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Adaptive immune responses develop in secondary lymphoid organs such as lymph

nodes (LNs) in a well-coordinated series of interactions between migrating immune

cells and resident stromal cells. Although many processes that occur in LNs are well

understood from an immunological point of view, our understanding of the fundamental

organization and mechanisms that drive these processes is still incomplete. The aim

of systems biology approaches is to unravel the complexity of biological systems and

describe emergent properties that arise from interactions between individual constituents

of the system. The immune system is greater than the sum of its parts, as is the case

with any sufficiently complex system. Here, we review recent work and developments

of computational LN models with focus on the structure and organization of the stromal

cells. We explore various mathematical studies of intranodal T cell motility and migration,

their interactions with the LN-resident stromal cells, and computational models of

functional chemokine gradient fields and lymph flow dynamics. Lastly, we discuss briefly

the importance of hybrid and multi-scale modeling approaches in immunology and the

technical challenges involved.

Keywords: lymph node, stromal cells, systems biology, network topology, morphology, lymph flow, fibroblastic

reticular cells, computational models

INTRODUCTION

The lymphatic vascular system extends throughout the body, collecting interstitial tissue fluid
through a network of initial lymphatic vessels (1). The lymph is then carried to the collecting
lymphatics and distributed through lymphoid organs before returning to the venous circulation.
Secondary lymphoid organs such as lymph nodes (LNs) form at bifurcation points along the
lymphatic vasculature and serve as checkpoints for immune cells (2, 3). Adaptive immune
responses are initiated and maintained in LNs via coordinated interactions between T cells, B cells,
dendritic cells (DCs) and the LN-resident stromal cells (4–6) (Figure 1A). Traditionally, stromal
cells have been described as connective tissue cells which organize the underlying LN infrastructure
and cellular compartmentalization, however in recent decades their critical roles in regulation and
coordination of immune responses have been established (7–9).
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LYMPH NODE STROMAL CELL
FRAMEWORK

CD45− non-hematopoietic stromal cells in LNs originate
from mesenchymal and endothelial precursors and can be
divided into four major subsets based on the expression
of podoplanin (PDPN) and CD31; PDPN−CD31+ blood
endothelial cells (BECs), PDPN+CD31+ lymphatic endothelial
cells (LECs), PDPN+CD31− fibroblastic reticular cells (FRCs)
and PDPN−CD31− double-negative cell fraction (10, 11).
Stromal cell subsets form site-dependent niches customized for
efficient interactions with immune cells, separating the LN into
distinct regions (Figure 1A).

The lymph drains to the LN subcapsular sinus (SCS) through
several afferent lymphatic vessels, carrying antigen, signaling
molecules and immune cells. The SCS is lined with two types
of LECs, the floor and ceiling LECs. It has been demonstrated
that ceiling LECs express the atypical chemokine receptor
CCRL1 (ACKR4) which binds CCR7 ligands CCL19 and CCL21,
whilst floor LECs are devoid of its expression (12). Differential
expression of CCRL1 creates chemokine gradients for DCs to
migrate from the SCS to the LN parenchyma. The outer cortex
of the LN under the SCS contains B cell follicles which are
populated by several stromal cell subsets critical for B cell-
dependent responses. B cells sense the CXCL13 gradient and
migrate to the follicles in a CXCR5-dependent manner (13),
where they interact with a dense network of CD21+CD35+

follicular dendritic cells (FDCs) in order to sample antigens
(14, 15). A monolayer of MadCAM1+ marginal reticular cells
(MRCs) also contributes to B cell homing by expression of
CXCL13 (16) and they have also been shown to express
RANKL (TNFSF11) in LNs (17). The specific expression of
RANKL by MRCs was subsequently confirmed by single-cell
RNA sequencing, although MadCAM1 expression could not
be readily detected (18). It was previously shown that MRCs
are able to proliferate and differentiate into FDCs during
inflammation-induced remodeling of the B cell follicles (19),
however the phenotype and function of MRCs still remain poorly
understood.

Furthermore, the B cell zone-resident reticular cells alongside
the expanding FDC network orchestrate germinal center
formation during inflammation (20). Additional stromal cell
subsets have been reported in the B cell follicle, such as the
CXCL13-producing stromal cells surrounding inflamed B cell
follicles (21) and a CXCL12+ reticular stromal subset in the dark
zone of the germinal center following infection (22). Clearly, the
heterogeneity of B follicle stromal cells requires further dissection
in order to identify the key players in the development of humoral
immunity.

The LN is a highly vascularized organ as the blood
vasculature needs to deliver oxygen and nutrients to cells
in the LN parenchyma. Advances in microscopy technologies
have enabled 3D imaging and quantification of the topology
of the entire microvascular network in LNs (23). Importantly,
during inflammation the vasculature must expand in order to
accommodate the increasing metabolical demand of the LN,
which is achieved through proliferation of BECs and subsequent

return to homeostasis by stochastic deletion of both pre-
existing and newly generated blood vessels (24). The majority
of lymphocytes enter the LN paracortex through specialized
blood vessels called high endothelial venules (HEVs) which
mediate transendothelial extravasation (25, 26). The specific roles
of HEVs in lymphocyte motility and chemotaxis as opposed
to capillary endothelial cells have been recently elucidated by
transcriptional profiling (27).

Upon entering the LN parenchyma, T cells crawl along the
FRC network searching for cognate antigen loaded on DCs
(28–30). FRCs in the T cell zone (TRC) produce homeostatic
chemokines CCL19 and CCL21, guiding T cells and DCs into
the relevant compartments and facilitating T-DC interactions
necessary for developing adaptive immunity and antiviral
responses (31–33) (Figure 1A). The interaction between PDPN+

perivascular FRCs and the platelet-derived C-type lectin-like
receptor 2 (CLEC-2) has been shown to promote VE-cadherin
expression by HEVs through local sphingosine-1-phosphate
(S1P) release by platelets, effectively maintaining the vascular
integrity of HEVs (34). While DCs crawl on the FRC network,
the interaction between PDPN+ FRCs and CLEC-2 on DCs
induces actin cytoskeleton remodeling and promotes DCmotility
(35). Furthermore, the same axis permits stretching of the FRC
network in order to accommodate rapid LN expansion during an
immune response, whilst DC-derived lymphotoxin beta receptor
(LTβR) ligands promote FRC survival by modulating PDPN
expression (36–38). A recent study employing single-cell RNA
sequencing has suggested the existence of nine non-endothelial
stromal cell clusters within LNs, however the expression of
the canonical stromal cell marker PDPN was not sufficient to
distinguish the clusters on a single cell level (18).

In addition to the emerging roles of FRCs in regulation of
immune responses (39), the FRC network serves a fundamental
role in the formation of the LN conduit system (40, 41). The
conduit system emerges as a complex branched mesh of micro-
vessels from the floor of the SCS, comprising of a collagen-
rich core surrounded by a microfibrillar zone and a basement
membrane. A sparse network of conduits enwrapped by FDCs
pervades the B cell follicles and drains the lymph through the
T cell zone where it forms a dense re-entrant loop network
ensheathed by the TRCs (42). The conduits rapidly transport
small signaling molecules, chemokines and soluble antigens with
the lymph and deliver them to the relevant stromal cells and
lymphocytes (43, 44). The conduits size exclusion criterion of
<70 kDa for entry of lymph-borne antigens has been recently
shown to be dependent on plasmalemma vesicle associated
protein (PLVAP) expression by SCS and medullary LECs (45).
Ultimately the lymph is carried through the conduit system to
the medullary lymphatics where it drains out of the LN through
an efferent lymphatic vessel. Egress of lymphocytes occurs at the
cortical and medullary sinuses through sensing of sphingosine-1-
phosphate (S1P) produced by LECs (46–48).

In conclusion, stromal cells exhibit niche-specific functions
and heterogeneity, indicating the complexity of their specialized
interactions with immune cells. Many questions still remain open
regarding their development and plasticity in homeostasis and
during ongoing immune responses.
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FIGURE 1 | Multi-layered microarchitecture of the LN. (A) Schematic overview of the LN architecture and cellular organization. Zoom-in panels represent confocal

microscopy images stained for indicated markers. BF, B cell follicle; IF, inter-follicular; SCS, subcapsular sinus; HEV, high endothelial venule; FDC, follicular dendritic

cell; TRC, T cell zone fibroblastic reticular cell; MRC, marginal reticular cell; BEC, blood endothelial cell; LEC, lymphatic endothelial cell. (B) Network graphs of the TRC

network and equivalent network models; Watts-Strogatz small-world network, Erdos-Renyi random network and 1D ring lattice network. Colors indicate nodes with

low (blue) or high (red) betweenness centrality.

STROMAL-IMMUNE CELL INTERACTION
MODELS

T cell motility and migration patterns arise from cell-intrinsic
cues such as actin polymerization and cell-extrinsic cues
which include integrin-dependent adhesion, physical guidance
of the microenvironment, and chemotactic gradients (49).
Based on these observations it has been proposed that T
cells switch between two modes of intranodal migration (50);
anchorage-dependent motility mediated by engagement of LFA-
1 with ICAM-1 on DCs and FRCs (31, 51), and anchorage-
independent motility driven by FRC-derived chemokines and

lysophosphatidic acid (LPA) (52). Moreover, a recent study
demonstrated that LFA-1 and CCR7 contribute complementary
and not sequentially to intranodal T cell migration. Interestingly,
the authors also show that T cells migrate in a continuous sliding
locomotion rather than in a caterpillar-like manner (53, 54).

Intranodal T cell motility is closely linked to search strategies
employed in order to efficiently find cognate antigen loaded on
DCs (55). Additionally, migration patterns are heterogeneous
between T cell subsets such as CD4 and CD8, and whether they
are naive, activated or memory T cells (56–59). Thus, T cells
can exhibit a spectrum of search patterns, ranging from diffusive
random walks analogous to Brownian motion, superdiffusive
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Lévy walks and subdiffusive random motion (49, 60). It has
been shown in a recent report using Agent-Based Models (ABM)
that naive T cells in LNs exhibit a type of superdiffusive walk
which fits best as a lognormal modulated correlated random
walk among the idealized computational models studied (61)
(Table 1). Similarly, another ABM study demonstrated that T
cell migration in inflamed LNs best fits an inverse heterogeneous
correlated random walk (78).

Numerous computational T cell migration studies in LNs did
not readily include the underlying reticular network structure.
Furthermore, these analyses were performed using rule-derived
modeling methodologies that are phenomenological in nature,
rather than a biophysics-based approach (85). However, several
modeling studies have simulated the TRC network with
randomized connectivity and addressed its involvement in
guiding T cell motion. In one study a 3D ABM approach was
used to simulate infection responses in order to observe T-DC
encounters and T cell differentiation in LNs under different
antigen conditions (77). 3D Cellular Potts Models (CPM) offer a
complementary modeling framework to simulate dynamics of T
cell and DC migration alongside the TRC network. It was shown
that the complex cell movement is determined by the densely
packed LN environment, even though similar migratory behavior
of T cells was observed whether they preferentially adhered to the
TRC network or not (73). Interestingly, the study demonstrated
the existence of small dynamic T cell streams within LNs, which
the authors speculate occur alongside the TRC network fibers.
Another study simulated migration of T cells and DCs on the
TRC network and found that constraining cell movement on
the TRC network does not increase the frequency of T-DC
encounters compared to Brownian motion in free 3D space (75).
A subsequent theoretical study confirmed in simulations that the
TRC network has only a minor effect on the contact probability
between T cells and DCs (76).

A question then naturally arises; do lymphocytes require the
TRC network as a guiding structure for cellular movement?
The answer seems evident from plethora of experimental work,
corroborated by a recent reports demonstrating that deficiency
in CCR7-mediated chemokine sensing and integrin LFA-1-
dependent adhesion in T cells does not abrogate intranodal
migration and firm attachment to the TRC network (53, 72).
However, the existing theoretical models were characterized by
poorly resolved sets of multi-scale control processes regulating
various cell migration modes and antigen-driven functional
states of immune cells. Ultimately, the theoretical framework of
many modeling studies lacked the necessary quantitative data to
faithfully recapitulate the stromal-immune cell interactions. In
order to extend the analogy, the simulations would represent a
“car with no fuel and no wheels, moving along a random road
map.”

An alternative approach to examine the TRC network
at a fundamental level would be to employ the theory of
complex networks, also called graph theory (86, 87). Within
this mathematical framework the TRC network is denoted as a
series of nodes (cells) connected with edges (cell protrusions).
A recent study demonstrated that the TRCs organize as a non-
stochastic small-world network with highly robust topological

properties, ensuring that network failure does not occur even
when up to half of the network is destroyed (66, 88). Specific
genetic ablation of CCL19-producing TRCs led to highly reduced
numbers of hematopoietic cells in LNs and impaired intranodal
migration of T cells with marked reduction in average cell
speed and motility. The few T cells that did enter the LNs
exhibited undirected movement around the HEVs and were
not able to migrate deeper into the paracortex, despite the
conduit system still being present (20, 66). The loss of FRCs
and HEVs is also associated with graft-vs.-host disease after
allogeneic hematopoietic stem cell transplantation and it has
been recently shown that FRCs can prime alloreactive T cells
through Delta-like Notch ligands (89, 90). Moreover, the TRC
network is capable of fully regenerating after complete ablation
and this observation is indicative of a formation of a cost-
effective, optimally robust network structure that simply could
not have a random configuration (91, 92) (Figure 1B). The
heterogeneous topological properties of real world networks
could not be explained by the random network model, thus
it is likely that these networks evolved by optimizing two
competitive selection criteria: high connectivity which confers
efficiency of information transfer and low connection cost during
formation of the network (93). Likewise, spatial embedding in
many real world networks has significant confining effects on
the overall topological structure by restricting the formation of
long-distance connections (94, 95) (Figure 1B).

The intricate structure of LNs determines organ functionality,
however the reverse also holds true; the diverse cellular
interactions require a particular underlying structure to be
present (96). Although it is widely accepted the TRC network
serves as a “road system” for T cell and DC migration (29, 97),
it remains unclear whether and to which extent dynamic cell
movements are spatially constrained by the intricate network
fibers (92, 98). Hence, incorporating quantitative data into
integrative models may provide answers to these fundamental
questions.

INTEGRATIVE LYMPH NODE MODELS

Maintenance of chemokine gradients by stromal cells is crucial
for lymphoid organ development and spatiotemporal segregation
of specialized immune cell compartments (99, 100). Chemotaxis
in LNs has been modeled using ABMs in order to simulate large
numbers of T cells in a computationally efficient manner. By
modeling T cell motion as a persistent random walk and allowing
for cell crowding on a 3D lattice, a basic T cell ingress-egress
model in LNs could be constructed (74). Lymphocytes must
navigate efficiently within spatially heterogeneous chemokine
fields that also vary over the time course of an immune
response. It was shown that temporal sensing of rising chemokine
concentrations is required for directional persistence of DC
and neutrophil migration (101). Moreover, chemotactic-driven
directional movement of DCs is steered by soluble forms
of CCL19 and CCL21, whilst immobilized form of CCL21
on FRCs induces both DC motility and integrin-dependent
adhesion (102).
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TABLE 1 | Integrative modeling frameworks for lymph node structures and processes.

Modeling framework Structures and approachesa Processes and modelsa References

Continuous/deterministic LN architecture

1. 2D or 3D lattice model

2. Image-based reconstruction models

3. Topology-based parameterized

computational models

4. Graph theory models

Lymph flow

1. Navier-Stokes equation

2. Poiseuille equation

3. Darcy’s law

4. Starling equation

5. Compartmental models

Transfer of cytokines/chemokines

1. Reaction-diffusion PDEs

2. Pharmacokinetic models with ODEs or DDEs

Cell population dynamics

1. ODEs

2. Compartmental models

3. Distributed parameter systems

4. Reaction-diffusion chemotaxis and haptotaxis PDEs

(23, 62–72)

Discrete/stochastic FRC network

1. CPMs

2. Random network models

Blood vascular networks

1. 3D imaging

2. Computational geometry

Cell motility

1. Physics-based models-dissipative particle dynamics

based on Newton’s second law of motion

2. Cellular Automata type models–CPMs or ABMs

3. Random walks models (Brownian-, Levy-, correlated

walks)

(55, 59–61, 73–78)

Hybrid/multi-scale 2D (lattice-type) LN models integrated with

compartmental models of the whole organism

3D anatomically resolved models of LN

structures

Integrative dynamics of immune cells, humoral factors

and antigens/pathogens using combination systems of

ODEs, PDEs and ABM or CPM derived for single-scale

processes in a computationally consistent manner

(79–84)

aABM, Agent-based model; CPM, Cellular-Potts model; DDE, Delay differential equation; ODE, Ordinary differential equation; PDE, Partial differential equation.

Functional chemokine gradients of CCL19 and CCL21 have
been simulated in various LN regions using a fluid flow
model where the intranodal chemokine dynamics are described
by ordinary (ODE) and partial differential equations (PDE)
(68). Similarly, using a reaction-diffusion PDE model, highly
heterogeneous distribution of IFN-α has been found, where
certain LN subdomains are highly protected, whilst others
are characterized by much lower levels of the cytokine (62).
In a recent theoretical study, it has been demonstrated by
reaction-diffusion-advection modeling that hypersensitivity in
antigen recognition by immune cells can occur when chemotactic
strength is higher than a predicted threshold, leading to immune
system instability (69). In the case of cytokine concentration
fields, it has been demonstrated that the size of cytokine niches on
a single-cell level are governed by a simple mechanism dependent
on cytokine diffusion and the density of consumer cells present in
the niche (103).

It is important to consider another relevant aspect of LN
functionality, namely lymph flow dynamics which contribute
greatly to antigen, cytokine and chemokine transport. In order
to gain insights into the quantitative flow parameters regulating
lymph transport, a computational lymph flow model of the LN
was constructed (63, 65). Interestingly, the model predicted that
90% of lymph traveled the peripheral path through the SCS and
medullary sinuses. In a subsequent study the authors expanded
their computational model to include intranodal CCL19 and
CCL21 chemokine gradients (68). An integrative LN model with
realistic 3D geometry has been recently developed in order
to study lymph transport phenomena (82). The relationship
between the structural LN geometry and fluid pathways has been

investigated using image-based modeling of fluid flow in order
to study the permeability of the LN tissue (64, 71). Furthermore,
fluid flow dynamics of the blood microvasculature and the
conduit system have been successfully integrated in the existing
LN model (67, 70). The model predicted high robustness of the
conduit system, with 60–90% elimination of conduits required
to halt the lymph flux. Moreover, computational simulations of
lymph flow can be expanded on larger spatial scales by modeling
the entire human lymphatic system interconnected between
hundreds of LNs (84).

In order to model complex biological phenomena with
continuous and discrete variables, and across several spatial
scales, hybrid andmulti-scale modeling approaches are necessary
(104–108). In recent years these models have been used to
describe spatial dynamics of immune responses in LNs (79–
81, 83). A summary of the integrative modeling frameworks
described here and their implementation in elaborating LN
processes and functions is available in Table 1. These multi-
scale modeling approaches will prove invaluable in unraveling
complex mechanisms of immune system control in future
studies.

CONCLUDING REMARKS

Systems biology approaches have made tremendous advances
in the past decade due to a high demand for bioinformatics-
based computational methods necessary to describe biological
systems on a global level (109). Likewise, quantitative and
computational in silico models in immunology have become
critical for understanding the emergent properties of both
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single cells and whole tissues (110, 111). However, the
development of mathematical LN models is still confronted
with technical challenges. Understanding the multi-layered
compartmentalization of the LN is an important prerequisite
so that the initial assumptions of the model reflect the
functionality observed experimentally. To date, our knowledge of
the heterogeneity of stromal cells that construct the underlying
foundations of a LN is still incomplete. The directional cues
und critical immunoregulatory functions of stromal cells enable
the formation of specialized micro-environmental niches for
immune cells within the LN, effectively facilitating immune
responses (11). The described computational models largely do
not take into account an additional layer of complexity, which
is introduced by the fact that chemoattractant fields significantly
change during inflammation and ongoing immune responses,
influencing the migration and composition of immune cells.
Moreover, the LN stromal compartment undergoes extensive
remodeling in order to accommodate the increased LN size
and proliferative demands of developing adaptive immune
responses (9). Therefore, mathematical models must take
into account how the spatial constraints of the LN and
heterogeneous chemoattractant gradient fields affect the non-
uniform distribution of immune cells, the spatiotemporal
dynamics of cellular interactions and the anisotropy of non-
Brownian immune cell movement patterns. To this end,
quantitative data on immune cell motility metrics in homeostasis
and disease/inflammatory states are critically needed for the
development and calibration of biophysics-based models.

One major difficulty lies in delineating the complexity
of the fundamental LN architecture and simplifying the
components to a degree necessary to obtain biologically
meaningful conclusions. Morphometric studies have been
instrumental in describing the structural framework of
distinct LN regions. However, quantitative data is still
lacking for the organization of lymphatic endothelium in
the medullary region, a comprehensive description of the B
follicular stromal cells has not been fully elaborated and the
structure of the fine-grained conduit system has not been
extensively studied. Absence of detailed structural parameters
represents a major caveat in data-driven systems biology
approaches (112). Nevertheless, novel high-resolution imaging
technologies coupled with multi-scale computational models
will give us valuable insights into the inner “clockwork” of
the LN.
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