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ABSTRACT:

Singapore, branded as a ”City in a Garden”, has a long standing commitment to green the nation, one which has resulted in trees
becoming an integral component of the urban environment. Similarly for its digital twin, Virtual Singapore, we undertake the research
to automate the population of this virtual city with semantically and biologically representative trees in a CityGML (City Geography
Markup Language) format. This paper presents our framework of modeling trees for Virtual Singapore, showcasing an array of method-
ologies in data acquisition of light detection and ranging (LiDAR) and satellite images, tree extraction and quantification, and 3D tree
modeling at LODs (level of details) 1, 2 and 3. The paper will also highlight challenges and chosen methodologies along with the
preliminary results of this framework.

1. INTRODUCTION

Figure 1. Workflow of interdependent components in the tree
modeling framework

1.1 Background

Singapore is world-renowned as a ”City in a Garden” (National
Parks Board, 2016, Neo et al., 2012) owing to decades of dedi-
cation to greening the city. However, there remain challenges for
capturing this unique quality in the virtual city of Singapore, i.e.
Virtual Singapore (National Research Foundation, 2018), in the
form of representative 3D models in a computationally-tractable
way. Interwoven between buildings and other urban structures are
an estimated 1.5 million trees spread over more than 1000 species
in public parks, on state lands, and along the roads (Chew, 2015,
Toh, 2018) which are often oversimplified, under-represented, or
completely left out in Virtual Singapore.
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Trees grow and change in a less predictable manner compared to
other non-organic city objects and are governed by a multitude
of different factors from their species biological characteristics to
their surrounding environment. The diversity and density of veg-
etation in Singapore also makes it extremely challenging to accu-
rately identify and represent all trees in the country adequately.
Yet it is exactly due to these differences of species and density
that they are planted for creating a variety of experiences within
the city. Modeling these differences will enable various environ-
mental or urban analysis and studies to factor in vegetation, but
the efficient and accurate creation and maintenance of these mod-
els in any virtual city are significant hurdles to overcome.

Modeling individual trees at a high level of detail is a tedious
and labour-intensive process. Tree models derived directly from
the laser-scanned point data are generally incomplete owing to
the limitations of the scanning process as well as the nature of
trees in general - with leaves obscuring branches. In addition,
images from multiple viewpoints of individual trees are not read-
ily available to automatically assist the tree model reconstruc-
tion, and even if they do, will often require substantial manual
intervention. Given the need to model millions of trees in Vir-
tual Singapore, these direct approaches are not feasible. Hence,
tree models need to be dynamically generated for scalability and
ease of maintenance, yet representative of the actual tree on the
ground.

1.2 Objective

The main objective of the project is to develop efficient tools and
techniques to model 3D trees which are biologically, spatially and
semantically representative in Virtual Singapore. The project fo-
cused on the various level of details (LOD1, LOD2, and LOD3)
of solitary vegetation objects (Figure 2) defined in the CityGML
standard (Open Geospatial Consortium, 2012). In particular, the
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existing LOD2 and LOD3 representations of solitary vegetation
are not well defined for the tropical environment in Singapore.
Hence, the findings and results of this project will contribute
to Singapore government’s ongoing initiative for localising the
CityGML standards.

Figure 2. Varying LODs for solitary vegetation theme

Our project aims to address the challenges in Virtual Singapore
by generating dynamic trees in Virtual Singapore automatically.
We adopt a procedural modeling approach to automatically pro-
duce dynamic virtual tree models which can grow or change
based on their species characteristics and local environmental
conditions. This automatic approach works by analysing the ac-
quired remote-sensing data to extract the characteristic properties
of each individual tree, which are then used to customise pre-
formulated species-specific tree models to represent their real-life
counterparts being with their surroundings.

This paper lays down our overarching framework (Figure 1)
which we believe will enable Virtual Singapore as the world’s
first dynamic green virtual city, where trees can be populated
automatically without continuous and expensive labour-intensive
efforts. It is also envisioned that using such highly representa-
tive tree models will greatly enhance outcomes of environment
studies, simulations, and city planning. Lastly, this work is in
line with the aim of addressing challenges of automation, main-
tenance and quality control of the tree models within Virtual Sin-
gapore.

1.3 Problem Statements

In order to address the challenges above, our framework focuses
on two specific areas:

1. Automated tools for remote sensing data acquisition and
processing

2. Methodologies to generate large scale CityGML-compliant
tree models at multiple levels of details (LOD1, LOD2, and
LOD3)

2. LITERATURE REVIEW

Our framework entails various aspects of data acquisition, pro-
cessing, and 3D modeling, and we will discuss some of the rele-
vant state-of-art works in this section.

We leverage off satellite imagery to efficiently and accurately lo-
cate trees and to obtain their crown size information (Kamal et
al., 2015, Zhen et al., 2016). Beyond satellite imagery, which
has limitations, laser scanning technology has revolutionised en-
vironmental digitisation for quantifying vegetation (Newnham et
al., 2012, Vga et al., 2016, Zhao et al., 2015). However, the
problem of occlusions in urban settings and the sheer density of
tropical vegetation require high resolution and coverage of trees,

producing massive point cloud data which are labour-intensive
to process, store, manage, and work with (Martinez-Rubi et al.,
2015, van Oosterom et al., 2015). Dealing with a single tree is
challenging (Raumonen et al., 2015), and attempting it for all
trees across Singapore efficiently and accurately is a much more
daunting process.

The modeling of trees from LiDAR data requires a number of
interdependent steps. The first is the identification and extrac-
tion of vegetative material from the LiDAR dataset (Zhou and
Neumann, 2013), one tree at a time (Rutzinger et al., 2010,
Rodrguez-Cuenca et al., 2015). The next step is to quantify tree
semantics from the isolated point cloud data (Pfeifer et al., 2004,
Livny et al., 2010, Leavenworth, 2012) by segregating the tree
point clouds into the above-ground woody structures and the tree
crown. At present, we are not aware of any commercial soft-
ware for this segregation step, although some relevant techniques
have been demonstrated (Bland et al., 2014).Works such as (Li
et al., 2017) use the intensity information found in typical point
cloud data to differentiate the woody structure (trunk) and crown
(leaves). Other works (Xu et al., 2007a, Wang et al., 2014) use
minimum spanning tree construction based on neighbours’ dis-
tances to construct tree skeletons. The next step involves simpli-
fying the woody structures into a series of cylinders (Raumonen
et al., 2013, Delagrange et al., 2014, Calders et al., 2015) to allow
extracting basic physical tree parameters to derive tree semantic
information and to generate 3D tree models.

Lastly, modeling 3D trees can be done by non-procedural, inter-
active approach or stochastic, procedural approach. The current
state-of-art in the interactive approaches (image-based (Reche-
Martinez et al., 2004), LiDAR-based (Xu et al., 2007b, Livny et
al., 2011), graph-skeleton (Pirk et al., 2012a, Pirk et al., 2012b),
sketch-based (Weber and Penn, 1995, Lintermann and Deussen,
1999, Longay et al., 2012)) are inherently not scalable and gen-
erally ignore the tree growth factor despite producing highly re-
alistic looking tree models. On the other hand, the procedural
approach generates high quality trees stochastically and automat-
ically based on a set of predefined rules, hence it is suitable for
large scale modeling of naturally-looking trees and their growths.
However, the current state-of-art for this approach is limited in
accurately capturing regular patterns of nature and requires pre-
cise biomass distribution measurements which is not always fea-
sible to obtain (Vos et al., 2010, Cournde et al., 2011), or requires
a good mesh input of the actual tree (Stava et al., 2014) which is
challenging to derive from remote sensing data without manual
intervention, and hence not directly feasible for Virtual Singa-
pore.

3. PROPOSED FRAMEWORK

Here we present our tree modeling framework that supports a full
workflow from data acquisition and processing until the gener-
ation of CityGML tree models for Virtual Singapore (Figure 3).
We intend to locate every single tree in Singapore, then generate
its Virtual Singapore CityGML representation in the form of a 3D
model and its semantic information.

The official tree database website of National Parks Board
(NParks), trees.sg, currently shares approximately 500,000 trees
in parks and along the roads in Singapore, each with unique iden-
tifier, species and other semantic information (National Parks
Board, 2018, Lee, 2018). On top of this database, we rely on
remote sensing data to extract the tree information. Our acquired
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Figure 3. Framework workflow

remote-sensing data include airborne LiDAR scanning (ALS) and
mobile LiDAR scanning (MLS) data, as well as satellite and air-
borne imagery. The remote sensing data are processed to measure
individual tree properties such as growth space, crown shapes,
trunk and branch sizes and angles. The measured data accumu-
late as statistics in our species-specific tree library and also used
as constraints to model individual trees at required level of de-
tails. All components of our tree modeling framework, which are
mostly work-in-progress, will be discussed in more details in the
following subsections.

3.1 Data Acquisition

LiDAR scans (ALS and MLS) and airborne imagery were ac-
quired (Soon and Khoo, 2017) and geo-referenced to the SVY21
Coordinate system with orthometric height based on Singapore
Height Datum:

• ALS data over the entire Singapore were collected in April
2014 using an Optech ALTM Pegasus with up to 4 range
measurements, including 1st, 2nd, 3rd, and last returns. The
data were then processed for georeferencing and registra-
tion before saved in a LAS format to a vertical and plani-
metric accuracy of ±0.15 m or better with a minimum of 5
points/m2 and pre-classified.

• Airborne imagery was obtained using a Leica RCD30 with
a 60 megapixel resolution which produced an eventual or-
thophoto mosaic imagery in TIFF format with a resolution
of 10cm with a spatial accuracy of ±0.5 m RMSE or better.

• MLS data were collected between Aug 2015 and June 2016
using a Riegl VMX-450 at approximately 40 points/m2 at
70 m range at a speed of 60 km/hr with a measurement rate
at minimum of 200,000 points/sec/head. The data covered
the vast majority of roadways across the entire Singapore.

The ALS and MLS data acquisition above cost around SGD$4
million. Plans to conduct subsequent scans are in discussion at
the point of writing.

In addition, high resolution satellite images of the Worldview-2

satellite with 8 multispectral bands (2 m/pixel) and a panchro-
matic band (0.5 m/pixel) were acquired. The images were or-
thorectified with fine digital elevation model (DEM) for geo-
referencing. The pixel digital numbers were then converted to
band-average spectral reflectance for better spectral analysis and
to facilitate comparison with imagery acquired at other time or
by other sensors. The multispectral and panchromatic bands were
fused to form a 0.5 m/pixel multispectral image using an in-house
developed pan-sharpening algorithm (Xiaojing and Chin, Unpub-
lished), which preserves both the spectral fidelity of the mul-
tispectral bands and the spatial resolution of the panchromatic
band.

3.2 Data Processing

3.2.1 Tree Isolation using Satellite Imagery For trees out-
side of the NParks database and not covered by the MLS data, we
employ the use of customised algorithms to isolate trees from
satellite imagery. Here, an object-based multi-resolution seg-
mentation procedure is applied to extract relatively homogenous
objects from the image layers based on their spectral and spa-
tial/contextual properties. The objects are classified into tree or
non-tree classes, according to the mean image layer reflectance
values, or spectral indices of NDVI, brightness, band ratios, etc.
For the tree objects, the individual tree crowns are delineated
using a watershed segmentation technique. Morphology filter-
ing and region growing algorithms (Gonzalez and Woods, 2006)
are used to smoothen the outlines of individual tree crowns and
to fill small gaps within the canopy. Finally each tree crown is
represented by a circular object of the same area (Figure 4) and
tagged with parameters such as the geo-position, crown size, and
attributes extracted from other data sources (e.g., ALS, MLS and
NParks tree database). In our initial validations, the results of
automated individual tree crown detection and delineation using
satellite imagery correlated well with the ground truth data ob-
tained by manual delineation.

We anticipate that the extracted spectral and morphological at-
tributes of tree crowns can be used to identify tree species using
template matching or machine learning methods.
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Figure 4. Tree crowns extracted from satellite imagery

3.2.2 Tree Isolation using MLS data MLS data was col-
lected of almost all roadways in Singapore which would mean
that every roadside tree would have been scanned. From this data,
our task is to isolate individual trees and generate a single point
cloud file for each tree to be further processed. To perform the
isolation, we developed tools within the PointCloudScene (Digi-
cart, 2018) production environment to automate the isolation pro-
cess which requires minimal manual quality checks.

To isolate the trees from the surrounding environment, we
first prepare a generalised triangulated irregular network (TIN)
ground model (Figure 5) to serve as a reference to base the sub-
sequent extraction from.

Figure 5. TIN ground model

While the multiple laser pulse returns obtained by Riegl VMX-
450 MLS scanner results in a wider coverage and a denser point
cloud, many challenges still arise during the tree isolation pro-
cess. Lamp posts or other vertical objects, especially if they grow
in close proximity to a neighbouring tree canopy, have proven to
be a problematic in the automated isolation process. To work
around this, we apply an automated feature recognition tech-
nique, where voxels are constructed based on point cloud inten-
sity and laser beam return values, and then used for recognising
trunk-like feature shapes. As a result, tree trunks are separated
automatically and stored in the database as individualised tree lo-
cations (Figure 6).

While tree trunks tend to be separated from one another, the den-
sity of trees in Singapore often results in tree canopies which in-
tersect each other. To segregate the trees from each other, cus-
tomised point cloud filtering tasks were developed to identify the
canopy out of original point cloud points. Voxelisation and shape
recognition solutions were then applied to separate canopies from
other points in the scan (Figure 7).

This is followed by best fitting ellipses that are generated around
each tree trunk enveloping the respective canopy and stored in

the database (as clipping shapes) for each isolated tree (Figure 8).
The end result of this process is a database whereby the 3D loca-
tion, canopy coverage and best fitting ellipsis are stored for each
successfully isolated tree. In addition, using the ellipses, point
cloud files were clipped out of the main scan for each tree and
stored for further processing.

In the ongoing process of verifying the extracted data, we have
found that the developed algorithms generally perform well in
extracting girth measurements (Figure 9), especially for cases
where the area of interest (AOI) fits the target closely, there
are good go-return scans around the target and no dense hedges
around tree trunks, and the trunk diameter is relatively big (more
than 10 cm in our case). Understandably like all automated tech-
niques, a degree of quality checks need to be performed. As such,
we have also developed simple quality control tools to operators
to check and if necessary modify the results.

3.2.3 Classification of Tree Woody Structure and Leaves
After successfully isolating a single tree from the MLS data,
we then seek to classify the point cloud into woody structures
and leaves for further analysis. There are two main character-
istics of the point cloud that can be used to perform this clas-
sification, the intensity of the return and its distance to its k-
nearest neighborhood. Generally, points of woody structures
tends to have a higher intensity and are more densely spaced,
while points located around leaves tends to have a lower inten-
sity and are sparser. However, due to scanning irregularities, seg-
regation using these two parameters typically resulted in many
mis-classifications.

We thus proposed a multi-stage classification process. In the first
stage, small clusters of points are first classified as woody struc-
ture. To do that, points are sorted based on their intensity values
and their average distance to their nearest three neighbors. Points
which are both in the highest 10th percentile with respect to high-
est intensity and closest distance are selected as woody structure.
These regions of points clusters are known as seed clusters. In the
second stage, these seed clusters are then allowed to grow, based
on an average distance to nearest three neighbors cutoff parame-
ter. In the final third stage, the points that are selected so far are
put into a minimum spanning tree, with the source being the point
lowest with respect to the tree. Only the main connected cluster
to the source in the minimum spanning tree is then classified as
the woody structure. Some example results of the classification
is shown in Figure 10.

3.2.4 Tree Parameter Extraction This portion of the project
is currently under development at the time of writing. Here, we
use the individually extracted and classified point cloud file of
each tree obtained from above and develop more tools to extract
the following parameters automatically:

• 3D coordinates and height
• trunk girth and height
• crown width, depth, height, orientation, and eccentricty
• tree growth space in the form of voxels
• branching structure and diameters

All extracted parameters can be visualised for operators to mod-
ify them if necessary. The extracted parameters are then exported
as a customised XML file which represents a very compact file
format required to store as much information of the tree as possi-
ble (Figure 11). This XML database not only serves as permanent
record of a particular tree in time but also provides the necessary
data for the following LOD2 and LOD3 modeling work.
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Figure 6. Tree locations Figure 7. Trees isolated from the ground Figure 8. Fitted ellipses
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Figure 10. Classification of Woody Structure

3.3 3D Tree Modeling

3.3.1 Singapore CityGML Standards for Vegetation Theme
The open international standard, CityGML (version 2.0), has
been adopted as the base specification for Singapore’s National
3D Standards. The standards aim to develop a comprehensive 3D
representation of the city, with well-defined themes and seman-
tics describing the urban environment. Vegetation is one of the
city themes defined in CityGML, which further classified vege-
tation into two classes: solitary vegetation objects (e.g. a single
tree) and plant cover (e.g. a forest) (SGI 3D GDI-DE, 2012) - in
this paper, we explore only the former.

Keeping to CityGML concept of level of details concept, solitary

Figure 11. Diagrammatic view of XML structure storing
branching information

vegetation objects could be expressed in several levels of com-
plexity (Figure 2): LOD0 as the most general portraying only
the tree crown outline, LOD1 as a simplified 3D proxy with a
height representation, LOD2 as a crown and trunk representa-
tion, LOD3 as a more realistic representation at the species level
of details including leaves and branches, and potentially LOD4
which includes tree’s internal spaces (e.g., cavities). One of the
objectives in this project was to establish suitable representations
of the vegetation theme incorporating requirements from Singa-
pore’s local context. In this paper, we touch on the modeling for
solitary vegetation objects at LOD1, LOD2, and LOD3. Addi-
tional properties relevant to Singapore’s local context were added
to the list of existing attributes of CityGML solitary vegetation
theme.

3.3.2 LOD1 and LOD2 Solitary Vegetation Models For
LOD1 tree models, it is proposed that a simple but symbolic rep-
resentation should be used to portray solitary trees. The polygon
count for the LOD1 models should be kept minimal but enough
to distinguish the model as a vegetation feature from other LOD1
city objects. This need to distinguish trees from other city ob-
jects led us to decide against the cylindrical model, going instead
with simplified geometrical shapes positioned and scaled to the
respective extracted coordinates and heights (Figure 12).

The development of LOD2 models was detailed in our recent
work (Lin et al., In Press, 2018) whereby seven common tree
shapes were been identified to represent the entire range of trees
in the city: columnar, conical, irregular, oval, round, wedge and
palm (Figure 14). There, we demonstrated the tree extraction
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Figure 12. LOD1 models on a Singapore test site Figure 13. LOD2 models on a Singapore test site

from ALS data and the tree classification into solitary vegetation
or plant cover, in adherence to the existing CityGML standards.
CityGML LOD2 models are then generated based on existing ty-
pology information and allometric equations derived from MLS
data measurements. Over 80,000 tree models were automatically
generated within a 25 km2 test site in Singapore (Figure 13) using
this method resulting in a low polygon count but representative
method of modeling the various typological shapes and sizes of
the different species in Singapore.

Figure 14. Tree shape typologies for LOD2 representation

3.3.3 CityGML LOD3 Models Currently, LOD3 modeling
is a work in progress. Our LOD3 tree models are defined at the
species level and distinguishes various components such as trunk,
branches, leaf, flower, root, and so on. Ten local species were
chosen to represent approximately one third of managed tree pop-
ulation in Singapore:

• Samanea saman
• Hopea odorata
• Tabebuia rosea
• Syzygium myrtifolium
• Syzygium grande
• Peltophorum pterocarpum

• Swietenia macrophylla
• Khaya senegalensis
• Sterculia parviflora
• Archontophoenix

alexandrae

We intend to generate LOD3 models by an automatic inverse pro-
cedural modeling approach similar to (Stava et al., 2014), while
tree parameter values are derived from remote sensing data and a
pre-formulated tree library. In this case, 3D tree models are gen-
erated from a set of rules. To specify the rules, in this case the
growth rules of trees, we choose to adopt L-system plant model-
ing language (Prusinkiewicz et al., 2000). By nature, L-systems
generate trees through growth from a seed into root, trunk, leaf,
fruit, and so on. We are formulating the L-system rules to model
growth of the selected ten tree species.

The workflow of our procedural tree modeling consists of two
parts (Figure 15):

1. Preprocessing:
• formulation of a tree library of Singapore species-

specific parameters and their value distributions
• formulation of tree growth rules for various tree

species
2. Runtime: parameter optimization using the input data (from

the data processing process in the form of physical measure-
ments and a voxelised growth space) and reference infor-
mation from the compiled tree library with growth rules, in
order to obtain the optimum growth parameter configuration

Optimisation

-Growth space
-Constraint
params. (mea-
sured)
-Tree species
-Tree age (est.)

Input data

Tree library (statistics) Tree growth rules (L-system)

Reference information

Pre-processing

Optimum
growth

parameters

Output

Run-time

Figure 15. Procedural modeling workflow

For the tree library, two sets of parameters are defined to de-
scribe the characteristics of the tree anatomy - the constraint pa-
rameter set and the growth parameter set. Constraint parameter
values are obtained by the semantic analysis of processed MLS
data, whereas growth parameters characterise the growth, and the
change in shape, and structure of a tree over time. The value dis-
tributions of the growth parameters vary with respect to the tree
species. Optimal values of the growth parameters for a tree are
determined stochastically within constraints during optimisation
- given the species and, if available, an estimated age of the tree.

The parameter optimisation module solves for optimum param-
eter values by using a constrained stochastic optimization tech-
nique such as Markov Chain Monte Carlo (MCMC) (Kass et
al., 1998) with suitable directed search algorithms such as sim-
ulated annealing and gradient descent. The value of each unmea-
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sured parameter is determined randomly according to its species-
specific probability distribution, while keeping the generated tree
within its growth space.

To initialise the optimization, we use the extracted tree measure-
ments from LiDAR data (such as crown and trunk sizes) to esti-
mate the age of the tree. A tree seed model of its species is pro-
cedurally grown to that age while matching the bending angles
and diameters of the trunk and first order branches (and number
of first order branches). From this state, it will iteratively and
stochastically determine the values of other unmeasured param-
eters while minimising distance costs within the growth space
constraint of the tree.

At the end of the optimization process, we obtain a set of opti-
mum parameter values with their corresponding growth timeline,
to be used by some tree modeller software such as Xfrog (Linter-
mann and Deussen, 1999) to output a high resolution 3D geome-
try model of the tree. The generated tree model is similar to the
actual tree with respect to its species, trunk-branch structure, and
growth space, yet stochastically different from the actual tree, es-
pecially in terms of leaves and unmeasured high order branches.
The geometry models, along with the corresponding tree’s se-
mantic information, are stored as CityGML LOD3 models.

4. CONCLUSION

Our tree modeling work for Virtual Singapore is still in progress
but has demonstrated promising preliminary results with auto-
mated flows among the framework components. However, there
remain challenges of completing the tasks at hand and testing the
robustness of our methodologies to the wide variety and sheer
population of trees across Singapore.

Our research outcome will be a prototype framework to automat-
ically model multiple level of details of trees in Virtual Singapore
based on extracted remote sensing data constraints and a library
of Singapore tree species. We envisage that the work carried out
by the team will eventually enable city planners, designers and
researchers alike to use these representative vegetation models
for analyses and studies on virtual city platforms such as Virtual
Singapore.
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