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Abstract — The variability of the solar corona, including flares and coronal mass ejections, affects the
space environment of the Earth (heating and ionization of the atmosphere, magnetic field disturbances,
and bombardment by high-energy particles). Electromagnetic emissions are the first signatures of a solar
eruptive event which by modifying the electron density in the ionosphere may affect airborne technology
and radio communications systems. In this paper, we present a new method to detect automatically radio
bursts using data from the Nangay Decametre Array (NDA) in the band 10 MHz—80 MHz. This method
starts with eliminating unwanted signals (Radio-Frequency Interference, RFI and Calibration signals) by
analyzing the dynamic spectrum of the signal recorded in time. Then, a gradient median filter is applied to
smooth and to reduce the variability of the signal. After denoising the signal, an automated solar radio
burst detection system is applied. This system is based on a sequential procedure with adaptive con-
stant-false-alarm rate (CFAR like detector) aimed to extract the spectra of major solar bursts. To this
end, a semi-automatic software package is also developed to create a data base of all possible events (type

I, 11, IV or other) that could be detected and used for our performance assessment.

Keywords: solar radio bursts / automatic detection / dynamic spectra / events type II, III and IV

1 Introduction

Eruptive activity in the solar corona can lead to severe
disturbances of the space environment of the Earth. This activ-
ity produces enhanced intensities of ionising photons at EUV
and X-ray energies, high-energy particles and ejected plasma
structures. Among the potential technological impacts are
damage to technological systems, disturbances of radio wave
propagation in the ionosphere, satellite malfunctioning
(Bothmer & Daglis, 2007), and enhanced radiation exposure
to astronauts (Fry, 2012), sometimes even aboard aircraft
(Kataoka et al., 2011).

The prediction of major solar disturbances and their impact
on Earth is one element to mitigate space weather hazards, pro-
vided alerts can be emitted on time with a low false alarm rate
(Zhang et al., 2014). The reliable prediction that no major
disturbance is expected in the near future is also a relevant
piece of information. It is presently not possible to predict
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the space weather impact of a solar event before the first signa-
tures of the solar event can be observed. Radio emission is
among the earliest observed signatures of an eruptive event
in the corona.

A dynamic spectrum shows the evolution of the emission of
the whole Sun in the frequency-time plane. The work presented
in this paper is an attempt to develop an automated procedure to
recognize eruptive solar activity in the dynamic spectra of solar
radio emission at metric and decametric waves. In this context,
we introduce a new method that can be applied to automatically
detect radio bursts. We illustrate the procedure using the solar
radio spectral data provided by the Nangay Decametre Array
(NDA) (Lecacheux, 2000), which operates at frequencies
between 10 and 80 MHz (wavelengths 4.5 m—30 m). The pro-
posed algorithm proceeds in two steps: the first consists in filter-
ing the received spectral data to remove artifacts and to
emphasise solar radio bursts. In this step, three kinds of noise
and unwanted signals are subtracted from the original signal:
Calibration signals, Radio-Frequency Interference RFI
(due mostly to communications systems) and galactic noise.
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Fig. 1. Type II, III and IV bursts registered by the Nangay Decametre Array.

We propose an adaptive noise removal method taking into
account the nature (origin) and noise variation (non-stationarity)
of the signal with time. The second step of the algorithm is to
detect solar radio bursts in the dynamic spectra in order to
enable an automated identification that can be used either in
real-time applications or in observations of a given type of
events from a large data base. In this paper, we show that a con-
stant false alarm rate (CFAR)-like technique (Cai et al., 2011;
Bandiera et al., 2009) with optimized parameters can achieve
a high detection performance. This work has been developed
within the ORME (Observations Radioastronomiques pour la
Météorologie de 1’Espace) project. It represents the first phase
to achieve a complete and efficient detection and classification
system. Indeed, the solution proposed in this paper helps select-
ing the regions of interest where a radio burst occurs. The sec-
ond phase would be the classification system which would focus
on the detected events for their appropriate cataloging. This is
an ongoing work that will be presented in future publications.

The paper is organized as follows. In Section 2, a brief
overview on solar radio bursts and on previous attempts at an
automated detection is given. In Section 3 we present the ratio-
nale of this work and we summarize our new contribution. The
interference and noise removal procedure for Time-Frequency
dynamic spectra is described in Section 4. Section 5 summa-
rizes the proposed solar radio burst detection technique.
Section 6 presents the obtained results and evaluates the perfor-
mance of the proposed method. The software and database
used in this study are described in this section, too. Section 7
is for concluding remarks.

2 A brief overview of solar radio bursts
with relevance to space weather

Radio bursts at decimetre and longer wavelengths have
characteristic spectra in the frequency-time plane, which reveal
the nature of the solar disturbance. Figure 1 illustrates different

types of solar radio burst spectra between 80 and 10 MHz
observed by the Nangay Decametre Array, located at the
Nangay radio astronomy station in central France. A detailed
discussion of such spectra can be found, e.g., in Pick & Vilmer
(2008) and Nindos et al. (2008).

The rather short burst in Figure 1a is called a type III burst.
It is generated by electron beams propagating outwards through
the corona along open magnetic field lines. The electron beams
excite the plasma waves in the solar corona, which create radio
emission at the electron plasma frequency or its first harmonic.
The emission frequency is hence proportional to the square root
of the ambient electron density. As the electron beams travel
outward through the corona, towards regions of decreasing
electron density, they emit radio waves at decreasing frequency.
The characteristic feature of type III bursts that can be
exploited for an automated recognition is their rather short
duration and rapid drift from high to low frequencies.

A second type of radio burst is seen in Figure 1b. It con-
sists of one or several narrow lanes that drift towards low
frequencies, but much more slowly than the type III bursts.
This type of emission is called a type II burst. It is emitted
by electrons that are accelerated by an outward propagating
shock wave. The shock wave also propagates into regions of
decreasing electron density, but more slowly than non thermal
electron beams. As a consequence, the frequency drift is
slower, too. Sometimes these bursts of type II can be associated
with fine structures known as herringbone bursts. These struc-
tures are direct signatures of particle acceleration which occurs
at coronal shocks (Cairns & Robinson, 1987).

The third burst associated with space weather effects is
known as type IV burst. The emission is produced by energetic
electrons trapped in magnetic structures that are part of a
Coronal Mass Ejection (CME). This is a broadband emission
that lasts several minutes or even longer and has a broad instan-
taneous bandwidth. An example is shown in Figure lc. The
type IV bursts may also have a drift towards lower frequencies,
but this is not always the case. Type IV bursts are defined by
their long duration and broad overall bandwidth.
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Fig. 2. Architecture of the proposed radio burst detection system.

All of these particular radio bursts provide important infor-
mation for space weather because they show particle propaga-
tion to the interplanetary space or because of their association
with CMEs (Munro et al., 1979). There have been a number of
attempts to identify solar radio bursts in an automated way.
These efforts pertained mostly to type III bursts, and to a lesser
extent to type II bursts. Lobzin et al. (2009, 2010) and Bonnin
et al. (2011) propose to use the Radon transform (Deans, 2007)
for the detection of the solar bursts. This operation transforms
drifting features into vertical straight lines in dynamic spectra.
Time-Frequency binary spectra are used in this algorithm to
characterize and hence detect the desired burst. More specifi-
cally, this method is based on the following successive steps:
noise filtering, image binarization, Radon transform and thresh-
olding. Jones & Richards (2014) also use binary spectra to
implement a mathematical morphology technique to extract
features that represent solar radio bursts. Carley et al. (2015)
develop a method based on the Hough transform
(Mukhopadhyay & Chaudhuri, 2015) to identify herringbone
bursts (Kong et al., 2012) associated with type II solar radio
emissions. Another interesting method is proposed by Gunes
& Erdol (2006). They have developed an efficient Hidden Mar-
kov Model (HMM) (Tumilaar et al., 2015) to track fine struc-
tures in spectrograms. However, these algorithms are used to
identify straight lines in time-frequency dynamic spectra,
whereas even transformed spectra of type III and type II bursts
nearly always show some curvature, especially at heir high-fre-
quency and low-frequency borders. As a result, these methods
fail to precisely detect the start and stop times of the bursts, and
they are not well adapted to detect large structures like in type
IV solar radio bursts.

3 Concept of the radio burst detection
system

The detection and classification of the radio bursts
discussed in the previous section is a tool to alert about the arri-
val of solar disturbances in the space environment of the Earth.

Reference
database

In order to detect these particular bursts, basic spectrum prop-
erties such as frequency drift rate, bandwidth, duration, bright-
ness and signal variation must be determined with a high
degree of accuracy. However the presence of some unwanted
signals, like Radio Frequency Interference (RFI) signals, cali-
bration signals and some other unknown noise signals, make
the bursts detection problem more difficult.

In this work we develop a method to automatically detect
solar burst events (in particular events of type II, IIl and IV)
from a noisy time frequency dynamic spectrum’'. After elimi-
nating unwanted signals by analyzing the dynamic spectrum
of the signal recorded in time, we propose to use an automated
radio burst detection based on the Constant False Alarm Rate
(CFAR) method cited above. Our contributions can be summa-
rized as follows (see Fig. 2):

— Dedicated denoising and interference mitigation techniques
for the enhancement of the signals of interest and conse-
quently the improvement of the detection performance.

— Development of a new detection method based on a
CFAR-like technique.

— Creation of a labeled database using the recorded NDA
data for performance assessments and comparisons of dif-
ferent detection methods.

— A performance analysis of the proposed method on real-
world data. As a byproduct, we have developed an ergo-
nomic software interface for event detection and perfor-
mance evaluation, which can be used in particular to
further enrich our database for future investigations.

4 Noise removal technique

The main contribution of this section is the introduction
of a denoising algorithm to reduce the amplitude of RFI,

! Note that the spectrum phase information is not provided by solar
radio spectrographs and so we have access only to the time varying
spectrum amplitude information.
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Fig. 3. Proposed denoising and interference mitigation procedure.

calibration and background noise signals that affect the time-
frequency (T-F) dynamic spectrum at metric-to-decametric
wavelengths.

To remove noise from the dynamic spectrum, we propose in
this paper a solution which takes into account the nature of the
corrupting signals. This approach is based on three main steps
(see Fig. 3): The first step serves to remove the unwanted
calibration signals provided by NDA (the resulting T-F signal
after this first step is denoted I.(f £)). The second step aims
to mitigate the background and RFI noise in the T-F dynamic
spectrum with minimal distortion of the signals produced by
solar bursts. The output of this step is denoted /. (f, 7). In the
third step, we use a specific median filter in order to remove
artifacts and discontinuities due to the denoising process. This
step also enhances the contrast of the dynamic spectrum result-
ing in If jna(f, ¢) and the denoised signal energy s¢ inai(f). Note
that the original signal s(f) and the denoised signal s jq(?) (in
which a CFAR algorithm is applied to detect solar burst
events) are obtained by integrating the T-F dynamic spectra
I(f, ©) and It ia(f, ) with respect to the frequency axis
(Fig. 3). The CFAR algorithm which is to detect the solar bursts
is applied to the signal sy jna(7)”.

4.1 Elimination of the calibration signals

The Nangay Decametre Array must be calibrated every 1 h
in order to maintain the accuracy of flux density measurements
as seen in Figure 4. It is an injection of a signal that is identical
at each frequency and varies stepwise in flux density in the
course of time.

To remove the calibration signal completely without
seriously affecting the desired signal, we have developed a
dedicated algorithm which exploits the known time profile of
the signal to localize the patterns that correspond to the calibra-
tion signals on the dynamic spectrum and to remove them (see
Appendix A).

Figure 5 shows an example of removing the calibration
signal without much affecting the desired signal of the solar
burst.

4.2 Background noise mitigation

Applying a filter to suppress the fluctuations of the
background noise obtained on solar radio spectrographs allows
us to enhance the features of solar radio events. Since both the
background of the dynamic spectrum and solar events display a
large variety of morphological structures, a background sub-
traction by setting a simple threshold does generally not lead
to an satisfying result: If we set the threshold value very high,

Integration
over frequency

> § ﬁmll(t)

we will remove some of the solar radio events. If we set a low
threshold value, the background noise level will be reduced but
not enough to separate solar event features from unrelated
background. In the method proposed by Zarka et al. (2004),
the authors represent the background noise by a Gaussian dis-
tribution computed at each frequency f; during a long time
interval. The problem of this method is that it reduces the flux
density level of both technique without significantly affecting
the features of solar radio bursts. Given a T-F dynamic spec-
trum I(f, f) (obtained after elimination of calibration signals),
we proceed by comparing the Gaussian variability of the
signals received during a long and a short period. As shown
in Figure 6, the statistical fluctuations of the background noise
level at a given frequency, evaluated over the long period, are
Gaussian-distributed around the average value y,. of the flux
density I(f;, ) at that frequency. This is due to the Gaussian nat-
ure of the solar signal and to the instruments (Nita et al., 2007).

The rationale of our approach is based on the following
observations:

— If we take into consideration a long observation period for
a given frequency f; not dominated by any terrestrial emit-
ter (using an interval of 7 h of duration), the produced
events related to solar bursts are rare and relatively sparse.
Therefore the mean value of the signal over the long period
represent a rough estimate of the averaged noise power .
that follows a Gaussian distribution G, (see the histogram
of the distribution in Figure 6).

At a given time-frequency point (f;, ) in the absence of a
radio burst (see yellow intervals in Fig. 6) the local mean value
represents a noise power estimate of the dynamic spectrum that
follows the Gaussian noise distribution G,. In that case, we
would use the local mean value for the background noise
mitigation. At a given time-frequency point (f;, 7) in the pres-
ence of a radio burst event (see red interval in Fig. 6) the local
mean value would be much higher than the long period mean
value i, (which represents roughly the noise term value), and
so we use this as an indicator to distinguish between “noise”
TF points and “desired signal” TF points. In that case, the
denoising would rely on the long-term mean value of the signal.

— Now, if we consider a long observation period for a fre-
quency dominated by a terrestrial emitter, the averaged
signal power would represent an estimate of the RFI signal
at this particular frequency (see Fig. 7). The measure of
the spectrum I.(f, ) of the RFI spectrum is characterized
by a high average flux density level over a long period.
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Fig. 5. Example of removing the calibration signal by the method described in Section 4.1. Top panels: dynamic spectra. Bottom panels: time

histories integrated over the entire frequency band.

For this reason, the mean value of the RFI dynamic spec-
trum during a short period and the mean value of the
observed signal during a long period are close to each
other.

Based on this work, the background noise of the T-F
dynamic spectrum /(f, f) (obtained after elimination of calibra-
tion signals) is reduced using the following equation:

I(f,t) =

{Ic(f7 1) = up(f1)
Ic(fv ) — . (f, t)

if 1, (f,1) < (w.(f, 1) + koo (£, 1))

if 1y (£,0) > (1, (f 1) + ko (/1))
(1)

where I, (f, ) is the spectrum obtained after removing the

background noise. We consider that the background noise of
the dynamic spectrum I.(f, ¢) follows a Gaussian distribution

N, (f, 1), o, (f, ). i (f, t) and o, (f, f) are evaluated using
a long period of observation. The variability of any point on
the dynamic spectrum /.(f, ¢) is represented by the mean value
of the spectrum p(f; #) during a short period of 7= 60 s
(Note: the value of 60 s is only used to represent the variabil-
ity of the spectrum in a short time period). The domain of
coverage of the normal random variable N(y, o) is [u — ko;
u + ko] where k is a real constant chosen in the interval
[1 3] (Because in a Gaussian distribution, 99.7% of the data
are within 3 standard deviations of the mean (Czaplicki,
2014)).

w(f+1) =z (I.(f,) T=60s 2)

M-~

W) =2 S (L) T=7x3600s  (3)

t—=T
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(4)

4.3 Median filtering

To complete this process, we use a median filter that takes
into account the direction of the flux density gradient in the
time-frequency plane to emphasize the solar burst spectra
and to remove parasitic signals, artifacts, and remaining RFI
outliers on the T-F dynamic spectrum (Storath & Weinmann,
2017). The idea of using this median filter based on the direc-
tion of the spectral gradient is to smooth the spectrum of the

solar events (vertical filtering for events of type III, horizontal
filtering for events of type IV or inclined filtering for events of
type II) in order to remove outliers values (an outlier is the
value that is distant from the other values in the window of a
median filter). In Appendix B we show the procedure
that we use to calculate the median-filtered dynamic spectrum
L (f ).

As a conclusion, to eliminate the noise from the original
spectrum, we proceed in our proposed method to subtract
different mean values from the spectrum I.(f ). Then once
the noise is reduced, we add to the filtered spectrum I, (f, f)
and the mean value of the spectrum I.(f f) over a png time
interval in order to rescale the spectrum and properly
visualize the signal after reducing noise and RFI background
signals (see Fig. 8). The final spectrum Iq,.(f, ) obtained
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by the proposed noise removal process is expressed as
follows:

Iﬁnal(fvt) :Id(fvt) +Mg(f?t)a (5)
D= >, S, (©)
f=10MHz ¢

where p,(f, t) is the mean value of the dynamic spectrum data
I1.(f, t) for a long period T =7 x 3600 s (7 h) and for a fre-
quency range 10-80 MHz. This choice indicates that the
overall average of the real signal received in the dynamic spec-
trum reaches at instant ¢ and for the frequency f'the value p,.

Figure 9 shows the dynamic spectrum as it appears after
the treatment described so far (top panel), together with the
original observations (third panel from top). For comparison,
the second panel shows the results of the method of Zarka
et al. (2004) (based on the assumption of the Gaussian
distribution of the signal. The three bottom panels represent
for each method the signal to noise ratio (SNR) obtained for
five solar events that appear in the dynamic spectra in the upper
panels. This example illustrates the fact that the process of
combining the natural Gaussian distribution of the signal and
its variability in time is an effective way to remove both the
RFI and galactic noise signals. This strategy is also effective
to focus on solar events (higher SNR ratio), as we can see in

Figure 10, where the signal to noise ratios (SNR) of all
the events detected on 2 April 2004 (17 events) are signifi-
cantly increased after applying the proposed noise removal
process.

5 Event detection

5.1 Detection of the signal of interest

Once the T-F dynamic spectra have been cleaned, the next
step is to identify all solar radio events in these spectra.
Figure 11 shows the methodology used to detect the signal of
interest that could represent a solar event. The proposed
method is a decision rule between two main hypotheses:

The first hypothesis H, represents the non-event case where
we have only the background noise on the dynamic spectrum or
the baseline reference of the signal sgn,1(#). The second hypoth-
esis H, represents the sum of the background noise and the
signal of interest (corresponding to an event).

Given a denoised T-F dynamic spectrum g, (f, 7), the
denoised signal sgn.(f), obtained by integrating the T-F
dynamic spectra Iq,..(f, £) with respect to the frequency axis
is expressed as follows:

80 MHz

Sﬁnal(t) = Z (Iﬁnal(,fa t))7 (7)

f=10MHz
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Many studies, e.g. Horvatic et al. (2011), McCauley et al.
(1) = (smma(0) — AIB), (s)

(2008) show that data detrending techniques can reduce the
baseline shifts or amplitude fluctuations in a signal. As illus-
trated in Figure 12, due to its non-stationary nature, the signal
shows a baseline shift and therefore it is complicated to
represent the true amplitude of the signal. In order to remove
baseline shifts, we apply a large median filter to the signal
Sanal(f) and we subtract the result represented by Alb =
median(sﬁnal(ti)a Sﬁnal(tifl)s L] Sﬁnal(tifwin))) from the Origi'
nal signal sgn(#). “win” is the window size of the median
filter fixed experimentally to a value of the order of 3600
seconds.

where s(?) is the detrended signal and ()" = max(x, 0). After
data detrending, a signal of interest can be detected by thresh-
olding s{?) using an adaptive threshold “Th” given by:

Th = K x Pnyp, 9)

where Pny corresponds to the estimated power of the back-
ground noise level evaluated over a time window 7 = 7 h. As
presented in the literature of CFAR techniques (Jen, 2011;
Barkat, 2005), K is a threshold factor instantly adjusted in
order to maintain a constant False Alarm Rate (FAR).
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Fig. 12. Solar signal before and after detrending.

From the work of Richards (2005), the threshold factor K can
be written as a function of the size of the reference window N
(see Fig. 13) and the desired FAR as follows:

K = N(FAR® — 1), (10)

Note that the reference window can be chosen left-sided for
online implementation purpose. Also, due to mismatch
between the assumed i.i.d. Gaussian model and the effective
data model, one might not use the theoretical threshold value
in equation (10), but rather a value corresponding to the target
FAR and based on a learning process from the data.

5.1.1 CFAR-like approach

The role of this method is to compare the signal to a thresh-
old “Th”. As shown in Figure 13, the detection of a signal of

interest occurs when the Signal Under Test (SUT) exceeds a
threshold. The threshold level (Th) is calculated from the esti-
mated noise level from the N-samples reference window
(Eq. (9)). Some guard signals that are immediately adjacent
to the SUT are ignored from training signals. The threshold
(Th) is also function of the desired FAR. From equations (9)
and (10), we can observe that a higher FAR will lead to a lower
threshold level. Then a large number of false alarms will mask
the detected solar events. Conversely, a lower FAR will lead to
a higher threshold level. Then the number of false alarms will
be decreased, but only major solar events will be detected, and
a lot of low energy solar events will be missed (see illustration
in Fig. 14). One of the most widely used methods to address the
false-alarm problem is the cell averaging CFAR detector. In this
method, the threshold level is calculated by averaging the level
of the noise of the reference window according to:

Th = K x Py, (11)
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Fig. 13. Principle of CFAR detector.

Guard Signals

Reference window samples

Solar events
7

Threshold level Using
Cell Averaging CFAR Detection
Constant False Alarm Rate (FAR=2*10"")

Threshold level Using
Cell Averaging CFAR Detection

Full band power (db)

|,
N NimERI

Uy (Ll I| 4.1 1
U 'mfmz.u'.%u,

9

° Y

11

1 I 0
il

Constant False Alarm Rate (FAR=10"")

. e

([ ]
L LI
12 15

Time (hours)
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Note that we exclude from the reference window all the
past points already detected as “event” signal as well as the
SUT surrounding samples (referred to as guard signals) to pre-
vent the energy spillover phenomenon.

On the other hand, the scaling factor K is chosen accord-
ing to the target FAR and is computed either theoretically
(e.g., Eq. (11)) or “experimentally” using training data.

In our case, to take into account the so far ignored time cor-
relation of the signal (i.e. the desired energy signal is not i.i.d.)
and the fact that, in practice, a “high energy” event lasts for a

certain duration (e.g. type III or type IV solar events) we use
two values of the scaling factor K corresponding to two target
FAR values. More precisely, if a “high energy” event is
detected, then we switch to a lower value of K (corresponding
to a larger value of the FAR) in order to better detect all “small
events” surrounding the considered “high energy” event.

5.2 Extraction of the regions of interest

In this section, we proceed to extract all of these regions of
solar radio emission based on the signals of interest. The signals
of interest (red circles in Fig. 15) are the signals above the
threshold level (Th) described in Section 5.1. A region of inter-
est known as a group of signals of interest (events 1-13 in
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Fig. 15. Illustration of some regions of interest (solar events) extracted by the system (Note that the signal s, () is obtained by integrating the

T-F dynamic spectra with respect to the frequency axis).

Fig. 15) is defined as the one corresponding to a possible solar
event spectrum of types II, III or IV, which are characterized by
specific features described in Section 2.

Figure 15 shows an illustration of the process that we use to
find these regions. First, if the distance between two detected
signals of interest (or two groups of signals) is less than the
minimum distance d,;,, calculated by the system, both signals
(or groups of signals) are grouped together and are considered
to belong to the same event. Second, each group of detected
signals of interest (s{f) > Th) represents a new event if and
only if it is far from another group of signals by a minimum
distance dminz.

6 Performance assessment

6.1 Software interface

We present in this section results obtained with the auto-
matic detection of solar radio bursts and compare them with
solar events detected manually by an expert. A solar radio inter-
face is then developed for experts to create a data base of all
possible events (type II, III, IV or other) or regions of interest
that could be used for our performance assessment.

Figure 16 presents an example of the solar bursts labeled
manually by experts, using our platform, and bursts detected
automatically with the proposed method. We can see on the
picture that the largest events (especially type IV bursts) are
automatically detected. More details (type III bursts) could also
be detected by lowering the threshold of detection (see Eq. (9)).

2 Because the shortest solar events are characterized by a duration
of 3-10 s (Boiko et al., 2011), we suppose that two signals (or
groups) having a distance less than dmin = 10 s represent the same
event (signal).

6.2 Data validation

To validate our work, we used archived data (stored in files)
from the Nangay Decametre Array. The data are provided in the
form of time-frequency dynamic spectra. Each file contains two
Time-Frequency (T-F) spectra (400 (frequency) x 28 700
(time)) that represent left-hand and right-hand circular polariza-
tion. In this study, we use low resolution spectral data archive
of the left-hand T-F spectra (Frequency resolution: 175 kHz,
temporal resolution 1 s).

The daily spectra of June 2012 and June 2014° were
analyzed in detail by experts using our software interface to
label solar radio events in T-F spectra (major and minor events)
and to build up the ground truth (see Fig. 16). These labeled data
sets are used next to evaluate the performance of our proposed
detection system. Figure 17 and Table 1 present the distribution
of the data set as a function of event duration (width of events)
and SNR. The blue symbols in Figure 17 represent all regions of
interest that could correspond to solar events (especially type IIT
bursts that are characterized by short durations and sometimes
low signal to noise ratio, as shown in the figure). The big num-
ber of detected regions of interest is due to typelll bursts. In
general a group of type I1I events which on occasion may be part
of a longer-lasting type III storm, is identified as a single solar
event, but in the present case we have separately detected all
regions of interest that correspond to type III bursts.

6.3 Evaluation criteria

Since the goal of our work is to develop an automated
detection method, we defined an evaluation protocol based on

? We have selected these two months for our analysis because they
comprise many solar events of type III and storms and some events
of type II and IV.
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Table 1. Table of distribution of the data-set of solar events detected manually from June 2012 and June 2014.

Type of Number Mean Signal to noise ratio (SNR)
events of events duration (s) Level 1 Level 2 Level 3 Level4
(SNR € [0,5]) (%) (SNR € [5,10]) (%) (SNR € [10,15]) (%) (SNR > 15) (%)
111 2182 222 20.6 55 18.3 6.1
v 7 5131 6 47 29.4 17.6
II 6 2821 0 66.7 9 243
Labeled solar bursts
by an expert
Reference signal 15 ______ H | E E E 5
(mamaldstection) o | b4 o b i
S B I s 4 ;
Detectadsignal ¢! i E : : :
(automaticdataction) | b : : : ; ' : :
™ N ™ 73 ™ PN ™ 3 ™
Time (seconds)
datected solar bursts
avtomatically

Fig. 18. Evaluation protocol used to evaluate the events detected automatically by the proposed method (1 if a solar burst event is detected

and 0 if no).

finding the common period between events detected by the pro-
posed method and events detected manually (reference signals;
see Fig. 18).

The detection process is then evaluated by computing the
sensitivity, the specificity, the precision and the accuracy
(Loong, 2003) as follows:

TP: True Positive represents the time period (in seconds) of
the received signal where the solar burst exists in the refer-
ence signal and in the detected signal (see Fig. 15).

TN: True Negative represents the time period of the
received signal where the solar burst exists neither in the
reference signal nor in the detected signal.

FP: False Positive represents the time period of the received
signal where the solar burst does not exist in the reference
signal but exists in the detected signal.

FN: False Negative represents the time period of the
received signal where the solar burst exists in the reference
signal, but not in the detected signal.

Sensitivity: Se = 100 X7 +FN measures the capacity of the
system to detect the events la]beled by an expert (reference
signal).

Specificity: Sp = 100 x N +FP> measures the capacity of the
system to not detect an event unlabeled by an expert.
Precision: P =100 x (TP +FP) measures the capacity of the
system to detect exactly (same time period) the events
labeled by an expert.

Accuracy: R = 100 x % measures the probabil-

ity that the system can detect the same situations (bursts
or not) obtained in the reference signal.

In fact, the concept of TP, TN, FP, FN is quite standard
and often used in detection and classification theory (Fawcett,
2006). In our work, we use this method of evaluation to com-
pare the duration between the labeled events by an expert
(representing ground truth) and the duration of the events
detected by the Automated Radio Burst Identification System
(ARBIS) (Lobzin et al., 2009) or by our own method.
Figure 19 represents the detection of a solar event and the
evaluation protocol used in our simulations. From this figure,
we show that the correct detection of a solar event (called
TP) is represented by the period of time identified as a solar
event both manually by an expert and automatically by using
our method or ARBIS. The false detection of solar event
(called FP) is represented by the period of time not identified
by an expert as a real solar event but only detected automat-
ically by our method as an event. By the same manner we
can define on Figure 19 the period of times that represent
the evaluation criteria of False Negative FN and True
Negative TN.

Looking at the definition of these evaluation criteria, we
can note that high values of sensitivity and precision rate can
be achieved if and only if the start and the end of the events
detected by the system are the same as those labeled by an
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Fig. 19. Protocol used to evaluate the duration of the events detected by the method proposed in the present work and the ARBIS system in
comparison with the duration of the event (start and end of the event) labeled by an expert.

expert. This is almost impossible to have, because most events
are detected in short time intervals (few seconds). For this
reason, we are more interested to the measurements obtained
in specificity and accuracy in order to evaluate the global
performance of the system.

6.4. Automatic detection by the ARBIS method

ARBIS is an automated method for recognizing solar
radio bursts (especially type III bursts) based on radio
spectrograph data. The method is considered here for
comparison purposes. Its central idea is to use the Radon
transform for a more objective burst detection in dynamic

spectra. The algorithm of this method is summarized as
follows:

1. The first stage of the algorithm is a moving average filter-
ing of the dynamic spectrum /(f; #) with respect to time.
Filtering of dynamic spectra is usually required to reject
undesired signals and to emphasize the regions of interest
(solar bursts).

2. In the second stage, the filtered spectrum Igyereq (f; £) 1S
converted to a binary spectrum B(f, f). The binary spec-
trum is chosen to be equal to 1, i.e., B(f, ) = 1, if the spec-
trum value Igyereq (f; ) corresponds to a local maximum
with respect to time, i.e., Igyereda (f  — 1) < Iitered
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Fig. 20. Visualization of the different stages of the ARBIS system.

Table 2. Performance results of the detection of type III bursts
obtained by the proposed solar burst detection method and the
ARBIS system.

Original  Background ARBIS
spectrum removal process detection

(%) (%) method (%)
Sensitivity = il 97.6 403 30.5
Specificity = k< 238 89.2 75.8
Precision = s 31.9 70.6 56.7
Accuracy = bt 432 81.2 70.1

(f, ©) > Ifierea(fs t + 1) otherwise B(f, ) = 0. This step
aims to find whether there is a significant enhancement
in the spectrum.

3. Then a technique based on a Radon transform of the
binary spectrum B(f, f) is used to find the features
corresponding to solar bursts (in particular type III
bursts) (Lobzin et al., 2009). The signal obtained by
applying this technique is compared with a threshold to
decide whether a signal of interest is observed or not.
When a signal is detected, the optimal threshold value
is determined empirically by assuming that the accept-
able probability of finding a false solar burst in one
spectrum is 107>

4. Finally, the detected signals of interest are combined
into a group if they are less than 1 min distant (this
choice by the authors is defined based on the resolution
of the radio spectrograph and the average duration of
solar events).

Figure 20 presents the different steps of ARBIS system.
It shows the original and filtered dynamic spectrum with a solar
burst in the middle (Figs. 20a and b), the corresponding binary

Signal by Radon
transform technique
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spectrum (Fig. 20c), and the signal obtained after applying the
Radon transform technique (Fig. 20d).

6.5 Performance evaluation

Table 2 shows the results (sensitivity, specificity, precision

and accuracy) obtained for the months of June 2014 and June
2012 using the ARBIS system (Lobzin et al., 2009) and the
proposed event detection method. Because the ARBIS system
is used to detect solar bursts of type III, only such events are
evaluated. As we can see, the method proposed in the present
work detects a huge number of noisy events along with the
solar bursts. This is why the system is missing the real duration
of events, which appears in the results as a combination of high
sensitivity with weak precision and accuracy. After denoising
the data, the comparison proves that our method has the ability
to detect at least 80% of the events labeled manually by an
expert (accuracy = 81.2%, specificity = 89.2%). On the other
hand, the sensitivity of the system is decreased without the pro-
posed preprocessing method (sensitivity = accuracy = 40.3%).
This is due to the inability of the system to detect the solar
events with the durations labeled by experts, i.e. to detect the
correct start and end times of the solar bursts.

7 Conclusions

The effective detection of solar radio bursts is a key

problem to forecast space weather events related to solar erup-
tive activity. It is also a tool for searches of specific types of
radio bursts in large data sets. In this work, an automated
method for the detection of solar radio bursts in dynamic spec-
tra is proposed. This method starts by eliminating unwanted
signals (Radio-Frequency Interference, RFI, Calibration ...).
Then a specific filter is applied to denoise and improve the
quality of the dynamical spectra to be interpreted. When the
preprocessing phase is finished, an automated solar radio burst
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detection system based on an adaptive constant false alarm rate
(CFAR-like) is applied. To evaluate the performance of our
method, a semi-automatic software package has been devel-
oped to create a data set of all possible events (type II, IIT or
IV) that could be recognized. Finally, our proposed system
performs better than the Automated Radio Solar Burst Identifi-
cation System (ARBIS), which has been developed for type IIT
burst detection objective (accuracy level: proposed system 81%
vs. ARBIS 70%). In addition to this gain, the proposed method
allows the detection of any high or moderate energy event that
can be of interest for radio astronomers.

Acknowledgements. This work is developed within the
framework of the Agence Nationale pour la Recherche
(ANR/ASTRID,DGA) project Outils radioastronomiques
pour la météorologie de [’espace (ORME, contact
No. ANR-14-ASTR-0027). The editor thanks two anonymous
referees for their assistance in evaluating this paper.

References

Bandiera F, Orlando D, Ricci G. 2009. CFAR detection strategies
for distributed targets under conic constraints. /EEE Trans Signal
Process 57(9): 3305-3316.

Barkat M. 2005. Signal detection and estimation, 2nd edn. Artech
House.

Boiko A, Mel’Nik V, Konovalenko A, Rucker H, Abranin E,
Dorovskyy V, Lecacheux A. 2011. Frequency drift rates of powerful
decameter Type III bursts. Adv Astron Space Phys 1: 57-60.

Bonnin X, Aboudarham J, Fuller N, Renie C, Perez-Suarez D,
Gallagher P, Higgins P, Krista L, Csillaghy A, Bentley R. 2011.
Automated detection and tracking of solar and heliospheric
features in the frame of the European project HELIO. SF24-2011:
Proc. Annu. Meeting French Soc Astron Astrophys 373: 377.

Bothmer V, Daglis IA. 2007. Space weather: physics and effects.
Springer Science & Business Media.

CaiL,Ma X, XuQ,LiB, Ren S. 2011. Performance Analysis of Some
New CFAR Detectors under Clutter. J Comput 6(6): 1278-1285.
Cairns I, Robinson R. 1987. Herringbone bursts associated with type

IT solar radio emission. Sol Phys 111(2): 365-383.

Carley EP, Reid H, Vilmer N, Gallagher PT. 2015. Low frequency
radio observations of bi-directional electron beams in the solar
corona. A&A 581: A100.

Czaplicki JM. 2014. Statistics for Mining Engineering. CRC Press.

Deans SR. 2007. The Radon transform and some of its applications.
Dover Books on Mathematics Series. Dover Publications, ISBN
9780486462417. URL
https://books.google.fr/books?id=xSCcOKGiOu0C.

Fawcett T. 2006. An introduction to ROC analysis. Pattern Recogn
Lett 27(8): 861-874.

Fry EK. 2012. The risks and impacts of space weather: Policy
recommendations and initiatives. Space Policy 28(3): 180—-184.
Gunes T, Erdol N 2006. HMM based spectral frequency line
tracking: Improvements and new results. In: Acoustics, Speech
and Signal Processing, 2006, ICASSP 2006 Proceedings. 2006

IEEFE International Conference on, 2, IEEE.

Horvatic D, Stanley HE, Podobnik B. 2011. Detrended cross-
correlation analysis for non-stationary time series with periodic
trends. EPL 94(1): 18007.

Jen JJ. 2011. A study of CFAR implementation cost and perfor-
mance tradeoffs in heterogeneous environments, Ph.D. Thesis,
California State Polytechnic University, Pomona.

Jones J, Richards GP. 2014. Automated recognition of type III solar
radio bursts using mathematical morphology. In: Advanced Maui
Optical and Space Surveillance Technologies Conference.

Kataoka R, Sato T, Hiroshi Y. 2011. Predicting radiation dose on
aircraft from solar energetic particles. Space Weather 9(8): 1-2.

Kong X-L, Chen Y, Li G, Feng S-W, Song H-Q, Guo F, Jiao F-R.
2012. A broken solar type II radio burst induced by a coronal
shock propagating across the streamer boundary. ApJ 750(2): 158.

Lecacheux A. 2000. The Nangay decameter array: A useful step
towards giant, new generation radio telescopes for long wave-
length radio astronomy. Radio Astronomy at Long Wavelengths
119: 321-328.

Lobzin VV, Cairns IH, Robinson PA, Steward G, Patterson G. 2009.
Automatic recognition of type III solar radio bursts: automated
radio burst identification system method and first observations.
Space Weather 7(4).

Lobzin VV, Cairns IH, Robinson PA, Steward G, Patterson G. 2010.
Automatic recognition of coronal type II radio bursts: the
automated radio burst identification system method and first
observations. ApJ 710(1): L58.

Loong T-W. 2003. Understanding sensitivity and specificity with the
right side of the brain. BMJ 327(7417): 716-719.

McCauley JL, Bassler KE, Gunaratne GH. 2008. Martingales,
detrending data, and the efficient market hypothesis. Phys A
387(1): 202-216.

Mukhopadhyay P, Chaudhuri BB. 2015. A survey of Hough
transform. Pattern Recognition 48(3): 993-1010.

Munro R, Gosling J, Hildner E, MacQueen R, Poland A, Ross C.
1979. The association of coronal mass ejection transients with
other forms of solar activity. So/ Phys 61(1): 201-215.

Nindos A, Aurass H, Klein K-L, Trottet G. 2008. Radio emission of
flares and coronal mass ejections. Sol Phys 253(1-2): 3.

Nita GM, Gary DE, Liu Z, Hurford GJ, White SM. 2007. Radio
frequency interference excision using spectral-domain statistics.
PASP 119(857): 805.

Pick M, Vilmer N. 2008. Sixty-five years of solar radioastronomy:
flares, coronal mass ejections and Sun—Earth connection. A&A4Rv
16(1-2): 1-153.

Richards MA. 2005. Fundamentals of radar signal processing. Tata
McGraw-Hill Education.

Storath M, Weinmann A. 2017. Fast median filtering for phase or
orientation data. [EEE Transactions on Pattern Analysis and
Machine Intelligence.

Tumilaar K, Langi Y, Rindengan A. 2015. Hidden Markov Model.
Cartesian 4(1): 86-94.

Zarka P, Cecconi B, Kurth W. 2004. Jupiter’s low-frequency radio
spectrum from Cassini/Radio and Plasma Wave Science (RPWS)
absolute flux density measurements. J Geophys Res: Space Phys
109 (A9): 1-12.

Zhang Y, Du A, Du D, Sun W. 2014. Evaluation of a Revised
Interplanetary Shock Prediction Model: 1D CESE-HD-2 Solar-
Wind Model. Sol Phys 289(8): 3159-3173.

Cite this article as: Salmane H, Weber R, Abed-Meraim K, Klein K & Bonnin X, 2018. A method for the automated detection of solar
radio bursts in dynamic spectra. J. Space Weather Space Clim. 8, A43.

Page 16 of 18


https://books.google.fr/books?id=xSCc0KGi0u0C

H. Salmane et al.: J. Space Weather Space Clim. 2018, 8, A43

Appendix A

Methodology to eliminate the calibration signals

The core of the process to eliminate the calibration signals
(see Fig. A.1) consists of finding the start time #; and the end
time ¢, = t; + 40 (40 s is the known duration of the calibration
signal) of the desired pattern as illustrated in Figure A.2. To
detect these calibration pulses, we proceed every 1 h to find
the signal of the highest amplitude.

We consider that the astrophysical information between the
instants ¢, and 7, is completely lost due to the calibration pro-
cess. For this reason, we chose to replace the canceled signal
by a smoothed version of the local T-F spectrum, in order to
avoid discontinuities and artefacts. For that, we take into
account in our calculation the instant #, = t, — AT just before
the calibration process and the instant #, = 7, + AT just after
the calibration process. AT = 15 s is fixed experimentally to

represent a short duration around the calibration pulse. Let
mean,, be the mean value of the flux density /(f, ¢) calculated
just before the calibration, between the instants #, and ¢, and
meana the mean value of the flux density I(f ) calculated
just after the calibration, between the instants z, and z,.
For each frequency at time #; € [z, ] we replace the data
I(f, t* by a linear interpolation between the mean values
mean,, and mean,

Appendix B
Algorithm of median filtering
Given the dynamic spectrum /,(f,¢) obtained after back-

ground noise removal process, let (f;,#;) be the coordinates
of the i-th pixel of the spectrum 7,.(f, 7).

Fig. A.1. Synopsis of eliminating calibration signals.
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Fig. A.2. Pattern of a calibration signal.
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4 The spectrum is given with a frequency sampling interval of
Af=0.175 MHz in the range [10-80 MHz] and a time sampling
interval of At =1 s.
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Fig. B.1. Calculating the median value of a pixel neighborhood 7, (x;, y;). As can be seen, the pixel value of 150 (outlier value) is replaced
with the median value: 126. Squares neighborhood around the calculated Direction(f;, #;) (129°), are used here.

We start by calculatmg the spectrum gradients in the
x-direction G, = ¥4 and in the y-direction G, = d”(f 1),

The pixels with the largest gradient values (called edge pix-
els) are those corresponding to the normal direction of the gra-
dient computed as Direction (f;,t;) = atan2(G,, G,) (see
Fig. B.1b).

To construct the median filter, only pixels (io, 7 . .., i) that
are located no farther than a maximum Euclidean distance
D from the pixel (f;,¢) and that are situated around the

> The value 15 represents a short Euclidean distance. It only
depends on the resolution of the dynamic spectrum of the
instrument.

direction of edge pixels (called Direction (f;, ¢;)) are selected
(see Fig. B.1a). The Euclidean distance D is fixed experimen-
tally to the value 15°. The filtered dynamic spectrum pixel
1,(fi,1;) is then replaced by the median value of the spectral

flux densities 1,(f;,, t;,), L (fiy t5) - -, L (firs t3,):

[d(fiv ti) = median(li’(fio’ tfo)’lr(ﬁlvtil) s 71r(fik’ tik))?

(B.1)

Page 18 of 18



	Introduction
	A brief overview of solar radio bursts �with relevance to space weather
	Concept of the radio burst detection system
	Noise removal technique
	Elimination of the calibration signals
	Background noise mitigation
	Median filtering

	Event detection
	Detection of the signal of interest
	5.1.1 CFAR-like approach

	Extraction of the regions of interest

	Performance assessment
	Software interface
	Data validation
	Evaluation criteria
	Automatic detection by the ARBIS method
	Performance evaluation

	Conclusions
	Acknowledgements
	References
	head21
	Appendix A
	Methodology to eliminate the calibration signals

	head24
	Appendix B
	Algorithm of median filtering


