phosphorylation [69], was identified in one of 34 Koreans. The SH2B adaptor 
protein 3 (SH2B3) encodes a negative regulator of cytokine signaling, the loss of which also 
intrinsically increases STAT3 phosphorylation [70]. Additionally, PIK3R3, a downstream 
element of the JAK/STAT cascade that mediates cell proliferation, was found to be upregulated 
in all ENKL samples with STAT3 mutation [71]. All these factors, together with mutations in 
JAK3 and STAT3, or each independently, might play crucial roles in the initiation of NKTCL. In 
addition, STAT3 was found to be mutated at a much higher frequency in NK (50%) and γδ-T 
cell lines (67%) than in NKTCL (5.9%) [65], indicating a more critical role of the JAK-STAT3 
pathway in cell survival independent of stromal components. High expression of p-Stat3 was 
also reported to be associated with poor clinical outcome in diffuse large B cell lymphoma 
[72], but not in NKTCL [62].

Accordingly, significant efforts have been made to explore novel therapies targeting 
the JAK-STAT pathway. In addition to the aforementioned JAK3 inhibitors, STAT3 inhibitors 
have also been studied. For example, Static can effectively inhibit the proliferation of YT (a 
NKTCL cell line) cells harboring STAT3Y640F mutations and SNK6 (a NKTCL cell line) cells with 
STAT3D661Y mutations, but is less effective for cells expressing wide-type STAT3 [62]; WP1066 
(a novel selective STAT3 inhibitor) was found to inhibit proliferation and induce apoptosis 
in SNK6 cells through downregulation of STAT3 signaling [73]. In addition, AZD1480, a 
selective JAK1/2 inhibitor [74], was shown to inhibit the growth of KAI3, YT, and NKYS cell 
lines harboring STAT3 mutations [65].

Epigenetic modifiers

MLL2
The MLL2 gene, also termed KMT2D or MLL4, encodes a histone methyltransferase 

that methylates the Lys-4 position of histone H3 (H3K4)—a modification associated with 
transcriptionally active chromatin [75]. MLL2 is widely expressed in human tissues and is 
important for growth during the embryonic phrase. This protein contains two clusters of 
plant homeotic domains (PHDs), in addition to the N-terminal domain and an enzymatically 
active C-terminal SET domain (Fig. 6). The second cluster of PHDs recognizes H4 tails and 
might methylate the MLL2-catalyzed nucleosome. The C-terminal SET domain is important 
for the maintenance of H3K4 methyltransferase activity and MLL2 protein stability [76]. MLL2 
plays critical roles in regulating cell development, differentiation, and metabolism; it also 

Fig. 5. Locations of STAT3 mutations identified by next-generation 
sequencing in extranodal natural killer (NK)/T cell lymphoma 
(NKTCL). Each circle symbol indicates one identified mutation. All 
mutations are clustered at the SH2 domain (other domains of the 
protein are not shown in this figure).
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functions as a tumor suppressor 
[77]. Frequent mutations in 
MLL2 have been observed in 
various diseases including 
gastric adenocarcinoma, 
medulloblastoma, congenital 
heart disease, lymphoma [78, 
79], and particularly in B cell non-
Hodgkin lymphomas (B-NHL). 
Approximately 30% of diffuse 
large B cell lymphomas [77, 
80, 81] and ~90% of follicular 
lymphomas [82] were found to 
harbor MLL2 mutations, which 
account for more than 70% of 
B-NHLs. The majority of these 
mutations were identified as 
nonsense mutations, frameshift-
inducing insertions, and 
deletions that cause truncated 
proteins lacking part or all of the 
C-terminal domain [77, 81, 82]. 
This type of alteration leads to an 
abnormally short, non-functional 
histone methyltransferase that 
has lost its function as a tumor 
suppressor [19]. Missense 
mutations impairing MLL2 
methyltransferase activity 
were also identified. Moreover, 
loss of MLL2 was found to 
cooperate with Bcl2 during 
lymphomagenesis [83]. Recently, 
reports of alterations in MLL2 in NKTCL based on NGS have emerged. Seven mutations were 
revealed in 105 cases (6.7%) among a Chinese population [11]. In Korea, the frequency was 
found to be higher, with specific incidences of six in 34 (17.6%) [66] and four in five (80%) 
[19]. Both nonsense and missense mutations were identified, but little is known about their 
functional roles in NKTCL. Considering its mechanism underlying B-NHL tumorigenesis and 
the identification of recurrent alterations in NKTCL, it is rational to speculate that MLL2 may 
play critical roles in the pathogenesis or progression of NKTCL. However, further studies are 
needed to verify this speculation and explore the underlying mechanism.

BCOR
Another frequently mutated epigenetic modifier in NKTCL is BCOR, which encodes a 

protein that interacts with and functions as a co-repressor of BCL6 [84]. BCOR interacts with 
BCL6 via the POZ domain and plays a critical role in the formation of germinal centers and 
apoptosis. Some histone deacetylases (HDAC1, HDAC3, and HDACB/5) have been reported 
to interact with BCOR. Further, various malignancies are associated with BCOR mutations, 
such as uterine endometrial carcinoma [85], lung adenocarcinoma [86], melanoma [87], and 
colorectal adenocarcinoma [88]. In addition, mutations have been reported in hematologic 
malignancies such as acute myeloid leukemia (AML) [89], myelodysplastic syndromes [90], 
and NKTCL[18, 71]. In NKTCL, as detected by NGS, the reported frequency of this mutation 
among the Japanese population is 32% (eight of 25 cases) [18], which is higher than that 
reported in the Korean population, specifically 20.6% (seven of 34 cases) [66] and 25% 

Fig. 7. Locations of BCOR mutations identified by next-
generation sequencing in extranodal natural killer (NK)/T cell 
lymphoma (NKTCL). ANK, ankyrin repeat; PUFD, PCGF Ub-like 
fold discriminator.

Fig. 6. Structure of MLL2. PHD_SF, PHD finger superfamily; 
PHD1-like, PHD finger 1 found in KMT2C and KMT2D; ePHD1, 
extended PHD finger 1; PHD5-like, PHD finger 5 found in KMT2C 
and PHD finger 4 found in KMT2D; HMG, high mobility group; 
ePHD2, extended PHD finger 2; FYRN, F/Y-rich N-terminus; FYRC, 
C-terminal region. Green and red colors are used to distinguish 
the closed domains. Mutation details of MLL2 based on next-
generation sequencing of extranodal natural killer (NK)/T cell 
lymphoma (NKTCL) are not available in the present data set.
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(one of five cases) [19]. BCOR alterations tend to emerge more frequently in malignancies 
associated with EBV infections and often occur in the form of loss-of-function mutations in 
exon 4 (Fig. 7) [66]. In addition, EBV infection has been reported to cause NKTCL via various 
epigenetic regulatory mechanisms [91]. Thus, it can be speculated that EBV infection together 
with BCOR mutations can lead to NKTCL through an epigenetic mechanism. However, no 
significant relations have been found between this aberration and clinical features to date 
[91]. Larger-scale studies are needed to verify this result.

Epigenetic dysregulation is an emerging component of cancer genomics, which 
represents a new category that has been discovered by NGS technology. Apart from MLL2 and 
BCOR, other mutations in epigenetic modifiers including ARID1A, EP300, ASXL3, and MLL3 
have been identified in NKTCL. ARID1A (AT-rich interaction domain 1A) encodes a protein of 
the SWI/SNF family, the large ATP-dependent chromatin remodeling complex. Mutations in 
ARID1A have been reported in intrahepatic cholangiocarcinomas, gastric cancer, and ovarian 
carcinoma [92-96]. In NKTCL, this gene was found to be mutated in six of 130 patients 
(4.6%) in China, three of 39 (7.7%) cases in Korea, and one of 25 (4%) individuals in Japan. 
EP300 encodes a histone acetyltransferase that is important for transcriptional regulation, 
cell proliferation, and differentiation. EP300 mutations in NKTCL were detected in seven 
of 130 (5.4%) cases in China but were not identified in other regions. In total, epigenetic 
aberrations were identified in 29 of 130 (22.3%), 21 of 39 (53.8%), and 13 of 25 (52%) 
patients in China, Korea, and Japan, respectively. Furthermore, frequent mutations in MLL2 
and BCOR, both of which belong to the same gene ontology (GO) group, namely “chromatin 
modification”, tend to occur exclusively in NKTCL. Considering all of the findings discussed, 
epigenetic dysregulation might be another important pathogenic mechanism associated 
with NKTCL.

Other gene mutations
Through NGS, other genes have been found to be mutated in NKTCL at a relatively 

lower frequency, such as MSN, NARS, FAT4, CHPF2, and MGAM. The MSN protein belongs to 
the ERM family (ezrin, moesin, and radixin), functioning as a cross-linker between plasma 
membranes and actin-based cytoskeletons. It plays critical roles in signal transduction, cell 
movement, and recognition between cells. MSN has been suggested to modulate hepatitis 
C virus infection [97]. However, its significance in NKTCL has rarely been reported. NARS 
mutations, shown to be predictive of poor prognosis in AML [98], were not determined to be 
associated with ENKTL prognosis [18].

Mutations in genes encoding K-Ras, c-Kit, b-catenin, Bak, and Fas have been widely 
studied by Sanger sequencing [14, 15, 99, 100], but seldom by NGS; thus, they are not 
discussed in this review.

Conclusion

Targeted therapies focusing on frequently mutated genes that are involved in 
tumorigenesis have been conducted for several malignancies, and these have greatly 
improved the prognosis of these diseases. Researchers have made great efforts to explore 
potential therapeutic targets in NKTCL. Many of genetic alterations have been detected and 
some frequently mutated genes are considered promising molecular candidates for targeted 
therapy, as discussed previously herein. In addition to some well-known tumor suppressors, 
mutations in epigenetic modifiers have become attractive targets in recent years. Emerging 
studies have demonstrated that some epigenetic modifiers can function as tumor suppressors 
in specific malignancies, such as BCOR in T/B lymphocyte malignancies [101-103], MLL2 
in melanoma and follicular lymphoma [104, 105], MLL3 in acute myeloid leukemia [106], 
ARID1A in gynecological cancers (mammary, ovarian, and uterine cancers) [107-110], and 
EP300 in epithelial cancers (colon, breast, and ovarian carcinomas) [111, 112]. Mutations in 
tumor suppressors including some epigenetic modifiers result in the impaired expression 
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of functional proteins, some of which have been shown to be correlated with a poor NKTCL 
outcome (Table 1). Alterations in JAK/STAT lead to the constitutive activation of p-STAT3 or 
p-STAT5, which increases the malignancy of tumor cells. However, no significant evidence 
has been found regarding its association with the clinical outcome of NKTCL. There are also 
some recurrent alterations that have not been studied to date. Thus, further research in this 
area is recommended.

In addition, the frequencies of different mutations detected by NGS in NKTCL vary 
considerably among different studies and regions (Table 2). To summarize, BCOR is the most 
frequently mutated gene (16.9%), followed by TP53 (14.7%) and DDX3X (13.6%), based on 
available data to date. Of the three gene classifications, the predominant classes of mutated 
genes in this disease are tumor suppressors (36.2%) in China and epigenetic modifiers in 
Korea (53.8%) and Japan (52%). Specifically, the predominant alteration differs greatly 
depending on geographical region and includes DDX3X in China (17%), MLL2 in Korea 
(25.6%), BCOR in Japan (32%), and JAK3 and DDX3X in Singapore (50%). Even in the same 
region, frequencies have also been reported to differ [11, 65]. JAK3, which was previously 
reported to be actively mutated by Sanger sequencing, is associated with low aberration 
frequency based on our NGS analysis. These significant differences might be caused by 
various factors including ethnicity, clinical backgrounds, diagnostic criteria, and analytical 
methods. Additional larger-scale studies are needed to verify these results, especially in 
Singapore. Predominant alterations in each region indicate potential therapeutic targets 
and might suggest clear directions for further studies. Novel therapies targeting these 
genetic lesions are promising. Some small molecule inhibitors have been discovered such 
as tofacitinib (JAK3 inhibitor), AZD1480 (JAK1/2 inhibitor), WP1066 (STAT3 inhibitor), 

Table 1. Recurrent Genetic Alterations and Their Effects on Clinical Outcome
 

Categories Genes 
involved Notes Clinical outcome 

Tumor 
suppressors TP53 DNA damage response; “gain-of-function” mutation. poor 
 DDX3X Target of TP53; loss of function mutation. poor 
 MGA Little is known in NKTCL No available data 
JAK/STAT JAK3 Mutations at JH2 domain; sensitive to JAK inhibitor. No significant 

evidence 
 STAT3 Mutations at SH2 domain; sensitive to JAK/STAT inhibitors. No significant 

evidence 
 STAT5B Mutations at SH2 domain sensitive to JAK inhibitor. No available data 
Epigenetic 
modifiers MLL2 Histone methyltransferase activity; Tumor suppressor; loss of 

function mutation. No available data 

 BCOR Tumor suppressor; loss-of-function mutation. No significant 
evidence 

 ARID1A Chromatin remodeling; Tumor suppressor. No available data 
 

 Table 2. Distribution of Mutations Detected by NGS in ENKTCL. WES: whole exome sequencing; TS: targeted 
sequencing; RS: RNA sequencing. acases of mutation; bfrequency of mutation; ccases of category; dfrequency 
of category; egenes not involved in targeted sequencing. 

 

 Genes 
involved total Cases sequenced  China [11，65] Korea [19，66] Japan [18] Singapore [59] 

total  198   130 39 25 4 
WES  43   26 13 0 4 
TS  131   80 26 25 0 
RS  31   24 7 0 0 

tumor suppressors 
TP53 26 177 14.7% 16a 12.3%b 

47c 36.2%d 
5 12.8% 

5 12.8% 
4 16.0% 

6 24.0% 
1 25.0% 

3 75.0% DDX3X 24 177 13.6% 22 16.9% 0e 0.0%e 0 0.0% 2 50.0% 
MGA 11 177 6.2% 9 6.9% 0e 0.0%e 2 8.0% 0 0.0% 

JAK/STAT cascade 
JAK3 6 118 5.1% 0e 0.0%e 

17 13.1% 
2 5.1% 

13 33.30% 
2 8.0% 

7 28.0% 
2 50.0% 

3 75.0% STAT3 25 198 12.6% 14 10.8% 9 23.1% 2 8.0% 0 0.0% 
STAT5B 3 177 1.7% 3 2.3% 0e 0.0%e 0 0.0% 0 0.0% 

JAK1 5 118 4.2% 0e 0.0%e 2 5.1% 2 8.0% 1 25.0% 

epigenetic modifiers 

MLL2 19 198 9.6% 8 6.2% 

29 22.3% 

10 25.6% 

21 53.80% 

1 4.0% 

13 52.0% 

0 0.0% 

0 0.0% 
BCOR 20 118 16.9% 4e 8%(4/50)e 8 20.5% 8 32.0% 0 0.0% 

ARID1A 10 198 5.1% 6 4.6% 3 7.7% 1 4.0% 0 0.0% 
EP300 7 177 4.0% 7 5.4% 0e 0.0%e 0 0.0% 0 0.0% 
ASXL3 4 152 2.6% 4 3.1% 0e 0.0%e - - 0 0.0% 
MLL3 3 97 3.1% 0e 0.0%e 0e 0.0%e 3 12.0% 0 0.0% 

others 

MSN 9 152 5.9% 9 6.9% 

29 22.3% 

0e 0.0%e 

2 5.10% 

- - 

7 28.0% 

0 0.0% 

1 25.0% 

FAT4 4 97 4.1% 2e 4%(2/50)e 0e 0.0%e 2 8.0% 0 0.0% 
NARS 5 177 2.8% 2 1.5% 0e 0.0%e 2 8.0% 1 25.0% 

CHPF2 4 152 2.6% 4 3.0% 0e 0.0%e - - 0 0.0% 
MGAM 4 152 2.6% 4 3.0% 0e 0.0%e - - 0 0.0% 
IL6R 2 93 2.2% 0e 0.0%e 2 5.1% - - 0 0.0% 

MIR17HG 2 97 2.1% 0e 0.0%e 0e 0.0%e 2 8.0% 0 0.0% 
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and RK-33 (DDX3X inhibitor). However, additional clinical or in vivo studies on NKTCL are 
advised.

In summary, advances in sequencing technology have revealed novel genetic alterations 
in NKTCL, which are known to be genetic drivers. The discoveries discussed herein contribute 
to the understanding of the pathogenesis of this disease. Based on this information, the 
implementation of targeted therapies becomes a possibility. Future studies on biomarkers, 
therapeutic targets, and innovative clinical trial designs will be helpful for the diagnosis, 
therapy, and prognosis of NKTCL.
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