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Abstract 
In this study, electrospinning combined with sol-gel technique is applied in order 

to produce magnetic nickel ferrite (Ni-ferrite) nanofibers. The prepared Ni-ferrite gel was 

mixed with poly(vinylpyrrolidone) (PVP) solution which was used as a spinning aid to 

enable spinnability of the mixture. Structural and morphological characteristics of the as-

spun ferrite gel/PVP composite web structure and calcinated Ni-ferrite nanofibers were 

analyzed using scanning electron microscopy (SEM). Phase composition analysis was 

carried out by Fourier-transform infrared (FT-IR) spectroscopy, X-Ray diffraction 

analysis (XRD) and 57Fe Mössbauer spectroscopy (MS). The obtained results suggest that 

the pure nanocrystalline NiFe2O4 dense mat to the almost coral-like structure of fibers 

with diameters ranging from hundreds of nanometers to few micrometers was obtained. 

The results of MS analysis revealed the existence of a crystallite size distribution within 

the material as well as the existence of a superparamagnetic fraction with very small 

crystallite sizes (<13nm). Magnetic behavior of the obtained material at elevated 

temperatures was also scrutinized using thermomagnetic measurements (TM) up to  

800 °C. 
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Introduction 
For many years magnetically soft ferrites with a cubic spinel, lattice structure 

have been commonly used in various applications [1,2]. Some of the critical properties 

of the soft magnetic materials such as nickel ferrite are the high electrical resistivity on 

one side and the low magnetocrystalline anisotropy on the other. These provide an 

excellent core material applicable in power transformers in electronic and 

telecommunication applications [3]. On the other hand, it is known that the 

nanostructured materials usually have significantly different properties compared to 

their bulk form [4]. Rapid development of nanoscience and nanotechnology in recent 

years has created great interest in these materials, particularly in one dimensional and 

quasi-one-dimensional magnetic nanostructured materials such as nanofibers, nanotubes, 

nanowires, nanowhiskers, etc. [5]. As aforementioned, this is primarily due to their 

unique chemical and physical properties and a large surface to volume ratio that offers 

substantial potential for fabrication and design of innovative electromagnetic devices, 

sensing elements and catalysts. 

Electrospinning is one of the most common methods for polymer nanofiber 

production [6]. Using this method nanofiber nets are obtained by electrically charging a 

suspended droplet of a solution. An additional advantageous feature of this method is that 

it provides a possibility for the preparation of inorganic fibers, webs or mats by the simple 

addition of appropriate precursors to the polymer solution. Electrospun magnetic 

nanofibers are especially interesting because they are comparatively inexpensive and easy 

to produce with the desired diameter and with modified composition and/or surface [2]. 

Appropriately selected starting parameters provide the desired thickness, composition and 

porosity of the produced nanofibers mat. The thickness of the produced fibers, i.e. their 

diameters are usually between 2-3 nm up to a few micrometers [7]. 

In the present study, Ni-ferrite (NiFe2O4) magnetic nanofibers/net were prepared 

using a preparation approach adopted from literature [8] which represents a combination 

of electrospinning [9] and a sol-gel method [10]. Using broad spectra of literature and 

applying different high-resolution methods of characterization the obtained material was 

subsequently scrutinized regarding its morphology, structure, phase composition and 

thermomagnetic behavior. 

Experimental 

Synthesis 

Aqueous solutions of Ni(NO3)2x6H2O and Fe(NO3)3x9H2O were selected as 

starting materials for the ferrite sol. Citric acid was applied as a chelating agent. The pH 

value is maintained constant with the addition of ammonium hydroxide. After the 

subsequent water removal, the ferrite gel was obtained. 

Afterward, a solution for electrospinning process was prepared by mixing the 

ferrite gel with a solution of polyvinylpyrrolidone (PVP) in acetic acid. The PVP was 

added to provide sufficiently high viscosity and to enable spinnability of the mixture, 
essentially. The nanofibers were produced using an electrospinning apparatus with plate 

collector and the vertical configuration the allowed the production of nanoweb statically. 

The electrospinning process was carried out using one syringe with a set solution flow 

rate of 0.5 ml/h under the applied voltage of 28 kV. The distance between the electrode 

and the needle tip was 15 cm. After drying, the as-spun fibers were calcinated for 5h at 
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700 oC. During this process, organic components were removed. Also, a reaction between 

present oxides which produces Ni-ferrite magnetic nanofibers was initiated. 

The mechanism of the applied experimental procedure is presented in Fig. 1. The 

produced electrospun ferrite/PVP web is transformed into ferrite nanofibers mat after 

thermal treatment. The parameters of the calcination process were selected after a set of 

experiments. 

Fig. 1. The production route of NiFe2O4 nanofibers mat. 

Characterization 

Morphology and microstructure of the electrospun composite fibers before 

calcination and of the calcinated NiFe2O4 magnetic fibers were studied using JEOL JSM 

6610LV scanning electron microscope (SEM). Phase composition was determined using 

Fourier-transform infrared (FT-IR) spectroscopy, X-Ray diffraction analysis (XRD) and 
57Fe Mossbauer spectroscopy (MS). All phase composition analyzes were carried out at 

ambient temperature. FT-IR spectra of the nanofibres were recorded by a BOMEM 

spectrometer (Hartmann & Braun, MB series) with 4 cm−1 resolution, using a 

transmission mode between 4000 and 400 cm-1. XRD diffraction patterns were obtained 

using PANanalytical X’Pert PRO MPD X-ray diffractometer with CoKα radiation. The 

XRD pattern fitting was done using Full Prof software and ICDD database. Mössbauer 

spectra were taken at room temperature in the standard transmission geometry using a 
57Co(Rh) source. The calibration was done against an α-Fe foil, and the CONFIT software 

package was used for MS spectra analysis [11]. With the aim of gaining better insight 

into the magnetic behavior of the obtained NiFe2O4 nanofibers/mat at elevated 

temperatures, thermomagnetic measurements (TM) were carried out. The 

thermomagnetic curves were recorded on EG&G vibrating sample magnetometer using 
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the field strength of 4 kAm-1 in a vacuum. The applied heating and cooling rate was 4°C 

min-1 with 30 min delay at the maximum of 800 °C. 

Results and discussion 
SEM micrographs presented on Fig. 2 illustrates the structure and morphology of 

the electrospun ferrite gel/PVP composite fibers after drying. The obtained structure looks 

like a porous fiber web with fibers of micron to submicron diameters that crisscross the 

surface of the collector plate. 

Fig. 2. SEM micrographs of the electrospun ferrite gel/PVP composite fibers. 

Somewhat similarly, the SEM images of the obtained Ni-ferrite fibers after 

calcination and removal of PVP (Fig. 3.) depict a dense mat to the almost coral-like 

structure of fibers with diameters ranging from hundreds of nanometers to few 

micrometers. The shape of the observed ferrite fibers corresponds to the space within the 

electrospun composite fibers that were initially occupied by the ferrite gel. Also, 

shrinking of the polymer during the initial phase of calcination is the most probably 

responsible for their shrunken and deformed appearance. 

Fig. 3. SEM images of the obtained Ni-ferrite fibers after calcination. 

Preliminary compositional analysis of the prepared Ni-ferrite fibers/mat using 

FTIR (Fig. 4.) has revealed presence of one 584 cm-1 and a hint of the other (450-385 cm-

1) of the two most important IR bands which correspond to intrinsic stretching vibrations

of the metal at tetrahedral and octahedral sites of NiFe2O4 phase, respectively [12,13]. A 
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broad absorption band with the peak at 3446 cm-1 represents the symmetric and anti-

symmetric –OH stretching as a consequence of the adsorbed water [14]. The peak at 2922 

cm-1 combined with 2852 cm-1 also correspond to the -OH stretching [14,15]. The peak 

around 1638 cm-1 corresponds to the –OH bending of absorbed hydrates as reported in 

[16,17]. The set of peaks around 1270 cm-1 could also be attributed to the –OH 

deformation of moisture from the air [18]. It could be assumed that some of the peaks 

presented in Fig. 4 most probably do not belong to remnant organic compounds in the 

studied material due to the fact that the FT-IR observation is conducted after the 

calcination at 700 °C for 5h. 

 

Fig. 4. FTIR spectrum of the prepared Ni-ferrite fibers/mat. 

In order to determine the phase composition of the prepared fibers/mat XRD 

analysis was carried out and the obtained pattern is presented in Fig. 5. The results of 

XRD phase composition analysis confirm that the precursors were added in a 

stoichiometric ratio and that the pure NiFe2O4 material was obtained as the recorded XRD 

pattern contains all of the characteristic peaks (standard ICDD Ref. code 00-044-1485). 

 

Fig. 5. XRD pattern of the obtained fibers/mat. 



178 Metall. Mater. Eng. Vol 24 (3) 2018 p. 173-180 

 
For a more in-depth analysis of the prepared Ni-ferrite fibers/mat, additional 

characterization using room temperature 57Fe Mössbauer spectroscopic analysis was 

carried out. The results of MS analysis confirm the formation of the nanocrystalline 

NiFe2O4 phase as the values of Mössbauer parameters determined from the recorded 

spectrum (Fig. 6.) are in a close agreement with those of NiFe2O4 phase from literature 

[19,20]. Accordingly, the related subspectrums were assigned to tetrahedral (A) and 

octahedral (B) iron (Fe3+) atom sites. 

 

Fig. 6. Room temperature Mössbauer spectrum of the prepared Ni-ferrite fibers/mat. 

The existence of the nanocrystalline structure of the identified NiFe2O4 phase is 

illustrated by the presence of a set of sextets with decreasing splitting and intensity that 

indicates the existence of a crystallite size distribution [21]. Also, a fairly small 

paramagnetic doublet that can also be observed points to the presence of a 

superparamagnetic fraction of the NiFe2O4 with very small crystallite sizes <13 nm 

[20,22,23]. 

The obtained thermomagnetic curves given in Fig. 7 provide clear insight into a 

thermomagnetic behavior of the prepared NiFe2O4 nanofibers mat. 
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Fig. 7. The recorded thermomagnetic curves. 

Although Ni-ferrite is ferrimagnetic material in its nature, at the beginning of the 

measurements it is not magnetized so initially, some small increase of the total magnetic 

moment can be observed on the heating curve. At about 200 °C it reaches a plateau, and 

then it swiftly drops at about 570 °C which matches the Curie temperature of NiFe2O4 

phase. As expected, during the further heating up to 800 °C increased thermal energy 

causes atomic magnetic moments to oscillate randomly and thus there is no overall 

magnetization. Likewise, no changes can be observed on the cooling curve until 570 °C 

at which point a rapid and significant increase of the total magnetic moment occurs. With 

the further decrease in temperature, the magnetization follows the rising trend. This can 

be related to the fact that the material is cooling down in a magnetic field. Essentially, the 

magnetic moments try to minimize energy against the external magnetic field which 

results in an anisotropic moment distribution, that on a macro level manifests as an 

increase of an overall magnetic moment [24]. 

Conclusion 
The joint sol-gel and electrospinning methods were successfully applied on 

selected precursor solution for as-spun ferrite/PVP nanofiber web preparation. After 

following calcination magnetic nanofibers with diameter from a few hundreds of 

nanometers up to micron sizes were obtained. The results of the conducted phase 

composition analyses clearly show that the nanocrystalline NiFe2O4 fibers were formed. 

Also, it can be assumed that there is a wider crystallite size distribution within the material 

with the smallest of them being below 13nm. Due to the specific nature of the obtained 

particles the thermomagnetic measurements were carried out in order to provide the 

magnetic behavior of such electrospuns at elevated temperature. The presented results of 

microstructural and phase analysis together with the conducted thermomagnetic behavior 

assessment suggest that the obtained NiFe2O4 nanofibers have enough potential to be used 

as such or as a filler in composite materials that can be useful for a variety of applications 

including magnetic nanostructures, separation, catalysis or even sensing elements. 
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