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CO2 is the main greenhouse gas emitted from the combustion of fossil 
fuels and is considered a threat in the context of global warming. Carbon 
capture and storage (CCS) schemes embody a group of technologies for 
the capture of CO2 from power plants, followed by compression, transport, 
and permanent storage. Key advances in recent years include the further 
development of new types of porous materials with high affinity and 
selectivity toward CO2 for optimizing the energy penalty of capture. In 
this regard, microporous metal-organic frameworks (MOFs) represent an 
opportunity to create next-generation materials that are optimized for 
real-world applications in CO2 capture. MOFs have great potential in CCS 
because they can store greater amounts of CO2 than other classes of porous 
materials, and their chemically-adjustable organic and inorganic moieties 
can be carefully pre-designed to be suitable for molecular recognition of 
CO2. Taking into account the nature of physisorption and inherent polarity 
of CO2 molecules, addressing materials with both a large surface area and 
polar pores for strong CO2 binding affinity is an effective method. Decorating 
the pores of MOFs with some specific functional groups by directly using 
functionalized organic linkers or postsynthetic modification, that have high 
binding affinity to CO2 molecules, is among the most promising strategies 
has been pursued to achieve high-performance CO2 uptake. This review 
highlights the literature reported on MOFs with amide-decorated pores 
for CO2 capture, showing the effects of amide groups on uptake capacity, 
selectivity and adsorption enthalpies of CO2.
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INTRODUCTION
Economical and efficient carbon capture 

and sequestration (CCS) technologies has been 
attracting tremendous attention due to the escalated 
global warming [1-3]. A class of crystalline porous 
materials, metal-organic frameworks (MOFs) 
or porous coordination polymers (PCPs) that 
assembled by organic linkers and inorganic nodes 
(metal ions or metal-containing clusters), is of 
great promise for their potential use in the strategic 
storage and separation of hydrogen, methane, 
and carbon dioxide in clean-energy applications 
[4-10]. High surface area, large total pore volume 

and high adsorption enthalpy involving host-guest 
interactions are all crucial for high-performance 
CO2 storage MOF materials [11]. Therefore, MOF 
research is currently addressing two issues: (i) 
increasing CO2 uptake by generation of MOFs with 
even higher surface areas and larger pore volumes 
by the use of larger bridging ligands or highly 
connected secondary building units (SBUs) [12-15] 
and (ii) increasing the selectivity of MOFs through 
enhancement of the adsorption enthalpies for 
CO2 through decoration of the materials [16-22]. 
Until now, several strategies have been pursued to 
achieve the latter goal, such as narrowing the pore 
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size by interpenetration [23-25], tuning of the pore 
surface charge through variation of the metal cation 
[26], introducing an alkylamine functionality [27] 
or water molecules [28] onto the coordinatively 
unsaturated metal center and decorating MOFs 
with some specific functional groups (-NH2, -NO2, 
-OH, etc.) that have high binding affinity to CO2 
molecules by postsynthetic modification or directly 
using functionalized organic linkers [29-34]. 

The incorporation of pendant amide (-CONH-) 
 groups into MOFs is regarded as a promising 
approach to enhance CO2 uptake due to the 
formation of hydrogen bonds with amides serving 
as both hydrogen bond acceptors (via C=O) and 
donors (via N-H) [35-41]. Amide groups have 
the same positive effect on adsorption of CO2 
like the widely reported amine (-NH2) groups by 
facilitating dipole-quadrupole interactions [20]. 
However, these two analogous functional groups 
have some different structural and chemical 
characteristics. The amide group usually does not 
coordinate with metal ions and keeps open status 
in process of constructing MOFs, although it may 
increase the structural flexibility of MOFs because 
of its customary position in the main carbon 
skeleton of the organic ligands. While, the amine 
group may coordinate with metal ions and loses 
its function to interact with CO2 when the amine-
functionalized organic ligands are employed in 
synthesizing MOFs. On the other hand, the amine 

group is not located on the main carbon skeleton of 
the organic ligands and has no apparent influence 
on the rigidity or flexibility of the MOFs’ structures 
[42]. A series of amide-functionalized MOFs have 
been synthesized and shown to exhibit high CO2 
uptakes and selectivity (Table 1). However, the 
incorporation of this functional group generally 
improves capacity only modestly at low pressures. 
Likewise, computational studies attribute this to 
the specific binding and formation of hydrogen 
bonds between adsorbed CO2 molecules and free 
amide groups thus enhancing adsorption affinity 
and selectivity for CO2. Several review papers have 
been published about the MOFs with large CO2 
storage capacity and high selectivity [43-46], but 
the effects of amide groups in CCS performance 
of MOFs with amide-decorated pores was not 
mentioned. This issue is presented in this review.

First evidence
In 2011, Bai and Zaworotko [37] reported 

how amide groups inside the pores of a Cu-based 
MOF, [Cu24(TPBTM6-)8(H2O)24] (Cu-TPBTM), 
can result in a larger CO2 uptake, enhanced heat of 
adsorption, and a higher selectivity toward CO2/N2 
in comparison with an analogous MOF with alkyne 
groups. Solvothermal reaction of Cu(NO3)2.3H2O 
with flexible C3-symmetric hexacarboxylate 
ligand of TPBTM (TPBTM = N,N’,N”-
tris(isophthalyl)-1,3,5- benzenetricarboxamide) with 

 

 Table 1 

Chemical formula Common name BET  
(m2g-1) 

Capacity  
(wt %) 

pressure  
(bar)

temp  
(K)

- Qst 

kJmol-1 Ref. 

[Cu2(H2O)2BDPO] NOTT-125 2447 40.1 [93.3] 1 [20] 273 25.4 [36] 
[Cu24(TPBTM6-)8(H2O)24] Cu-TPBTM 3160 103.5 20 298 26.3 [37] 
[Cu(pia)2(SiF6)](EtOH)2(H2O)12 UTSA-48 285 5.5 1 296 30 [42] 
[Cu3(BTB6-)]n Cu-BTB 3288 157 20 273 - [50] 
Cu3L2(H2O)5] NJU-Bai3 2690 27.3 [97.7] 1 [20] 273 - [55] 
[Cu2PDAI(H2O)] PCN-124 1372 28.6 1 273 26.3 [59] 
[Zn4(bdc)4(bpda)4]ꞏ 5DMFꞏ3H2O Zn-bpda 331 15.2 35 298 30.2 [61] 
[Cu2(TCMBT)(bpp)(μ3-OH)]ꞏ6H2O Cu-TCMBT 808.5 25.5 20 298 26.7 [62] 
[Cu2(BDPT4-)(H2O)2] HNUST-1 1400 30.7 1 273 22.3 [65] 
[Cu2BDPO(H2O)4] HNUST-3 2412 98.9 20 273 24.8 [67] 
[CuL2(NO3)2ꞏo-xyleneꞏDMF]n 1⸧NO3

-  16.5 1 195 - [73] 
[Mn2(2,6-ndc)2(bpda)2]ꞏ5DMF Mn-bpda 372 26.9 35 298 29.6 [74] 
[Zn2(oba)2(bpta)]ꞏ(DMF)3 TMU-22 680 31.7 1 203 26 [76] 
[Zn2(oba)2(bpfb)]ꞏ(DMF)5 TMU-23 0 31.7 1 203 - [76] 
[Zn2(oba)2(bpfn)]ꞏ(DMF)2 TMU-24 0 27.7 1 203 24 [76] 
[Zr6(µ3-O)4(µ3-OH)4(-OH)4(-
OH2)4(TBAPy)2] 

SALI-F3G 890 7.3 1 273 27 [77] 

- SALI-DAP 1225 10.1 1 273 28 [77] 
[Cu2(PDAD)(H2O)]n PCN-124-stu 2153 31.4 1 273 26 [79] 
- MFM-136 1634 63 20 273 25.6 [80] 

 

Table 1: A series of amide-functionalized MOFs have been synthesized and shown to exhibit CO2 uptakes
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amide groups afforded a high yield of octahedron 
shaped crystals of Cu-TPBTM. This MOF exhibits 
the same topology as the prototypical rht-type MOF 
[47] and other isoreticular MOFs such as the PCN-
61 series [48] and NOTT-112 [49] (Fig. 1a). The 
N2 adsorption for Cu-TPBTM at 77 K exhibited a 
reversible type-I isotherm with BET surface area of 
∼3160 m2 g-1, which is close to PCN-61 (∼3000 m2 g-1) 
and smaller than those reported for PCN-68 (∼5109 
m2 g-1) [48]. The effect of the amide groups upon CO2 
uptake on Cu-TPBTM is compared to its analogue 
PCN-61, which possesses the same pore sizes, surface 
area, and number of open CuII sites, where the only 
difference between Cu-TPBTM and PCN-61 is the 
substitution of the acetylene moiety in PCN-61 with 
an amide moiety (Fig. 1b). Interestingly, Cu-TPBTM 
exhibits a stronger binding affinity for CO2 than PCN-
6. CO2 adsorption capacity of Cu-TPBTM is ca. 23.53 
mmol g-1 at 298 K and 20 bar, with a corresponding 
isosteric heat of adsorption of - 26.3 kJ/mol. These 
results are higher than PCN-66 (21.5 mmol g-1; -22 

kJ/mol) and PCN-68 (22.1 mmol g-1; -21.2 kJ/mol), 
although the latter has larger surface areas (Fig. 1c, d). 
Moreover, better selectivity for CO2/N2 separation has 
been achieved at 298 K for Cu-TPBTM (∼22 at 1 bar 
and 33 at 20 bar) compared to PCN-61 (15 at 1 bar 
and 22 at 20 bar). These suggest that polar -CONH- 
functionalities have a positive effect on adsorption of 
CO2 by enhancing the initial slopes of CO2 isotherms 
for Cu-TPBTM, resulting in greater Qst, uptake, and 
selectivity.

In a similar study by the same group, nanosized 
triangular amide-bridging hexacarboxylate linkers 
of H6BTB and H6TATB have been used to expand 
isoreticular rht-type MOFs of [Cu3(BTB6-)]n (Cu-
BTB) and [Cu3(TATB6-)]n (Cu-TATB) [50] (Fig. 2a). 
Cu-BTB and Cu-TATB exhibit a high apparent BET 
surface area of 3288 and 3360 m2 g-1, respectively, 
which is slightly higher than that of Cu-TPBTM. 
Both materials display uncommon pseudo type 
IV isotherms with stepwise adsorption behavior 
and a noticeable hysteresis, which is characteristic 
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Fig. 1:  (a) Portion of the structure of the (3, 24)-connected rht-type framework of Cu-TPBTM showing surface decoration by 
amide groups. Cu, blue-green; C, gray; O, red; N, blue. (b) Bridging ligands of TPBTM6- and btei6- for Cu-TPBTM and PCN-61, 
respectively. (c) High-pressure gravimetric excess CO2 and N2 sorption isotherms of Cu-TPBTM and the PCN-6X series at 298 

K. (d) Isosteric heats of CO2 adsorption for Cu-TPBTM and PCN-61. Adapted from Ref. [37].
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of flexible MOFs with hierarchically-assembled 
mesopores. High-pressure gravimetric CO2 
adsorption isotherms show that compared to the 
parent Cu-TPBTM MOF, the CO2 sorption isotherm 
of expanded framework Cu-BTB demonstrates a 
type-IV-like profile with a marked gate-opening 
process with an exceptionally high unsaturation 
excess CO2 uptake of 111 wt% at 298 K. This CO2 
storage capacity is just lower than that of MOF-177 
(123.2 wt%) [12] and MOF-205 (114.4 wt%) [15], 
but far greater than that of any other high surface 
area MOFs reported such as MOF-210 (70.4 wt%) 
[15] and NU-100 (95 wt%) [51] under the same 
conditions. Interestingly, in sharp contrast to CO2, 
Cu-BTB can only absorb limited amounts of CH4 
(13 wt%) and N2 (11 wt%) at 273 K and 20 bar, 
representing the CO2/CH4 and CO2/N2 selectivity 
of 8.6 and 34.3, respectively, which are much higher 
than the corresponding value of MOF-177 (4.4 and 
17.5) [52] and most other MOF materials [53]. 

The introduction of N-heteroaryl moieties into 
MOFs may generally lead to the improvement of 
their CO2 storage abilities which was confirmed 
by theoretical studies [54]. However, in the case 
of Cu-TATB, it was almost useless, and Cu-TATB 
had almost the same gas sorption behavior as 
Cu-BTB, despite that the surface is decorated by 
nitrogen containing triazine rings. Moreover, grand 
canonical Monte Carlo (GCMC) and first-principles 
calculations have been performed to further probe 

the advantages of amide groups upon CO2 adsorption 
at the molecular level, which demonstrated that CO2 
molecules prefer to locate at both the open Cu(II) 
metal sites and amide groups within the Cu-BTB 
framework. More interestingly, the CO2 binding 
energy of the carbonyl site (C=O) is up to -9.24 kJ 
mol-1 and is very comparable with that of open CuII 
metal sites (-9.03 kJ mol-1), and far from the amide 
site (-NH-) (-0.168 kJ mol-1) (Fig. 2b). The reason for 
this difference could be attributed to the possibility 
that the carbonyl moiety can yield an enhanced lone 
pair polarization on the CO2 molecule. These results 
verified that the amide groups within both structures 
act as strong interaction sites and play an important 
role in the high and selective CO2 uptake.

In a follow-up study by the same group, an 
agw-type porous MOF with the inserted amide 
functional groups, [Cu3L2(H2O)5] (NJU-Bai3), 
has been reported based upon a relatively small 
multidentate ligand, 5-(4-carboxybenzoylamino)-
isophthalic acid (H3L) (Fig. 3a) [55]. The overall 
structure of NJU-Bai3 is well packed by three types 
of cages with densely decorated amide units that are 
directly exposed to each individual cavity, in which, 
the bowl-like cage includes 12 amide groups (Fig. 
3b), exhibited the BET surface area of 2690 m2g-1. 
The CO2 uptake for NJU-Bai3 at 273 K and 1 bar 
reaches 6.21 mmol g-1, which is substantially larger 
than that of UMCM-150 (4.68 mmol g-1), which 
the latter has the same topology as the prototypical 
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Fig. 2:  (a) Nanosized amide-bridging ligands (H6BTB and H6TATB) and the 3D polyhedra packing in Cu-BTB. Cu, blue-green; 
C, gray; O, red; N, blue. (b) Preferential CO2 adsorption sites and corresponding binding energies in Cu-BTB obtained from first-

principles calculations. Adapted from Ref. [50].
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agw-type framework but without amid-decorated 
pores [56]. Moreover, its high-pressure adsorption 
shows the unsaturation excess CO2 uptake of 22.12 
mmol g-1 at 273 K and 20 bar, which is among the 
highest values for porous MOFs (IRMOF-1: 19.0 
mmol g-1; IRMOF-3: 17.2 mmol g-1; and MOF-177: 
28.7 mmol g-1). However, it is worthy of note that the 
corresponding N2 and CH4 uptake of NJU-Bai3 was 
only 3.96 mmol g-1 and 6.9 mmol g-1, respectively. 

Furthermore, the amide-functionalized NJU-
Bai3 exhibits a strong binding affinity for CO2 (36.5 
kJ mol-1) at zero coverage, which is significantly 
higher than that of its prototype, UMCM-150 (20.3 
kJ mol-1) [57]. Moreover, similar to the previous 
example, the authors used GCMC simulations to 
further investigate the positive effect of decorated 
amide groups on CO2 uptake in NJU-Bai3, which 
clearly reveal that both CuII metal sites and the 
amide groups are the main adsorption sites of CO2 
molecules in the framework. Interestingly, in terms 
of adsorption selectivity of CO2/N2 (60.8) and CO2/
CH4 (46.6), NJU-Bai3 represents one of the highest 
selectivities reported up to now for adsorbent 

materials, except that of the Co(II)-carborane 
coordination polymers (CO2/N2: 95 and CO2/CH4: 
47), which has very low CO2 uptake (1.7 mmol g-1, 
17 bar and 298 K) [58] (Fig. 3c). Therefore, NJU-
Bai3 is one of the best examples of MOFs combining 
two interesting characters of high storage and high 
selectivity toward CO2.

Zhou and coworkers reported a microporous 
multi-functional MOF PCN-124, which is 
constructed from Cu paddlewheel motifs and 
5,5ʹ-((pyridine-3,5-dicarbonyl)bis-(azanediyl))
diisophthalate (PDAI) ligand with two isophthalate 
and one pyridine groups connected through 
amide bonds [59]. PCN-124 possesses a self-
interpenetrated (3, 36)-connected 3D structure with 
the BET surface areas are of 1372 m2 g-1 and moderate 
hydrostability, which is particularly relevant for 
potential applications in CO2 capture technologies. 
Interestingly, the linearly arranged open metal 
sites and amide groups in its framework provide a 
favorable environment for CO2 adsorption. CO2 
adsorption capacity of PCN-124 is 28.6 wt% at 273 K 
and 1 bar, with a corresponding heat of adsorption at 
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Fig. 3:  (a) The organic building block of amide-functionalized H3L. (b) The densely decorated amide 
groups in the pores from the crystal structure of NJU-Bai3. (c) High pressure gases adsorption isotherms 
and the dual-site Langmuir-Freundlich fit lines of CO2, CH4 and N2 in NJU-Bai3 at 273 K. The green lines 

show the IAST predicted selectivity of CO2 over N2 and CH4, respectively. Adapted from Ref. [55].
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zero CO2 loading of 26.3 kJ mol-1. Interestingly, these 
results are higher than those for the isostructural 
MOF, PMOF-3, consisting of bridging ethynyl bonds 
instead of amide ones, despite higher N2 adsorption 
of the latter.

In another report, a 3D microporous MOF with 
the formula of [Cu(pia)2(SiF6)](EtOH)2(H2O)12 
(UTSA-48; pia = N-(pyridin-4-yl) isonicotinamide) 
with functional -CONH- groups on the pore 
surfaces has been synthesized, and its CO2 capture 
properties were compared to its isostructural amide-
free MOFs, [Cu(bipy)2(SiF6)] and [Cu(bpe)2(SiF6)] 
[42]. The small pores and the functional amide 
groups within the activated UTSA-48 have enabled 
their strong interactions with CO2, representing 
adsorption enthalpy of 30.0 kJ mol-1, which is 
higher than the values of [Cu(bipy)2(SiF6)] (27 kJ 
mol-1) and [Cu(bpe)2(SiF6)] (22 kJ mol-1). Moreover, 
UTSA-48 exhibits CO2/CH4 separation with a 
Henry’s Law selectivity of 20.7 at 273 K, which is 

higher than its isostructural non-functionalized 
MOFs [60], indicating that amide groups have the 
positive effect on adsorption of CO2 by facilitating 
dipole-quadrupole interactions between -CONH- 
groups and CO2 or NH···OCO hydrogen bonds.

Current developments
After the previous finding presented in the 

last section, researchers focused their efforts on 
studying the effect of amide on the CO2 capture 
in MOFs. A unique spatial arrangement of amide 
groups for CO2 adsorption was found in the open-
ended channels of a zinc(II)-organic framework 
[Zn4(BDC)4(bpda)4]·5DMF·3H2O (Zn-bpda; BDC 
= 1,4-benzyldicarboxylate, bpda = N,Nʹ-bis(4-
pyridinyl)-1,4-benzenedicarboxamide) [61]. Zn-
bpda consists of 44-sql [Zn4(BDC)4] sheets that are 
further pillared by a long amide-functionalized 
linker of bpda and forms a 3D porous framework 
with an α-Po 412·63 topology (Fig. 4a). The N2 
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Fig. 4: (a) Spotlight of the larger channel opening showing a nearly unique arrangement of the unsheltered amide groups in Zn-bpda. 
Adsorption isotherms of N2 and CO2 measured at (b) 77 and 195 K and (c) 298 K and high pressure. (c) Isosteric heat (Qst) of CO2 

adsorption. Adapted from Ref. [61].
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adsorption isotherms of the MOF showed only 
a minor uptake at 77 K and 1 bar, which can be 
attributed to the framework contraction and a lack 
of appropriate intermolecular interactions at low 
temperature, where the CO2 adsorption at 195 K 
exhibited a reversible type I isotherm, representing 
a BET surface area of 331 m2 g-1 (Fig. 4b). 
Remarkably, the MOF takes up 3.45 mmol g-1 of CO2 
and 1.65 mmol g-1 of N2 at 35 bar and 298 K, where 
displays a distinct selective adsorption capacity for 
CO2 over N2 at low pressure, (Fig. 4c). Interestingly, 
the amount of captured CO2 molecules at 1 bar 
is nearly equivalent to the number of exposed 
amide groups of the framework. This fact, which 
was further approved by density functional theory 
(DFT) calculations, implies that the amide groups 
inside the framework are involved in efficient 
intermolecular interactions with the adsorbed CO2 
molecules at ambient pressure and temperature. 
Furthermore, due to the positive cooperative effect 
of the unsheltered amide groups on the adsorption 
of CO2 molecules, the isosteric heat of CO2 
adsorption (Qst) of Zn-bpda presented a strong 
binding affinity for CO2 (30.2 kJ mol-1), which 
exhibits a significant increase with increasing CO2 
uptake to 37.2 kJ mol-1, depending on the adsorbed 
amount of CO2 molecules (Fig. 4d).

Considering future practical applications, a good 
gas storage or separation material must be stable 
toward moisture. Bai and coworkers have presented 
an evolution approach for constructing a water 
stable pillar-layered porous MOF, [Cu2(TCMBT)
(bpp)(μ3-OH)]·6H2O (Cu-TCMBT), using amide-
containing flexible N,N′,N″-tris(carboxymethyl)-
1,3,5-benzenetricarboxamide (TCMBT) ligand 
[62]. Interestingly, Cu-TCMBT is quite stable in 
room temperature and boiling water for 2 months, 
as confirmed by PXRD patterns. The N2 adsorption 
for activated Cu-TCMBT at 77 K exhibits a typical 
type I curve, with the BET surface area of 808.5 
m2 g-1. In spite of possessing a relatively low BET 
surface area, the CO2 uptake of Cu-TCMBT at 1 
bar (44.8 cm3 g-1) outperforms those of most of the 
ZIF materials [30, 63]. Moreover, the adsorption 
enthalpies for CO2, CH4, and N2 were calculated 
to be 26.7, 19.1 and 16.0 kJ mol-1, respectively. 
The higher CO2 adsorption enthalpy is mainly 
attributed to incorporated bridging amide groups 
along the small channels. Because of a much 
larger quadrupole moment of CO2 (13.4 × 10-40 
C m2) than that of N2 (4.7 × 10-40 C m2) and CH4 
(nonpolar) [64], the large dipole moment of the 

bridging amide groups along the small channels 
facilitated the dipole-quadrupole interactions with 
CO2, leading to the selectivity of CO2 over CH4 and 
N2. 

In 2013, Zheng et al. reported an expanded 
microporous NbO-type MOF formulated as 
[Cu2(BDPT4-)(H2O)2] (HNUST-1; H4BDPT = bis 
(3,5-dicarboxyphenyl)terephthalamide), designed 
from a nanosized rectangular amide-bridging 
tetra-carboxylate linker by solvothermal reaction of 
H4BDPT and Cu(NO3)2.3H2O in a mixture of DMF, 
ethanol, and H2O [65]. The single crystal X-ray 
structure reveals that the framework of HNUST-1 
is constructed from paddlewheel [Cu2(COO)4] 
SBUs bridged by BDPT to form a 3D non-
interpenetrated (4,4)-connected net and contains 
two different types of the shuttle shaped and 
spherical pores (Fig. 5a-e) [66]. HNUST-1 exhibits 
a reversible type-I adsorption isotherm and takes 
up large amounts of N2 at 77 K (370 cm3 g-1 at 1 
bar), featuring a moderate BET surface area of 1400 
m2 g-1. HNUST-1 shows large CO2-storage capacity 
of 53.3 wt. % at 20 bar and 273 K, as well as good 
selectivity of CO2/CH4 (7.2) and CO2/N2 (39.8), 
that is much higher than the corresponding value 
of MOF-177 (4.4 and 17.5) [52] and most other 
MOF materials [53]. Furthermore, the adsorption 
enthalpy of CO2 was 31.2 kJ mol-1, where a weaker 
CH4 binding affinity was observed with Qst of 23.4 kJ 
mol-1 (Fig. 5f). The authors attributed this behavior 
to be a result of the large quadrupolar moment of 
the CO2 molecule which facilitates strong dipole-
quadrupole interactions between the amide groups 
in HNUST-1 and CO2.

In a similar study by the same group, a 
microporous NbO-type MOF, [Cu2BDPO(H2O)4] 
(HNUST-3), has been designed and synthesized 
by using a tetracarboxylate ligand of N,N′-bis(3,5-
dicarboxyphenyl)oxalamide (H4BDPO) with the 
“double amide” [-NHC(O)C(O)NH)-] oxalamide 
motif whereby two back-to-back amides comprise 
the bridge between two isophthalate groups 
[67]. The 3D framework of HNUST-3 is the first 
example of a porous oxalamide-functionalized 
MOF, made up of four connected square 
[Cu2(COO)4] paddlewheels bridged through four 
branched BDPO linkers, while each Cu(II) center 
is coordinated to one water molecule along the 
axis of the paddlewheel. HNUST-3 exhibits a high 
BET surface area of 2412 m2 g−1, which is among 
the highest surface area of NbO-type MOF series 
reported to date. Moreover, HNUST-3 gives a 
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maximum excess H2 uptake of 6.1 wt % (41.8 g L-1) 
at 20 bar and 77 K which is moderate compared to 
the highest capacity MOF materials. Interestingly, 
this MOF adsorbs substantial amounts of CO2 with 
uptake capacities of 33.15 wt % at 273 K and 16.6 wt 
% at 298 K under 1 atm of pressure, which are quite 
larger than that of the best performing ZIF material 
(ZIF-20, 13.7 wt % at 273 K and 1 atm) [68] and 
PCN-46 (ca. 13.2 wt % at 298 K and 1 atm) [70]. 
Notably, the CO2 uptake amounts of HNUST-3 at 
273 K were not saturated at 20 bar, with the values 
of 98.9 wt % (about 22.47 mmol g-1). Interestingly, 
a container filled with HNUST-3 can store about 
16 times the amount of CO2 in an empty container 
at 20 bar and room temperature, which is higher 
than that for Cu-TPBTM (13 times), MOF-177 

and PCN-61 (∼14 times). Significantly, the strong 
interaction of CO2 with the framework resulted in 
higher enthalpy of adsorption compared to CH4 
and N2, leading to the high selectivity of CO2/
CH4 (7.9) and CO2/N2 (26.1) at 298 K, which can 
be attributed to the large quadrupole moment 
of CO2 as well as the presence of coordinatively 
unsaturated metal sites and polar oxalamide groups 
in HNUST-3.

In a follow-up study, Schröder and coworkers 
reported the uptake of CO2 in a Cu-based porous 
MOF, [Cu2(H2O)2BDPO] (NOTT-125), using the 
same oxalamide H4BDPO ligand [36]. The amide-
containing linker connects Cu2(OOCR) paddle-
wheels to form NOTT-125 with fof topology in 
which the oxalamide is incorporated and placed 

 
 
 
 
 
 
 

 
 

Fig. 5 
 

 
 
 
 
 
 

Fig. 5: (a and b) BDPT4- and [Cu2(COO)4] paddlewheel cluster. (c and d) The spherical and shuttle shaped cage. (e) A natural tiling 
of HNUST-1. Cu, blue-green; C, black; O, red; N, blue. (b) Gas sorption properties of HNUST-1. High-pressure gravimetric excess 
CO2, CH4 and N2 isotherms collected at 273 K (inset: isosteric heats of CO2 and CH4 adsorption). Filled and open symbols represent 

adsorption and desorption, respectively. Adapted from Ref. [65].
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within the pore walls (Fig. 6a-d). The N2 sorption 
isotherm for activated NOTT-125 at 77 K exhibits 
reversible type I adsorption behavior with the BET 
surface area of 2447 m2 g-1. The oxalamide groups 
in the pore walls, combined with the large pore 
volume of this MOF has afforded the enhanced 
CO2 uptake of 40.1 wt % at 273 K and 1 bar, 
which approaches the highest reported values for 
MOFs, such as Cu-TDPAT (44.5 wt%) [70] and 
Cu-TPBTM (42.6 wt%) [37], and is higher than 
the related amide-functionalized MOFs of Cu-
NJU-Bai3 and PCN-124 (Fig. 6e,f). Moreover, its 
high pressure CO2 uptake (21.2 mmol g-1 at 298 
K and 20 bar) and adsorption enthalpy (25.35 kJ 
mol-1) could be attributed to the specific CO2-
oxamide interactions, including dipole-quadrupole 

interactions and hydrogen-bond formation 
between the amide NH and the oxygen atoms of 
CO2, which further verified by GCMC simulations.

Advances in the field of porous solids have 
been recently realized through the development 
of MOFs that are flexible. These so-called “third 
generation materials” are unique in their ability to 
undergo structural changes during the adsorption 
and desorption of guests, inducing highly-selective 
guest accommodation and magnetic modulation 
[71, 72]. The first gate-opening behavior of amide-
functionalized MOF has been reported by Ghosh 
and co-workers, where the amide integrated 
framework of [CuL2(NO3)2·o-xylene·DMF]n (1-
NO3

-), based on a flexible neutral amide-based 
N-donor ligand, was discriminated between CO2 
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Fig. 6:  View of: (a) Chemical structure of H4BDPO; (b) Tiling of NOTT-125; (c) Cage A, and (d) Cage B. Experimental 
(circles) and simulated (squares) CO2 isotherms of NOTT-125 at 273 and 298 K in the pressure range (e) 0-1 and (f) up 

to 20 bar. Adapted from Ref. [36].
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as a polar gas molecule and other nonpolar gases 
[73] (Fig. 7a,b). Upon desolvation, this compound 
undergoes a dynamic structural transformation 
from a 1D porous phase to a 2D non-porous phase. 
Interestingly, 1-NO3

- showed a CO2 uptake of 
around 84 cm3 g-1, whereas the compound shows 
a negligible uptake for other gases (N2, H2, Ar, 
and CH4) (Fig. 7c). Such selectivity of CO2 and 
corresponding transformation from the nonporous 
phase to microporous phase can be ascribed to 
the strong dipole-quadrupolar interaction of the 
-CONH- groups with the incoming CO2 molecules.

In a similar study, the amide-CO2 interaction 
was induced gate-opening behavior for CO2 
adsorption in flexible 2-fold interpenetrating 
network of [Mn2(2,6-ndc)2(bpda)2]·5DMF (Mn-
bpda) with amide groups exposed in the channels 
[74]. The N2 adsorption isotherms of  MOF 
showed only a minor uptake at 77 K, which can 
be attributed to framework contraction and a lack 

of appropriate intermolecular interactions at low 
temperature, where the adsorption isotherms for 
CO2 at 195 K displayed a gate-opening adsorption, 
with a total amount of CO2 adsorption of 143 
cm3 g-1, and a corresponding isosteric heat of 
adsorption of 26.9 kJ mol-1 which increases to 36.2 
kJ mol-1 with increasing CO2 uptake. Moreover, 
the high pressure CO2 adsorption isotherm of the 
flexible species Mn-bpda indicated a marked gate-
opening process at P=5-8 bar, which was not found 
for N2 adsorption (Fig. 8). These results show that 
amide-CO2 interactions and possible amide-CO2-
CO2 interactions play important roles in causing 
structural variations and in inducing the gate-
opening behavior for CO2 adsorption [75].

Recently, a pillaring strategy has been used for 
the design and synthesis of three interpenetrated 
amide-functionalized MOFs, TMUs-22/-23/-
24, with the V-shaped dicarboxylate ligand 
of 4,4’-oxybisbenzoic acid (H2oba) and linear 
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Fig. 7:  (a) The ligand L and (b) the coordination environment around the copper center in 1-NO3
-. (b) CO2 and 

N2 adsorption isotherm at 195 K and 77 K respectively showing separation. Adapted from Ref. [73].
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dipyridyl-based ligands, which are isoreticular to 
the imine-functionalized TMUs-6/-21 MOFs [76] 
(Fig. 9a). The similarities (structure and stability) 
and differences (functional group and accessibility) 
of these MOFs allow study of the influence of 

the amide and the imine groups on their N2 
and CO2 sorption properties as well as on their 
selective sorption of CO2 over N2. Interestingly, 
extensive study of their CO2 sorption properties 
and selectivity, evaluated by performing kinetics 

 
 
 
 
 
 
 
 
 
 

 
 

                                                                               
Fig. 8              

 
 

 
 
 
 
 
 
 
 
 
 
 

Fig. 8:  Amide-CO2 interactions induced gate-opening behavior for CO2 adsorption at 298 K. Adapted from Ref. [74].

 
 
 
 
 
 
 
 
 

 
 

Fig. 9 
 

   
 
 
 
 

Fig. 9:  (a) 2D layers formed by the association between Zn(II) ions and oba linkers are further pillared by amide/imine-functionalized dipyridyl-
based ligands yielding to threefold interpenetrated porous pcu-MOFs. (b) View of the pore channels of TMUs-22/-23/-24, highlighting the 

amide groups. Color code: N (green), O (purple), the more accessible O atoms in TMU-24 (lavender). Adapted from Ref. [76].
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and breakthrough experiments for a CO2/N2 gas 
mixture, revealed that not only the incorporation 
of amide groups but also their accessibility is 
crucial to obtain enhanced CO2 sorption and CO2/
N2 selectivity (Fig. 9b). Therefore, the MOF with 
more accessible amide groups (TMU-24) shows a 
CO2/N2 selectivity value of ca. 10 (as revealed by 
breakthrough experiments), which is ca. 500% and 
700% of the selectivity values observed for the other 
amide-containing (TMUs-22/-23) and imine-
containing (TMUs-6/-21) MOFs, respectively.

MOFs are amenable to various post-synthesis 
manipulations to incorporate desired chemical 
moieties into nanoscale pores. In a valuable work 
performed by Hupp and Farha, two complementary 
amide-containing organic motifs (Fig. 10 a,b), 
which have a partial charges (δ+…δ-…δ+) precisely 

positioned via polar organic functionalities to 
complement the quadrupolar charge distribution 
in O=C=O, were post-synthetically incorporated 
into the robust NU-1000 MOF using solvent-
assisted ligand incorporation (SALI) for CO2 
capture and separation [77] (Fig. 10c-e). Previous 
studies have established that SALI relies on 
Zr(IV)-carboxylate bond formation on the NU-
1000 node to incorporate chemical moieties, 
provides a platform to evaluate the performance 
of new chemical functionalities in a porous solid 
environment without the need to prepare a new 
MOF linker containing the chemical functionality 
of interest, and enhances chemical and water vapor 
stability [77, 78]. Both of the amide-decorated 
SALI-derived samples entailed a slightly steeper 
CO2 uptake in the CO2 adsorption profiles at low 

Fig. 10: Schematic representations of (a) N-α-fluorenylmethyloxycarbonyl protected triglycine and (b) 2,6-diacetylaminopyridine-4-
carboxylic acid. SALI, a heterogenization strategy for carboxylic acid-derived functional groups, applied to the MOF NU-1000: (c) 
molecular representation of SALI-derived SALI-DAP (along the c-axis), (d) the corresponding functionalized node, and (d) the linker 

of NU-1000. Adapted from Ref. [77].
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pressure, resulting in higher volumetric uptake at 
lower pressure (~0.2 bar) relative to the unmodified 
NU-1000. Moreover, the post-modified samples 
showed higher values for Qst at the zero-loading 
limit (27-28 kJ mol-1) than the parent NU-1000 (17 
kJ mol-1), as qualitatively predicted by the GCMC 
simulations.

Very recently, an exceptionally water stable 
highly porous 3D MOF, [Cu2(PDAD)(H2O)]
n (PCN-124-stu, H4PDAD = 5,5ʹ-(pyridine-3,5-
dicarbonyl)bis(azanediyl)diisophthalic acid), has 
been synthesized with amide-functionalized cages 
[79]. PCN-124-stu maintains its framework in water 
with different pH values (pH 2-12) for at least one 
week, as monitored by PXRD, while only a limited 
number of MOFs have excellent stability in such 
a wide pH range of aqueous solutions, including 
those constructed MOFs with relatively expensive 
metals such as Zr which have higher metal-
oxygen coordination bond energies. Compared to 
prototypical MOF PCN-124, PCN-124-stu exhibits 
larger pore sizes, higher porosity, and larger surface 
area. However, compared to the CO2 capacities 
of PCN-124 under the same conditions, those of 
MOFs PCN-124-stu are reduced to some extent, 
which this may be attributable to the larger surface 
area and porosity of the latter. Through GCMC 
simulation at 273 K and 1 bar, the zero-loading 
heats of adsorption were found to be 26 kJ mol-

1 for CO2 and 15 kJ mol-1 for CH4, which show 
significant selective adsorption of CO2 over CH4. 
Furthermore, the GCMC simulations revealed that 
both open CuII metal sites and the amide groups 
in the framework are clearly the main adsorption 
sites of CO2 molecules, where H-bonding and van 
der Waals forces are the main interactions between 
CO2 molecules and amide groups in the lowest-
energy framework. 

In 2016, Schröder and coworkers reported 
an amide-functionalized pyrimidyl Cu(II)-
carboxylate MOF, MFM-136, which shows a 
CO2 uptake of 14.3 mmol g-1 at 20 bar and 273 
K, representing the highest CO2 uptake in mono-
amide-functionalized MOFs reported to date 
[80]. In contrast, MFM-136 gives a lower uptake 
of CH4 (8.3 mmol g-1) and negligible uptake of N2 
under the same conditions, leading to selectivities 
of 6.3:1 and 27:1 for CO2/CH4 and CO2/N2, 
respectively. In this MOF, all Cu(II) sites are fully 
coordinated to carboxylate and pyrimidyl groups, 
affording a pore environment without open metal 
sites, which provides an ideal environment for 

studying the binding interaction between amides 
and adsorbed CO2 molecules, since it eliminates 
the competitive binding of CO2 on the open Cu(II) 
sites. It is noteworthy that despite the good CO2 
uptake properties of MFM-136, combined neutron 
diffraction and inelastic neutron spectroscopy 
indicate no direct binding between adsorbed CO2/
CH4 and free amides in this case. This suggests 
that introduction of functional groups solely may 
not necessarily induce specific guest-host binding 
in the porous material, but it is a combination of 
pore size, geometry, and functional group that 
leads to enhanced gas adsorption properties. 
However, for further comparison it would be well 
to perform the CO2 uptake of the isostructural 
MOF, which has the same pore size and geometry 
as MFM-136 but without amide functional groups 
inside the pores.

CONCLUSIONS AND PERSPECTIVES 
Currently, there is no unique solution to solve 

the problem of CO2 capture, and this complicated 
challenge will almost certainly require the 
integration of several technology options. This 
review article has sought to highlight the effects 
of amide groups in the pores of MOFs on the 
CO2 storage and separation abilities, which are 
dramatically enhanced by generation of specific 
metal-free polar functional groups within the 
porous MOFs because the functional moieties 
directly recognize CO2 molecules through strong 
interactions. Furthermore, in parallel with 
experimental studies, in some cases, computational 
modeling methods such as grand canonical Monte 
Carlo (GCMC) and first-principles calculations 
have been applied as a tool to further probe the 
advantages of amide groups upon CO2 adsorption 
at the molecular level, which demonstrated that 
CO2 molecules prefer to locate at amide groups 
within the frameworks. Finally, we anticipate that 
this review article can provide useful information 
on the significant progress of the enhancement 
of CO2 capture by decorating amide functional 
groups within the pores of MOF materials, which 
is very promising for real-world applications where 
MOF materials could be capable of serving as next-
generation CO2 capture systems.
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ABBREVIATIONS
BDC = 1,4-benzyldicarboxylate
bipy = 4,4ʹ-bipyridine
bpe = 1,2-bis(4-pyridyl)-ethene
bpda = N,Nʹ-bis(4-pyridinyl)-1,4-benzene 
dicarboxamide
bpfb = N,Nʹ-bis-(4-pyridylformamide)-1,4-
benzenediamine
bpfn = N,Nʹ-bis(4-pyridylformamide)-1,5-
naphthalenediamine
bpta = N,Nʹ-bis(4-pyridinyl)terephthalamide
bpp = 1,3-bis(4-pyridyl)propane
btei6- = 5,5′,5′′-benzene-1,3,5-triyltris(1-ethynyl-2-
isophthalate)
CCS = Carbon capture and sequestration
H3L = (5-(4-carboxybenzoylamino)-isophthalic acid)
H4BDPT = bis(3,5-dicarboxyphenyl)terephthalamide
H4BDPO = N,N′-bis(3,5 dicarboxyphenyl)oxalamide
H4PDAD = 5,5ʹ-(pyridine-3,5-dicarbonyl) 
bis(azanediyl)diisophthalic acid
H6BTB = 5,5’,5’’-((5’-(4-formylphenyl)-[1,1’:3’,1’’-
terphenyl]-4,4’’-dicarbonyl)tris(azanediyl))
triisophthalic acid
H6TATB=5,5’,5’’-((4,4’,4’’-(1,3,5-triazine-2,4,6-triyl)
tris(benzoyl))tris(azanediyl))triisophthalic acid
GCMC = Grand canonical Monte Carlo
MOFs = Metal-organic frameworks
2,6-ndc=2,6-naphthalene dicarboxylate
PDAI = 5,5ʹ-((pyridine-3,5-dicarbonyl)bis-(azanediyl))
diisophthalate
pia = N-(pyridin-4-yl)isonicotinamide
TBAPy = 1,3,6,8-tetrakis(p-benzoic acid)pyrene
TPBTM = N,N’,N”-tris(isophthalyl)-1,3,5- 
benzenetricarboxamide
TCMBT = N,N′,N″-tris(carboxymethyl)-1,3,5-
benzenetricarboxamide
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