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ABSTRACT: 
 
X-ray imaging is a fundamental tool of routine clinical diagnosis. Fluoroscopic imaging can further acquire X-ray images at video 
frame rates, thus enabling non-invasive in-vivo motion studies of joints, gastrointestinal tract, etc. For both the qualitative and 
quantitative analysis of static and dynamic X-ray images, the data should be free of systematic biases. Besides precise fabrication of 
hardware, software-based calibration solutions are commonly used for modelling the distortions. In this primary research study, a 
robust photogrammetric bundle adjustment was used to model the projective geometry of two fluoroscopic X-ray imaging systems. 
However, instead of relying on an expert photogrammetrist’s knowledge and judgement to decide on a parametric model for 
describing the systematic errors, a self-tuning data-driven approach is used to model the complex non-linear distortion profile of the 
sensors. Quality control from the experiment showed that 0.06 mm to 0.09 mm 3D reconstruction accuracy was achievable post-
calibration using merely 15 X-ray images. As part of the bundle adjustment, the location of the virtual fluoroscopic system relative to 
the target field can also be spatially resected with an RMSE between 3.10 mm and 3.31 mm. 
 
 

1. INTRODUCTION  

X-ray fluoroscopy is a valuable diagnostic imaging modality in 
gastroenterology, radiology, orthopaedics and many other 
medical specialities. For example, a barium swallow under a 
fluoroscope is the key confirmatory tool if a physician suspects 
achalasia in patients presenting with progressive esophageal 
dysphagia pertaining to both solids and liquids. Contrast 
fluoroscopy allows for the study of gastrointestinal tract motility 
by measuring any obstructions and tracking the velocity of a 
fluid bolus. In order to accurately measure the diameter of the 
gastrointestinal tract and/or quantify the velocity of particles, 
the fluoroscopic imaging system needs to be calibrated to 
minimize the systematic errors. This article proposes a scalable 
data-driven approach to model the distortions experienced in X-
ray fluoroscopy. Quality control is performed by comparing the 
reconstructed object space positions and the relative sensor 
positions to a reference solution. 
 

2. BACKGROUND 

Direct Linear Transformation (DLT) type methods are often 
used for calibrating fluoroscopic imaging systems because of 
their computational simplicity (You et al., 2001). However, it 
assumes that the systematic errors in every image frame are 
independent of the other image frames acquired by the same 
sensor. In a well-constructed and stable system, the systematic 
errors should be relatively constant with a very slow drift (in 
other words, it has a high temporal stability). Therefore, it is 
reasonable to hypothesize that a set of X-ray images captured by 

the same sensor will share the same distortion profile. By 
considering a set of images concurrently in the distortion 
modelling process, the accuracy and robustness of the 
calibration can be improved. 
 
To estimate a unique set of calibration parameters for a dual 
fluoroscopic X-ray imaging system, Lichti et al. (2015) 
demonstrated the use of the photogrammetric bundle adjustment 
method to combine image space information extracted from 300 
images. The authors reported achieving up to 71% improvement 
in 3D reconstruction accuracy after calibration. This method 
was further extended in Al-Durgham et al. (2016) where a semi-
automatic target extraction and matching function was added to 
make the entire calibration process more efficient and user-
friendly. However, up until now an expert photogrammetrist 
was still required to study the residuals graphically and perform 
statistical analysis to determine the appropriate model 
complexity. In this paper, a data-driven approach is proposed to 
help make the calibration procedure operator-independent by 
automatically selecting the most appropriate distortion profile 
based on the input data during bundle adjustment. 
 

3. MATHEMATICAL MODEL 

The fundamental basis of the proposed calibration method is 
that the physical arrangement of the high-speed camera, X-ray 
source, and image intensifier found in a fluoroscopic imaging 
system can be mathematically approximated by a pin-hole 
camera model. In this model, no lens or sensor distortions are 
assumed. A target point in the image space, the homologous 
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target point in the object space, and the hypothetical perspective 
centre of the camera are assumed to be collinear. This allows 
well-established camera registration techniques (such as the 
photogrammetric bundle adjustment) to be applied, which relate 
multiple radiographs with the calibration target field at various 
positions and orientations (Equation 1).  
 
 𝑝𝑝𝑖𝑖𝑖𝑖 = 𝑞𝑞𝑖𝑖 �𝑃𝑃𝑖𝑖 − 𝑇𝑇𝑖𝑖 �𝑞𝑞𝑖𝑖𝑐𝑐  

 (1) 
 
where, pij = [xij – xp – Δx, yij – yp – Δy, -c]T is the image 

measurement coordinates of target i in exposure j 

Pi = [Xi, Yi, Zi]T is the object space coordinates of 
target i on the phantom 
Tj = [Xoj, Yoj, Zoj]T is the position of the X-ray system 
relative to the phantom in exposure j 
qj = unit quaternion representing rotation of the X-ray 
system relative to the phantom in exposure j. 
Superscript ‘c’ represents the quaternion conjugate. 

 
This is an idealized model that requires a minimum of three 
non-collinear targets to solve. In practice, many more targets are 
observed and statistical inference techniques such as Maximum 
Likelihood Estimation (MLE) are used to obtain the best 
estimate of the unknown interior orientation parameters (IOP = 
[xp, yp, c]), exterior orientation parameters (EOP = [Tj, qj]), and 
object space target coordinates. With a high redundancy, 
additional parameters (AP = [Δx, Δy]) can be included in the 
bundle adjustment to model any systematic errors in the device. 
 
Selecting the proper model complexity to estimate the 
systematic errors requires a delicate balance between bias and 
variance. Having too many AP will result in an over-fitting 
problem, while not including enough AP will end up with a 
high bias. Previously, Lichti et al. (2015) proposed a systematic 
error model with up to 31 parameters. To choose the optimal 
number of parameters is a lengthy process: an experienced 
photogrammetrist will need to perform the bundle adjustment 
with self-calibration many times, starting with a simple model 
(e.g. no AP) and gradually increasing the model complexity 
(e.g. adding one AP to the adjustment at a time). With each 
bundle adjustment, graphical and statistical analysis is 
performed to assess the added value of the new parameter. If the 
new parameter reduces the root-mean-squared-error (RMSE) of 
the observation residuals, is found to be statistically significant 
using the student t-test, and reduces any systematic trends 
visually seen in the residual plots then that AP is deemed 
relevant in the model. In cases where not all the above 
conditions are satisfied, an expert’s judgement is required to 
determine if that AP should be added. Even for a well-trained 
photogrammetrist this can become a labour-intensive process 
since there is such a large number of potential AP to choose 
from. For a non-expert, the upper limit of possible models to 
select can be estimated using the following expression:  
 

�𝐶𝐶(31,𝑛𝑛) =
31

𝑛𝑛=0

�
31!

𝑛𝑛! (31 − 𝑛𝑛)!

31

𝑛𝑛=0

≈ 2 × 109 

 
 
To automate this model selection process and to make it 
operator independent, a k-nearest-neighbour (kNN) regression 
approach is used to model the systematic errors in the residuals. 
This data-driven machine learning approach assumes that 
spatially nearby residuals are correlated, and therefore can be 
approximated by averaging the k nearest residuals. It is 

considered a parameter-free approach (as no parameters need to 
be learned using least-squares estimation) and can be highly 
scalable to large amounts of data if a KD-tree structure is used 
for organizing the data since the residuals are only in 2D. 
However, one hyperparameter (k) still needs to be tuned, which 
indirectly defines the neighbourhood size used in the regression. 
To tune the k parameter using the data itself a 10-fold cross-
validation was used. The weighted L2-norm is used as the error 
metric (Equation 2) with the grid search approach to find the 
optimal k. 
 
 𝐺𝐺 = �𝑟𝑟 − �⃗�𝑔(𝑥𝑥,𝑦𝑦)�𝑇𝑇𝐶𝐶𝑟𝑟−1�𝑟𝑟 − �⃗�𝑔(𝑥𝑥,𝑦𝑦)�  (2) 
 
where, 𝑟𝑟  is the vector of residuals  

Cr is the covariance matrix of the residuals 
x and y are the cartesian coordinates in image space 
�⃗�𝑔(𝑥𝑥,𝑦𝑦)  is the vector of predicted residuals 
 

 
3.1 Proposed Methodology 

The X-ray calibration approach adopted in this paper draws on 
the concept of grey-box system identification. By initializing Δx 
and Δy to be zero, a robust photogrammetric bundle adjustment 
is first performed by minimizing the negative logarithm of the 
student-t probability distribution (Equation 3). This is 
equivalent to finding the point of maximum likelihood. Since 
the collinearity condition is non-linear, the model is linearized 
using a first-order Taylor series expansion and the unknown 
parameters are updated iteratively. At every iteration, the step is 
calculated using the popular trust-region method, the 
Levenberg–Marquardt algorithm. Once the MLE has 
converged, the residuals and corresponding variance-covariance 
matrix are computed. This then serves as the input to the second 
step, which is the kNN regression. 
 

𝐹𝐹 = max
𝜃𝜃��⃗

𝛤𝛤 �𝑣𝑣2 + 𝐷𝐷
2�

𝛤𝛤 �𝑣𝑣2�

|𝐶𝐶𝑙𝑙 |
−1

2

(𝑣𝑣𝜋𝜋)
𝐷𝐷
2
�1 +

�𝑙𝑙 − 𝑓𝑓�𝜃𝜃��
𝑇𝑇
𝐶𝐶𝑙𝑙−1 �𝑙𝑙 − 𝑓𝑓�𝜃𝜃��
𝑣𝑣 �

−𝑣𝑣2−
𝐷𝐷
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(3) 

 
where, 𝑙𝑙  is the vector of image measurements 

Cl is the covariance matrix of the observations 
𝜃𝜃  is the vector of unknown parameters 
𝑓𝑓�𝜃𝜃�  represents the collinearity condition 
υ is the degrees-of-freedom 
D is the number of observations 
 

During the kNN regression, the best estimate of ΔAP is 
determined after automatically tuning the hyperparameter k 
using cross-validation. Only the residual data that were 
considered inliers from the bundle adjustment are used for 
training the regressor. The Δx and Δy are then updated by the 
ΔAP predicted by the regressor (APnext = APprevious + ΔAP). The 
process of performing a robust photogrammetric bundle 
adjustment step followed by the kNN regression is then 
repeated until convergence. This iterative self-calibration 
adjustment converges when both the weighted cost function of 
the bundle adjustment (i.e. F) and the kNN regression (i.e. G) 
are minimized. 
 
After convergence, not only can the IOP, EOP, and object space 
coordinates be obtained together with their standard deviations, 
a kNN regressor that has learned the irregularly-spaced 
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systematic error corrections of the residuals is also available. 
For new radiographs that are captured, the distortion correction 
at every pixel location can be predicted by the kNN regressor. 
 

4. EXPERIMENTATION 

The same data as in Lichti et al. (2015) were used, where a 
three-dimensional cubic target frame (i.e. a phantom with 503 
targets) was imaged using two fluoroscopic image systems 
simultaneously. Each fluoroscopic system consists of an X-ray 
source, an image intensifier with a fluorescent screen, and a 
high-speed solid-state optical camera. The fluoroscopic system 
was static during the entire experiment while the phantom was 
repositioned with various orientations within the volume of 
interest with the help of a height-adjustable turntable. A total of 
150 image frames per fluoroscopic system was processed using 
bundle adjustment with self-calibration by an expert 
photogrammetrist. The reconstructed 3D object space and the 
resected virtual camera locations using all images serve as the 
reference solution. A subset of this data, i.e. 15 of the 150 
images were uniformly sampled from each fluoroscopic system 
and processed using the proposed algorithm. This subset acted 
as the training data; the remaining 135 images were used as 
testing data. It was hypothesized that if the recovered systematic 
distortion profile using 10% of the data would be comparable to 
the result from using 150 images with an expert’s judgement on 
model selection, then the proposed method has the potential to 
further automate the calibration process without compromising 
the quality of the calibration solution.  
 
The proposed calibration method (i.e. extending conventional 
bundle adjustment with machine learning) can be approached in 
various ways. For example, there is the preconception that 
machine learning can learn everything if given sufficient data, 
even depth (Sinz et al., 2004). While this may be true, 
incorporating prior knowledge about the problem can 
strengthen the solution. Thus, for the experiments described 
previously, the calibration was done in two ways: (1) the kNN 
regressor was used to learn both AP and IOP, and (2) the kNN 
regressor was used to learn the AP only (with the IOP being 
modelled parametrically). Unlike the AP, the IOP are expected 
to be present in all imaging systems and their mathematical 
form is known. The IOP consist of merely three unknown 
parameters, and they are comparable to a bias and scale factor. 
By solving for the IOP using the standard parametric form in 
the bundle adjustment, it is expected that the solution can be 
improved. If this is true, then a similar argument can be made 
about estimating the EOP and object space coordinates using 
the parametric form rather than learning it from data. 
 

5. RESULTS AND ANALYSES 

5.1 Efficacy of Proposed Calibration Method 

The proposed calibration method divides up the numerical 
optimization process into two steps. In the first step the 
reprojection errors are minimized using a robust bundle 
adjustment. A surface is then fitted to the residuals using kNN 
regression. Figure 1 shows the monotonic progressive reduction 
in the quadratic costs. The gradient begins to diminish around 
20 iterations. The weighted average of the total cost (i.e. F + G) 
shown in Figure 2 demonstrated that a stable local minimum 
can be found after around 30 iterations by following the 
gradient. 

Figure 1: Relative cost at every iteration expressed as a 
percentage of the initial cost. F is shown in blue and G is shown 
in red. 

 
Figure 2: Weighted average cost of both the bundle adjustment 
and kNN regression 
 
5.2 Error Modelling of Fluoroscopic Imaging System 1 

It is hypothesized that in the absence of systematic errors, the 
distribution of residuals will follow a Gaussian probability 
distribution. Figures 3 and 4 show the histogram of the 
normalized image residuals in x and y, respectively. It can be 
seen that the distribution resembles a bell shape much better 
after modelling for the AP. In addition, by explicitly modelling 
for the IOP rather than learning it from the data showed slight 
improvements in the reprojection errors. 
 

 
Figure 3: Histogram of the x-image residuals in fluoroscopic 
system 1 
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Figure 4: Histogram of the y-image residuals in fluoroscopic 
system 1 
 
To analyze the correlation between the reprojection errors and 
the spatial distribution, the residuals in x and y are plotted as a 
function of their x and y pixel locations in the image (Figures 5 
and 6). The residuals after calibration appear to have a smaller 
spread overall, with the residuals being slightly larger near the 
peripheral of the radiograph. This is expected in kNN regression 
because of the lack of data points near edges of the image, 
which results in all the data points being on one side of the 
query point. In other words, near the edge of the radiograph, 
kNN regression behaves more like an extrapolator than an 
interpolator. 
 

 

Figure 5: x-image residuals as a function of their column 
number in the image 
 

 
Figure 6: y-image residuals as a function of their row number in 
the image 
 
Table 1 summarizes the reprojection errors. It can be observed 
that the fluoroscopic imaging data obeys the pin-hole camera 
model with precision of approximately one pixel. After 
calibrating the X-ray system a significant reduction in the 
RMSE can be obtained (i.e. from pixel-level to sub-pixel-level).  
 

 Cost RMSE [pix] Improvement [%] 

 
𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 

Before 4.72E+04 1.148 1.070 N/A N/A N/A 

After 3.47E+03 0.346 0.339 92.638 69.839 68.372 

After w/ 
IOP 2.48E+03 0.303 0.283 94.746 73.624 73.536 

Table 1: Reprojection errors of fluoroscopic system 1 

 
Studying the reprojection errors in image space is useful 
because it is the objective function that is being minimized 
during MLE. However, as a clinician or technician, it is the 
object space accuracy improvement that is of utmost interest. 
Tables 2 and 3 show the measurement errors in the 3D object 
space (X, Y, and Z) as well as the errors in the estimated X-ray 
sensor location relative to the phantom (Xo, Yo, Zo). For the in-
sample errors, the data-driven error compensation model was 
able to reduce the object space reconstruction errors by about 
80%. Since the X-ray system has a long principal distance, the 
object space can be measured more accurately than the camera 
location (Stamatopoulos et al., 2010). Nevertheless, the learned 
calibration model using kNN improved the estimation of the 
sensor positions. The estimated sensor position is significantly 
improved when the IOP are modelled in the bundle adjustment. 
This is similar to removing the bias and scale from the data in 
which the kNN regression is performed. The large 
improvements in the estimated network station geometry 
(centimetre-level to millimetre-level) gave rise to a further 
improvement of the object space measurement accuracy (~5%). 
 
Since the in-sample errors (Table 2) are more sensitive to 
projective compensation, the out-of-sample errors (Table 3) are 
also reported. These data had never been seen by the bundle 
adjustment or kNN regressor, therefore providing a more 
realistic assessment of the actual quality of the calibration 
parameters when they are used to correct images. A pattern 
similar to the in-sample errors can be observed in the out-of-
sample errors: the calibrated radiographs with the IOP included 
in the collinearity conditions provided the best object space 
accuracy. Even though the IOP can be learned from the data 
using kNN, modelling them using explicit parameters in the 
bundle adjustment yielded superior results. 
 

 RMSE [mm] Improvement [%] 
 Before After After  

w/ IOP 
After After  

w/ IOP 
X 1.271 0.223 0.148 82.478 88.339 
Y 0.848 0.179 0.133 78.852 84.269 
Z 1.384 0.215 0.153 84.476 88.976 
Xo 18.382 14.773 3.179 19.637 82.704 
Yo 27.372 14.565 3.280 46.788 88.018 
Zo 16.2599 15.477 3.421 4.815 78.960 

Table 2: In-sample errors of fluoroscopic system 1 
 

 RMSE [mm] Improvement [%] 
 Before After After w/ 

IOP After After w/ 
IOP 

X 0.938 0.152 0.069 83.771 92.687 
Y 0.509 0.111 0.047 78.192 90.749 
Z 0.926 0.162 0.072 82.483 92.196 
Xo 15.343 14.721 3.140 4.052 79.532 
Yo 23.221 15.499 3.485 33.254 84.990 
Zo 16.222 15.065 3.285 7.129 79.746 
Table 3: Out-of-sample errors of fluoroscopic system 1 
 
5.3 Error Modelling of Fluoroscopic Imaging System 2 

To further assess the performance and behaviour of the 
proposed calibration method, the previous assessments were 
repeated on the second X-ray fluoroscopic system. The trends 
are similar to the calibration of fluoroscopic system 1. The 
residuals more closely follow a normal distribution post-
calibration, with the bell curve being narrower when the IOP 
are estimated in the bundle adjustment rather than being learned 
in the kNN regression (Figure 7, 8, 9, 10). The overall 
reprojection errors reduced from greater than a pixel to less than 
half a pixel after error modelling (Table 4). 
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Figure 7: Histogram of the x-image residuals in fluoroscopic 
system 2 
 

 
Figure 8: Histogram of the y-image residuals in fluoroscopic 
system 2 
 

 Cost RMSE [pix] Improvement [%] 

 
𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 

Before 4.62E+04 1.235 1.203 N/A N/A N/A 

After 6.13E+03 0.505 0.368 86.722 59.074 69.399 

After w/ 
IOP 3.78E+03 0.384 0.323 91.811 68.870 73.182 

Table 4: Reprojection errors of fluoroscopic system 2 
 
 

 
Figure 9: x-image residuals as a function of their column 
number in the image 
 

 
Figure 10: y-image residuals as a function of their row number 
in the image 
 
The object space measurement accuracy of system 2 is slightly 
worse and less uniform than system 1; this might be due to the 
stability and manufacturing of the system. Even though both 

systems used identical components there can still be small 
variations in their build. Regardless, the proposed calibration 
method is able to improve the object space reconstruction 
accuracy both in-sample and out-of-sample for system 2 (Tables 
5 and 6).  
 
When looking at the out-of-sample errors, it was noticed that 
the estimated sensor position errors were greater with the error 
correction model when the IOP were learned by the kNN 
regression. In this dataset, solving for the IOP explicitly in the 
bundle adjustment has a small improvement to the object space 
reconstruction quality and was able to reduce the sensor 
position errors rather than increasing it. 
 

 RMSE [mm] Improvement [%] 
 Before After After w/ 

IOP 
After After w/ 

IOP 
X 1.973 0.450 0.405 77.188 79.461 
Y 0.941 0.237 0.208 74.815 77.875 
Z 1.295 0.467 0.434 63.968 66.504 
Xo 20.575 19.311 2.381 6.146 88.427 
Yo 20.121 19.749 2.431 1.847 87.916 
Zo 21.536 18.339 2.300 14.844 89.320 
Table 5: In-sample errors of fluoroscopic system 2 
 

 RMSE [mm] Improvement [%] 
 Before After After w/ 

IOP After After w/ 
IOP 

X 0.669 0.150 0.121 77.561 81.941 
Y 0.510 0.099 0.055 80.540 89.232 
Z 0.708 0.131 0.096 81.506 86.439 
Xo 19.298 19.138 4.663 0.830 75.835 
Yo 16.010 18.966 1.825 -18.468 88.602 
Zo 16.984 18.845 1.939 -10.960 88.583 
Table 6: Out-of-sample errors of fluoroscopic system 2 
 
5.4 Simultaneous Calibration of Two Fluoroscopic Imaging 
Systems 

In clinics with a dual-fluoroscopic imaging system for tracking 
3D motions, both X-ray systems can be calibrated 
simultaneously. The image measurements in each radiograph 
are independent, but if they are observing the same phantom 
then they become correlated through the object space 
coordinates. By performing bundle adjustment for the two 
fluoroscopic imaging systems jointly and training a kNN 
regressor for each system, the following image space errors are 
reported (Table 7). 
 

 Cost RMSE [pix] Improvement [%] 

 
𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 𝑟𝑟𝑇𝑇𝐶𝐶𝑟𝑟−1𝑟𝑟  x y 

Before 1.139E+05 1.307 1.152 N/A N/A N/A 

After 1.039E+04 0.451 0.363 90.878 65.474 68.508 

After w/ 
IOP 6.805E+03 0.358 0.314 94.027 72.623 72.724 

Table 7: Reprojection errors of fluoroscopic systems 1 and 2 
 
The in-sample and out-of-sample object space errors (Tables 8 
and 9) are comparable to the cases where each fluoroscopic 
system was calibrated independently (Tables 2, 3, 5, and 6). 
Only sharing the same object space targets does not seem to 
provide any statistically significant benefits to the object space 
reconstruction quality. Therefore, it can be argued that not 
calibrating both X-ray systems together is preferred because of 
the reduced computation load. To experience benefits of object 
space reconstruction accuracy in a dual-fluoroscopic image 
system, the two X-ray systems should be rigidly mounted 
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together so that a relative position and orientation constraint can 
be enforced in the MLE (Lichti et al., 2015). 
 

 RMSE [mm] Improvement [%] 
 Before After After  

w/ IOP 
After After  

w/ IOP 
X 1.161 0.369 0.315 68.201 72.871 
Y 1.046 0.238 0.179 77.276 82.918 
Z 1.025 0.291 0.215 71.603 78.990 
Xo 18.234 16.583 2.640 9.056 85.520 
Yo 20.844 16.881 2.717 19.012 86.963 
Zo 17.120 16.466 2.655 3.821 84.490 
Table 8: In-sample errors of fluoroscopic system 1 and 2 
 

 RMSE [mm] Improvement [%] 
 Before After After  

w/ IOP After After  
w/ IOP 

X 0.674 0.135 0.095 79.951 85.916 
Y 0.465 0.093 0.039 79.993 91.671 
Z 0.683 0.141 0.091 79.401 86.693 
Xo 17.043 16.486 3.407 3.265 80.011 
Yo 19.608 16.806 2.528 14.290 87.106 
Zo 16.221 16.550 2.524 -2.027 84.441 
Table 9: Out-of-sample errors of fluoroscopic system 1 and 2 
 

6. CONCLUSION AND FUTURE WORK 

Fluoroscopic imaging systems allow the use of low dose 
radiation to look under the skin of humans non-invasively for 
clinical diagnoses. This modality is particularly valuable in 
studying dynamic data because it has a high frame rate. To use 
this system for quantitative analysis and to improve the 
geometric accuracy of the images for qualitative assessments, 
systematic errors of the complete system need to be removed. 
Previous research has already demonstrated that using 
photogrammetric bundle adjustment to do a software calibration 
of the imaging system can improve both the precision and 
accuracy of the system. This paper presented an extension by 
adding a machine learning approach using kNN regression to 
automate the model selection process in the bundle adjustment, 
thus making it easier for a non-expert to perform the calibration. 
It has been shown in this paper that not only can the proposed 
data-driven method make the calibration process less operator 
dependent, it was able to achieve a similar level of accuracy as 
the parameter-driven approach. 
 
While all information can be learned from the data using 
machine learning – including depth and camera pose – it was 
shown that if a geometric relationship is expected to exist in the 
system, it is more effective to model them explicitly using well-
established parametric models. For example, it was found that 
when both the IOP and AP are learned using kNN regression, 
the precision and accuracy (using the same input dataset) are 
both lower than if the IOP are modelled using the conventional 
approach in the bundle adjustment. 
 
At present, most hospitals only have single fluoroscopic 
systems available, and therefore the proposed method is 
applicable. Future work will investigate using relative 
orientation constraints with this method for dual-fluoroscopic 
imaging systems that have a fixed baseline. It was found in this 
paper that even if two fluoroscopic imaging systems were 
calibrated simultaneously and they share the same object space 
targets, the calibration result is very similar to the scenario 
where the two fluoroscopic systems were calibrated separately. 
Hence, there is little benefit to perform a multi-system 
calibration when a relative orientation constraint cannot be 
enforced. 
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