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Background: Mosquitoes are the primary vectors responsible for malaria transmission

to humans, with numerous experiments having been conducted to aid in the control

of malaria transmission. One of the main approaches aims to develop malaria parasite

resistance within the mosquito population by introducing a resistance (R) allele. However,

when considering this approach, some critical factors, such as the life of the mosquito,

female mosquito fertility capacity, and human and mosquito mobility, have not been

considered. Thus, an understanding of how mosquitoes and humans affect disease

dynamics is needed to better inform malaria control policymaking.

Methods: In this study, a method was proposed to create a metanetwork on the basis

of the geographic maps of Gambia, and a model was constructed to simulate evolution

within a mixed population, with factors such as birth, death, reproduction, biting,

infection, incubation, recovery, and transmission between populations considered in the

network metrics. First, the same number of refractory mosquitoes (RR genotype) was

introduced into each population, and the prevalence of the R allele (the ratio of resistant

alleles to all alleles) and malaria were examined. In addition, a series of simulations

were performed to evaluate two different deployment strategies for the reduction of

the prevalence of malaria. The R allele and malaria prevalence were calculated for

both the strategies, with 10,000 refractory mosquitoes deployed into randomly selected

populations or selection based on nodes with top-betweenness values. The 10,000

mosquitoes were deployed among 1, 5, 10, 20, or 40 populations.

Results: The simulations in this paper showed that a higher RR genotype

(resistant-resistant genes) ratio leads to a higher R allele prevalence and lowers malaria

prevalence. Considering the cost of deployment, the simulation was performed with

10,000 refractory mosquitoes deployed among 1 or 5 populations, but this approach

did not reduce the original malaria prevalence. Thus, instead, the 10,000 refractory

mosquitoes were distributed among 10, 20, or 40 populations and were shown to

effectively reduce the original malaria prevalence. Thus, deployment among a relatively

small fraction of central nodes can offer an effective strategy to reduce malaria.

Conclusion: The standard network centrality measure is suitable for planning the

deployment of refractory mosquitoes.
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Importance: Malaria is an infectious disease that is caused by a plasmodial parasite,

and some control strategies have focused on genetically modifying the mosquitoes. This

work aims to create a model that takes into account mosquito development and malaria

transmission among the population and how these factors influence disease dynamics

so as to better inform malaria-control policymaking.

Keywords: malaria, metanetwork, transmission model, centrality measure, refractory mosquito

INTRODUCTION

Malaria is a mosquito-borne infectious disease that is caused by a
parasitic plasmodium. Attempts to control malaria transmission
are expensive and unsustainable, with many African countries
experiencing a major economic burden due to costs exceeding
$10 billion each year (The Earth Institute of Columbia University,
2001; World Health Organization, 2018). Numerous attempts
have been made to control malaria transmission. One approach
is to use water-soluble phosphine complexes that have been
shown to be effective during plasmodial early sporogonic stages
in vitro, which is the sexual form responsible for infecting
the mosquito vector (Tapanelli et al., 2017). In another study,
a relatively new antimalarial compound, tafenoquine (TQ),
was combined with a low dose of artesunate (ATN), and
its effect on avian Plasmodium gallinaceum was examined in
Aedes aegypti (Tasai et al., 2017). Blood-stage multiplication,
gametocyte development, and transmission were examined,
and the results showed that TQ, when combined with a
low dose of ATN, is effective for limiting avian malaria
transmission and offers a safe and effective treatment. In a
study attempting to monitor parasite transmission in the field,
a novel one-step reverse transcriptase real-time polymerase
chain reaction (PCR) (direct RT-PCR) was used to detect
Plasmodium falciparum by amplifying the RNA targets directly
from the blood samples and developed to identify gametocyte-
specific transcripts (Taylor et al., 2017). There are also many
other tactics that have been used to combat malaria, including
the following: patient treatment with artemether–lumefantrine,
which is effective against uncomplicated malaria (Teklemariam
et al., 2017); the development of a Pfs48/45-based transmission-
blocking malaria vaccine (Theisen et al., 2017); rapid diagnostic
tests (RDTs) to assess the presence of sub-RDT Plasmodium
falciparum as well as of Borrelia, Coxiella burnetii, and Babesia
applying molecular tools (Toure et al., 2017); gaining a better
understanding of the relation between deforestation and malaria
transmission (Tucker et al., 2017); developing a transmission
model based on the temperature-dependent incubation period
(Wang and Zhao, 2017); developing laboratory quality assurance
for malaria diagnostics (Wanja et al., 2017); assessing malaria

transmission risk along the Thailand–Myanmar border (Ya-

umphan et al., 2017); and the functional characterization of
Plasmodium berghei PSOP25 during ookinete development
and as a malaria transmission-blocking vaccine candidate

(Zheng et al., 2017).
Recently, multiple research groups have attempted to tackle

malaria and other related mosquito-borne diseases by attempting

to either eliminate mosquito populations or introduce malaria
parasite resistance (Scott et al., 2002). When attempting to
eliminate mosquito populations, two different approaches are
employed, including the release of lab-grown infertile male
mosquitoes or female mosquitoes that only give birth to male
offspring (OXITEC, 2018). However, how the refractoriness
gene will affect the spreading of the malaria is not clear.
Hence, understanding how the mosquitoes will affect the
disease dynamics once a potential solution is released into the
environment is important. Furthermore, a complex network
can serve as an effective tool for modeling social-spreading
behavior between populations on the basis of the topology
of the network (Small and Tse, 2010; Telesford et al., 2011;
Rothkegel et al., 2012; Yang et al., 2013; Caravaca et al.,
2014; Ozkanlar and Clark, 2014) and providing a graph that
contains nontrivial structural features (Gasparri et al., 2009;
Steele Gray et al., 2016; Steinig et al., 2016; Benitez et al.,
2017). However, studies focused on malaria transmission have
been limited (Kiang et al., 2006; Liu et al., 2012; Aleksejs
et al., 2015; Wilson et al., 2015) and have not considered some
critical factors, such as the life of a mosquito, fertility capacity
of female mosquitoes, the differential equation transmission
model, or further transmission to other populations. In this
study, a complex network model was constructed on the
basis of two different aspects: evolution within mosquito and
human populations (specifically examining biting, breeding, and
infection) and transmission between populations (mosquito and
human migration based on topology). The model was also based
on time steps (one or more days, one day in this research
project).

METHODS

Defining Subjects
A person who has not been bitten or has been bitten, but
not infected, or is an incubation carrier was defined as being
malaria-negative. A person who had been bitten by a mosquito
and had become infected was defined as being malaria-positive.
A mosquito that is fully susceptible to malaria was defined
as being homozygous susceptible (S), with a genotype of SS;
while a susceptible phenotype can also be seen in heterozygotes
carrying the resistant (R) allele, with a genotype of RS. Female
mosquitoes with an SS or RS genotype will have a certain
probability of becoming infected after biting a malaria-positive
human, whereas female mosquitoes possessing an RR genotype
will not be infected by malaria. Since male mosquitoes do
not bite humans, they would not be infected by malaria. This

Frontiers in Genetics | www.frontiersin.org 2 October 2018 | Volume 9 | Article 446

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Li et al. Malaria Control Strategy

would also be true for larvae that do not bite, reproduce, or
migrate.

Understanding Evolution Within the
Populations
Understanding evolution within a mosquito population involves
examining biting, breeding, and infection, and is based on
different subtypes of mosquitoes and humans. In mosquitoes,
gene selection is driven by natural evolution; thus, this
process needs to be established. However, the time scale
in humans is far larger than that in mosquitoes; thus
human evolution (reproduction and death) is not taken into
account.

Larva
A fraction of the larvae is assumed to be removed from
the mosquito population before reaching adulthood, with
elimination occurring within the first 11 days. Larval survival
depends on fitness (Orr, 2009), with genotypes that are
associated with partial or full malaria refractoriness (RS
or RR) being advantageous for females when malaria is
prevalent and being disadvantageous otherwise; male larvae
are assumed to be unaffected. Potential larval genotypes
included SS, RS, or RR, with adult mosquito genotypes
described in the “Adult mosquito” section. The following fitness
formulas were used as previously described (Boëte and Koella,
2002):

wf ,ss = d · (1− exp
(

−γ · (k+ ǫ)
)

) · α (1)

wf,rs = d · (1− exp (−γ · (k+ ǫ) · (1− h · s))) · α (2)

wf ,rr = d · (1− exp (−γ · (k+ ǫ) · (1− s))) · α (3)

wm,ss = wm,rs = wm,rr = d (4)

γ =
Nh,pos

Nh,total
, (5)

where w is the fitness for a given gender and genotype (values
between 0 and 0.2), d is the larval death rate (default value:
0.2), γ is the prevalence of malaria within the human population
(value: 0–1), k is the rate of mosquitoes biting humans (default
value: 0.9), s is the refractoriness (default value: 0.9, i.e., resistance
to malaria), h is dominance (default value: 1), α is parasite
virulence (default value: 0.3, i.e., loss of fitness due to parasite),
and ǫ is a tune parameter (default value: < 0.001) that regulates
w if there is no malaria. The fitness values (wf ,ss: 0–0.04;
wf ,rs: 0–0.01; wf ,rr : 0–0.01) were then used to calculate the
number of new mosquitoes for a given genotype at each time
step:

Nlt = Nlt−1
+ Nnlt (1− w), (6)

where, Nlt is the number of larvae at the current time step (see
equation 8).

Adult Mosquitoes
A fraction of the adults is also assumed to be removed from
the mosquito population at each time step. The mosquito’s

lifespan (Lm for males, Lf for females) needs to be considered,
with mosquitoes that die naturally being removed from the
population.

Nat+1 = Nat (1− Pma) (7)

In the population, a fraction of the total female mosquitoes is
assumed to produce new larvae. Since each pair of parents were
randomly selected, an ER random graph model (Barabasi and
Albert, 1999) was applied to simulate the mating process:

(1) Consider the mosquito set (female mosquitoes are in the
fraction),

(2) Randomly select a female mosquito that has not mated in the
current time step and not reached the maximum number of
times eggs can be laid and a randommale mosquito from the
sets,

(3) Produce new larvae,
(4) Go to (2) until all the female mosquitoes in the fraction have

been selected,
(5) End.

The model considers the female mosquitoes’ fertility ability (i.e.,
the maximum number of times that larvae can be produced). The
genotypes of the new larvae are determined as follows:

Nnl,z = b·Nf ,x·Negg ·
Nm,y

Nm
· P

(

z
∣

∣x, y
)

(8)

Nnl =

∑

z
Nnl,z , (9)

where, Nnl, z is the number of new larvae for genotype z, b is
the daily fertility rate of a female mosquito, Negg is the number
of eggs one female can lay at each time step, Nf ,x is the number
of female mosquitoes in a fraction for genotype x that can
reproduce (a female mosquito cannot lay eggs more than three
times within its lifespan), Nm,y is the number of male mosquitoes
for genotype y,Nm is the number of male mosquitoes, P

(

z
∣

∣x, y
)

is
the probability of new larvae with genotypes x and y having z (z is
the larval genotype, see Table 1), Nnl is the total number of new

larvae, Nf ,x
Nm,y

Nm
represents the probability of a female mosquito

with genotype x mating with a male mosquito of genotype y.

TABLE 1 | Larval genotype outcomes based on parental genotypes: SS, RS, RR.

Female genotype Male genotype New larvae genotype

SS SS 100% SS

SS RS 50% SS, 50% RS

SS RR 100% RS

RS SS 50% SS, 50% RS

RS RS 25% SS, 50% RS,

25% RR

RS RR 50% RS, 50% RR

RR SS SS 100% RS

RR RS 50% RS, 50% RR

RR RR 100% RR
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As mentioned in the larva section, the offspring may possess
different genotypes (Table 1).

Considering that only female mosquitoes consume blood
meals (Chen, 2011), there are four situations for when a
female mosquito bites a human: an uninfected mosquito bites
an uninfected human, an infected mosquito bites an infected
human, an infected mosquito bites an uninfected human, or
an uninfected mosquito bites an infected human (Aleksejs
et al., 2015). This model only considers the last two situations
since recurrent blood meals from infected humans are assumed
not to have any impact on the incubation of the disease.
Once an infected mosquito bites an uninfected person, there
is a probability that the person becomes infected (Phi) and a
probability of remaining healthy (1 – Phi). An infected person
then enters the incubation stage, which will last for Ninc time
steps. When an uninfected mosquito bites an infected human,
the probability of an SS mosquito becoming infected is defined
as Pssi, whereas the probability of infection for an RS genotype is
defined as Prsi f. Mosquitoes have no incubation stage. In humans,
a person is unable to transmit malaria to a biting mosquito
during the incubation stage. When the incubation period passes,
the person becomes malaria-positive and can infect mosquitoes,
but after Nrec, the person will recover from malaria. Recurrent
instances of an infected mosquito biting an infected human are
assumed not to have any impact on the state. Furthermore, the
number of mosquitoes is assumed to be linear with the number
of people at the location since female mosquitoes rely on people
for blood meals.

Transmission Between Populations
Both humans and mosquitoes may migrate between mixed
populations, with human mobility potentially affecting malaria
prevalence between populations. Thus, it is important to simulate
this dynamic. Mosquito migration can not only introduce
malaria to an uninfected population, but also propagate
refractory genes.

Human Mobility
Human travel, human migration, or other movements between
populations are mainly assumed to be map-based and reliant
on the roads between the communities (Liu et al., 2011). In
the map, each community is a node, and each road is an edge.
This model does not consider other modes of transportation,
such as airplanes or trains, because they are not the main ways
that people move between communities. The number of people
moved to another node is based on the weight of the edge
between the adjacent nodes as follows:

Nm,t,h = Nt,h · Pm,h (10)

Nu,v,h = Nm,t,h ·
wu,v

∑

i wu,i
(11)

where, Nm,t,h is the number of people moving to all the adjacent
nodes, Nt,h is the number of people in the population, Pm,h is the
probability that people will move, Nu,v,h is the number of people
moving from node u to node v, and wu,v is the weight (i.e., the
distance of the road connecting u and v).

Mosquito Mobility
Mosquito movement is not road based but map based, with
mosquitoes naturally moving within a maximal range (Dmf ) of
their original habitat (Kaufmann and Briegel, 2004). Hence, if
there are two locations withinDmf , those nodes can be connected
as follows:

Nm,t,m = Nt,m · Pm,m (12)

Nu,v,m = Nm,t,m ·
Du,v

∑

i Du,i
, (13)

where, Du,v is the distance (<10 km) from nodes u to v.

Map Network Simplification and
Visualization
Anopheles gambiae is the main mosquito that transmits malaria
in Africa. Herein, a map network was created using an
OpenStreetMap (OSM, https://www.openstreetmap.org/) dataset
instead of using a network generation model. Since this model
focuses on modeling spatial disease dynamics, it is important for
the map to accurately represent the actual topology. Although
the obtained OSM data depict road structures rather than
connectivity, it is still important to describe the connectivity

FIGURE 1 | Road map of the main districts in Gambia (A) and a

corresponding road network (B). Each node is colored according to the

community to which it is assigned, with commonly colored nodes typically

located nearby and densely clustered. This means that the assumption that

complicated road structures are present within a settlement is likely true. The

node sizes reflect the betweenness values.
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TABLE 2 | The parameters used for the model.

Parameter Interpretation Initial or

default value

Source

d Larval death rate 0.2 Boëte and Koella,

2002

r Prevalence of malaria 0.5 Aleksejs et al.,

2015

s Resistance to malaria 0.9 Aleksejs et al.,

2015

h Dominance 1 Boëte and Koella,

2002

α Parasite virulence 0.3 Aleksejs et al.,

2015

k Daily probability of mosquito

biting

0.9 Aleksejs et al.,

2015

ε Tune parameter < 0.001 Decided

Pma Daily probability of mosquito

mortality

0.195 CDC, 2012

b Daily fertility rate 0.58 Aleksejs et al.,

2015

Negg Number of laying eggs for

each female mosquito at

each time step

200 Chen, 2011

Prg Maximum times for

pregnant

3 Chen, 2011

Phi Human infection probability 1 Aleksejs et al.,

2015

Pssi SS mosquito infection

probability from biting

1 Aleksejs et al.,

2015

Prsi RS mosquito infection

probability from biting

1 Aleksejs et al.,

2015

Ninc Incubation period in humans 12 Brasil et al., 2011

Nrec Recovery period for humans 32 Johnston et al.,

2013

Lm Male mosquito lifespan 17 Zhong and Yan,

2011

Lf Female mosquito lifespan 23 Zhong and Yan,

2011

Pm,h Daily human migration

probability

0.2 Aleksejs et al.,

2015

Pm,m Daily mosquito distance

migration probability

0.1 Aleksejs et al.,

2015

Dmf Maximal mosquito migration

distance

10 km Kaufmann and

Briegel, 2004

The majority of the parameters were previously described or they were estimated. While

this should be adjusted if there are known cases of refractory mosquitoes being released

to the wild, this is not possible in the short term.

between two nodes. The end nodes of each road are assumed to
be the original nodes. However, it was found that the nodes with
deg (v) = 2 (deg (v), it can be defined as the number of roads
that the node v connects with are just the joint nodes and should
be removed. Since the edges are weighted, the new weight of the
edge will be the sum of the weight of the removed edges. The edge
weight between the nodes still captures the actual road length;
the simplification reduces the number of nodes and edges and
makes the network easier to handle. The aim is that the nodes in

the map network should represent settlements, whereas the edges
represent the direct connectivity between those settlements.

Although the complicated road structures are present in
the OSM map data, they include much noisy data and only
a small amount of information marked as villages; hence, the
settlement structures could be extracted from the map data
using PTV and Gephi. It is assumed that the settlement is
often a densely connected cluster that is similar to a community
within a social network. Thus, a community finding method
is used to detect the communities in the network. There
are some typical community detection methods such as fast
unfolding of community hierarchies (Blondel et al., 2008),
hierarchical agglomeration algorithm (Clauset et al., 2004), maps
of information flow methods (Rosvall and Bergstrom, 2008),
using the eigenvectors of matrices methods (Newman, 2006),
fast unfolding of communities (Blondel et al., 2008), evaluating
the community structure (Newman and Girvan, 2004), and near
linear time algorithm (Raghavan et al., 2007), which can be
evaluated by a real network (if it exists) or modularity. As there
is no ground truth data that can map the road network nodes
to the settlements, modularity is the only option. Modularity
compares the number of edges within a cluster to that of a
random partitioning and is defined as

Q =

∑L

i= 1
(eii−a

2
i ) (14)

where, L is the number of communities, eii is the edge density
in the ith community, and a2i is the expected value in a random
network (Watada et al., 2012). The BGLL algorithm is then
used to reveal the hierarchical community structure of the
networks and has been shown to outperform many other known
community detection methods (Blondel et al., 2008) and is
appropriate given that the simplified road network is weighted.

The original OSM data needs to be simplified and converted
for visualization using PTV Visum and Gephi. The PTV
Visum provides urban road visualization and converts the OSM
map data into a Gephi data format, thus enabling network
visualization and corresponding metrics to be computed. In
addition, Gephi readily implements the BGLL algorithm. This
implementation supports community detection for weighted
graphsand represents the geographical distance between the
nodes and the clusters nearby nodes. The original road networks
within the main districts in Gambia (PTV Visum) were then
converted into a simplified network (Gephi) to generate a map
(Figure 1), with the network nodes being colored according to
their assigned communities.

In summary, the simulation included two sections for each
time step: evolution within the populations and transmission
between the populations. The first section includes death (adult
mosquitoes and larvae), mating (adult mosquitoes), reproduction
(new larvae), and biting (female adult mosquitoes and humans).
In this section, a new mosquito population with a new infection
status (mosquitoes and humans) will be produced. In the second
section, mosquito and humanmobility are examined on the basis
of the distance and the map. In this section, mosquito and human
populations within some nodes will change.
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RESULTS

Parameters
The parameters used for this model are based on previous
findings (Boëte and Koella, 2002; Kaufmann and Briegel, 2004;
Brasil et al., 2011; Chen, 2011; Zhong and Yan, 2011; CDC, 2012;
Johnston et al., 2013; Aleksejs et al., 2015) or were estimated
(Table 2). Notably, some of the values are approximations or
estimations. For example, the malaria incubation period in
mosquitoes depends upon the climate and season. If these data
are known, the parameters should be adjusted to the specific
region in question.

MALARIA-CONTROL STRATEGIES

In this study, an evolutionmodel andmobility network were used
to perform simulations that predict how the initial percentage of

refractoriness is affected by different deployment strategies and
how the refractoriness propagates throughout the network. The
simulations included the following: (1) deploying different ratios
of refractory mosquitoes evenly in every location; (2) deploying
the refractory mosquitoes in one random location; (3) deploying
the refractory mosquitoes in the location with the largest
betweenness value based on centrality (Coulombe-Huntington
and Xia, 2017); (4) deploying the refractory mosquitoes evenly
in random locations; or (5) deploying the refractory mosquitoes
in some locations based on their betweenness values. The
refractory mosquito population size was limited on the basis
of the cost-effective factor. Each simulation was performed
for 360 days (360 time steps/1 year) and plotted in 30 (1
month), 60 (2 months), 90 (3 months), and 180 time steps
(half a year). tOwing to the short lifespan of mosquitoes,
performing the simulation for more than 1 year was not
necessary.

FIGURE 2 | Prevalence of the R allele (A) and malaria (B) after 1 year. Populations received refractory mosquitoes, making the RR genotype comprise 10, 20, 30, 40,

or 50% of the population. “RR = 10%” refers to refractory mosquitoes (RR) being deployed to make up 10% of the total population. The values are plotted in 0, 30,

90, 180, and 360 time steps.
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The main districts in Gambia include the North Bank, West
Coast, and Lower River (longitude: −16.3628 to −15.8670,
latitude: from 13.4684 to 13.2600; total area: 1681 km2; estimated
human population: 216,000), with these areas being incorporated
into the mobility network simulations, and a total of 108 nodes
were identified after the simplification. The mosquito population
size was set to 2,160,000, which was 10 times that of the human
population size (Sun and Zhu, 2010). In addition, the initial
malaria prevalence in the human population was 50%.

Refractory Population Ratio and the
Prevalence of Refractoriness and Malaria
The introduced RR population (refractory mosquitoes) did not
exceed the SS population, with the initial RR:total population
ratios ranging from 0.1 to 0.5 in every location. The step
for the independent variables was 0.1. For this simulation,

the RR populations within each human population were
equal to evaluate the prevalence of the R allele after 30, 90,
180, and 360 days. The first plot (Figure 2A) shows that
the introduction of a larger number of RR mosquitoes has
a significantly positive impact on the prevalence of the R
allele and promotes an increase in the RR genotype (larger
sizes of initial RR populations produced higher R prevalence
values, it becomes more pronounced as the initial RR ratio
increases). Although this trend is observed across all the
time steps (30, 90, 180, and 360 days) postdeployment, there
are obvious sudden decreases at the beginning across all
the initial RR ratios. Once the female RR mosquitoes reach
their fertility ability (i.e., the maximum number of times
eggs can be laid, Table 1), there is a sudden decrease in
the prevalence of the R allele and then the curve displays
a plateau once the gene pool stabilizes. We note that the
decrease does not affect the long-term trend. The random factors

FIGURE 3 | Prevalence of the R allele (A) and malaria (B) 1 year after deploying 10,000 refractory mosquitoes into a randomly selected population or a top population

based on the betweenness value.
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in the model account for a few small mutations during the
process. Furthermore, the R prevalence value was found to
be below the initial deployment level during all of the time
steps.

As expected, a higher initial number of RR mosquitoes
lowered the malaria prevalence values in malaria-positive
and malaria-negative humans (Figure 2B). Furthermore, a
gradual decrease in malaria infection was noted across all
the RR ratios during the entire process. Thus, it seems
that a higher prevalence of the refractory R allele will
reduce the prevalence of malaria as expected. In addition,
the initial malaria prevalence after the introduction of 10,000
refractory mosquitoes (50% of the total) to each population
did not change until 11 time steps had been reached.
The reason for this finding is most likely attributable to
the fact that refractory female mosquitoes (RR) cannot be
infected by a person until the new female larvae reach
adulthood.

Different Deployment Strategies and
Malaria Prevalence
In the earlier-mentioned simulations, the impact of the RR
population size ratio on the prevalence of the refractory R allele
was examined, with refractory mosquitoes being assumed to be
distributed across all the 108 populations, which would lead to a
high deployment cost. To lower the cost, it would be possible to
introduce refractory populations to a subset of nodes. In network
science, betweenness is an important metric of a node’s centrality
and captures the number of shortest paths for each pair of nodes
and chooses the nodes for mosquito migration. This ensures
that the refractory mosquitoes are deployed in the populations
that will promote a faster spread rather than randomly selecting
populations.

In these simulations, all of the nodes were ranked on the basis
of their betweenness values, and 10,000 refractory mosquitoes
were deployed. These mosquitoes were deployed using two
strategies—random selection (the first strategy) and top nodes

FIGURE 4 | Prevalence of the R allele (A) and malaria (B) 1 year after deploying 10,000 refractory mosquitoes into 5 randomly selected or 5 top betweenness

value-based populations (n = 2,000 per population).
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selected based on betweenness value (the second strategy)—with
1, 5, 10, 20, or 40 nodes (betweenness value based) selected,
and the prevalence of the R allele and malaria were observed
(Figure 3). In the first plot (Figure 3A), both the curves have
similar trends until 90 time steps, and then the first strategy shows
a lower R allele prevalence. These findings suggest that the R allele
spreads more slowly when using the first strategy and leads to a
disappearance of the R allele over time within a population.

When examining the second plot (Figure 3B), both the curves
have two obvious sudden increases and one sudden decrease
before 30 time steps. The first increase is associated with the
beginning of a large-scale infection, with the initial malaria
period continuing until 13 time steps. The recovery period was
reached after 19 time steps and accompanied by a decrease and
sudden increase until a plateau was reached. The second strategy
results in a lower malaria prevalence (between 60 and 80% in
most time steps) when compared to the first strategy (between
70% and 90% in most time steps). However, both the strategies
do not reduce the levels below the initial malaria level (50%). It

seems that the introduction of the refractory 10,000 mosquitoes
into a single population has no effect on the reduction of malaria
because of the slow spreading of the R allele throughout the
population.

When considering the deployment of 10,000 refractory
mosquitoes into 5 populations (2,000 per population) using
random selection or the top 5 betweenness value-based
approaches, the same R allele prevalence was observed in
the first plot (Figure 4A). Both the strategies show a gradual
decrease due to fertility limits of female mosquitoes and then
the curves stabilize. As expected, curve stabilization with the
first strategy was reached earlier than with the second strategy.
However, in the second plot that examined malaria prevalence,
different trends were observed (Figure 4B). The first curve
gradually increases, while the second curve decreases after 153
time steps. We note that when using the second strategy, the
malaria prevalence gradually decreases and achieves a lower value
than the original prevalence (50%) after 251 time steps. These
findings suggest that deployment within the top 5 betweenness

FIGURE 5 | Prevalence of the R allele (A) and malaria (B) 1 year after deploying 10,000 refractory mosquitoes into 10 randomly selected or 10 top betweenness

value-based populations (n = 1,000 per population).
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FIGURE 6 | Prevalence of the R allele (A) and malaria (B) 1 year after deploying 10,000 refractory mosquitoes into 20 randomly selected or 20 top betweenness

value-based populations (n = 500 per population).

value-based populations (second strategy) has a significant effect
on the spreading of the R allele and reduces malaria prevalence.
However, it does not reduce the original number of infected
humans (50% of malaria prevalence).

A similar outcome is observed in Figure 5, with the first
strategy reaching its lowest value earlier than the second strategy
because of the rapid spreading of R allele in the second strategy.
When examining malaria prevalence (Figure 5B), the two curves
have similar trends and gradually decrease as the time steps
increase. However, a lower value (49%) is achieved by using the
second strategy when compared to the original value (50%) after
306 time steps. Thus, it seems that deployment in the top 10
populations can reduce the initial malaria levels.

Next, 10,000 refractory mosquitoes were deployed among 20
populations, and a similar R allele prevalence was observed when
using either strategy (Figure 6). However, some lower values
were observed using the second strategy, with under 50% infected
from 158 to 360 time steps and a value of 41% obtained from

225 to 228 time steps (Figure 6B). Thus, the use of the second
strategy based on betweenness had a significant effect on the
reduction of the malaria prevalence. However, when deploying
the 10,000 refectory mosquitoes among 40 populations, the same
R allele prevalence was observed, but the malaria prevalence
did not become as low as it did when using 20 populations
only (Figures 6, 7). Thus, increasing the distribution to 40
populations, when using the second strategy, did not further
reduce the malaria prevalence or offer any benefit over deploying
only 20 populations.

Probabilistic Uncertainty
There are some random factors in the simulation, with the
main probabilistic uncertainty being the mating of randomly
selected male and female mosquitoes. In the R script, the
set.seed () function was used to set the random seed to simulate
reproduction. The simulation was also performed to evaluate
the effect of probabilistic uncertainty on the results. In Figure 8,
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FIGURE 7 | Prevalence of the R allele (A) and malaria (B) 1 year after deploying 10,000 refractory mosquitoes into 40 randomly selected or 40 top betweenness

value-based populations (n = 250 per population).

1,000 independent matings are examined after removing the
set.seed () function, with an initial R prevalence of 10% and
the parents are randomly selected. The R prevalence values were
found to always be around 10%, and the probabilistic uncertainty
does not have a significant impact on the results.

DISCUSSION

This study proposed a method to create a metanetwork on the
basis of the geographic map data of Gambia and constructed a
model to simulate the evolution within a mosquito population
and transmission between populations. Furthermore, a series of
simulations were performed to evaluate different deployment
strategies for the reduction of the prevalence of malaria.

The map network in a specific area is essential for the
simulations. The main districts in Gambia were chosen as the
map example since A. gambiae is the main mosquito that

transmits malaria in Africa. Themap data were downloaded from
OMS and transformed into the Gephi format for visualization
and measurements. This approach can be used to produce a
realistic mobility network for other regions and can also be
used for other mosquito-borne diseases, such as dengue or
yellow fever. Herein, an evolutionary model was implemented
to evaluate the genetic control measures for malaria, including
birth, death, reproduction, bite, infection, incubation, recovery,
and transmission. The final model combines two components:
the evolution within a population and migration between
populations.

The first simulation shows that the introduction of the
same number of refractory mosquitoes into each population
can increase the prevalence of the RR genotype and the R
allele and can lower malaria prevalence. Considering the cost
of deployment, 10,000 refractory mosquitoes were deployed
among 1, 5, 10, 20, or 40 populations, with populations being
selected by using a random selection approach or choosing
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FIGURE 8 | Prevalence of the R allele after simulating 1,000 independent matings. The parents were randomly selected after removing the set.seed () function. The

initial RR ratio was 10%, and the initial male-to-female ratio was 1:1; thus 20% of female mosquitoes have an RR genotype.

populations with top betweenness values. When only deploying
the mosquitoes between 1 and 5 nodes, no benefit was noted.
However, deployment among 10, 20, or 40 populations did
effectively reduce malaria prevalence, with a distribution between
20 populations being optimal.

It seems that there is a negative relationship between R allele
prevalence and malaria prevalence when deploying refractory
mosquitoes in a small set of populations. However, there
seems to be no advantage in the introduction of the refractory
mosquitoes into a big fraction of central populations. Moreover,
the introduction of the refractory mosquitoes into a small
fraction of central populations can enhance the spread of the
refractory gene throughout the populations and can reduce
malaria. Furthermore, a simulation was performed to evaluate
the impact of the probabilistic uncertainty of mating on the
simulation, and shows that the random factors had no significant
impact on the results.

In this work, since some factors or activities are based on one
day such as human mobility and mosquito lifespan, we chose one
day as the time step. We can also choose another time step if new
evidence is available.

We did not use other approaches such as the Bayesian
approach (Fernández et al., 2013); the reasons are as follows:
(1) we did not have the real dataset, so we used the
parameters value in the references; (2) we decided not to
introduce more probabilistic uncertainty factors, and our
work focused on transmission-control strategies. We also
used the set.seed() function in the R script to ensure
that we reproduced the results; and (3) we will definitely
introduce more random factors, if we have the real dataset in
future.

CONCLUSIONS

Malaria is an infectious disease that is caused by a parasitic
plasmodium. Many studies have attempted to counter

malaria by developing genetically modified mosquitoes.
The aim of this study was to create a model that simulates
the transmission of malaria resistance among populations.
The results show that the deployment of a higher RR
mosquito ratio can lower malaria prevalence. When trying
to determine a cost-effective deployment strategy, it was
found that deployment among a relatively small fraction
of central nodes can spread the R allele and reduce the
number of the infected humans gradually. Furthermore,
the standard network centrality measurements were found
to be suitable for planning deployment locations. Future
studies will concentrate on verifying the results presented
here and further consider the factors that influence human
mobility. If datasets for malaria parasite prevalence in human
and mosquito populations were available, the results of the
simulation could have been verified. Furthermore, modeling
other factors, such as historical sites or economic factors, could
be incorporated, but socioeconomic and demographic data
would be required.
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