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Abstract. An elastic-plastic axisymmetric steel bending plate subjected to a repeated variable load (RVL) is considered. 
The solution to the load optimization problem at shakedown is complicated because the stress-strain state of the dissipa-
tive systems (e.g. the plate plastic deforming) depends on their loading history. A new algorithm for the load optimization 
problem combining von Mises and Tresca yield criterion based on the Rosen project gradient method is proposed. The op-
timization results are obtained by integrating the existing software and that created by the authors. 
Keywords: elastic-plastic plates, shakedown, energy principle, Mises and Tresca yield criterion, mathematical program-
ming. 

 
1. Introduction 

An elastic-plastic axisymmetric steel bending plate sub-
jected to a repeated variable load (RVL)  is consid-
ered in this paper. The RVL is the system of loads where 
each of which can independently vary within the time 

( )tF

t  
independent lower and upper bounds of the forces F , 

 ( ). An ideal elastic-plastic struc-
ture subjected by RVL can exceed its constructive re-
quirements due to a failure caused by its incremental 

inf

supF ( ) supinf t FFF ≤≤

collapse and/or its alternating plasticity. Both cases are 
usually referred to as cyclic plastic collapse. The shake-
down plates are investigated in this paper. The plastic 
strains  developed in the initial loading cycle produce 

the residual moments  which ensure the purely elastic 
response of the plates during the following loading cy-
cles. Load shakedown analysis via numerical and mathe-
matical programming methods is relevant for civil 
engineering. This has been confirmed by the growing 
number of investigations in this field (Mróz et al. 1995; 
Weichert et al. 2002; Kaliszky and Lógó 2002; Pham 
2003; Atkočiūnas et al. 2004; Merkevičiūtė and Atko-
čiūnas 2006; Stonkus et al. 2009; Žilinskaitė and Žiliukas 
2008). 

pΘ

rM

The solution of load optimization at shakedown is 
complicated because the stress-strain state of dissipative 
systems (e. g. the plate deforming) depends on their load-
ing history (Lange-Hansen 1998). The load optimization 
problem is formulated by integrating extreme energy 
principles and methods of mathematical programming 
theory. A new algorithm for the problem combining 
Mises and Tresca yield criterion for adapted flexural 

plates optimization based on the Rosen project gradient 
method is proposed in this paper (Čyras and Atkočiūnas 
1984; Atkočiūnas et al. 2007a, 2007b, 2008). The algo-
rithm is based on the linear Tresca yield criterion. When 
the optimal solution is obtained, the von Mises yield cri-
terion is applied in the latest step. The proposed algo-
rithm simplifies the numerical solution of the complicated 
optimization problem when the Mises yield criterion is 
applied.  

 
2. The main dependencies of a discrete plate 

The discrete model of a symmetric round plate in the 
polar coordinate system  is obtained by divid-
ing the plate into 

( )Tθρ,=x
sk ...,,2,1=  ( ) circular finite 

elements with 
Kk ∈

ks  nodes 3,2,1 == ksl  , where the 
master nodes are numbered 1 and 3, respectively (see 
Fig. 1). The polar coordinate system is located in the 
center of the plate. It is enough to investigate only one 
radius of the plate because of the internal forces and the 
displacements do not depend on the coordinate 

)( Ll∈

Θ . Con-
sequently, the second order circular element (the internal 
forces approximated by a second order polynomial) with 
three nodes, distributed along the radius , is used. The 
finite elements are numbered along the radius in a con-
secutive order, starting from the center of the plate. 

ρ

The circular plate can be subjected by a uniformly 
distributed load and linearly distributed load located on 
the plate’s boundaries. The properties of the material 
(modulus of elasticity E  and Poisson coefficient ν ), 
thickness t  and intensity of the distributed load  re-
main constant in the whole finite element. The functions 

q
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Fig. 1. The finite element of a round plate (a);  
the positive directions of internal forces (b) 

 
of the internal forces distribution can have discontinuities 
(in the place of master nodes) when the equilibrium of 
finite elements are applied (Belytschko 1972; Belytschko 
et al. 2000; Gallager 1975; Faccioli and Vitiello 1973; 
Kalanta 1995) for elastic-plastic plates. Therefore, the 
finite elements have their own master nodes and sections 
under investigation and are indexed by the double index 

 ( , ) or by common section index kl Kk∈ Ll∈
kssi ×== ζ...,,2,1  ( ) for the discrete plate model. 

The vectors of internal forces of the finite element k  are: 
Ii∈

 = ( ,, 1,1, kθkρk MM=M )Tkθkρkθkρ MMMM 3,3,2,2, ,,,

 .  (1) ( ) T
kl

T
kkk MMMM =321 ,, ( )

Here, , and the indexes T
klklk MM ),( ,,1 Θρ=M ρ  and Θ  

denote the radial and angular internal moments, respec-
tively; the positive directions are shown in Fig. 1b. 

The bending moments’ interpolation function, in 
applying the finite element  shape function k )(ρkN  is:  

 kkk MNM )()( ρρ = . (2) 

The functions (2) do not satisfy the plate element equa-
tions: 

 qM
d
dM

d
d

d
d

=+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−− Θρ ρρρρρ

12
2

2
   or 

 ( ) q=ρMA . (3) 
Therefore, equilibrium for the plate elements is assured 
for the elements and master nodes (Karkauskas 1994). 
 

The algebraic equilibrium equation for the finite element 
is obtained after differentiating the expression (3) which 
was applied (2): 

 ( ) kkk qρ =MΑ , (4) 
where 

 ( ) ρρ kk NΑ A ( )= . (5) 

The separate elements are joined to a system by 
writing the equilibrium equations for the master nodes of 
the adjacent elements. Thus, the continuity of the radial 
moments  and the shear forces  are ensured. The 
set of plate equilibrium equations while the boundary 
conditions are applied are: 

ρM ρQ

 [ ] FM=A  or [ ]∑ =
k

k FMkA . (6) 

The dimension of the matrix  is , where [ ]A ( nm× )
2×= ζn . The geometrical equations for the discrete 

plate model are obtained by applying the virtual stress 
principle: 

 . (7) ( ) ( )∑ ∫=
k A

k
T
k

T

k

dAρρδδ MMuF D

and by using equations (2) and (6): 

 [ ] [∑∑ =
k

k
T
k

k

T
k

T
k δδ MMuM kDA ]

]

. (8) 

Here, the symmetric flexibility matrix  of the ele-
ment  is calculated by the formula:  

[ kD
k

 [ ] ( ) ( )∫=
kA

k
T
k dAρρ NN DkD . (9) 

The geometrical equations for the finite element are: 

 [ ] [ ] 0Mu =− kk
T DAk  (10) 

and for whole discrete plate model: 

 [ ] [ ] 0Mu =− DA T . (11) 

Here, [ ]D  is the quasidiagonal flexibility matrix of the 
elements. The sequence of the equilibrium equations 
[ ] FM=A  determine the physical meaning of the compo-
nents of the displacements vector u .  

If the transition to the plastic state is described via 
the nonlinear Mises-Huber yield condition:  

 . (12) 2
0

22 )(MMMMM ≤+− ΘΘρρ

The plasticity condition is verified in all the nodes of the 
finite element: 

 [ ] ( )20Π kklkl
T
kl M≤MM , , . (13) Kk ∈ Ll∈

Here, [ ]klΠ  is the matrix of the Mises-Huber plasticity 
condition for the bending circular plate 
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 . (14) [ ] ⎥
⎦

⎤
⎢
⎣

⎡
−

−
=

15,0
5,01

Πkl

The plasticity condition is often expressed in the follow-
ing form: 

 ( ) [ ] 0≥−= klkl
T
klkkl M MM Π2

0ϕ . (15) 

The bending moment limit is constant in the entire finite 
element: . If the linear Tresca plasticity 
condition is applied, the equation (15) is described as:  

constM k =0

 0MΦC ≥−= klklklklϕ . (16) 

The Tresca plasticity condition matrix is: klΦ

   (17) 

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

−
−
−

−

10
01
11
11
10
01

klΦ

The vector of the limit moments  match the matrix 
. For the sake of simplicity, the calculation sections 

will be indexed as 

klC

klΦ
ζ...,,2,1=i , . Ii∈

 
3. The main dependencies in the case of cyclic loading  

In the practice of engineering, it is necessary to know the 
deformed state of the plate under plastic deformation just 
before its cyclic plastic failure (plate geometry, limit 
moments  and load  are known) (Kalanta et al. 
2009; Jankovski and Atkočiūnas 2008). Such a type of 
structural mechanics problem is referred to as an analysis 
problem (Cyras 1983). In such a case, it is useful to sepa-
rate the elastic moments  and residual moments : 

,  . The elastic moments can be 
calculated by the formula 

0M F

eM rM

rieii MMM += Ii∈
[ ]FM α=e , where the mo-

ments influence matrix [ ]α  have the following dimensions 
. When the load  is a function of time ( mn× ) ( )tF t : 

 , . (18) ( ) ( ) rieii tt MMM += Ii∈

If RVL is described by their variation boundaries as 
, , it is possible to determine the possible load 

combination count  ( ; ) and the 
equation (18) is rewritten as:  

infF supF
p pj ...,,2,1= Jj∈

 , . (19) rijeiij MMM += , Ii∈

The determination of  is described in the work 
(Pham 2003). Then, the Mises-Huber plasticity condition 
(15) is rewritten as follows: 

jei,M

 , , . (20) ( ) [ ] 0≥−= iji
T
ijkij M MΜ Π2

0ϕ Ii∈ Jj∈

Thus, in the analysis of shakedown structures, it is the 
convenient separate residual moments , residual dis-
placements  and deformations . Then, 
the equilibrium equations (6) and geometrical equations 
(11) are described by mentioned terms:  

rM

ru [ ] prr θMθ += D

 [ ] 0M =rA  or [ ]∑ =
k

rkk 0MA  (21) 

and 

 [ ] [ ] prr
T θMu += DA . (22) 

The components of the plastic deformation’s vector 
( )ipp ,θθ =  are calculated by formula:  

 ( )[ ] ij
T

j
rijeiijip λ∑ +∇= MMθ ,, ϕ , 

 , 0≥ijλ Ii∈ , . (23) Jj∈

Here,  is the plastic multiplier vector;  – a ma-
trix composed from the gradients of the plasticity condi-
tions (20). 

ijλ [ ijϕ∇ ]

 
4. The mathematical models of the analysis problem 

The static formulation of the analysis problem is based on 
the additional energy minimum principle and in the case 
of Mises plasticity conditions:  

 

find 

 min [ ]∑
k

rkk
T
rk MM D

2
1 , (24) 

when 
 [ ] 0M =∑

k
rkkA , , (25) Kk∈

 ( ) ( ) [ ]( ) 0≥++−= rij,eii
T

rij,eiiij M MMMM Π2
0ϕ , 

 Ki∈ , . (26) Jj∈

The optimal solution of the problem (24)–(26) is .  *
rM

The kinematic formulation of the problem under 
analysis is created in accordance with the mathematical 
programming duality theory: 

 

find 

 max 

[ ] [ ]

( ) [ ][ ] ,Π

D
2
1

2
0

⎪⎭

⎪
⎬
⎫

−−

⎪⎩

⎪
⎨
⎧

∇−−

∑∑

∑∑

i j
iji

T
ijiij

i j
riijijrkk

T
rk

M MM

MMM

λ

ϕλ

 (27) 

when 

 [ ] [ ] [ ] 0uM =−∇+∑ r
T

kj
T

j
kjrk kk AD λϕ , (28) 

 , 0λ ≥kj Kk∈ , , .  (29) Ii∈ Jj∈
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The optimal solution of the kinematic formulation (27)–
(29) is , , . ∗

rM *
kjλ ∗

ru
In the case of the Tresca plasticity condition, only 

equation (26) should be changed: 

 [ ]( ) 0MMC ≥+−= rij,eiiiij Φϕ . (30) 

The vector  contains the limit moments of the corre-
sponding finite element. 

iC

 
5. The influence matrixes of the residual  
displacements and residual moments

If the solution of the static (24)–(26) and kinematic (27)–
(29) analysis problem is unknown, then it can be obtained 
from the nonlinear set of equations: 

 [ ] 0M =rA , (31) 

 ,  (32) ( ) [ ] iji
T
ijkij M MM Π2

0 −=ϕ

 ( ) [ ][ ] 0Π2
0 =− iji

T
ijkij M MMλ , , (33) 0≥ijλ

 , (34) [ ] [ ] [ ] 0uλM =−∇+∑ r
T

j
j

T
jr AD ϕ

 ( )ijj λ≥λ , , . (35) Ii∈ Jj∈

The equation set is composed of the constraints of the 
static formulation problem (24)–(26) and the Kuhn–Tucker 
conditions (Bazaraa et al. 2004). When the plastic defor-
mations  are known, then from the set of equations *

pθ

 , 0=*
rAM

  * * *T
r p r+ − =DM θ A u 0

it is possible to find the right values of  and : ∗
rM ∗

ru

 [ ][ ] [ ]( ) [ ][ ] [ ] ∗∗−−−∗ == pp
T

r θHθu 111 DAADA , (36) 

 ; [ ] [ ] [ ][ ] [ ]( ) [ ][ ] ∗−−−−∗
⎥⎦
⎤

⎢⎣
⎡= p

TT
r θM 1111 DAADAAD

 [ ] ∗∗ = pr θGM . (37) 

The vectors  and , calculated by formulas (36) and 
(37), respectively, coincide with the optimal ones calcu-
lated by the mathematical models (24)–(26) and (27)–(29). 

∗
ru ∗

rM

The residual displacement and residual moments in-
fluence matrixes [ ]H  and [ ]G , and in the case of Tresca 
plasticity conditions, do not depend on internal forces 

: jM

[ ][ ] [ ] ∗∗∗ == λλu HΦH T
r , [ ][ ] [ ] ∗∗∗ == λλM GΦG T

r . (38) 

This feature has an important significance for the creation 
of the mathematical models for the load optimization 
problem: initially, the Tresca yield condition is applied 

and only in the latest step is the Mises plasticity criterion 
applied. 

 
6. The algorithm of RVL optimization  

The shakedown plate is safe in respect to plastic collapse, 
but it can exceed the requirements of serviceability (i.e. 
stiffness constraints). Therefore, in the mathematical model 
of the plate load, optimization should not only be included 
in the requirements of the strength (plasticity), but the con-
straints for displacements, too. The mathematical model in 
the case of Tresca plasticity conditions is: 

 

find 
 max ( )inf

T
infsup

T
sup FTFT +  (39) 

when 

 [ ] [ ]( ) 0λMC ≥+−= GΦ j,eiiiijϕ , (40) 

 [ ] [ ]( )[ ] 0GΦ =+− λMCλ j,eiiiij , (41) 

 ( )ijλλ = ,  Ii∈ ,  , (42) Jj∈

 [ ] inf,emin uλu +≤ H , (43) 

 [ ] maxsup,e uuλ ≤+H . (44) 

Here,  and  are the maximal and minimal elas-
tic displacements, respectively. They, summarized together 
with the residual displacements , should not exceed the 
prescribed maximal and minimal displacements bounda-
ries,  and . The solution of the optimization 

problem is , , . The algorithm of the load op-
timization problem illustrating the switch from Tresca to 
the Mises plasticity condition is shown in Fig. 2. 

sup,eu inf,eu

ru

maxu minu
*
supF *

infF *λ

 
 

1. Solving the load optimization problem (39)–(44) 
with Tresca plasticity conditions. 

2. Optimal solution of (39)–(44) *
supF , *

infF , *λ . 

3. The optimal solution of (39)–(44) becomes the 
initial point for the Mises plasticity conditions. 

4. Solving the optimization problem (45)–(50) with 
Mises plasticity conditions. 

 
Fig. 2. The algorithm of load optimization with Tresca and 
Mises plasticity conditions 

 
The mathematical model of the load optimization 

problem in the case of Mises plasticity conditions is com-
posed using the influence matrixes [  and [ : ]G ]H
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find 
 max ( )inf

T
infsup

T
sup FTFT + , (45) 

when 

( ) [ ]( ) [ ] [ ]( ) 0GΠG2
0 ≥++−= λMλM j,eii

T
j,eiiij Mϕ , (46) 

( ) [ ]( ) [ ] [ ]( )[ ] 0GΠG2
0 =++− λMλMλ j,eii

T
j,eiiij M , (47) 

 , 0λ >ij ( )ijλλ = ,  ,  , (48) Ii∈ Jj∈

 , (49) [ ] inf,emin uλu +≤ H

 . (50) [ ] maxsup,e uuλ ≤+H

The graphical illustration of the switch from Tresca to 
Mises plasticity conditions is shown in Fig. 3.  
 

 
Fig. 3. The fragment of the switch from Tresca plasticity condi-
tions to Mises plasticity conditions 

 
7. Numerical example 

The proposed calculation technique is illustrated by the 
example of a circular plate with a hole in the middle 
(Fig. 4). The supports are applied in the outside boundary 
of plate.  

Radius of plate  m, height m, di-
ameter of hole m. The material – steel,  
 

01.R = 0250.h =
300.d =

 

 
Fig. 4. The geometry of the round plate and boundary 
conditions 

 

210=E  GPa, v = 0.3,  MPa. The limit mo-

ment of the plate 

235=yσ

719.36
4
1 2

0 == tM yσ  kNm. 

The outside boundary of the plate is loaded by the 
uniformly distributed linear moment  kNm/m, 
and the surface of the plate is subjected to a uniformly 
distributed load q, which is an unknown of the optimiza-
tion problem. The displacement variations have bounda-
ries which are 

05.M =

0.=minu m,  m in the place 
of the hole. When the problem (39)–(44) was solved, the 
optimal load of 

0.037=maxu

246.131* =q kPa was obtained. In the 
case of the Mises plasticity condition, the following more 
optimal solution was obtained:  kPa. 747.140* =q

 
8. Conclusions 

1. The influence matrixes of residual moments and 
displacements do not depend on the residual moments of 

.  rM
2. In the case of Mises plasticity conditions, the in-

fluence matrixes should be formulated using the gradients 
of plasticity conditions, which themselves depend on 

. The main load optimization problem, in the case of 
Mises, becomes practically not realizable, even with ap-
plied computer algebra methods. 

rM

3. One of the possible resolutions of the load opti-
mization problem with a Mises plasticity condition is the 
application of an analogous problem solution obtained 
with Tresca plasticity conditions. 
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INTEGRUOTAS TAMPRIAI  PLASTINĖS SIMETRINĖS PRISITAIKANČIOS PLOKŠTĖS APKROVOS 
OPTIMIZAVIMAS 

A. Venskus, S. Kalanta, J. Atkočiūnas, T. Ulitinas 

S a n t r a u k a  

Nagrinėjama tampriai plastinė simetrinė lenkiama plokštė, veikiama kintamosios kartotinės apkrovos. Prisitaikančių 
konstrukcijų įtempių ir deformacijų būvis priklauso nuo apkrovimo istorijos. Plokštės apkrovos optimizavimo uždavinio 
matematiniame modelyje naudojamos stiprumo ir standumo sąlygos. Į apkrovimo istoriją atsižvelgiama, pasitelkiant ekst-
remines įražų ir įlinkius ribojančias jų normines reikšmes. Remiantis Rozeno projektuojamųjų gradientų metodu sukurtas 
naujas apkrovos optimizavimo algoritmas, derinantis Mizeso ir Treska takumo sąlygas. Skaitinio pavyzdžio rezultatai gau-
ti originalia autorių kompiuterine programa. 

Reikšminiai žodžiai: prisitaikymas, ekstreminiai energetiniai principai, tampriai plastinė plokštė, Mizeso ir Treska taku-
mo sąlygos, matematinis programavimas. 
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