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Seminal studies from Nikolai Anichckov identified the accumulation of cholesterol

in the arteries as the initial event that lead to the formation of atherosclerotic

plaques. Further studies by Gofman and colleagues demonstrated that high levels

of circulating low-density lipoprotein cholesterol (LDL-C) was responsible for the

accelerated atherosclerosis observed in humans. These findings were confirmed by

numerous epidemiological studies which identified elevated LDL-C levels as a major risk

factor for cardiovascular disease. LDL infiltrates in the arterial wall and interacts with the

proteoglycan matrix promoting the retention and modification of LDL to a toxic form,

which results in endothelial cell (EC) activation and vascular inflammation. Despite the

relevance of LDL transport across the endothelium during atherogenesis, the molecular

mechanism that control this process is still not fully understood. A number of studies

have recently demonstrated that low density lipoprotein (LDL) transcytosis across the

endothelium is dependent on the function of caveolae, scavenger receptor B1 (SR-B1),

activin receptor-like kinase 1 (ALK1), and LDL receptor (LDLR), whereas high-density

lipoproteins (HDL) and its major protein component apolipoprotein AI transcytose

ECs through SR-B1, ATP-Binding cassette transporter A1 (ABCA1) and ABCG1. In

this review article, we briefly summarize the function of the EC barrier in regulating

lipoprotein transport, and its relevance during the progression of atherosclerosis. A better

understanding of the mechanisms that mediate lipoprotein transcytosis across ECs will

help to develop therapies targeting the early events of atherosclerosis and thus exert

potential benefits for treating atherosclerotic vascular disease.
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INTRODUCTION

Atherosclerosis is a chronic inflammatory process involving complex interactions of normal and
modified lipoproteins, monocytes, macrophage-foam cells, T lymphocytes, endothelial cells (ECs),
smooth muscle cells, and fibroblasts. The transendothelial transport of apoB-lipoproteins plays
a pivotal role in the pathogenesis of atherosclerosis. According to the “infiltration theory,” the
development of atherosclerosis is triggered by the entry and subendothelial retention of lipoprotein
from the bloodstream, particularly low density lipoprotein (LDL), and apolipoprotein-B (apoB)-
containing remnants within the arterial wall (1). HDL must also cross the endothelial barrier in the
arterial wall to exert its athero-protective properties mediating cholesterol efflux from lipid laden
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macrophages. Increased cholesterol influx relative to efflux
through ECs and enhanced binding to extracellular matrix result
in the retention of both pro-atherogenic (apoB-lipoproteins) and
anti-atherogenic lipoproteins (HDL) in atherosclerotic arteries
(2). Although, lipoprotein transport is a critical for the initiation
and progression of atherosclerosis, the fluxes of lipoproteins into
and out of the artery wall have not been completely investigated
and the mechanisms by which LDL and HDL enters into the
subendothelial space remains unclear.

TRANSCYTOSIS IN EC

Arteries and veins are composed of various layers of smooth
muscle cells, connective tissue, and a thin single sheet of
ECs. The endothelium forms a barrier due to the presence
of specialized cell-to-cell junctions which selectively regulate
the passage of molecules and cells between the bloodstream
and tissues by the paracellular route (3). The EC barrier
is involved in many systemic processes including vascular
tone, fluid homeostasis and host defense. The endothelium is
permeable to water and small molecules with a diameter below
6 nm, but nearly impermeable to macromolecules with different
endothelia endowed with unique “perm-selectivity” (4). The
transport of macromolecules, including lipoproteins, across the
endothelium is actively controlled by ECs via the transcellular
route, or transcytosis (5, 6). The process of transcytosis involves
fluid phase or receptor-mediated ligand uptake by endocytosis,
transition of the cargo through the cytoplasm, and exocytic
release of the cargo (7).

The transcytosis can be separated into indirect and direct
pathways dependent on their transportation routes. In the case
of the indirect transport pathway, molecules are endocytosed
into early endosomes, transferred to recycling endosomes, and
exocytosed on the opposite side of EC layer (8). The indirect
transcytosis routes are also receptor-specific, and rely on the
interaction of molecules and their endogenous receptors. For
example, LDL can transcytose across the EC layer by binding to
LDL receptor (LDLR) or activin-like kinase 1 (ALK1) protein,
which will be described in more detail in section Transcytosis of
LDL in EC of this review article (9, 10). The direct transcytosis
route involves the direct transport of the molecules from the
incoming side to the opposite side, which in turn fuse with
the basolateral aspects of the plasma membrane (8). Caveolae-
mediated transport in endothelia is the most common route
of direct transcytosis. Besides the receptor-specific indirect
transcytosis and direct transcytosis routes, proteins or other
macromolecules can be transported via nonspecifically binding
to membranes through electrostatic interaction and fluid-phase
transcytosis (11).

TRANSCYTOSIS OF LDL IN EC

LDL particles contain one single apolipoprotein B-100 (apoB-
100) molecule and carry the majority of the cholesterol in
circulation. Elevated circulating LDL levels are highly related to
the development of atherosclerosis and coronary heart disease.

Mutations of LDLR cause an autosomal dominant disorder,
familial hypercholesterolemia (FH), which is characterized by
elevated plasma concentrations of LDL cholesterol and early
coronary heart disease (12). During the initial stages of
atherosclerosis, LDL particles are transported across the EC
barrier and accumulate in the subendothelial space. The trapped
LDL molecules are oxidized to form oxidized LDL (oxLDL),
which facilitates the uptake of these modified lipoproteins by the
scavenger receptors expressed in macrophages. This promotes
the formation of macrophage foam cells within atherosclerotic
lesions (13). Early electron microscopy studies examining LDL
transport across the endothelium documented the uptake of
LDL via two routes: a saturable, clathrin-mediated endocytic
mechanism via LDLR; and fluid-phase non-saturable transcytotic
mechanism through non-coated plasmalemmal vesicles, perhaps
caveolae (14). In this section, we will review the receptors
that have been associated with the transport of LDL across
the endothelium and the relevance of caveolae in this process
(Figure 1).

Endothelial LDLR-Mediated LDL
Transcytosis
The endocytosis of LDL by LDLR has been extensively
characterized (15). ApoB in LDL particles is recognized by
LDLR, promoting LDL uptake into the cells. The internalized
particles are routed to endosomes, where LDL dissociates from
LDLR because of the low PH in endosomal lumen. Dissociated
LDL is transferred to late endosomes and lysosomes for further
degradation, whereas LDLR is recycled back to the plasma
membrane. Besides to its function in LDL for utilization and
clearance for peripheral tissues, LDLR has been reported to
mediate LDL transcytosis in the blood-brain barrier (BBB) (16).
An antibody known to interact with the LDLR-binding domain
inhibited the transcytosis of LDL, and the LDL transcytosis
paralleled the increase in LDLR expression. This suggests that
LDL is transcytosed by a receptor-mediatedmechanism (16). The
non-degradation of the LDL during transcytosis indicates that
the transcytotic pathway in brain capillary endothelial cells is
different from the classical LDL receptor pathway of endocytosis
(16). However, this is unlikely to be the case in ECs of systemic
circulation, whereas PCSK9-mediated LDLR degradation has no
effect on LDL transcytosis (17), indicating that the transcytosis
process in ECs of systemic circulation is LDLR-independent.

Scavenger Receptor B1 (SR-B1) and LDL
Transcytosis in EC
SR-B1 is well-known as high affinity HDL receptor which
mediates the selective uptake of HDL cholesterol ester into
the liver and the bidirectional flux of free cholesterol between
cells and HDL (18, 19). Recent studies have revealed an
unexpected role of SR-B1 in regulating LDL transcytosis in
ECs (9, 17). Lee et al. using a novel total internal reflection
fluorescence (TIRF) microscopy approach, demonstrated that
SR-B1 silencing significantly attenuates LDL transcytosis in
human coronary ECs (17). These results were further supported
in vivo by assessing the accumulation of fluorescence-labeled
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FIGURE 1 | Schematic of low-density lipoprotein (LDL) transcytosis by ECs. Water and small molecules with a diameter below 6nm are transported across

endothelial cells by the paracellular route. The classical LDL receptor (LDLR) pathway mediates LDL uptake and its degradation in the lysosomes, which is not

essential for transcytosis. LDL can transpose ECs through receptor-mediated transcytosis associated with scavenger receptor B1 (SR-B1), activin receptor-like kinase

1 (ALK1), or LDL receptor (LDLR, only occurred in brain ECs), as well as caveolae-mediated direct transcytosis. The endocytosed LDL particles are then transferred to

the opposite side of the cell directly (caveolae-mediated transcytosis) or indirectly (receptor-mediated transcytosis) and exocytosed to subendothelial space.

LDL (DiI-LDL) in aortas isolated from WT and SR-B1
deficient mice. The authors found a significant reduction in
LDL infiltration into the subendothelial space in aortas from
SR-B1-deficient mice perfused ex vivo with DiI-LDL (17).
Similar findings were observed by Sessa and collaborators,
who identified SR-B1 as a relevant receptor that controls LDL
uptake in ECs using a genome-wide RNAi screening strategy
(9). Mechanistically, it is not clear how SR-B1 mediates LDL
transport since there is no data showing that it directly binds
apoB on LDL. However, it is feasible that SR-B1 is part
of a complex that facilitates LDL uptake through additional
pathways. Specific expression of SR-B1 in endothelial cells
showed 37% less aortic lesions compared to control mice
which was attributed to decreased plasma cholesterol and
increased HDL levels (20), however, the contribution of SR-B1
in lipoprotein transcytosis on the development of atherosclerosis
is still unclear.

ALK1-Mediated LDL Transcytosis in EC
In addition to SR-B1, we have identified ALK1 as a novel
low-affinity, high-capacity receptor for LDL in EA.hy926 cells,
an immortalized human endothelial-like cell (9). ALK1 is an
EC-restricted TGF-β-type 1 receptor with high affinity to the
bone morphogenetic protein (BMP) 9 and 10 ligands (21).
By knockdown or overexpression studies, ALK1 was found to
mediate LDL transcytosis independent of its kinase activity and
that ALK1 can directly bind LDL (9). Moreover, the specific
deletion of ALK1 in the endothelium significantly reduced DiI-
LDL uptake into the aortic endothelium by en face confocal

imaging of isolated vessels (9). Interestingly, ALK1-dependent
uptake of LDL does not result in its lysosomal degradation,
implying a distinct internalization pathway from LDLR (9).

Caveolae Regulation of LDL Transcytosis
Across the Endothelium
Caveolae are small bulb-shaped plasma membrane invaginations
present in most cell types with ∼50–80 nm in diameter (22).
Caveolin-1 (Cav-1) is the major structural protein essential to
the formation of the caveolae in endothelial cells (23), which
have been implicated in various physiological and pathological
contexts based on their cellular functions in lipid homeostasis,
signal transduction and endocytosis (24–26). We and others have
demonstrated that the absence of Cav-1 protects mice against
the progression of atherosclerosis (25, 27, 28). Importantly, re-
expression of Cav-1 in ECs attenuates this effect and promotes
lesion expansion (25). Mechanistically, we demonstrated that
genetic ablation of Cav-1 significantly impairs LDL transport and
retention in the arterial wall (25). Similar findings were observed
by Lisanti and colleagues, who found a significant reduction in
radioactively-labeled LDL accumulation in mice lacking Cav-1
(29). These findings suggest that caveolae plays a relevant role as a
major regulator of LDL entry into the vessel wall and participates
initiation of atherosclerosis. Moreover these findings reinforce
the original observations identifying non-coated plasmalemmal
vesicles as caveolae, and the major entry pathway for with LDL
(14). Importantly, SR-B1 and ALK1 are located in caveolae,
suggesting that both receptors might promote specific LDL
binding and loading to caveolae facilitating the transport of LDL
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across the endothelium (30, 31). Additional experiments will
be important to dissect the specific contribution of caveolae in
SR-B1 and ALK1-mediated LDL transcytosis.

TRANSCYTOSIS OF HDL IN EC

SR-B1- and ABC Transporters- Mediated
HDL Transcytosis in EC
The protective effect of HDL is attributed to its ability in
mediating reverse cholesterol transport (RCT) through which
cholesterol is delivered from the periphery (such as arterial wall
cells including lipid laden macrophages) back to the liver for
biliary excretion (32, 33). To achieve the removal of excess
cholesterol deposited in the atherosclerotic lesions, HDL must
first cross the endothelial barrier to get access to macrophage
foam cells in atherosclerotic plaques. The transcytosis of
apolipoprotein A-I (apoAI), the major protein constituent of
HDL, from the apical to the basolateral compartment was
observed in ECs with minor amounts of the internalized
apoAI degraded (34). The mechanism of apoAI transcytosis
through ECs were further confirmed by the same group, who
showed that apoAI is colocalized with ATP-Binding cassette
transporter A1 (ABCA1) and that pharmacological intervention
or RNA interference of ABCA1, but not SR-B1, modulated
the transcytosis of apoAI through ECs (35). However, the
endothelial transcytosis of mature HDL is different from that
of apoAI, as it is dependent on SR-B1 and ABCG1 but not
ABCA1 (36). Interestingly, the transcytosis of LDL mediated by
SR-B1 appears to be regulated by (VEGF)-A, linking vascular
permeability with enhance LDL transcytosis via SR-B1 (37). In
addition, the transcytosis of HDL in brain microvascular ECs was
demonstrated to be partially SR-B1-dependent and inhibition of
Cav-1, or clathrin and adaptor protein PDZ Domain Containing
1 (PDZK1) had no impact on the HDL transcytosis (38).

Delivery of excess cholesterol from peripheral tissues and cells
to the bloodstream by HDL is the initial steps in RCT process
(32, 33). The lymphatic system is considered to be the primary
location for the return of lipoproteins from the interstitial
space to circulation (39). It has been shown that lymphatic
transport of cholesterol by HDL is mediated via SR-B1 expressed
on lymphatic endothelium using silencing RNA interference,
neutralizing antibody, and transgenic mice (40–42). The specific
function of SR-B1 is dependent on the uptake and transcytosis
of HDL in lymphatic endothelial cells (40–42). Importantly, SR-
B1 was found to be present in both the basolateral and apical
membranes of ECs, but greater cellular uptake of cholesterol from
HDL was found in the basolateral compartment (20). Enhanced
expression of SR-B1 in ECs resulted in decreased atherosclerosis,
supporting a possible role for endothelial SR-B1 in the flux of
cholesterol across ECs (20).

Caveolae-Mediated HDL Transcytosis in
ECs
Immunohistochemical studies have shown a partial co-
localization of DiI-labeled HDL in caveolae and gold-labeled
HDL with Cav-1, but the potential role of Cav-1/caveolae

on HDL trafficking in ECs remains poorly understood (43).
Caveolae have been also implicated in the regulation of cellular
cholesterol homeostasis and a number of cholesterol-trafficking
steps (44–46). The reconstitution of purified Cav-1 only with
cholesterol-containing lipid vesicles revealed the first direct
link between Cav-1 and cholesterol (47). A series of studies by
Fielding and Fielding suggest that caveolae may act as portals for
cholesterol efflux upon incubation of cells with HDL (44, 48, 49).
These data was further supported by adenovirus-mediated
overexpression of Cav-1 in the mouse liver, caused an increase
in plasma HDL-cholesterol (45, 50, 51). Cav-1/caveolae may also
regulate the activity of scavenger receptors and ATP-binding
cassette transporters (ABC)s, that control the cholesterol
homeostasis in ECs. While these studies suggest an important
role for caveolae in regulating HDL transport, cholesterol efflux,
and hepatic HDL biogenesis, a recent study showed that HDL
internalized by ECs did not colocalize with clathrin or Cav-1 and
is independent of fluid phase uptake (52). Instead, HDL appeared
to be internalized and trafficked by ECs through a non-classical
endocytic route involving dynamin and cytoskeletal networks
(52). The mechanisms of caveolae and Cav-1 involved in HDL
transcytosis in ECs require further study.

CONCLUSIONS

The subendothelial accumulation of pro-atherogenic
lipoproteins including LDL represents a pivotal step in the
initiation of atherosclerosis (53). On the contrary, removal of
cholesterol from the subendothelial space to the circulation
by HDL-mediated reverse cholesterol transport represents a
relevant anti-atherogenic pathway (53). Endothelial transcytosis
is considered to be a process that involves endocytosis, vehicle
traffic through the cytoplasm and exocytic release of the cargo.
So far, most of the studies on endothelial transcytosis have
focused on the endocytosis step. The LDL transcytosis from the
apical to the basolateral compartment in ECs is dependent on the
function of caveolae, SR-B1, or ALK1 (Figure 1). ECs are quite
heterogeneous depending on the tissue bed (54). LDLR-mediated
LDL transcytosis only occurred in brain ECs, but not in ECs from
system circulation. Unlike LDL, the transcytosis of HDL across
ECs has been less investigated. SR-B1 is suggested to be involved
in the dual transport of HDL between the bloodstream and
peripheral tissues, whereas the role of other molecules including
caveolae, ABCA1 and ABCG1 need to be further investigated.

The investigation of endothelial transcytosis of lipoproteins
is hampered by limitations in our ability to observe or monitor
the transcytosis process. The technological advances of an
in vitro assay for endothelial transcytosis, by the continuing
availability of super-resolution microscopy and live-cell imaging
techniques, will help facilitate the delineation of the mechanisms
and molecular regulation of endothelial transcytosis (17, 38). In
addition, most of the present findings were investigated by in
vitro assays, the observation of lipoprotein transcytosis through
ECs in vivo are needed to prove the physiological relevance.
Furthermore, the internalization step in endothelial lipoprotein
transcytosis has been relatively well investigated, however, the
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regulation of intracellular vehicle traffic and exocytosis on the
other side of cells remains poorly understood. The question of
whether the composition of lipoproteins is altered during the
process of endothelial transcytosis needs to be answered.

Numerous drug carriers targeting endothelial transcytosis,
such as the caveolae-dependent pathway, have been developed
for the treatment of cancer and lung injury patients (55).
However, the precise control of lipoprotein transcytosis in
ECs requires deeper understanding of the mechanisms and
regulations involved in this process. For example, the dual role
of SR-B1 in both LDL and HDL transcytosis raises a question
of how to balance these different pathways to protect against
atherogenesis. A better understanding of the mechanisms that
mediate lipoprotein transcytosis across ECs may help to develop
therapies targeting on the early events of atherosclerosis and

thus exert potential benefits to the treatment of atherosclerotic
vascular disease.
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