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ABSTRACT: 

 

The α-shape algorithm is a very common option to extract building boundaries from LiDAR data. This algorithm is normally 

executed in 2D space considering a parameter α as a binary classifier which controls the distinctiveness of points whether or not they 

belong to the object boundary. For point cloud data, this parameter is directly related to the local point density and the level of detail 

of building boundaries. Studies that have explored this concept usually consider a unique parameter α to extract all buildings in the 

dataset. However, the point density can have a considerable variation along the point cloud and, in this case, the use a global 

parameter may not be the best choice. Alternatively, this paper proposes a data-driven method that estimates a local parameter for 

each building. The method evaluation considered six test areas with different levels of complexity, selected from a LiDAR dataset 

acquired over the city of Presidente Prudente/Brazil. From the qualitative and quantitative analysis, it could be seen that the 

proposed method generated better results than when a global parameter is used. The proposed method was also able to withstand 

density variation among the LiDAR data, having a positional accuracy around 0.22 m, against 0.40 m of global parameter. 

 

                                                                 
*  Corresponding author 

 

1. INTRODUCTION 

LiDAR data has gained attention in several sciences, such as 

those related to the geodetic sciences, where the input data is 

considered for the extraction of different kinds of objects: 

buildings, trees, roads, power lines, planar surfaces and vehicles 

among other things. For cartographic purposes, the feature 

extraction is fundamental for digital terrain model 

representations and the acquisition and/or update of geographic 

information systems, which can be used as database in many 

practical applications.  

 

In urban planning, building boundary extraction has an essential 

role due to the high demand of updated cartographic products in 

order to subsidize decision making. The automatic and semi-

automatic extraction process has been researched by many 

authors (Kim and Habib, 2009, Galvanin and Dal Poz, 2012, 

Awrangjeb, 2016). The difficulty of developing a fully 

automatic method is related to the complexity of the buildings, 

for instance, buildings composed of concave and convex 

segments, inner and outer boundaries. The convex hull is a 

concept that has been explored for automatic building 

extraction from LiDAR data. Sampath and Shan (2007) 

proposed the modified convex hull formation algorithm by 

limiting the search space using a neighbourhood, which enables 

the extraction of some concavities in the shape. The challenge 

consists in the neighbourhood size determination, whereas the 

limitation corresponds to non-extraction of inner boundaries. In 

contrast, the alpha shape (α-shape) has the ability to detect both 

inner and outer boundaries. Many works have been using this 

algorithm, as seen in Shen (2008), Jochem et al. (2009), Shen et 

al. (2011), Satari et al. (2012), He et al. (2014), Li et al. (2015), 

and Albers et al. (2016).  

 

The α-shape algorithm was introduced by Edelsbrunner et al. 

(1983), aiming at the extraction of the shape of a set of points in 

2D space. It considers a parameter α, responsible for selecting 

the straight segments that composes the object boundary. The 

challenge is associated with the determination of this parameter, 

since it depends directly on point cloud density and the desired 

level of detail. 

 

According to Jochem et al. (2009), in the context of building 

boundary extraction from LiDAR data, the average point 

spacing is a good estimate of the parameter α. Shen (2008), 

Shen et al. (2011), and He et al. (2014) consider a similar 

approach, as the value α is obtained by multiplying the average 

point distance by a constant, which was determined empirically. 

Li et al. (2015) consider two α values, one larger and the other 

smaller than the average point spacing. This method generates 

two boundaries for each building, and the application of a 

refinement process was necessary to obtain the final boundary. 

However, the use of a constant parameter to extract all buildings 

in the dataset might not be the best choice, since the point 

density can vary. There can be several causes for such point 

density variation: aircraft velocity change, recording of multiple 

returns (normally in trees and building edges), aircraft rotation 

change, and the presence of occlusions. Figure 1 presents 

examples of point density variation over the same dataset. 

Therefore, the use a parameter α that can withstand density 

variation becomes compelling. 

 

To overcome this limitation, this paper proposes an adaptive 

approach to estimate a local parameter α for each building 

instead for the entire dataset. The method assumes that point 

density does not vary significantly within each building. The 
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input data consists of the set of points derived from the building 

roof. The method is divided into four steps. Firstly, a triangular 

mesh is generated over the input using the Constrained 

Delaunay Triangulation (CDT), then, a statistical procedure is 

executed to identify and eliminate long edges that are 

inconsistent with the spacing between the sampled points. In a 

third step, the parameter α is estimated considering the average 

length of remaining edges. Finally, the α-shape algorithm is 

performed considering the estimated parameter for each 

building.   

 

 
Figure 1. Point density variation on real data, from the same 

data set 

 

2. METHOD 

Figure 2 shows the simplified proposed method flowchart. The 

input data corresponds to the roof points of a given building, 

whereas the output is the building boundary. Considering that 

the main objective is the extraction of contours using a local 

parameter α, the set of roof points of each building was selected 

manually using CloudCompare software, version 2.9.1. The 

method is composed of three steps for determination of a local 

parameter α, followed by the execution of the α-shape 

algorithm. 

 

 

Figure 2. Flowchart of the steps involved in the local parameter 

α estimation, used to perform the α-shape algorithm 

 

2.1 Local Alpha Parameter Estimation 

The first step consists of the CDT over the building roof points. 

As the point cloud derived from the LASER scanning is 

represented in 3D space, the altimetric component was omitted 

in the process. The triangulation process can be impaired when 

there are points located in the same position. In order to 

eliminate the duplicated points, a pre-processing over roof 

points was performed using the lasduplicate tool from the 

LAStools package (Isenburg, 2018). 

 

In this work, the local parameter α estimation is based on the 

average point spacing which is not constant over the 3D point 

cloud. Before the estimation step, a statistical procedure is 

executed to detect and eliminate some lines obtained by the 

CDT located outside the outlines of the buildings. An example 

of a CDT considering a set of points sampled over a building is 

presented in Figure 3. Some long edges which can affect the 

determination of the average point spacing can be seen in 

Figure 3a. 

 

Assuming the length of edges is normally distributed, a simple 

criterion to discard these long edges is considered, which is 

based on the average length of the edges (eavg) and their 

standard-deviation (se). Edges longer than the average plus three 

standard-deviations are outlier candidates, and can be detected 

as follows: 

 

If ei < |3se + eavg|, then ei is not an outlier; 

Otherwise, ei is considered an outlier. 

 

where ei is the length of the edge i. 

 

The parameter α of a given building j is computed by means of 

Equation 1. In this equation, only the edges marked as non-

outliers are considered in the calculation. Figure 3b presents an 

example which used the above criterion to eliminate the edges 

considered as outliers. 

 

αj = 1/n Σei                                      (1) 

 

where  αj = estimated parameter for the building j 

 n = number of edges considered 

 ei = length of the edge i that satisfies the criterion  

 

 
Figure 3. Representation of triangular mesh before (a) and after 

(b) the execution of procedure for the detection and elimination 

of outliers 

  

2.2 Alpha Shape Algorithm 

The α-shape algorithm (Edelsbrunner et al., 1983) has been 

used in many tasks to obtain the approximate building 

boundaries. The general idea consists of the selection of 

Roof points 

Delaunay triangulation 

Elimination of outlying edges 

Estimation of a local parameter α 

Alpha shape algorithm 

Building boundary 
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straight-line segments that compose the boundary. For that, the 

2D set of points and the parameter α are considered as input. In 

this work, the set of points corresponds to the LiDAR points 

sampled over the building roof, and the parameter α is estimated 

considering the proposed method (Subsection 2.1). 

 

Considering the points pi and pj, and the parameter α as the 

radius of a circle passing through these points, it is possible to 

calculate two circles, as shown in Figure 4. If no point exists 

inside at least one circle, then points pi and pj are considered as 

edge points and can be connected to obtain a boundary segment 

(Figure 4a). If this is not the case, points pi and pj do not form a 

boundary segment (Figure 4b). 

 

Figure 4. Alpha shape algorithm criterion. Points pi and pj form 

a boundary segment (a), whereas pi and pj do not form a 

boundary segment (b).   

 

2.3  Quality Assessment 

In this work, the building boundaries assessment was performed 

both qualitatively and quantitatively. The qualitative analysis 

was carried out by means of a visual inspection, whereas the 

quantitative analysis was performed using some quality 

measures: completeness (Comp), correctness (Corr), Fscore, 

Hausdorff distance (H), and the PoLiS metric. Considering 

these quality indicators, the following references are suggested: 

Wiedemann et al. (1998), Sokolova et al. (2006) and 

Avblj et al. (2015).  

 

Assuming an extracted polygon (A) and the reference polygon 

(B), the parameters of completeness, correctness and Fscore are 

computed by means of the following equations: 

 

Comp = ar(TP) / ( ar(TP) + ar(FN) )                 (2) 

 

Corr = ar(TP) / ( ar(TP) + ar(FP) )                   (3) 

 
Fscore = (2 Comp Corr) / (Comp + Corr)           (4)  

 
where  ar(.) = area measurement 

 ar(TP) = A∩B 

 ar(FN) = ar(B) - A∩B 

 ar(FP) = ar(A) - A∩B 

 TP = true positive 

 FN = false negative 

 FP = false positive 

 

The Hausdorff distance H(A, B) between two sets A and B is 

defined as follows (Huttenlocher et al., 1993): 

 

H(A, B) = max(h(A, B), h(A, B))           (5) 

 

where 

h(A, B) = max min ||a - b||                       (6) 

 

and ||a - b|| is the Euclidean distance between points a and b, 

being a ϵ A and b ϵ B. 

 

The PoLiS metric p(A, B) between two polygons A and B is 

defined by Avbelj et al. (2015) as: 

 

             (7) 

 

where q and r correspond to the number of vertices of polygons 

A and B, respectively. ∂A and ∂B denote the boundary of 

polygons A and B, respectively. 
 

3. RESULTS AND DISCUSSION 

3.1 Experiments and Results 

This section presents the experiments and results obtained using 

the proposed method. The experiments were performed 

considering a LiDAR dataset acquired over the city of 

Presidente Prudente/Brazil by the company Sensormap 

Geotecnologia, which belongs to the Engemap Group, as can 

be seen in Tommaselli et al. (2018). The data set was acquired 

from a flight height of 900 m with an average density of 

5 points/m2. The airborne LASER scanning system used was a 

RIEGL LMS-Q680i. This system, which has a precision of up 

to 2 cm in the range measurement, uses the principles of LiDAR 

to measure distances. It has a LASER pulse repetition rate of up 

to 400 kHz and an effective measurement rate of up to 266 kHz 

at a 60° scan angle. The system also has the ability to store 

multiple returns. Two clippings of areas from the dataset used 

are presented in Figure 5. 

 

 
Figure 5. Two clippings of areas from the dataset used. Points 

sampled over buildings and ground (a), and vegetation (b) 

 

The reference building boundaries were obtained from stereo 

restitution using digital aerial images of 80 megapixel acquired 

by one Phase One medium format camera (model iXA 180), 

with an average ground sample distance (GSD) of 10 cm. 

  

To verify the performance of the proposed method, the building 

boundaries were extracted following two strategies. In the first 

strategy, the α-shape algorithm was performed using a global 

parameter α, which corresponds to the average point spacing of 

the dataset. In this case, the average point spacing was 

calculated considering all the points of the cloud point, that is, 

points sampled over vegetation, ground, and other anthropic 

objects. For the second strategy, the proposed method was used 

to estimate a local parameter α for each building by means of 

Equation 1. Both strategies were implemented in C 
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programming language using Code::Blocks version 16.01. The 

kd-tree storage structure and search functions, which are 

implemented in the Fast Library for Approximate Nearest 

Neighbors - FLANN library (Muja and Lowe, 2013) version 

1.8.0, were used to perform neighbourhood search operations. 

 

The experiments were performed considering six different 

buildings (Figure 6) from the same dataset. Building 1 

corresponds to a simple convex building of rectangular shape 

(Figure 6a). Building 2 has a rectangular shape and is composed 

of a small concave region (Figure 6b). Building 3 has a greater 

complexity, being formed by many concave regions (Figure 6c). 

Building 4 has a high complexity, its contour being composed 

of convex and concave segments (Figure 6d). In addition, there 

is a little gap on the left side, as can be observed in the profile 

generated from LiDAR data (Figure 6e). Building 5 also has 

some complexity, as its design includes both outer and inner 

boundaries (Figure 6f). Building 6 (Figure 6g) is located in a 

region of overlapping LiDAR strips, and a change of point 

density can be noted in the building (Figures 7k and 7l). 

 

The building boundaries extracted using the α-shape algorithm 

are presented in Figure 7. The results related to the global 

parameter α are presented in Figures 7a, 7c, 7e, 7g, 7i, and 7k 

(left side), whereas the results considering the method proposed 

are shown in Figures 7b, 7d, 7f, 7h, 7j and 7l (right side). 

 

 
Figure 6. Images of the buildings selected for the experiments 

(a-d, and f-g) and the profile generated from LiDAR data 

considering the segment A-B drawn on Building 4 (e) 

 

 
Figure 7. Building boundaries extracted using the α-shape 

algorithm. Results considering a global parameter (a, c, e, g, i, k 

– left side), and results considering a local parameter estimated 

for each building (b, d, f, h, j, l – right side) 

 

The quality parameters estimated for the different strategies are 

presented in Table 1. Two values of α are shown for each 

building. The first corresponds to the global parameter 

(α=0.45 m, same value for all buildings), whereas the second 

corresponds to the local parameter, which was estimated 

considering the proposed method. The quality parameters were 

computed considering the Equations 2-7, which were described 

in subsection 2.3. In Table 1, the first column corresponds to 

the building identification, for example, building 1 is 

represented by B1 and so on. The completeness, correctness and 

The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLII-1, 2018 
ISPRS TC I Mid-term Symposium “Innovative Sensing – From Sensors to Methods and Applications”, 10–12 October 2018, Karlsruhe, Germany

This contribution has been peer-reviewed. 
https://doi.org/10.5194/isprs-archives-XLII-1-127-2018 | © Authors 2018. CC BY 4.0 License.

 
130



 

Fscore parameters are presented in the third, fourth and fifth 

columns, whereas the PoLiS and Hausdorff distance metric are 

presented in the sixth and seventh columns. Some fields are 

missing from the table (cells with a hyphen), since the algorithm 

failed to yield a unique closed polygon using those α parameters 

and, as consequence, the computation of completeness, 

correctness and Fscore parameters was not possible. The 

reference building boundaries were manually-derived on aerial 

images using a photogrammetric restitution procedure using the 

ERDAS IMAGINE LPS system.  

 

 
Table 1. Quality parameters for different buildings and 

strategies 

 

3.2 Discussion of Results 

By comparing the local parameter estimated for each building 

with the global parameter estimated for the cloud point, i. e. 

α=0.45 m (Table 1), it is possible to verify that the latter is 

smaller for all cases, except for building 4. The reason for the α 

value being smaller is directly related to the use of all points in 

the estimation process, including multiple returns, which 

usually occurs in border and vegetation regions, as can be seen 

in Figure 5. In contrast, the local parameter is estimated 

considering only the roof points of the building of interest. 

 

As mentioned, the buildings presented in Figure 7 were selected 

from the same dataset. Analyzing the values of α computed by 

means of the proposed method, it can be seen that each building 

had a different local parameter. The difference between the 

highest and lowest values is approximately 0.40 m. This 

difference indicates the point density variation along the dataset 

and reinforces the idea of the use of a parameter α for each 

building. 

 

It can be seen that the results obtained for building 1 (Figures 

7a and 7b) using the global parameter were not satisfactory, 

since many incorrect segments were extracted. This problem 

occurred due to the point spacing on building 1 which is much 

larger than the global parameter estimated. On the other hand, 

the use of a local parameter overcame this problem. 

 

Some incorrect segments were also extracted when the global 

parameter was used on building 2 (Figures 7c and 7d). The 

extracted boundary also presented a more irregular appearance 

(shape with aliasing), as highlighted in Figures 7c and 7d, since 

the global parameter is smaller. In contrast, the use of the local 

parameter produced more regular boundaries and did not extract 

incorrectly in the middle of the building, as observed in 

Figure 7d. 

In building 3 (Figures 7e and 7f) only a few incorrect segments 

were extracted when the global parameter was considered. 

Despite this limitation, the global parameter generated better 

results in the extraction of concave segments. However, in the 

convex regions, the use of the local parameter produced better 

results.  

 

It can be seen in Figures 7g and 7h that the use of the global 

parameter was not able to extract the small concave region 

located on the left side of building 4. In contrast, the use of the 

local parameter extracted this detail, since the estimated local 

parameter α=0.40 m is smaller than the global parameter 

(α=0.45 m). 

 

As can be observed visually in building 5 (Figures 7i and 7j), 

the results using a global and local parameter are very similar, 

having only a few discrepancies. The global parameter 

generated better results in some concave regions, whereas the 

local parameter produced better results in some convex regions, 

as highlighted in Figures 7i and 7j. These results are directly 

related to the fact that the use of a smaller α extracts more 

details, whereas a higher α generated a smoother boundary. 

 

In building 6 (Figures 7k and 7l), it can be clearly observed that 

the point distance in this building changes a lot. It is possible to 

observe from the results that neither the global nor the local 

parameter generated good results, since many incorrect 

segments were extracted. These results indicate that neither the 

global nor the local parameters work well when there is a 

significant density variation along the building. 

 

In terms of completeness, correctness and Fscore, it is not 

possible to perform a comparative analysis between the two 

strategies, since for most cases, when the global parameter was 

considered, it was not possible to calculate the quality 

parameters, as can seen in Table 1. Considering the local 

parameter, the average values of completeness, correctness and 

Fscore were 95%, 98% and 97%, respectively. These results 

indicate a high superposition between the extracted and 

reference boundaries. 

 

Considering the PoLiS metric (Table 1), the proposed method 

presented average value of 0.22 m, against 0.40 m for the global 

parameter. For the global parameter, the worst case presented a 

PoLiS value of 1.18 m (B1), whereas the best case presented a 

PoLiS value of 0.15 m (B4). In contrast, the proposed method 

presented values of 0.31 m and 0.14 m for the worst (B6) and 

best (B5) case, respectively. Analysing the Hausdorff distances 

(Table 1), it can be seen that the average value for the global 

parameter is around 1.95 m, against 1.01 m for the proposed 

method.  The lower value of the Hausdorff distance is always 

related to the use of the local parameter. From this, it can be 

concluded that the proposed method is suitable for extracting 

building roof boundaries. 

 

In summary, the qualitative analysis indicates that the proposed 

method can be used to estimate the parameter α, necessary in 

the extraction of building boundaries with the α-shape 

algorithm. The results showed an improvement when compared 

with the use of a global parameter. 

 

4. CONCLUSION 

This paper proposes a data-driven approach to estimate a per-

building parameter α, that is, a local α-shape estimation. This 

adaptive method makes use of the average point spacing within 
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each building domain. The main advantage of the proposed 

method lies in the determination of a parameter that can 

withstand density variation in the LiDAR data.  

 

The results using real data show that the proposed method 

generated more detailed boundaries even for complex buildings 

composed of convex and concave segments, and with inner 

boundaries. Additionally, it was observed that if a considerable 

density variation occurs within a building, a single alpha value 

might be insufficient. 

 

As for future research, the application of this method is 

suggested considering the same area with different point 

density. The development of a method that can overcome the 

problem highlighted in Section 3.2, for situations where there is 

a significant density variation within a single building, is also 

recommended. 
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