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The non-coding DNA in eukaryotic genomes encodes a language which programs chromatin accessibility, transcription factor 
binding, and various other activities. The objective of this short report was to determine the impact of primary DNA sequence 
on the epigenomic landscape across 200-base pair genomic units by integrating nine publicly available ChromHMM Browser 
Extensible Data files of the Encyclopedia of DNA Elements (ENCODE) project. The nucleotide frequency profiles of nine 
chromatin annotations with the units of 200 bp were analyzed and integrative Markov chains were built to detect the Markov 
properties of the DNA sequences in some of the active chromatin states of different ChromHMM regions. Our aim was to 
identify the possible relationship between DNA sequences and the newly built chromatin states based on the integrated 
ChromHMM datasets of different cells and tissue types.
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Introduction

In 2011, the Encyclopedia of DNA Elements (ENCODE) 
consortium released the ChromHMM chromatin state 
annotations for 9 consolidated epigenomes, where 
ChromHMM is software developed by ENCODE labs, to 
integrate multiple chromatin datasets of various histone 
modifications to discover de novo the major combinatorial 
and spatial patterns of marks [1, 2]. The 15-chromatin-state 
model of the ENCODE Project consists of 15 states that are 
publicly available through 9 Browser Extensible Data (BED) 
files [3]. Since, large-scale epigenetic datasets such as 
ENCODE have become publicly available, a growing interest 
has been shown in predicting the function of non-coding 
DNA regions directly from sequence by utilizing these 
large-scale ChromHMM annotations [4-7].

On the other hand, many researchers have shown that 
formal language theory is an appropriate tool in analyzing 
various biological sequences [1, 2]. The hidden Markov 
model (HMM) is most closely related to regular grammars, 
because an n-gram is a subsequence of n items from a given 
sequence, and language models that are built from n-grams 
are actually (n-1)-order Markov models. We therefore 
proposed n-gram probabilistic language models for predicting 
the functions of ChromHMM regions of ENCODE [8]. In 
our previous study, we performed preliminary experiments 
to test whether the DNA sequences contained in each 
different chromatin unit of the ENCODE project possess the 
Markov property by applying Markov chains built from the 
two BED files of ENCODE tier 1 cell lines (GM12878, a 
B-lymphocyte lymphoblastoid cell line; and K562, a 
leukemia cell line) [8]. Our rationale for using the n-gram 

http://crossmark.crossref.org/dialog/?doi=10.5808/GI.2018.16.3.65&domain=pdf&date_stamp=2018-09-30


66 www.genominfo.org

HS Park. The Markov Property of DNA Sequences on 200-bp Units

Fig. 1. Chromatin states of 9 cell lines
from chr21: 33,031,600 to chr21: 
33,041,600, shown in University of 
California Santa Cruz (UCSC) genome 
browser (GRCh37/hg19): the 15 chro-
matin states shown in the 4th field are 
numbered and abbreviated as: 1_ 
Active_Promoter, 2_Weak_Promoter, 
3_Poised_Promoter, 4_Strong_Enhancer,
5_Strong_Enhancer, 6_Weak_Enhanc 
er, 7_Weak_Enhancer, 8_Insulator, 9_ 
Txn_Transition, 10_Txn_Elongation, 11_
Weak_Txn, 12_Repressed, 13_Hetero
chrom/lo, 14_Repetitive/CNV, and 15_
Repetitive/CNV. These are the prob-
abilistic categories based solely on 
the nine chromatin marks [1, 2].

model was that each of the sequences contained in the 
ChromHMM chromatin states can follow a linguistic 
grammar, not merely as a form of short fragments of motifs 
or DNA signatures, but as a continuous and longer fragment 
of sequences.

Our simulation studies showed that some of these 
chromatin states possessed strong Markov properties of 
DNA sequences, and could even be predicted by the naïve 
Bayesian classifier. However, our model could have been 
biased, as our n-gram analyses were conducted only on two 
of the cell lines. 

Thus, as a follow-up to our preliminary study on ENCODE 
datasets [8], we extend our previous study and continue our 
ongoing efforts to build comparative nucleotide frequency 
profiles to detect Markov properties by analyzing the 
datasets of the full range of 9 cells and tissue types provided 
by ENCODE. It was therefore critical to propose a new 
functional annotation framework that can be generalized to 
different cell types.

A generalizable framework can be achieved through 
statistically-justifiable models. We downloaded BED files 
from ENCODE and combined all the annotations spread out 
through 9 different BED files, into a single integrated BED 
file. Based on the newly integrated BED file, we assigned a 
dominant chromatin state for each 200-bp unit. We then 
rebuilt newer Markov chains by iteratively analyzing the 
variability count of the chromatin states of each 200-bp unit. 
By eliminating the highly variable 200-bp units, in our 
simulation studies we finally analyzed the active chromatin 
states that showed a strong Markov property.

Methods

When making 15-state ChromHMM BED files, the 
ENCODE consortium uses a core set of 9 chromatin markers 
[1]. We investigated whether some subsets of the annotated 
ENCODE 15-state model can be predicted by simply 
creating n-gram models of DNA sequences, in reverse [9]. To 
achieve this, ChromHMM blocks of human genome were 
initially dissected into a nucleosome resolution of 200-bp 
units and, by analyzing the 9 BED files of ChromHMM, each 
individual unit was assigned one dominant chromatin state. 
The process is explained in detail in the following sections: 
combining 9 BED files into a single file, filtering out highly 
variable 200-bp units, and finally building 5th order Markov 
Models.

Combining 9 BED files into a single file

The ENCODE consortium released a 15-state model BED 
file from an analysis of consolidated epigenomes, resulting 
in a total of 9 epigenomes for public download in 
ChromHMM BED files [3].

Fig. 1 shows the chromatin states of the 9 cell lines from 
chr1: 10,000 to chr1: 30,000 displayed in the University of 
California Santa Cruz (UCSC) genome browser (with 
human genome GRCh35/hg19). The BED format shown at 
the bottom of Fig. 1 provides a flexible way to define the data 
lines that are shown in an annotation track. The four BED 
fields shown in each BED file represents chrom (name of the 
chromosome), chromStart (starting position of the feature in 
the chromosome), chromEnd (ending position of the feature 
in the chromosome), and state (15 chromatin states, numbered 
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Fig. 2. Combining the 9 Browser 
Extensible Data (BED) files into an 
integrated single file: the annotations
are contained in nine separate BED 
files: embryonic stem cells (H1hesc. 
bed), erythrocytic leukaemia cells 
(K562.bed), B-lymphoblastoid cells 
(Gm12878.bed), hepatocellular car-
cinoma cells (Hepg2.bed), umbilical 
vein endothelial cells (Huvec.bed), 
skeletal muscle myoblasts (Hsmm.bed), 
normal lung fibroblasts (Nhlf.bed), 
normal epidermal keratinocytes (Nhlf.
bed), and mammary epithelial cells 
(Hmec.bed) [1, 2].

from 1 to 15). 
For example, the chromatin state of Gm12878 shown at 

the bottom of Fig. 1, for the block from chr1: 10,600 to chr1: 
11,137, is 13_Heterochrom/lo, whereas the chromatin state 
of K562, for the block from chr1: 10,937 to chr1: 11,937, is 
8_Insulator. 

We attempted to build comparative nucleotide frequency 
profiles to detect their Markov property. Thus, it became 
critical to devise a functional annotation framework that can 
be generalized to different cell types. To design good 
predictive models in building the Markov chain atlas of the 
human genome, we modified the original BED files by 
dissecting the ChromHMM blocks in each BED file into 
200-bp units. When the size of a dissected unit near the 
ChromHMM boundary is less than 150-bp, we discarded the 
unit, whereas when the size of dissected unit was greater 
than 150-bp, we rounded it up to a 200-bp unit.

For example, the original Gm12878 block in Fig. 1, from 
chr1: 10,600 to chr1: 11,137 (a block size of 537 bp), was 
dissected into two units of 200-bp blocks (from chr1: 10,600 
to chr1: 10,800; from chr1: 10,800 to chr1: 11,000), in a new 
BED file, by discarding the last unit. Likewise, the original 
K562 block in Fig. 1, from chr1: 10,937 to chr1: 11,937 (a 
block size of 1,000 bp), was dissected into five units of 
200-bp blocks (from chr1: 11,000 to chr1: 11,200; from chr1: 
11,200 to chr1: 11,400; from chr1: 11,400 to chr1: 11,600; 
from chr1: 11,600 to chr1: 11,800; and from chr1: 11,800 to 
chr1: 12,000), by rounding up the last unit. Profiling 
nucleotide frequency tables into units of 200-bp is a 
convenient way to build a general framework and test 
various Markov properties simply by combining these 
200-bp frequency tables in various ways for specific 

purposes.
Dissecting the blocks uniformly made it possible to 

combine all the annotations spread out through 9 different 
BED files into a single integrated BED file [10], as shown in 
Fig. 2. Each row of the integrated BED file shown at the 
bottom of Fig. 2 is composed of eighteen entries: chromosome 
number, starting block number, ending block number, and 
the remaining fifteen entries that show the number of 
annotation frequencies of each of the chromatin states, in 
the original BED files. For example, the chr1: 12,800‒13,000 
unit at the bottom of Fig. 2 shows that this specific 200-bp 
unit is annotated two times as state 7 (Weak_Enhancer), one 
time as state 9 (Txn_Transition), one time as state 10 
(Txn_Elongation), and 5 times as state 11 (Weak_Txn) 
throughout the original 9 BED files, whereas all of the 
occurrence count numbers of the remaining chromatin 
states for this unit are zero (in 1, 2, 3, 4, 5, 6, 8, 12, 13, 14, 
and 15 states). 

Filtering out highly variable 200-bp units 

After integrating the BED files, we defined the variability 
count of the chromatin states of a given 200-bp unit as the 
number of states where counts of occurrences were 
non-zeroes, to define and compare the observed consistency 
of each chromatin state at any given genomic position across 
all 9 epigenomes. For example, the chromatin state 
variability count of the chr1: 12,800‒13,000 block in Fig. 2 
would be four, as there are four non-zero states (i.e., 7, 9, 10, 
and 11), whereas the chromatin state variability count of the 
chr1: 10,200‒10,400 block in Fig. 2 would be one, as there is 
only one non-zero state.

We could then use variability count statistics and 
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Table 1. Statistical distribution of variability counts of each 
chromatin state of 200-bp units

Variability counts Annotation frequencies

1 5,721,116
2 4,557,108
3 2,534,396
4 934,644
5 311,234
6 77,050
7 11,658
8 890
9 28

Fig. 3. Flowchart of building Markov chains by iteratively 
eliminating highly variable 200-bp units.

maximum likelihood decision rule to create an optimal 
classification Markov model, as uniform priors can be 
assumed if 200-bp units with stable chromatin state are 
used. In this way, the highly variable 200-bp units, with 
which different chromatin states were frequently switched 
to other states across different tissues and cell types, could 
be eliminated in the training Markov transition tables. Our 
rationale behind this was that, compared to the highly 
variable 200-bp units, the 200-bp units that are less 
frequently changed would show a strong Markov property.

When the human genome was dissected into a 200-bp 
unit, there were originally 14,148,124 units (see Table 1). 
Among these units, all of the variability counts of the 
chromatin states of 5,721,116 units were one, indicating that 
all 9 cell lines were annotated with the same state in these 
200-bp units, and the variability counts of the chromatin 
states of 4,557,108 units were two. It also indicates that all 
of the 9 cell lines were annotated as either of the two states 
in these 200-bp units. 

This means that most of these 200-bp units have strong 
preferences for certain dominant chromatin state, where a 
dominant state of a 200-bp unit is the most frequently 
annotated chromatin state among the 15 chromatin states. 
This provided good heuristic insight for designing new 
Markov models for our study. Thus, it was possible to assign 
only one or two dominant chromatin states for most of the 
200-bp units of the entire human genome. 

Building fifth order Markov models

After we assigned a dominant chromatin state for each 
200-bp unit, frequency counts were used to build fifteen 
initial transition tables for the fifth order Markov models 
[10]. For example, a uniform fifth order Markov chain is 
specified by a vector with initial probabilities P(Xn-5, Xn-4, Xn-3, 
Xn-2, Xn-1) for 4,096 components as well as a matrix of 
transitional probabilities P(Xn | Xn-5, Xn-4, Xn-3, Xn-2, Xn-1) with 
a size of 4,096 × 4. These tables were used to build a global 

Markov chain classifier to explore and rank sub-optimal 
predictions of the chromatin states. Based on the nucleotide 
frequency profiles, given a random sequence x1, x2,…, x200 in 
the state of a cell line, we compared sequences π1,π2,…,π200 
of chromatin states that maximized the following probability 
of the initial 15 Markov chain models, where aπiπi＋1 is a 
transition probability:

P(x,π)=α0π1




απiπi＋1

By trial and error, we rebuilt newer Markov chains by 
iteratively analyzing the variability count of the chromatin 
states of a given 200-bp unit, and by eliminating the highly 
variable 200-bp units in training. 

Fig. 3 summarizes our process of building Markov chains. 
When the human genome was dissected into 200-bp units, 
there were originally 14,075,448 units. By trial and error, we 
rebuilt newer Markov chains by eliminating the highly 
variable 200-bp units in training. We finally excluded 200-bp 
units that showed more than two different chromatin state 
signatures when training our transition tables. Thus, our 
result is based on 7,038,863 units, which accounted for 
approximately 49.75% of the entire human genome. 
However, determining whether the remaining 50.25% of 
highly variable 200-bp units of the genome would show a 
Markov property is beyond the scope of this paper.

By this process, we found that some inactive chromatin 
states were highly constitutive and marked in most of the 9 
epigenomes. For example, state 13 (Hetero_Chromatin 
state), which covered on average 70.48% of each reference 
epigenome, was excluded when considering the variability 
count of the chromatin states. We also excluded units in 
which a transcribed state showed both promoter and 
enhancer signatures. Mostly, we profiled each 200-bp with 
chromatin states and built new transition tables by training 



www.genominfo.org 69

Genomics & Informatics Vol. 16, No. 3, 2018

Table 2. Prediction accuracy of newly built transition tables of six broad states by analyzing the variability of the chromatin states 
of 9 BED files

Broad chromatin states Chromatin states No. of training units No. of testing units Prediction accuracy (%) 
for unit variability ≤ 2

Promoter state 1_Active_Promoter 66,513 7,390 59.42 
2_Weak_Promoter 41,279 4,587 37.74 
3_Poised_Promoter 13,708 1,523 66.57 

Enhancer state 4_Strong_Enhancer 53,192 5,910 60.49 
5_Strong_Enhancer 144,691 16,077 62.90 
6_Weak_Enhancer 140,044 15,560 61.38 
7_Weak_Enhancer 363,710 40,412 57.90 

Insulator state 8_Insulator 898,44 9,983 27.37 
Transition state 9_Txn_Transition 40,417 4,491 26.84 

10_Txn_Elongation 552,758 61,418 35.31 
11_Weak_Txn 3,430,120 381,124 38.51 

Repressed state 12_Repressed 1,398,701 155,411  2.30 
Inactive state 13_Heterochrom/lo NA NA NA

14_Repetitive/CNV NA NA NA
15_Repetitive/CNV NA NA NA

BED, Browser Extensible Data; NA, not available.

the 200-bp blocks with a chromatin variability of less than 2 
(and containing at least one active state). 

These fifteen chromatin states were then merged into six 
broad states: Promoter, Enhancer, Insulator, Transition, Repressed, 
and Inactive. Our final transition tables for the Promoter, 
Enhancer, Insulator, Transition and Repressed state (excluding 
inactive states) were built from 121,500, 701,636, 89,844, 
4,023,295, and 155,411 200-bp units, respectively. As these 
Markov chains could be used as a Naive Bayes classifier, we 
calculated the sequence of each 200-bp unit that maximized 
our Markov models. We defined a correctly predicted unit as 
one in which the predicted result matched one of the 
dominant chromatin states in the same broad state. 

Results

As a means to proving Markov property, we directly 
investigated whether our sequence-based Markov chain 
models for each chromatin state have the discriminating 
power necessary to identify different chromatin states. 

The samples were stratified according to chromosomes 
into strictly non-overlapping training and testing sets. A 
total of 6,334,977 200-bp units were trained, and 703,886 
200-bp units were tested for prediction accuracy. At this 
time, reverse complements of sequences were not 
considered when building the Markov models, since the 
backward Markov chain could show similar properties for 
solutions. 

Table 2 shows the result: 52.86% precision for Promoter 
states, 37.95% precision for Transcribed states, and 59.82% 

for Enhancer states. These percentages were obtained by 
adding all units that were predicted correctly as a dominant 
state in each of the 200-bp units divided by the number of all 
testing units in the same broad group. 

By estimating the prediction accuracy of chromatin states, 
we infer that the Promoter states showed reasonable Markov 
property, the Repressed state did not seem to display Markov 
property, and those units related to the Enhancer states (4, 5, 
6, and 7 states) were the most tissue specific, whereas those 
related to the Transcription states (9, 10, and 11 states) were 
highly constitutive. 

Discussion

In this short report, we did not provide any interpretable 
biological meanings for our statistically defined dominant 
state, yet. Therefore, our study should only be considered 
from a computational perspective, and, is thus a preliminary 
work. Still, it is important to note that we only used DNA 
sequences contained in the epigenetic datasets in modeling 
the Markov chains. Our study showed that once a dominant 
state for each 200-bp unit is assigned, a generalizable 
Markov framework can be achieved. Based on the 
framework, we showed that some subsets of the active 
chromatin states possessed a strong Markov property. We 
are currently investigating the overall co-occurrence of the 
200-bp chromatin states for ENCODE ChromHMM datasets 
together with Roadmap Genomics datasets [11].
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