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Abstract. Structure corrosion is one of the most common damages affecting the structural integrity of the aging civil 
aircraft. Three grey models were applied for predicting the corrosion evolution during aircraft maintenance checks. The 
developed models include the basic GM (1, 1) model and two improved models with the initial condition optimized by 
linear transformation and partial differential methods, respectively. Both improved models show better quantitative agree-
ment with the existing data, while the model using the partial differential method exhibits the highest prediction accuracy 
amongst the three models presented above. Such models can also be used on the structure of other complex equipment to 
improve the efficiency of preventive maintenance.
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Introduction

Nowadays, commercial aircraft fleets around the world 
are flying much longer than anticipated when their de-
sign service objectives (DSO) were usually 20 calendar 
years (He, Li, & Zhang, 2016). Due to the trade-off be-
tween operation and procurement costs, the service life of 
commercial aircraft is usually 1.5~2 times of their DSO. 
Great concerns about the structural integrity of these ag-
ing aircraft are being addressed from many perspectives 
(Hoeppner & Arriscorreta, 2012). A major cause for con-
cern is corrosion, accompanied with widespread fatigue 
damage (Jones, 2014).

The prediction of corrosion evolution plays a key role 
in the evaluation of structural damage and subsequent 
prediction of the residual strength and fatigue life. Some 
research has been done to develop corrosion prediction 
models (Altay, Ozkan, & Kayakutlu, 2014; Shekhter, Craw-
ford, & Loader, 2015; Yang, Zhang, Guo, & Wang, 2016). 
However, most of the previous studies mainly focus on 
statistical models, damage mechanics, or neural networks 
to predict aviation aluminum alloy corrosion behavior. It 
has been well known that causes for the corrosion of civil 
aircraft are very complex, such as operation environments, 
design levels, maintenance intervals and so on. It is also 

very difficult to quantitatively evaluate the extent or nature 
of corrosion damage.

However, a new method, the grey system theory is suit-
able for studying such an uncertain problem with less data 
and poor information. The application scope of grey system 
theory has extended to industry, social affairs, economy, en-
ergy, financial and other fields (Xu, 2015; Liu, Tao, & Xie, 
2016; Zeng, Luo, & Liu, 2016; Rathnayaka, Seneviratna, & 
Wei, 2015). Nevertheless, there are few efforts dealing with 
the corrosion evolution behavior in civil aircraft fleets. Con-
sequently, the major objective of this work is to characterize 
the corrosion evolution behavior of civil aircraft using im-
proved grey system models. Prediction results are obtained to 
illustrate the trends resulting from various influence factors.

1. Constructing the GM (1, 1) model

The GM (1, 1) is the most widely used model of the grey 
prediction theory (Deng, 1982; S. Liu, Zeng, J. Liu, Xie, & 
Yang, 2015). It denotes a single variable first-order linear 
model which can be applied by using a limited number 
of data observations. It deals with uncertain systems with 
partially known information by obtaining useful informa-
tion from what is available.
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The following steps are carried out to obtain the GM 
(1, 1) model. Firstly, the raw data sequence can be de-
noted by:

(0) (0) (0) (0)
(1) (2) ( ){ , , , }nX x x x=  . (1)

Then, the accumulated generation operation (AGO) is 
applied to obtain the sequence X(1):

(1) (1) (1) (1)
(1) (2) ( ){ , , , }nX x x x=  , (2)

where
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1
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= =∑  .  (3)

Secondly, using the mean consecutive neighbors op-
erator for X(1), then the sequence Z(1) is obtained:

(1) (1) (1) (1)
(1) (2) ( ){ , , , }nZ z z z=  ,  (4)

where
(1) (1) (1)

( ) ( ) ( 1)0.5 0.5 , 2,3,k k kz x x k n−= + =  .  (5)

Then, a differential equation is constructed in the ac-
cumulated data sequence with respect to time. The GM 
(1, 1) model can be built through a first-order differential 
equation:

(1)
(t) (1)

( )
d
d t

x
ax u

t
+ = . (6)

Parameter -a reflects the improvement in the trend of 
the sequence, thus it is called the developmental coeffi-
cient. Parameter u reflects the change in relationships and 
is called the coordination parameter.

Based on Eq. (6), the original form of GM (1, 1) model 
for discrete values based on z can be defined in Eq. (7):

(0) (1)
( ) ( )k kx az u+ = .  (7)

In Eqs (7), a and u are the parameters to be estimated 
as follows by minimizing the squared-errors, i.e., least 
squares estimation:
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The matrix B and Y imply the accumulated matrix and 
constant vector, respectively.

Based on the parameters, the time response function 
can be obtained by solving Eq. (6), as shown below:
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The initial condition of the model is (1) (0)
(1) (1)x x= .

The predicted series for the original data sequence can 
be calculated by inverse accumulated generation opera-
tion, as given in the following equation:

(0) (1) (1)
( 1) ( 1) ( )x , 1,2, 1k k kx x k n+ += − = − .  (12)

2. Improving the GM (1, 1) model

From the above-mentioned steps of the GM (1, 1) mod-
el, it can be seen that the initial value of X(1) is simply 
set to be equal to the first raw data, i.e. x(1)(1) = x(0)(1). 
In other words, the prediction curve of the GM (1, 1) 
model is just set to the first raw data. In many cases, 
however, this method would lead to great prediction 
errors for the subsequent data (Dang, S. Liu, & B. Liu, 
2005). Similarly, the initial value of X(1) is simply set to 
be equal to the last raw data, or anyone of the raw data, 
which would result in the same situation. Therefore, the 
initial condition of X(1) should be optimized for best 
consistency with the real development trend. For this 
purpose, two optimization methods of the initial condi-
tion of X(1) are studied and applied to the prediction of 
civil aircraft corrosion.

2.1. Optimization by linear transformation

For similarity, assume the AGO data X(1) is denoted by

(1) -ak uX ce
a

= +






.  (13)

After linear transformation, the following equation is 
obtained

(1)ln( ) lnuX ak c
a

− = − +






.  (14)

Let Y =  (1)ln( )uX
a

−




, A =  a− , C = ln c, thus the equa-

tion can be transformed to

Y Ak C= + .  (15)

For this linear equation, given the real sequential data, 
the constant of C can be optimized by LSM as:
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Thus, the coefficient of c of the equation can be ob-
tained by:
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Since the parameters have all been obtained, the equa-
tion can be used to predict the trend of civil aircraft cor-
rosion.
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2.2. Optimization by partial differential

For the equation, the optimization goal is usually to get 
the least square, namely, to find the best combination of 
the parameters to minimize the following function:

(1) 2

1
[ (c )]

n
ak
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uZ X e
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=
= − +∑ . (18)

Thus, the best combination of the parameters should 
be obtained by solving the following partial differential 
equation group:
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Unfortunately, this group is of transcendental equations 
with high orders. So far, there is no available method to 
solve it. Since the parameters a and u can be obtained by 
the GM (1, 1) model, the coefficient of c can be solved as:
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Thus, the equation can also be used to predict the 
trend of civil aircraft corrosion.

3. Application of improved grey models

During the operation of civil aircraft, the amount of cor-
rosion that occurred is random, and is affected by many 
factors, such as environments, coating qualities, design 
levels, maintenance intervals, and so on. The scheduled 
maintenance tasks identifying the frequency of an ac-
complishment in the airline maintenance base are often 
in terms of letter checks; e.g., 1C, 2C, 3C, etc. The C check 
interval is about 18 months and, at 8C check, the aircraft 
will be subjected to an overhaul during which severely 
corroded parts will be removed and replaced after a long 
term service, and various corrosion inhibitor processing 
required by the Corrosion Prevention Manual (CPM) will 

be carried out. Thus, in theory, the corrosion damage will 
be controlled under the same level as for a new aircraft. A 
typical sequential number of corrosion detected for a civil 
aircraft in terms of the C check up to the 8C check is listed 
in Table 1. It was derived from the raw corrosion-related 
task data, which was acquired from a maintenance base 
of an airline in China. The statistical result indicates that 
the frequently corroded zone is 100 (lower fuselage), 200 
(upper fuselage), and 400 (power plant and nacelle struts) 
(according to ATA100 specification), while the most fre-
quently corroded parts are the skin, floor beam and frame. 
The corroded depth is usually less than the allowed dam-
age depth defined by the Structure Repair Manual (SRM), 
which can be classified as level 1 corrosion according to 
the Corrosion Prevention and Control Program (CPCP). 
Level 2 corrosion was found very occasionally during the 
maintenance checks, which demonstrates the validity of 
the CPCP implemented in the currently studied airline.

According to the GM (1, 1) model, the developmental 
coefficient and coordination parameters can be calculated 
as –a = 0.3516, u = 3.6581.

Thus, the accumulated sequence X(1) can be described as:
(1) 0.3516

( 1) 15.4031 10.4031, 1,2, , 1k
kX e k n+ = − = − . (21)

Then, the estimated number of corrosion can be cal-
culated by Eq. (21) and is listed in Table 1.

Similarly, the initial condition can be optimized 
through the methods of linear transformation and partial 
differential, respectively. Consequently, the accumulated 
sequence X(1) can be described as Eq. (22) and Eq. (23), 
respectively.

(1) 0.3516
( 1) 11.2345 10.4031, 1,2, , 1k
kX e k n+ = − = − .  (22)

(1) 0.3516
( 1) 11.3284 10.4031, 1,2, , 1k
kX e k n+ = − = − .  (23)

The estimated number of corrosion can also be calcu-
lated and is listed in Table 1 for comparison.

The relative error is usually described as:
(0) (0)
( ) ( )

( ) (0)
( )

k k
k

k

x x
x
−

ε =


.  (24)

The relative errors of each method at every mainte-
nance interval are also shown in Table 1 for comparison.

Table 1. Evolution of corrosion detected at maintenance multiple intervals

Maintenance 
intervals

Number of 
corrosion

Predicated by 
BGMa Relative error Predicated by 

ILTb Relative error Predicated by 
IPDc Relative error

1C 5 5 0% 5 0 5 0
2C 7 6.49 7.27% 6.72 3.86% 6.78 3.06%
3C 10 9.23 7.73% 9.56 4.35% 9.64 3.55%
4C 14 13.11 6.32% 13.59 2.89% 13.71 2.07%
5C 20 18.64 6.79% 19.32 3.37% 19.49 2.56%
6C 26 26.49 1.90% 27.47 5.65% 27.69 6.52%
7C 40 37.66 5.84% 39.04 2.39% 39.37 1.57%
8C 57 53.53 6.08% 55.49 2.63% 55.96 1.83%

Note: a − BGM denotes the GM (1, 1) model; b − ILT denotes the model improved by linear transformation; c − IPD denotes the model im-
proved by partial differential.
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The mean relative error is described as:
(0) (0)
( ) ( )
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n
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. (25)

Moreover, the measurement of the grey relational de-
gree between the raw data and the predicted values can 
be used to indicate the degree of prediction accuracy. The 
most common grey relational degree can be described as:
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where ρ is referred to as the identification coefficient and 
is usually set to 0.5.

The mean relative error, square error, and grey rela-
tional degree of the three methods are shown in Table 2. 
It can be seen that the mean relative error of the GM (1, 1) 
model is the largest (5.25%), while the mean relative error 
of the improved model with linear transformation has de-
creased to 3.15%, and the partial differential method has 
the least mean relative error (2.64%). This result is consist-
ent with the sequence of prediction accuracy in terms of 
square error. Since the goal of the model with the partial 
differential method is to minimize the square of errors, 
there is no doubt that the least square error is obtained 
by this model.

According to the nature of grey relational degree, a 
greater grey relational degree of the models indicates bet-
ter prediction accuracy. From Table 2, it can be seen that 
the grey relational degree of the improved model with the 
partial differential method is the largest (0.776), while the 
grey relational degree of the improved model with the 
linear transformation has decreased to 0.739 and, for the 
GM (1, 1) model, it has the least relational degree (0.653). 
This is in accordance with the above-mentioned predic-
tion accuracy sorted by the relative error. Therefore, all 
the comparisons prove that the proposed improved model 
with the partial differential method has higher prediction 

ability in terms of relative error, square error and grey re-
lational degree.

Conclusions

The corrosion evolution of a civil aircraft structure can be 
predicted by improved grey models with an initial condi-
tion optimized by linear transformation and partial differ-
ential methods. Both improved grey models show higher 
prediction accuracy than the GM (1, 1) model. The effec-
tive estimation of the number of corrosion of civil aircraft 
structures could promote the efficiency of aircraft struc-
ture maintenance of the airline industry. The proposed 
models could also be applied for the corrosion estimation 
of other large, complex equipment for preventive mainte-
nance. However, due to the single-variable nature of the 
grey model studied, it cannot be used to simultaneously 
predict the evolution of other parameters such as cor-
roded depth, level, position or even exact part. This could 
be studied further by combining artificial neural networks 
with grey models to acquire multiple output variables.
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