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In this work, a simple and versatile SERS sensing platform enabled by

AuNPs-analyte/AuNPs double-decker structure on wax-coated hydrophobic surface

was developed using a portable Raman spectrometer. Wax-coated silicon wafer

served as a hydrophobic surface to induce both aggregation and concentration of

aqueous phase AuNPs mixed with analyte of interest. After drying, another layer

of AuNPs was drop-cast onto the layer of AuNPs-analyte on the substrate to form

double-decker structure, thus introducing more “hot spots” to further enhance the

Raman signal. To validate the sensing platform, methyl parathion (pesticide), and

melamine (a nitrogen-enrich compound illegally added to food products to increase their

apparent protein content) were employed as two model compounds for trace sensing

demonstration. The as-fabricated sensor showed high reproducibility and sensitivity

toward both methyl parathion and melamine detection with the limit of detection at the

nanomolar and sub-nanomolar concentration level, respectively. In addition, remarkable

recoveries for methyl parathion spiked into lake water samples were obtained, while

reasonably good recoveries for melamine spiked into milk samples were achieved. These

results demonstrate that the as-developed SERS sensing platform holds great promise

in detecting trace amount of hazardous chemicals for food safety and environment

protection.

Keywords: wax, gold nanoparticles, surface enhanced Raman scattering, methyl parathion, melamine

INTRODUCTION

Surface enhanced Raman scattering (SERS) has been drawing increasing attention in the field of
analytical chemistry and life science since its first introduction about 40 years ago (Fleischmann
et al., 1974; Albrecht and Creighton, 1977; Jeanmaire and Duyne, 1977; Freeman et al., 1995;
Wang et al., 2013; Zhou et al., 2016). SERS enhancement derives from giant electromagnetic

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Directory of Open Access Journals

https://core.ac.uk/display/201686298?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://www.frontiersin.org/journals/chemistry#editorial-board
https://doi.org/10.3389/fchem.2018.00482
http://crossmark.crossref.org/dialog/?doi=10.3389/fchem.2018.00482&domain=pdf&date_stamp=2018-10-16
https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles
https://creativecommons.org/licenses/by/4.0/
mailto:huodq@cqu.edu.cn
mailto:yu.lei@uconn.edu
https://doi.org/10.3389/fchem.2018.00482
https://www.frontiersin.org/articles/10.3389/fchem.2018.00482/full
http://loop.frontiersin.org/people/604990/overview
http://loop.frontiersin.org/people/486864/overview
http://loop.frontiersin.org/people/76175/overview


Wu et al. SERS-Based Trace Sensing

field enhancement enabled by localized surface plasmon
resonance (LSPR) “hot spots,” which are typically formed at
small gaps (usually <10 nm) between noble metal nanoparticles,
with an enhancement factor up to 1012 (Kleinman et al., 2013).
Compared with traditional bulky instruments, for instance gas
chromatography (Vesely et al., 2003), liquid chromatography
(Hogard et al., 2017), high-performance liquid chromatography
(Özyürek et al., 2012) etc., SERS based detection can be
realized using a portable Raman spectrometer, which displays
several advantages, such as portability, easy accessibility, cost
effectiveness, and rapid analysis. These advantages endow
its potential use in point-of-care and in-field trace sensing
applications.

Gold nanoparticles (AuNPs) have been widely employed
as SERS substrates because they offer very strong Raman
enhancing effect (Lou et al., 2011; Li J. J. et al., 2015; Jiang
et al., 2017). Furthermore, excellent size and shape tunability
of AuNPs make it possible to optimize the enhancement factor
for desired SERS detection. To date, scores of reports have
been published on AuNPs-based SERS for the detection and
discrimination of DNA (Lim et al., 2010), anticancer drugs
(Ilkhani et al., 2016; Kurzatkowska et al., 2017), amino acid
(Schwartzberg et al., 2004), melamine (Lee et al., 2007; He et al.,
2011; Kim et al., 2012; Giovannozzi et al., 2014; Rajapandiyan
et al., 2015), biothiols (Liu et al., 2017), various pesticides
(Nguyen et al., 2014; Alsammarraie and Lin, 2017; Cao et al.,
2017; Fortuni et al., 2017; Jiang et al., 2017; Tan et al., 2017),
and other hazardous chemicals (Li et al., 2011). For example,
Giovannozzi et al. (2014) presented a simple AuNPs based
SERS system in aqueous solution for melamine detection, in
which colloidal AuNPs displayed satisfactory SERS enhancement
with a limit of detection of 1.35µM melamine. Although
acceptable sensitivity and reproducibility have been obtained
for melamine detection in aqueous solution, more sensitive
detection for hazardous chemicals is still highly demanded,
especially for the detection of highly toxic compounds such as
pesticides.

Generally, SERS detection of analyte on solid state substrates
is much more sensitive than detection of analyte in aqueous
solutions due to the formation of more “hot spots” among
adjacent nanoparticles. A host of SERS substrates were fabricated
based on highly homogeneous noble metal nanostructures
(e.g., Au nanorod arrays) to improve the reproducibility (Kim
et al., 2012; Peng et al., 2013; Wallace et al., 2014; Yu et al.,
2015; Wang et al., 2016). Although favorable repeatability
and excellent sensitivity toward targets can be achieved by
using those SERS substrates, relatively high-cost associated
with complicated fabricating processes could potentially hinder
their wide applications. Alternatively, the use of hydrophobic
substrate can also enhance sensitivity and reproducibility of the
SERS based sensor system. In this scheme, small volume of
aqueous samples were dropped on a hydrophobic substrate and
allowed to evaporate. The evaporation process created a higher
number of “hot spots” in confined area and better uniformity
of nanomaterials distribution. Accordingly, many efforts have
been made to produce and employ hydrophobic SERS substrates
for enhanced SERS sensing (Li et al., 2014; Wallace et al.,

2014; Cheung et al., 2016; Jayram et al., 2016). However, a
simple method to fabricate hydrophobic substrate is still highly
demanded.

In this work, we present a simple and versatile SERS
sensing platform enabled by AuNPs-analyte/AuNPs double-
decker structure on wax-coated hydrophobic surface using a
portable Raman spectrometer. The simplicity, cost-effectiveness,
and easiness to handle in coating are three greatest merits
of wax serving as a hydrophobic material, compared to other
hydrophobic materials in SERS applications. Wax-coated silicon
wafer served as a hydrophobic surface to induce both aggregation
and concentration of AuNPs mixed with analyte of interest. After
drying, another layer AuNPs of aqueous phase was drop-cast
onto the layer of AuNPs-analyte on the substrate to form a
double-decker structure, inducing more “hot spots” to further
enhance the Raman signal. Specifically, AuNPs with diameters of
60 and 130 nm were employed for SERS detection of two model
compounds, methyl parathion andmelamine (chemical structure
shown in Figure 1) respectively, to demonstrate the feasibility
of the developed SERS sensing platform for environment and
food safety monitoring. The SERS sensor showed high sensitivity
with a detection limit at nanomolar/sub-nanomolar level toward
the two target molecules, with satisfactory reproducibility. In
addition, the sensor was able to detect both methyl parathion
spiked into lake water with remarkable recovery and melamine
spiked into milk with reasonably good recovery. These results
suggest that this simple, low cost, and versatile SERS sensing
platform can offer a promising strategy for ultrasensitive
detection of hazardous chemicals in real samples.

MATERIALS AND METHODS

Chemicals and Reagents
Chloroauric acid (HAuCl4·4H2O, ≥99.9% trace metals basis),
hydroxylamine hydrochloride (NH2OH·HCl), methyl parathion
(C8H10NO5PS, denoted as MP) and melamine (C3H6N6,
denoted as Me) were acquired from Sigma-Aldrich. Sodium
citrate (Na3C6H5O7·2H2O) was purchased from Fisher
Scientific. All of the chemicals were used without any
purification.

Instrument and Apparatus
UV-vis spectra of colloidal AuNPs were recorded on a UV-
spectrometer (Cary 60, Agilent Technologies). Transmission
electron microscopy (TEM) images and scanning electron

FIGURE 1 | Chemical structures of methyl parathion and melamine,

respectively.
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microscopy (SEM) images were acquired using FEI Tecnai G2
Spirit BioTWIN and FEI Nova NanoSEM 450, respectively. A
portable Raman spectrometer (QE Pro, Ocean Optics), coupled
with a 785 nm laser (operated at 35 mW), was used to collect the
Raman spectra. For each Ramanmeasurement, the spectrumwas
integrated for 5 s.

Preparation of AuNPs
Sixty nanometers of AuNPs were prepared using Frens’ method
(Frens, 1973). Briefly, 1.06mg of chloroauric acid aqueous
solution (0.0254M) was added into a 250mL round-bottomed
flask loaded with 99mL distilled water and heated to boil. After
that, 1.0mL of freshly prepared sodium citrate aqueous solution
(0.0388M) was added into the mixture with stirring and kept
boiling for another 20min. Finally, 60 nm AuNPs were obtained
after turning off the heating and cooling to room temperature
with stirring.

A seed mediated method was used to synthesize 130 nm
AuNPs according to previous report (Tian et al., 2013). In
detail, 4mL of as-prepared 60 nm AuNPs, 900 µL of freshly
prepared sodium citrate aqueous solution (0.0388M) and 52mL
deionized water were successively loaded into the flask with
stirring for 5min. To the above solution, 0.88mL of aqueous
chloroauric acid solution (0.0254M) was quickly added and kept
stirring for another 5min. After that, 700 µL of freshly prepared
hydroxylamine hydrochloride aqueous solution (0.0101M) was
injected into above mixture solution twice and the reaction
solution was incubated for 2 h to yield AuNPs with an average
diameter of about 130 nm.

Preparation of Methyl Parathion and
Melamine Samples
Methyl parathion stock solution (0.01M) was prepared by
adding 0.0263 g of methyl parathion into 10mL absolute ethanol,
while melamine stock solution (0.01M) was prepared by adding
0.0126 g of melamine into 10mL of deionized water. Methyl
parathion ethanol solutions and melamine aqueous solutions
with certain concentrations were obtained by diluting the stock
solutions using ethanol and deionized water correspondingly.

Preparation of Spiked Real Samples
Lake water sample was collected from Swan Lake at the
University of Connecticut and filtered through an ordinary filter
paper to remove any large solid particles. Methyl parathion
spiked lake water samples were then prepared by quantitatively
adding appropriate amount of methyl parathion stock solution
into lake water samples and finally subject to SERS detection in
recovery studies.

Milk samples (purchased from a local grocery store) were
first spiked with certain concentrations of melamine and
then pretreated according to a previous report with some
modifications for recovery studies (Hu et al., 2015). Briefly,
milk samples (0.5mL) spiked with different concentration of
melamine were added into 4.5mL methanol and shaken for
1min, followed by sonication for 10min. And then, the mixtures
were centrifuged for 10min at 12,000 rpm. Supernatants were
collected and subject to SERS detection in recovery studies.

SERS Measurement Procedure
The typical SERS sensing procedure developed in this study is
presented in Figure 2 and briefly described below. Commercial
wax was first heated and melted into liquid state in a crucible.
Then liquid wax was poured onto a silicon wafer, immediately
followed by spreading using a glass rod before its solidification,
thus generating a thin layer of wax to offer an excellent
hydrophobic surface. Next, 5 µL methyl parathion samples or
melamine samples were added into 45 µL AuNPs (with certain
particle size) aqueous solutions and incubated for 5min to form
AuNPs-analyte mixture solution. Next, 5 µL AuNPs-analyte
mixture solution were dropped onto the wax-coated surface
and left to dry in ambient conditions. After drying, 5 µL of
AuNPs solution were subsequently dropped onto the dried spot
and allowed to dry again. Finally, Raman scattering spectra
were recorded from the dried spots using a portable Raman
spectrometer.

RESULTS AND DISCUSSION

Characterization of AuNPs
UV-vis spectroscopy and TEM were employed to determine the
absorption spectrum and morphology of the AuNPs. As shown
in Figure 3A, UV-vis spectrum of the as-prepared 60 nm AuNPs
suspension has a narrow peak at 538 nm, indicating that AuNPs
were monodispersed. To further examine the morphology of the
60 nm AuNPs, TEM image was collected. From Figure 3C and
its inset, one can see that the AuNPs show good size-uniformity
with an average diameter of about 60 nm. Similarly, Figure 3B
shows the UV-vis spectrum of the as-prepared 130 nm AuNPs
synthesized. A relatively broad peak was observed with a peak
wavelength of 593 nm, suggesting lower size uniformity than that
of the 60 nm AuNPs. From the TEM image in Figure 3D, the
AuNPs have an average diameter of about 130 nm, with some
variation in their shapes, such as sphere, polyhedron and rod-like.
The concentration of the as-prepared 60 and 130 nm AuNPs was
calculated to be 0.0250 and 0.0058 nM, respectively, according to
its UV-vis spectrum and a reported method (Haiss et al., 2007).
And the as-prepared 60 and 130 nmAuNPs were then utilized for
subsequent SERS studies.

Hydrophobicity of Wax-Coated Silicon
Wafer
In this study, hydrophobicity of the substrate plays important
roles in both the reproducibility and the sensitivity of SERS
sensor. Figures 4A,B show the photograph of a 5 µL water
droplet on the silicon wafer and a thin layer of wax-coated
silicon wafer, respectively. The diameter (ca. 2mm) of the water
droplet on the wax-coated silicon wafer was obviously smaller
than that (ca. 3mm) on the bare silicon wafer, suggesting good
hydrophobicity of the simple wax coating. To further study
the hydrophobicity of wax-coated silicon wafer, the liquid-solid
contact angle test was carried out. As shown in Figure 4C, a
contact angle of 61.9◦ was observed for water droplet on bare
silicon wafer. In comparison, the contact angle for wax-coated
silicon wafer was measured to be 112.3◦ according to Figure 4D,
confirming the much higher hydrophobicity of wax-coated
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FIGURE 2 | Schematic of the SERS-based trace sensing platform enabled by AuNPs-analyte/AuNPs double-decker structure on wax-coated hydrophobic surface.

FIGURE 3 | UV-vis spectra (A,C) and TEM images (B,D) of the as-prepared 60 and 130 nm AuNPs, respectively.

silicon wafer than the bare one. To examine the morphology of
the AuNPs layer on the substrate, 60 nm AuNPs were first added
on the wax-coated silicon wafer. Due to the hydrophobicity of
the substrate, the AuNPs typically formed small aggregates on
the substrate (data not shown). After the addition of another

layer of AuNPs, a dense AuNPs aggregates formed as seen from
Figure 4E. One can see that a great number of gaps formed
in the AuNPs aggregates, which serve as “hot spots” for SERS
detection. Similar phenomena were observed for 130 nm AuNPs
on substrates (Figure 4F). The data suggest that the wax coating
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FIGURE 4 | Optical pictures of water droplet on silicon wafer (A) and wax-coated silicon wafer (B); Contact angles of water drop and silicon wafer (C) and

wax-coated silicon wafer (D); SEM images of AuNPs-methyl parathion/AuNPs (E) and AuNPs-melamine/AuNPs (F).

FIGURE 5 | (A) Raman scattering spectra of wax (black), wax coated with 60 nm AuNPs (red), mixture of methyl parathion (10−4 M) and 60 nm AuNPs deposited on

silicon wafer (blue), methyl parathion (10−4 M) and AuNPs deposited on wax-coated silicon wafer (pink), and methyl parathion (10−4 M) and AuNPs deposited on

wax-coated silicon wafer with an additional layer of AuNPs (green). (B) Raman scattering spectra of wax (black), wax coated with 130 nm AuNPs (red), mixture of

melamine (10−5 M) and 130 nm AuNPs deposited on silicon wafer (blue), melamine (10−5 M) and AuNPs deposited on wax-coated silicon wafer (pink), and melamine

(10−5 M) and AuNPs deposited on wax-coated silicon wafer with an additional layer of AuNPs (green).

on silicon wafer induced aggregation of the AuNPs, and the
additional layer of AuNPs introduced more “hot spots,” thus
enhancing the sensitivity in subsequent SERS measurement.

Raman Spectra Intensities of Targets
Performed on Various Substrates
Better hydrophobicity of the substrate, on one hand, can shrink
the AuNPs-analyte droplet during evaporation and lead to
higher target concentration and more “hot spots” in the probe
spot, enhancing the sensitivity. On the other hand, better

hydrophobicity of the substrate improves the uniformity of the
distribution of AuNP-analyte complexes on the substrate after
drying, thus favoring better reproducibility of SERS sensing.
As shown in Figure 5, Raman scattering peak intensities of
the analyte on wax-coated silicon wafer were much stronger
than that on the bare silicon wafer, for both of methyl
parathion and melamine, at the same analyte concentration.
In addition, no obvious Raman scattering peak was observed
for wax with or without AuNPs coating (black and red lines
in Figures 5A,B), indicating that wax did not interfere with
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the Raman measurement. Four strong peaks appeared at 858.5
cm−1, 1111.0, 1346.6, and 1591.6 cm−1 in the Raman spectra
collected from methyl parathion on 60 nm AuNPs on silicon
wafer (blue line in Figure 5A). They can be assigned to the
stretching vibration of P-O and C-N, bending vibration of C-H
and phenyl stretching, respectively, in accordance with previous
report (Li Z. et al., 2015). Peaks at identical positions with
stronger intensities were observed in the Raman spectra for
AuNPs-methyl parathion on wax-coated silicon wafer (pink line
in Figure 5A). Similar phenomena were observed in Figure 5B

for complex of AuNPs (130 nm) and melamine on silicon wafer.
Specifically for melamine detection, the strongest Raman peak
at 687.4 cm−1 was attributed to ring breathing. Peaks at 576.6,
978.6, 1496.5, 1549.9, and 1692.6 cm−1 were comprehensively
ascribed to vibrations of C-N and N-H (Mircescu et al., 2012).
All these distinct assignments were listed in Table 1. Clearly,
intensities of these peaks of AuNPs-melamine on wax-coated

TABLE 1 | Raman scattering peaks assignment for methyl parathion and

melamine (Mircescu et al., 2012; Li Z. et al., 2015).

Species Observed peaks(cm −1) Vibrational description

Methyl parathion (MP) 858.5 ν(P–O)

1111.0 ν(C–N)

1346.6 δ(C–H)

1591.6 Phenyl stretching

Melamine (Me) 576.6 δ(NCN)+τ (NH2)

687.4 Ring breathing

978.6 δ(CNC)+τ (NCN)

1496.5 δ(NCN)+ω(NH2)

1549.9 ν(CN)+δ(NH2)

1692.6 δ(NH2)

ω, wagging vibration; δ, bending vibration; ν, stretching vibration; τ , twisting vibration.

silicon wafer were much stronger than those on bare silicon
wafer.

“Hot spots” have been demonstrated to be extremely
important for SERS based sensing (Camden et al., 2008;
Kubackova et al., 2015; Zhang et al., 2017). In order to
further improve the sensitivity of the sensor, another AuNPs
layer was coated onto the AuNPs-analytes on wax, forming
a spot of AuNPs-analytes/AuNPs double-decker structure
on wax. The additional AuNPs coating can substantially
increase the amount of small gaps between AuNPs-analytes
and AuNPs, resulting in a sandwich-like AuNP/analyte/AuNP
structure. As a result, intensities of the Raman scattering
peaks of wax/AuNPs-methyl parathion/AuNPs were significantly
increased compared to that of wax/AuNPs-methyl parathion
(green line in Figure 5A). Similar observation was made for
melamine as shown in Figure 5B. The results demonstrate that
the wax/AuNPs-analytes/AuNPs detection strategy developed
here can potentially detect methyl parathion and melamine with
high sensitivity.

Sensitivity of SERS Sensor System Toward
Targets
In order to determine the sensitivity of the SERS sensor, methyl
parathion in ethanol and melamine in water were prepared at
a range of concentrations from 1 × 10−4 M to 1 × 10−8 M.
The strongest peaks at 1346.6 and 687.4 cm−1 were selected
for concentration-dependence SERS studies of methyl parathion
and melamine, respectively. Figure 6A depicted the Raman
spectra of methyl parathion with concentrations varying from
1 × 10−4 M to 1 × 10−8 M. It was clear that the Raman
intensities significantly decreased with decreased concentration
of methyl parathion. Inset of Figure 6A represents the Raman
spectra at lowmethyl parathion concentrations, showing a clearly
distinguishable peak at 1346.6 cm−1 even at methyl parathion
concentration of 10 nM. The result demonstrated that the
wax/AuNPs-methyl parathion/AuNPs displays high sensitivity

FIGURE 6 | Raman scattering spectra of wax/AuNPs-methyl parathion/AuNPs at different methyl parathion concentrations varied from 10−8 M to 10−4 M (A) and

wax/AuNPs-melamine/AuNPs at different melamine concentrations varied from 10−9 M to 10−5 M (B).
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FIGURE 7 | (A) Raman scattering spectra of 5 wax/AuNPs-melamine/AuNPs samples and 5 wax/AuNPs-methyl parathion/AuNPs samples prepared at melamine

and methyl parathion concentrations of 1 × 10−6 M. (B) Plot of the absolute Raman intensities at 687.4 cm−1 for melamine and 1346.6 cm−1 for methyl parathion

from five different samples, respectively.

with detection limit down to nanomolar level (S/N > 3) for
methyl parathion. Similar results depicted in Figure 6B were
obtained for melamine. Raman scattering spectra intensities
obviously increased with increase of melamine concentrations.
The Raman scattering spectra at low concentrations melamine
were shown in inset of Figure 6B. A distinct peak at 687.4 cm−1

can be obtained at low melamine concentration of 1 × 10−9 M,
which demonstrates that the wax/AuNPs-melamine/AuNPs can
detect melamine at sub-nanomolar level (S/N >3). These results
proved that the wax/AuNPs-analyte/AuNPs based SERS strategy
is highly sensitive toward both methyl parathion and melamine.

Reproducibility and Practicability
Excellent hydrophobicity of wax-coated surface favors the
uniformity of the distribution of AuNPs-analyte/AuNPs on the
substrate after drying, thus resulting in better reproducibility
in SERS sensing. Also the use of a fiber-coupled portable
Raman spectrometer is beneficial to the reproducibility, because
the optical fiber collects signal from a much larger area,
compared to the desktop Raman microscope where the laser
beam is highly focused. As shown in Figure 7A, Raman
scattering spectra of quintuplicate methyl parathion and
melamine samples at an analyte concentration of 1 × 10−6

M were recorded. Similar peak intensities were obtained for
both methyl parathion and melamine in all five samples.
Figure 7B shows the absolute intensities for melamine and
methyl parathion after subtraction of the background signal. As
shown, the absolute intensities obtained were almost constant for
methyl parathion and melamine, with a small relative standard
deviation (RSD) of 6.81 and 5.92%, respectively, demonstrating a
satisfactory reproducibility in SERS-based detection toward both
analytes.

To study the feasibility of wax/AuNPs-analyte/AuNPs
based SERS platform in real applications, lake water spiked
with methyl parathion and milk spiked with melamine
were prepared with desired analyte concentrations (1 ×

10−5 M, 1 × 10−6 M, and 1 × 10−7 M). After sample

TABLE 2 | Recovery studies of methyl parathion in spiked lake water samples and

melamine in spiked milks samples.

Spiked samples Added amount (µM) Recoveries (%) RSD (%)

Lake water spiked with MP 10 98.6 9.03

1 114.2 9.11

0.1 97.3 6.58

Milk spiked with Me 10 68.6 11.09

1 59.3 9.11

0.1 66.4 5.27

processing as described in previous experimental section,
the Raman spectra of the samples were collected. The
Raman peak intensities at 1346.6 and 687.4 cm−1 were
used to calculate the recovery for methyl parathion and
melamine, respectively. As shown in Table 2, recoveries
of methyl parathion in spiked lake water ranges from
97.3 to 114.2% with a relative standard deviation <9.11%,
suggesting excellent recoveries for methyl parathion detection
in lake water samples. However, low recoveries of melamine
ranging from 59.3 to 68.6% were obtained in spiked milk
samples. The low recoveries are likely caused by the sample
treatment/melamine recovery procedure before Raman
detection. In our study, to recover melamine in milk, the milk
proteins and other macromolecules were denatured/precipitated
using methanol, followed by centrifugation for removal.
Denatured/precipitated proteins/macromolecules are naturally
absorbents, and thus can adsorb small molecules like melamine,
resulting in the loss of melamine in supernatant for the
SERS detection. In spite of the relatively lower recovery,
the maximum of melamine content of 2.5 ppm (20µM)
in milk regulated by many international agencies can be
easily detected (Wu et al., 2012; Trapiella-Alfonso et al.,
2013). These results have demonstrated that the wax/AuNPs-
analyte/AuNPs based SERS sensing strategy holds great
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potential in real applications for food safety and environment
protection.

CONCLUSIONS

In summary, we have presented a versatile, rapid and low-
cost SERS sensing platform enabled by AuNPs-analyte/AuNPs
double-decker structure on wax-coated hydrophobic surface
using a portable Raman spectrometer. The method has been
successfully applied for sensitive and selective detection ofmethyl
parathion and melamine. Wax coating provides a universal,
simple and low-cost method to produce highly hydrophobic
substrates, which can enhance the sensitivity and reproducibility
of SERS detection of analytes in water or polar solvents. In
addition, by coating another layer of AuNPs on AuNPs-analyte
to form double-decker structure, the sensitivity of the method is
further improved significantly due to the formation of more “hot
spots.” Remarkable recovery for methyl parathion spiked into
lake water and acceptable recovery for melamine spiked into milk
have been obtained, indicating good applicability and feasibility
of the developed sensor platform for real applications. All
these features demonstrated that the wax/AuNPs-analyte/AuNPs

based SERS sensing strategy can potentially be used in sensing
trace amount of chemicals for food and environmental safety
applications.
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