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The activity of the GABAergic neurons of the thalamic reticular nucleus (TRN) has long
been known to play important roles in modulating the flow of information through
the thalamus and in generating changes in thalamic activity during transitions from
wakefulness to sleep. Recently, technological advances have considerably expanded
our understanding of the functional organization of TRN. These have identified an
impressive array of functionally distinct subnetworks in TRN that participate in sensory,
motor, and/or cognitive processes through their different functional connections with
thalamic projection neurons. Accordingly, “first order” projection neurons receive “driver”
inputs from subcortical sources and are usually connected to a densely distributed TRN
subnetwork composed of multiple elongated neural clusters that are topographically
organized and incorporate spatially corresponding electrically connected neurons—first
order projection neurons are also connected to TRN subnetworks exhibiting different
state-dependent activity profiles. “Higher order” projection neurons receive driver
inputs from cortical layer 5 and are mainly connected to a densely distributed TRN
subnetwork composed of multiple broad neural clusters that are non-topographically
organized and incorporate spatially corresponding electrically connected neurons.
And projection neurons receiving “driver-like” inputs from the superior colliculus or
basal ganglia are connected to TRN subnetworks composed of either elongated or
broad neural clusters. Furthermore, TRN subnetworks that mediate interactions among
neurons within groups of thalamic nuclei are connected to all three types of thalamic
projection neurons. In addition, several TRN subnetworks mediate various bottom-
up, top-down, and internuclear attentional processes: some bottom-up and top-down
attentional mechanisms are specifically related to first order projection neurons whereas
internuclear attentional mechanisms engage all three types of projection neurons. The
TRN subnetworks formed by elongated and broad neural clusters may act as templates
to guide the operations of the TRN subnetworks related to attentional processes. In this
review article, the evidence revealing the functional TRN subnetworks will be evaluated
and will be discussed in relation to the functions of the various sensory and motor
thalamic nuclei with which these subnetworks are connected.

Keywords: thalamic reticular nucleus, subnetworks, thalamic projection neurons, sensory thalamus, motor
thalamus, intrathalamic interactions, attention
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INTRODUCTION

The thalamus is a prominent diencephalic structure that
contains a large number of nuclei (Figure 1), each of which
engages in its own specialized functions (Jones, 2007). This
collection of nuclei is a major destination of pathways that
carry exogenous, or stimulus-driven, information and those
that carry endogenous, or internally generated, information.
Whereas exogenous information travels through ascending
sensory pathways such as the visual, auditory, and somatosensory
systems, endogenous information arises from sensorimotor
structures that, in a behavioral context, are links in cortical-
subcortical networks that implement task-related, goal-directed,
motor outputs. Along with the cerebral cortex, these structures
include the cerebellum (CB; e.g., Middleton and Strick, 1998),
basal ganglia (BG; e.g., Middleton and Strick, 2000; Hikosaka
et al., 2006) and superior colliculus (SC; e.g., Krauzlis et al., 2013).

The main body of the thalamus is made up of nuclei
composed of glutamatergic projection neurons and GABAergic
interneurons (Sherman and Guillery, 2001; Jones, 2007). Most
thalamic projection neurons are innervated by glutamatergic
‘‘driver’’ afferents (Guillery, 1995; Sherman and Guillery, 1998,
2001; Rovó et al., 2012), which make up a small proportion
of these cells’ inputs, have large terminals containing round
vesicles (RL type >2 µm in diameter), and provide the main
information to be transmitted (e.g., receptive field properties).
Depending on the origin of their driver afferents, thalamic
projection neurons are defined as ‘‘first order’’ or ‘‘higher order’’
(Figure 2; Guillery, 1995; Sherman and Guillery, 1998, 2001;
Sherman, 2016): first order projection neurons receive driver

FIGURE 1 | Locations of some nuclei of the thalamus. Schematic drawing of a
horizontal section through the ventral part of the rat thalamus. Rostral is to the
top and medial is to the right. Scale = 500 µm. Abbreviations: ATN, anterior
thalamic nuclei; CL, centrolateral nucleus; MD, mediodorsal nucleus; PC,
paracentral nucleus; Pfl, lateral part of parafascicular nucleus; Pfm, medial
part of parafascicular nucleus; POm, posterior medial nucleus; TRN, thalamic
reticular nucleus; VA, ventroanterior nucleus; VL, ventrolateral nucleus; VPL,
ventroposterior lateral nucleus; VPM, ventroposterior medial nucleus. Other
thalamic nuclei discussed in the text, the dorsal lateral geniculate nucleus,
ventral medial geniculate nucleus, lateral posterior nucleus, and posterior
lateral nucleus, are located dorsal to the section shown.

inputs from subcortical sources whereas higher order projection
neurons receive driver inputs from corticothalamic (CT) neurons
in layer 5 (L5) of cortex. The terminals of these inputs from L5CT
neurons and subcortical sources are immunoreactive to vesicular
glutamate transporter type 1 (vGluT1) and type 2 (vGluT2),
respectively (Rovó et al., 2012). A much larger proportion of the
afferents to thalamic projection neurons are ‘‘modulator’’ inputs
(Guillery, 1995; Sherman and Guillery, 1998, 2001; Sherman,
2016; see also Rovó et al., 2012), which alter the gain of
the signal transmitted by these cells. These afferents mainly
come from descending efferents of glutamatergic CT neurons
in layer 6 (L6) of cortex (Figure 2) and have small terminals
containing round vesicles (RS type <1 µm in diameter). Other
sources of modulator inputs to thalamic projection neurons
include the GABAergic neurons of the thalamic reticular nucleus
(TRN; Figure 2) and the cholinergic neurons of the brainstem
pedunculopontine nucleus (PPN; Figure 2) and basal forebrain
(see McCormick, 1992 and Sherman and Guillery, 2001 for
fuller accounts of the sources of modulator inputs to thalamic
projection cells). Thalamic projection neurons send efferents
to cortex—the thalamocortical (TC) cells (Figure 2)—or to
the striatum—the thalamostriatal (TS) cells. The striatum (the
caudate nucleus and putamen) is the major input structure
of BG.

TRN is a sheet of GABAergic neurons (Houser et al., 1980;
Oertel et al., 1983) that surround the main body of thalamic
nuclei (Figure 1). Strategically located between the thalamic
nuclei and cortex, these cells receive glutamatergic afferents
from axon collaterals of TC neurons and L6 CT neurons
(Figure 2), which provide driver (Gentet and Ulrich, 2003;
Lam and Sherman, 2005, 2011, 2015) and modulator (Gentet
and Ulrich, 2004) inputs, respectively. In addition to L6 CT
afferents, TRN neurons also receive modulator inputs from
many of the same sources that innervate thalamic projection
neurons—for example, cholinergic inputs from PPN (Figure 2;
see McCormick, 1992 and Sherman and Guillery, 2001 for
fuller accounts of the sources of modulator inputs to TRN
cells). TRN sends efferents to TC projection neurons, thus
completing feedforward L6 CT→TRN→TC and feedback
TC→TRN→TC inhibitory circuits (Figure 2; e.g., Salt, 1989;
Kim and McCormick, 1998; Cruikshank et al., 2010). The
feedback connections are mainly open-loop circuits (Pinault
and Deschênes, 1998b; Crabtree, 1999; Pinault, 2004) that
result in lateral inhibition of TC neurons (e.g., Salt, 1989; Binns
et al., 2003; Lam and Sherman, 2005, 2015; Copeland et al.,
2012). TRN afferents to TC neurons activate postsynaptic
ionotropic GABAA receptors and metabotropic GABAB
receptors that reduce neuronal responsiveness, respectively,
through a non-hyperpolarizing shunting inhibition and a direct
membrane hyperpolarization. As a major source of GABAergic
inhibition in the thalamus, TRN has long been recognized as
playing an important role in reducing the gain of the signal
transmitted by thalamic projection neurons during tonic firing
(Sherman and Koch, 1986; see Halassa and Acsády, 2016 for
other sources of inhibition in the thalamus). Furthermore, TRN
has long been associated with changes in thalamic activity during
transitions from wakefulness to sleep (Steriade and Llinás, 1988;
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FIGURE 2 | Schema of some neural circuitry of the thalamus, cortex and
brainstem. Circuits showing first order (FO) and higher order (HO) connections
of thalamocortical (TC) neurons (green cells) with neurons of the thalamic
reticular nucleus (TRN; red cells) and cortical areas 1 (Ctx1) and 2 (Ctx2). Only
the major thalamic-related input (layer 3/4) and output (layers 5 and 6) cortical
laminae are shown. First order TC neurons receive driver afferents through
ascending sensory pathways (green), whereas higher order TC neurons
receive driver afferents through descending pathways (purple) from
corticothalamic (CT) neurons in layer 5 (purple cell). Ascending and
descending driver afferents have large axon terminals, whereas descending
modulator afferents to TC and TRN neurons from CT neurons in layer 6 (blue
cells) have small axon terminals. Note that TRN neurons can engage in
closed-loop and/or open-loop circuits with TC neurons. Only brainstem
modulator inputs (orange) from the pedunculopontine nucleus (PPN) are
shown.

Lewis et al., 2015). Thus, rhythmic burst firing of TRN neurons
and their interactions with TC neurons generate sleep-related
oscillatory activity in the thalamus (McCormick and Bal, 1997;
Fogerson and Huguenard, 2016; Halassa and Acsády, 2016).
Note that the above circuits and processes would also apply to
TS neurons.

Defined anatomically, TRN can be divided into several sectors
that are distributed along the plane of the nucleus (Jones, 1975;
Guillery et al., 1998; Crabtree, 1999; Guillery and Harting,
2003). These include a dorsocaudal visual sector (visTRN),
a ventrocaudal auditory sector (audTRN), a ventrocentral
somatosensory sector (ssTRN), and a rostral motor sector
(mtrTRN)—including the ‘‘limbic’’ (Lozsádi, 1994, 1995; Halassa
et al., 2014) and ‘‘(pre)frontal’’ (Zikopoulos and Barbas, 2006,
2012) sectors—and each of these sectors is connected to
different thalamic nuclei and their associated cortical areas. Such
anatomically defined sectors, with their delineation of borders,
foster a compartmental view of the general organization of TRN.

However, beyond this general view, mounting evidence shows
that several functionally distinct subnetworks related to various
sensory, motor, and cognitive processes operate across sectors
within TRN.

Various experimental approaches have identified diverse,
functionally distinct, subnetworks in TRN as defined by
the spatial distributions, functional connections, and state-
dependent activities of its constituent neurons. The purpose of
this review is to focus on the identification of these subnetworks
and their underlying circuitry and to show how they extend
our current understanding of the functional roles of TRN
in sensory, motor, and cognitive processes. Accordingly, a
comprehensive and detailed description is provided to delineate
the anatomical organization and function of the subnetworks,
a topic not addressed by other recent reviews (Fogerson and
Huguenard, 2016; Halassa and Acsády, 2016; Krol et al.,
2018). To understand the functional significance of the TRN
subnetworks, it will be important to take into account the
functions of the thalamic nuclei with which the subnetworks
are connected. Because these subnetworks often involve all or
most of the neural population in a given TRN sector, many
neurons contained therein most likely participate in two or more
functionally distinct subnetworks. Such functional versatility
would enable TRN neurons to differentially modulate thalamic
projection neurons depending on ever-changing sensory, motor,
and cognitive circumstances.

INTRA-TRN SUBNETWORKS

Chemical and Electrical Synapses
Previous electrophysiological studies indicated that TRN
neurons are functionally connected through chemical (Sanchez-
Vives et al., 1997; Shu and McCormick, 2002) and electrical
(Landisman et al., 2002; Long et al., 2004) synapses. Such
connectivity was subsequently mapped in in vitro slice
preparations through ssTRN of young rats (10–15 days
postnatal; Deleuze and Huguenard, 2006; Lam et al., 2006).
Using laser-guided glutamate uncaging to activate neurons,
inhibitory postsynaptic currents (IPSCs), mediated by GABAA
receptors (chemical synapses) and excitatory depolarizing
spikelets, mediated by gap junctions (GJs; electrical synapses),
were recorded in ssTRN neurons and were evoked from regions
surrounding recorded cells—these regions are spatially restricted
and generally correspond to the extent of the dendritic arbor
of a recorded cell (Deleuze and Huguenard, 2006). Thus, in
young rats, connected ssTRN neurons largely consist of two
functionally distinct populations, one representing neurons
that promote desynchronization of TRN activity through
chemical synapses (Sohal and Huguenard, 2003) and the other
representing neurons that promote synchronization of TRN
activity through electrical synapses (Landisman et al., 2002; Long
et al., 2004). However, in rodents older than 2 weeks of age, TRN
neurons lose their inhibitory connections through chemical
synapses (Landisman et al., 2002; Cruikshank et al., 2010; Hou
et al., 2016) but retain their excitatory connections through
electrical synapses (Landisman et al., 2002) and the ability to
synchronize their activity (Long et al., 2004).
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In ssTRN of rodents, about one third to one half of the
neural population form electrical synapses through GJs (Deleuze
and Huguenard, 2006; Lam et al., 2006; Lee et al., 2014)
and GJ-coupled clusters of these electrically connected neurons
can be visualized through dye coupling following single-cell
injections with neurobiotin (Lee et al., 2014)—TRN neurons
number up to 24 cells in a cluster and average about nine cells
per cluster. Defined in part by their spatial configurations, these
GJ-coupled neural clusters mainly consist of two functionally
distinct neural subnetworks (Figure 3A): about 63% of the
clusters are elongated—the combined ‘‘elongated’’ and ‘‘discoid’’
types of clusters (Lee et al., 2014)—lie in the plane of
TRN parallel to its borders, and occupy a fraction of its
thickness, whereas about 14% of the clusters are broad—the
‘‘spherical’’ type of cluster (Lee et al., 2014)—occupy much of
the thickness of TRN, and overlap the elongated clusters. The
elongated clusters resemble the organizational components in
TRN that represent local areas on a sensory surface (Crabtree,
1999). Thus, the elongated clusters would represent local
areas on the somatosensory surface of the head or body and
the broad clusters would represent more global, or multiple
loci, on the somatosensory surface. The two main types of
GJ-coupled neural clusters also differ in their projections to
two prominent somatosensory regions in the thalamus, the
ventroposterior medial (VPM) and ventroposterior lateral (VPL)
nuclear complex and the posterior medial (POm) nucleus
(Figure 1): whereas injected cells in elongated clusters project to
either VPM/VPL, containing first order TC neurons, or POm,
containing higher order TC neurons, injected cells in broad
clusters project to either VPM/VPL or POm and can project to
both VPM/VPL and POm through branching axons (Figure 3A).
The different thalamic projections of the elongated and broad
GJ-coupled clusters are consistent, respectively, with unbranched
and branched projections from ssTRN seen in pathway tracing
studies (rat: Pinault et al., 1995; cat: Crabtree, 1996). Although
recordings and dye injections were restricted to ssTRN, the
proportion of electrically connected neurons and their spatial
configurations could be representative of the neural connectivity
in other TRN sectors.

Subnetworks Connecting TRN Sectors?
Involvement with a single sensory modality is usually thought
to delineate neurons in the various sensory sectors of TRN
(Guillery et al., 1998; Crabtree, 1999; Guillery and Harting,
2003). However, recent in vivo recordings in the adult rat
show substantial cross-modal modulation of neural activity
in visTRN and audTRN in response to visual and auditory
stimuli (Kimura, 2014) and in audTRN and ssTRN in
response to auditory and somatosensory stimuli (Kimura,
2017). Such cross-modal effects are subthreshold, predominantly
suppress a response to a stimulus of one modality by a
stimulus of another modality, and are present throughout an
entire sensory sector of TRN. To account for these effects,
it is tempting to attribute intra-TRN connectivity between
sensory sectors—particularly inhibitory connections formed
by chemical synapses—as the main underlying mechanism.
However, after an early developmental period, all that remains

of intra-TRN connections are those of electrical synapses;
so, considering just the predominant cross-modal response
suppression, how these excitatory connections could produce
such suppressive effects is difficult to imagine. Alternatively,
the widespread cross-modal modulation in a TRN sector
suggests influences originating from extrathalamic sources,
such as the widespread inputs to TRN from the cholinergic
neurons of PPN (Figure 2; Hallanger et al., 1987; Steriade
and Llinás, 1988; Winn, 2006)—these neurons receive afferents
from multimodal cells in the intermediate/deep layers of
SC (Steininger et al., 1992) and thus have short-latency
multimodal responses to visual, auditory, and somatosensory
stimuli (Winn, 2006; Gut and Winn, 2016). Cholinergic
activation of TRN neurons results in fast and relatively
weak excitatory postsynaptic currents (EPSCs), mediated by
nicotinic (ionotropic) acetylcholine (ACh) receptors, followed
by long-lasting and relatively strong IPSCs, mediated by
muscarinic (metabotropic) ACh receptors (Sun et al., 2013).
Accordingly, activation of cholinergic PPN→TRN circuits by
stimuli of one modality could predominantly hyperpolarize TRN
neurons through metabotropic ACh receptors, which would be
well-suited to suppress responses to stimuli of another modality
operating through glutamatergic TC→TRN circuits. Given
appropriately timed onsets of stimuli of different modalities
(Kimura, 2014, 2017), interactions between these modulator
(cholinergic) and driver (glutamatergic) circuits could account
for much of the observed cross-modal modulation of TRN neural
activity. If so, PPN may play a role in rapidly informing TRN
about the occurrence of potentially significant sensory stimuli
during changing environmental circumstances (see Winn, 2006;
Gut and Winn, 2016).

TRN SUBNETWORKS RELATED TO
THALAMOCORTICAL (TC) AND
THALAMOSTRIATAL (TS) NEURONS

First Order TC Neurons
Many first order TC neurons transmit ascending sensory
information to cortex (Figure 2; Guillery, 1995; Sherman and
Guillery, 1998; Sherman, 2016). The subcortical driver afferents
to these cells are commonly branches of axons that also project
to motor regions in the brainstem or spinal cord (Guillery and
Sherman, 2002, 2011; Guillery, 2003, 2005; Sherman, 2016).
According to this scheme, these driver afferents would carry
two concurrent messages: information about sensory stimuli and
copies of motor instructions, or efference copies, about potential
or impending self-generated movements related to those stimuli.
Efference copies sent to thalamus and then transmitted to cortex
would continually update these higher brain areas about ongoing
motor instructions sent to brainstem or spinal cord.

Two functionally distinct subnetworks of TRN neurons that
connect with first order TC neurons have recently been identified
(Figure 3B; Halassa et al., 2014; Chen et al., 2016). In the
mouse, in vivo recordings from dorsocaudal TRN compared
with those from dorsorostral TRN revealed different state-
dependent patterns of neural activity. The activity of many
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FIGURE 3 | Schematic summary of different types of subnetworks in TRN. (A) TRN subnetworks identified according to their spatial distributions of electrically
connected neurons through gap junctions (GJs) and connectivity with first order and/or higher order TC neurons. Elongated (circumscribed in orange) and broad
(circumscribed in purple) GJ-related clusters of neurons (small gray ovals) are shown in TRN. (B) TRN subnetworks identified according to their state-dependent
activity, location in TRN, and connectivity with first order thalamic nuclei. Neurons in dorsorostral TRN (orange) exhibit arousal-related activity whereas those in
dorsocaudal TRN (blue) exhibit sleep-related activity. It is unclear whether this latter activity affects higher order sensory nuclei (LP and POl) in the thalamus.
Abbreviations: AD, anterodorsal nucleus; dLGN, dorsal lateral geniculate nucleus; LP, lateral posterior nucleus; POl, posterior lateral nucleus. (C) TRN subnetworks
identified according to their spatial distributions of neurons activated by glutamate corresponding to activation zones (AZs) and functional connectivity with first order
and higher order TC neurons and driver-like-recipient thalamocortical/thalamostriatal (TC/TS) neurons. Elongated (circumscribed in orange) and broad (circumscribed
in purple) AZ-related clusters of neurons (small gray ovals) are shown in TRN. (D) TRN subnetworks identified according to their mediation of interactions between
groups of thalamic nuclei. Each group of interacting nuclei in the thalamus (shown on the right) is color coded. A possible distribution of neurons that mediate these
interactions in TRN (shown on the left) is similarly color coded. Abbreviations: ILc, caudal intralaminar nuclei; ILr, rostral intralaminar nuclei; POm, posterior medial
nucleus; TRN, thalamic reticular nucleus; VL, ventrolateral nucleus; VPM, ventroposterior medial nucleus.

neurons in the dorsocaudal region of TRN is positively correlated
with sleep-related cortical rhythms (spindles and slow-waves).
However, the activity of many neurons in the dorsorostral
region of TRN increases upon arousal during wakefulness and
is negatively correlated with sleep-related rhythms. Neurons
in the dorsocaudal region of TRN send projections to a
thalamic nucleus involved in sensory functions—in rodents,
cells in this region are connected to first order TC neurons
in the dorsal lateral geniculate nucleus (dLGN; Coleman and
Mitrofanis, 1996), whose efferents convey visual information
from the retina to visual cortex. Although recordings from
this region (Halassa et al., 2014; Chen et al., 2016) did
not distinguish between TRN neurons projecting to dLGN
or higher order thalamic nuclei (the lateral posterior and

posterior lateral nuclei; Coleman and Mitrofanis, 1996), it
is most likely that many of the recorded cells projected to
dLGN because such cells occupy the lateral two thirds of
dorsocaudal TRN (Coleman and Mitrofanis, 1996) and would
have been the first neurons encountered during the lateral
approach of recording electrodes. In contrast, neurons in the
dorsorostral region of TRN send projections to a thalamic
nucleus involved in motor functions—in rodents, cells in
this region are connected to first order TC neurons in the
thalamic anterodorsal (AD) nucleus (Figure 1; Lozsádi, 1995;
Petrof and Sherman, 2009) whose efferents carry navigational
information during locomotor/exploratory behavior from the
lateral mammillary nucleus of the hypothalamus to the
postsubicular region of cortex (Blair et al., 1998). Driver afferents
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to TC neurons in AD are branches of axons that also descend
to brainstem motor regions (Guillery and Sherman, 2002). In
single-cell recordings in rats performing a food-retrieval task,
AD neurons increase their firing rates when animals move
their heads to face in a particular direction: individual AD
neurons respond maximally to only one head direction and,
collectively, head-direction preferences are distributed over the
360◦ range of possibilities (Blair and Sharp, 1995; Taube, 1995).
These head-direction responses are abolished when animals are
restrained and passively rotated (Taube, 1995), thus highlighting
the primary contribution of efference copies (motor instructions)
in determining the response properties of AD neurons. Together,
the foregoing evidence suggests a sensory-motor dichotomy in
TRN neural subnetworks based on their firing patterns during
different behavioral states and their connectivity with first
order TC neurons in either sensory or motor thalamic nuclei
(Figure 3B).

Anatomical pathway tracing studies indicate that TRN
neurons are topographically organized according to their efferent
connections with first order TC neurons (Guillery et al., 1998;
Crabtree, 1999; Guillery and Harting, 2003). Such neurons are
found in VPM and VPL (Figure 1), whose efferents convey
somatosensory information from the brainstem trigeminal
complex (head representation) and dorsal column nuclei (body
representation), respectively, to somatosensory cortex, and in
the thalamic ventrolateral (VL) nucleus (Figure 1), whose
efferents carry motor information from the output nuclei of CB
(e.g., the dentate nucleus) to motor, premotor, and prefrontal
cortical areas (monkey: Middleton and Strick, 1998, 2001; Haber
and McFarland, 2001; rat: Kuramoto et al., 2009). Although
VL efferents to cortex are widespread, these primarily target
motor and premotor cortical areas. Furthermore, VL is a
thalamic link in largely segregated Cortex→CB→VL→Cortex
loops involved in motor control (monkey: Middleton and
Strick, 1998, 2000)—for example, in monkeys performing visual
tracking tasks, VL efferents carry information about sequential
movements from the dentate nucleus to motor cortex. Using
the glutamate-uncaging technique in in vitro slice preparations
through the rodent thalamus, GABAA receptor-mediated IPSCs
were recorded in VPM and VPL neurons (rat: Lam and
Sherman, 2005; mouse: Lam and Sherman, 2007) and VL
neurons (mouse: Lam and Sherman, 2015) and were evoked from
activation zones (AZs), or ‘‘footprints,’’ in ssTRN and mtrTRN,
respectively. As noted earlier, using this technique activates
neurons (Deleuze and Huguenard, 2006; Lam et al., 2006);
therefore, the AZs and their spatial configurations correspond
to underlying clusters of neurons activated by glutamate. Such
clusters will hereafter be referred to as AZ-related clusters.
Although data from VL and the functionally distinct thalamic
ventroanterior (VA) nucleus were grouped together (Lam and
Sherman, 2015), it appears that about two thirds of the cells were
from VL—those recorded dorsocaudally—and the remaining
cells were from VA—those recorded ventrorostrally—as defined
using immunostaining techniques (Figure 1; Kuramoto et al.,
2009, 2011). Single VPM, VPL, and VL neurons usually receive
functional inputs from elongated AZ-related neural clusters
in TRN that lie in the plane of the nucleus parallel to its

borders—such clusters are distributed throughout the VPM-,
VPL-, and VL-related territories. The AZ-related clusters in
ssTRN shift mediolaterally or rostrocaudally in the outer (lateral)
tiers of the thickness of TRN relative to similar shifts in
the location of recorded VPM and VPL neurons, whereas
the AZ-related clusters in mtrTRN shift mediolaterally or
dorsoventrally in both the inner (medial) and outer tiers of
the thickness of TRN relative to similar shifts in the location
of recorded VL neurons. Thus, the corresponding shifts in
clusters and recording locations indicate functional topographic
organizations in TRN efferent connections with first order TC
neurons. These functional maps are consistent with anatomically
defined maps in ssTRN (rabbit: Crabtree, 1992a; cat: Crabtree,
1992b, 1996; rat: Pinault et al., 1995) and mtrTRN (rat: Cicirata
et al., 1990).

Higher Order TC Neurons
Higher order TC neurons transmit information from
L5 of one cortical area to another cortical area through
corticothalamocortical, or transthalamic, circuits (Figure 2;
Guillery, 1995; Sherman and Guillery, 1998; Sherman, 2016).
The cortical driver afferents to these cells are commonly branches
of axons that also project to motor regions in brainstem or spinal
cord (Deschênes et al., 1994; Guillery and Sherman, 2002, 2011;
Guillery, 2003, 2005; Sherman, 2016). Accordingly, in addition
to their sensory-related messages, these driver inputs would
carry efference copies that would update the thalamus and the
second cortical area about ongoing motor instructions that are
generated by the first cortical area. Furthermore, through their
interactions with cortex during goal-directed behavior, thalamic
projection neurons involved in higher order circuits also play
important roles in cognitive processes (Acsády, 2017; Halassa
and Kastner, 2017; Nakajima and Halassa, 2017; Halassa, 2018;
Rikhye et al., 2018), enabling (Purushothaman et al., 2012; Zhou
et al., 2016) and sustaining (Bolkan et al., 2017; Guo et al., 2017;
Schmitt et al., 2017) activity among neural networks within a
cortical area and promoting neural synchrony across cortical
areas (Saalmann et al., 2012; Zhou et al., 2016).

Anatomical pathway tracing studies indicate that TRN
neurons are not topographically organized according to their
efferent connections with higher order TC neurons (Guillery
et al., 1998; Crabtree, 1999). Such neurons are found in POm
(Figure 1), which conveys information through transthalamic
circuits from somatosensory cortical area 1 to somatosensory
cortical area 2 (mouse: Theyel et al., 2010); some POm neurons
also receive convergent driver inputs from L5 of somatosensory
cortex and the brainstem trigeminal complex (rat: Groh et al.,
2014). Using the glutamate-uncaging technique in in vitro slice
preparations through the mouse thalamus, GABAA receptor-
mediated IPSCs were recorded in POm neurons and were evoked
from AZ-related neural clusters in ssTRN (Lam and Sherman,
2007). Single POm neurons receive functional inputs from
AZ-related clusters with two different spatial configurations:
about one third of the cells receive inputs from elongated
clusters in the inner tier of the thickness of TRN—these
clusters lie parallel to the inner border of the nucleus and
are not topographically organized—whereas about two thirds
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of the cells receive inputs from broad clusters in TRN—these
clusters span all or most of the thickness of the nucleus, are
distributed throughout the territory connected to POm, and
overlap the VPM- and VPL-related elongated clusters. The
functional organization of this partly restricted but mainly broad
TRN connectivity with higher order TC neurons is consistent
with patterns seen in ssTRN in pathway tracing studies (rat:
Pinault et al., 1995; Crabtree et al., 1998; cat: Crabtree, 1996).

Thalamic TC/TS Neurons Receiving
Driver-Like Inputs
Besides those that operate as first order or higher order
TC neurons, some thalamic projection neurons transmit
information provided by ‘‘driver-like’’ afferents—for example,
GABAergic inputs from the output nuclei of BG, the substantia
nigra pars reticulata (SNr) and internal globus pallidus (GPi)
(Figure 4; Bosch-Bouju et al., 2013), or glutamatergic inputs
from SC (Figure 4; Bickford, 2016) that have medium-sized
RL-type terminals. In SC-recipient thalamic nuclei (e.g., dLGN),
many driver-like inputs can converge on single projection
neurons to determine their response properties (Smith et al.,
2007; Bickford, 2016). In VA (Figure 1), a primary target of
BG efferents, GABAergic afferents from SNr/GPi are widely
distributed and have large terminals (>2 µm in diameter) with
multiple synaptic release sites on somata and proximal dendrites
of VA neurons (cat: Kultas-Ilinsky et al., 1985; monkey: Kultas-
Ilinsky and Ilinsky, 1990; Ilinsky et al., 1997; Rovó et al., 2012).
But are VA neurons also innervated by conventional driver
inputs? When the thalamus of the monkey is immunoreacted for
vesicular glutamate transporters, vGluT1- and vGluT2-positive
RL-type terminals are not detected in VA (Rovó et al., 2012).
However, there is evidence in the monkey that VA receives
afferents from L5 of premotor (McFarland and Haber, 2002) and
prefrontal (Zikopoulos and Barbas, 2007) cortical areas—inputs
from prefrontal cortex correspond to anterogradely labeled
terminals (mean diameter ± variance = 2.1 ± 0.44 µm) that
form asymmetric synapses with (proximal?) dendrites of VA
neurons. Thus, together with powerful driver-like (inhibitory)
afferents from SNr/GPi, inputs from L5 CT neurons indicate
the presence in VA of driver (excitatory) afferents from cortex,
although they do not express a detectable level of vGluT1 or
may use a different vesicular glutamate transporter. So, how
can driver-like inhibitory inputs influence the action potential
output of VA neurons? One long-standing possibility is that
the firing rates of VA neurons could be shaped by transient
and select inhibition of SNr/GPi outputs, thus producing
transient and select disinhibition (or release from inhibition)
of populations of VA neurons and a concomitant increase
in their firing rates (Chevalier and Deniau, 1990; Mink,
1996).

Although the anatomical organization of TRN connections
with neurons receiving driver-like inputs is unknown, the
functional organization of projections from TRN to two thalamic
nuclei containing such neurons, VA and the centrolateral (CL)
nucleus (Figure 1), has been studied (Lam and Sherman,
2015). VA is predominantly a BG-recipient nucleus whose

FIGURE 4 | Origins of driver-like afferents to some thalamic nuclei. Driver-like
inputs originating from output nuclei of the basal ganglia (orange) are
GABAergic whereas those originating from output layers of the superior
colliculus (green) are glutamatergic. Abbreviations: dLGN, dorsal lateral
geniculate nucleus; GPi, internal globus pallidus; IL, intralaminar nuclei; SNr,
substantia nigra pars reticulata; VA, ventroanterior nucleus.

efferents carry motor information from the output nuclei of
BG to striatum (rat: Kuramoto et al., 2009) and several cortical
areas (monkey: Middleton and Strick, 2000, 2001; Haber and
McFarland, 2001; rat: Kuramoto et al., 2009); although VA
projections to cortex are widespread, these primarily target
premotor and prefrontal cortical areas. Furthermore, VA is a
thalamic link in Cortex→BG→VA→Cortex loops (monkey:
Alexander et al., 1986; Alexander and Crutcher, 1990; Haber and
McFarland, 2001) involved in selecting motor programs (Mink,
1996; Redgrave et al., 1999) and these loops contain positive
(excitatory) feedback circuits—for example, in mice performing
a tactile discrimination task, neurons in VA and premotor cortex
engage in reverbatory interactions to sustain activity during
preparation and selection of specific actions (Guo et al., 2017).
CL is an SC-recipient nucleus (Chevalier and Deniau, 1984;
Grunwerg and Krauthamer, 1992; Krout et al., 2001) whose
efferents carry motor information from SC to striatum and
motor and premotor cortical areas (see ‘‘TRN Subnetworks
Related to Two or More Thalamic Nuclei’’ section for further
elaboration of CL function). Using the glutamate-uncaging
technique in in vitro slice preparations through the mouse
thalamus, GABAA receptor-mediated IPSCs were recorded in
VA and CL neurons and were evoked from AZ-related neural
clusters in mtrTRN (Lam and Sherman, 2015). About one half
of the VA neurons and most CL neurons receive functional
inputs from elongated AZ-related clusters in TRN that lie in
the plane of the nucleus parallel to its borders—such clusters
are distributed throughout the VA- and CL-related territories.
The elongated clusters shift mediolaterally or dorsoventrally
in mainly the outer tier of the thickness of TRN relative to
similar shifts in the location of recorded VA neurons, whereas
such clusters shift dorsoventrally in mainly the inner tier of
the thickness of TRN relative to similar shifts in the location
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of recorded CL neurons. Thus, the corresponding shifts in
clusters and recording locations indicate functional topographic
organizations in TRN efferent connections with TC/TS neurons
receiving driver-like inputs; these functional maps are consistent
with the organization of an anatomically definedmap inmtrTRN
related to VL (rat: Cicirata et al., 1990). However, about one
half of the VA neurons receive functional inputs from broad
AZ-related clusters in TRN that span all or most of the thickness
of the nucleus—these clusters are distributed throughout the
territory connected to VA and overlap the VA-related elongated
clusters.

In summary, two functionally distinct subnetworks of
TRN neurons have been identified according to their firing
patterns during different behavioral states—sleep and arousal
(Figure 3B); these sleep- and arousal-related subnetworks
are connected, respectively, with first order TC neurons in
sensory (dLGN) and motor (AD) thalamic nuclei. Furthermore,
two other functionally distinct TRN subnetworks have been
identified that are made up of AZ-related clusters of neurons
with different spatial configurations—elongated and broad
(Figure 3C). Individual clusters provide convergent inhibitory
inputs onto single TC and TC/TS neurons in sensory and
motor nuclei. The elongated and broad AZ-related clusters
within a TRN sector are functionally connected to particular
types of projection neurons in various thalamic nuclei:
elongated clusters provide local topographical modulation of
first order TC neurons in somatosensory (VPM and VPL)
and motor (VL) nuclei, BG-recipient TC/TS neurons in a
motor nucleus (VA), and SC-recipient TC/TS neurons in a
motor nucleus (CL), whereas broad clusters provide more global
non-topographical modulation of higher order TC neurons in a
somatosensory nucleus (POm) and BG-recipient TC/TS neurons
in a motor nucleus (VA). Because individual TRN neurons
in either elongated or broad AZ-related neural clusters are
also part of similarly configured clusters related to neighboring
cells (Figure 5), a picture emerges of two functionally
distinct and dense subnetworks in TRN each of which is
composed of multiple overlapping neural clusters that are widely
distributed within a TRN sector—although segregated, these two
subnetworks can overlap. Despite an experimental approach that
emphasized the functional connections of individual AZ-related
clusters in TRN with single thalamic projection neurons (Lam
and Sherman, 2005, 2007, 2015), these clusters should not be
thought of as engaging these neurons in a 1:1 relationship—such
a scheme cannot account for how a small population of neurons
in a TRN sector supplies inhibition to a much larger population
of neurons in a thalamic nucleus. Instead, individual TRN
neurons usually provide divergent inhibitory inputs onto several
neighboring thalamic projection neurons (Figure 5; Salt, 1989;
Pinault et al., 1995; Cox et al., 1996; Pinault and Deschênes,
1998a,b; Binns et al., 2003; Lam and Sherman, 2005, 2015;
Copeland et al., 2012). For the two projection neuron-connected
subnetworks in TRN—formed by elongated or broad AZ-related
neural clusters—the spatial configurations of these clusters are
strikingly similar to GJ-coupled clusters of electrically connected
TRN neurons (Figure 3A; Lee et al., 2014). Because every neuron
in a TRN sector participates in one or the other projection

FIGURE 5 | Individual neurons in the TRN are part of multiple overlapping
neural clusters. Related to a particular type of thalamic projection neuron,
individual reticular neurons in a neural cluster (e.g., central red cell of three
cells shown underlying an activation zone (AZ; blue oval) shown on the left) are
also part of other AZ-related neural clusters (outlined ovals) formed by
neighboring reticular neurons, creating a dense subnetwork of multiple
overlapping neural clusters in TRN. This anatomical arrangement would apply
to both elongated and broad types of AZ-related clusters of reticular neurons
(see text for details). Because each reticular neuron usually provides inhibitory
inputs to several neighboring thalamocortical (TC) neurons (only five are shown
on the right), the divergent outputs of reticular neurons suggest that single TC
neurons can receive convergent inhibitory inputs from neurons in more than
one neural cluster in TRN.

neuron-connected subnetwork, each subnetwork most likely
incorporates all of the spatially corresponding electrically
connected neurons. Synchronous activity through electrical
connections in the projection neuron-connected subnetworks
would enhance the impact of their convergent inhibitory inputs
onto TC and TC/TS neurons.

TRN SUBNETWORKS RELATED TO TWO
OR MORE THALAMIC NUCLEI

Because of the absence of direct glutamatergic connections
between projection neurons in different thalamic nuclei,
these cells are thought to have their own private lines
of communication with cortex and/or striatum. However,
anatomical pathway tracing studies suggested that projection
neurons in different thalamic nuclei could functionally
interact through disynaptic pathways mediated by TRN.
Thus, thalamoreticular terminals and/or TRN neurons related to
two or more thalamic nuclei are often situated in close proximity
within overlapping territories (Cicirata et al., 1990; Pinault
et al., 1995; Crabtree, 1996, 1998; Kolmac and Mitrofanis, 1997;
Crabtree et al., 1998; Pinault and Deschênes, 1998a), TRN
neurons can project to more than one thalamic nucleus (Pinault
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et al., 1995; Crabtree, 1996, 1998; Kolmac and Mitrofanis, 1997),
and axonal fasciculi that stream across the thalamus have parallel
trajectories that relate to particular subsets of thalamic nuclei
and TRN regions (Crabtree and Isaac, 2002). Each of these
anatomical factors can contribute to the creation of interfaces
for TRN-mediated interactions between projection neurons
in different thalamic nuclei. This possibility was tested in an
in vitro slice preparation taken in the horizontal plane through
the rat thalamus (Figure 1; Crabtree et al., 1998; Crabtree
and Isaac, 2002). Robust GABAA receptor-mediated IPSCs
were recorded from single neurons in one thalamic nucleus
evoked by activating neurons with locally applied glutamate in
another thalamic nucleus. Thus, through disynaptic open-loop
TC→TRN→TC circuits (Figure 2), activation of neurons in
one thalamic nucleus can inhibit and temporarily interrupt tonic
firing of neurons in another thalamic nucleus; note that the above
circuits would also apply to TS neurons. In our slice preparation,
these circuits mediate reciprocal interactions within particular
groups of thalamic nuclei—the caudal and rostral intralaminar
(ILc and ILr, respectively) nuclei, VPM, POm, and ILc, and VL
and ILr—but not within other groups of nuclei (e.g., VPM/POm
and VL). Furthermore, when neurons in two or more thalamic
nuclei are activated, convergence of inhibitory inputs on single
thalamic neurons can also occur across groups—for example,
TRN-mediated inhibition of ILr neurons following activation of
VL and ILc neurons or of ILc neurons following activation of
VPM, POm and ILr neurons. Reciprocal interactions between
pairs of nuclei show a general caudal to rostral topographic
organization between activation and recording sites, reflecting
the parallel organization of the axonal fasciculi that traverse the
thalamus.

Caudal and Rostral Intralaminar Nuclei
Located medially within the internal medullary lamina, ILc
and ILr are groups of thalamic nuclei whose topographically
organized reciprocal interactions are most likely mediated
by neurons in a broad central to rostral region of TRN
(Kolmac and Mitrofanis, 1997; Crabtree and Isaac, 2002).
In the rodent, ILc mainly includes the lateral and medial
parts of the parafascicular (Pfl and Pfm, respectively) nucleus
(Figure 1)—the centromedian (CM) and Pf nuclei in monkeys
are homologous, respectively, to Pfl and Pfm in rodents—and ILr
mainly includes CL and the paracentral (PC) nucleus (Figure 1).
ILc and ILr are both SC-recipient nuclear complexes (Figure 4;
McHaffie et al., 2005) receiving afferents from multimodal
cells in the intermediate/deep layers of SC (Grunwerg and
Krauthamer, 1992; Krout et al., 2001); for example, these inputs
to ILr have vGluT2-immunoreactive medium-sized RL-type
terminals (Rovó et al., 2012). SC afferents to ILc and ILr are
commonly branches of axons that also project to motor regions
in other brainstem areas or spinal cord (Chevalier and Deniau,
1984); so, these inputs would carry efference copies that inform
ILc and ILr about ongoing motor instructions that are generated
by SC. ILc and ILr efferents carry information about sensory
events and motor events, respectively, to striatum and motor and
premotor cortical areas through branching axons (Deschênes
et al., 1996a,b; Parent and Parent, 2005). Although ILc neurons

respond to stimuli of a single sensory modality (visual, auditory,
or somatosensory) or to combinations of stimuli of different
modalities (Peschanski et al., 1981; Grunwerg and Krauthamer,
1992; Matsumoto et al., 2001), these cells are not engaged
in detailed analyses of sensory stimuli. Instead, in single-cell
recordings in monkeys undergoing classical conditioning or
performing a visually guided task, CM/Pf neurons register the
occurrence of unexpected sensory stimuli (Matsumoto et al.,
2001; Minamimoto et al., 2005, 2014) or the occurrence of
relevant (reward-associated) sensory stimuli (Matsumoto et al.,
2001; Minamimoto and Kimura, 2002)—responses to sensory
stimuli do not habituate when paired with reward—indicating
roles for these cells in attentional orienting, behavioral switching,
and sensorimotor learning (see ‘‘TRN Subnetworks Related to
Cognition’’ section for further elaboration of ILc function). In
single-cell recordings in monkeys performing oculomotor tasks,
ILr neurons register the occurrence of task-relevant visual stimuli
(Schlag-Rey and Schlag, 1984), visually evoked saccades (Schlag
and Schlag-Rey, 1984), both of these events (Wyder et al., 2003;
44% of recorded cells), or those related exclusively to saccades
(Wyder et al., 2003; 50% of recorded cells). Eye movement-
related changes in firing rates of ILr neurons, during both
impending and actual saccades, thus highlight the contribution
of efference copies (motor instructions) in determining the
response properties of these cells.

Somatosensory and Caudal Intralaminar
Nuclei
VPM, POm and ILc make up a caudal group of thalamic
nuclei (Figure 1) whose topographically organized reciprocal
interactions are most likely mediated by neurons in a broad
central region of TRN (Kolmac and Mitrofanis, 1997; Crabtree
et al., 1998; Crabtree and Isaac, 2002). Each of the caudal
group of interacting nuclei, VPM, POm and ILc, contains
projection neurons engaged in transmitting information arising
from different origins, an ascending sensory pathway, L5 CT
neurons, and SC, respectively. As noted earlier, VPM conveys
somatosensory information to cortex, POm conveys information
between cortical areas, and ILc conveys information about
sensory events to striatum and cortex, The number of neurons
in the TRN subnetwork underlying interactions between VPM,
POm and ILc neurons can be partly gauged from in vitro
recordings of EPSCs in the mouse ssTRN evoked by glutamate
activation of VPM/VPL and POm neurons (Lam and Sherman,
2011): approximately a fifth of the recorded TRN neurons receive
converging inputs from VPM/VPL and POm neurons, providing
a possible anatomical substrate to account for their interactions.
Including glutamate activation of ILc neurons in such recordings
will most likely increase the estimated size of the TRN neural
subnetwork mediating interactions between VPM, POm and ILc.

Motor and Rostral Intralaminar Nuclei
VL and ILr form a rostral group of thalamic nuclei (Figure 1)
whose topographically organized reciprocal interactions are
most likely mediated by neurons in a rostral region of TRN
(Cicirata et al., 1990; Kolmac and Mitrofanis, 1997; Crabtree
and Isaac, 2002); as previously noted, efferents of VL and ILr
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carry motor information to striatum and/or cortex. Each of
the rostral group of interacting nuclei, VL and ILr, contains
projection neurons engaged in transmitting information that
arises from different origins, CB and SC, respectively. However,
the number of neurons in the TRN subnetwork underlying
interactions between VA/VL and CL (part of ILr) was very small
as gauged from experiments in a slice preparation taken in an
oblique coronal plane through the mouse thalamus (Lam and
Sherman, 2015). The results of this recent study are in sharp
contrast to those of an earlier study (Crabtree and Isaac, 2002)
in which interactions between VL and ILr were readily observed
and topographically mapped, suggesting instead that the size
of the TRN neural subnetwork underlying these interactions
is substantial. Differences in experimental procedures between
the earlier and latter studies may account for the different
outcomes. For example, in the earlier study, slice preparations
were taken in the horizontal plane to optimize the incorporation
of intact axonal fasciculi that traverse the thalamus. Furthermore,
activation and recording sites in ILr included PC but were
restricted to VL in the VA/VL thalamic region. VA is probably
part of another group of interacting thalamic nuclei that includes
the mediodorsal (MD) nucleus but not CL. Like VA,MD receives
afferents from BG and is reciprocally connected with prefrontal
cortex (Vertes, 2006; Mitchell and Chakraborty, 2013; Collins
et al., 2018)—the territories occupied by TRN neurons projecting
to VA or MD largely overlap and some of these cells project to
both VA and MD (Zikopoulos and Barbas, 2006).

In summary, thalamic nuclei can functionally interact
through TRN-mediated disynaptic TC/TS→TRN→TC/TS
circuits. Thus, activation of neurons in one nucleus results
in GABAA receptor-mediated inhibition and temporary
interruption of tonic firing of neurons in another nucleus.
Interactions between pairs of thalamic nuclei are reciprocal and
provide ample opportunity for intramodality and intermodality
modulation of transmission through the thalamus. The TRN
subnetworks that mediate such interactions (Figure 3D) are
not widespread but are topographically organized and link
together neurons in homologous regions within specific groups
of nuclei: ILc and ILr, VPM, POm and ILc, and VL and ILr.
Along with their possible transmission of efference copies
(motor instructions), groups of interacting thalamic nuclei are
related to either sensory processing—VPM, POm and ILc—or
motor processing—VL and ILr—whereas the ILc and ILr group
bridges these sensory and motor operations. These thalamic
nuclei convey different messages that represent different stages
of sensory or motor processing—detection of events without
analysis (ILc and ILr), detailed thalamic analysis (VPM and VL),
or detailed cortical analysis (POm). The neural subnetworks in
TRN underlying the interactions within thalamic groups may
not be entirely segregated but could involve some of the same
cells. Thus, TRN neurons related to ILc occupy much of the
territory of those related to VPM/POm (Figure 3D; Kolmac
and Mitrofanis, 1997; Crabtree et al., 1998) and TRN neurons
related to ILr occupy much of the territory of those related to VL
(Figure 3D; Cicirata et al., 1990; Kolmac and Mitrofanis, 1997).
Therefore, it is not surprising that, besides forming their own
group of interacting nuclei, ILc and ILr are each part of another

group of interacting nuclei and thus are targets of TRN-mediated
convergence of inhibition following activation of neurons in two
or more thalamic nuclei.

TRN SUBNETWORKS RELATED TO
COGNITION

Attention is a cognitive function that involves covert changes in
neural representations of sensory stimuli in the absence of overt
changes in behavior (e.g., head or eye movements). Because at
any given moment the amount of sensory information available
in the external environment far exceeds the processing capability
of the brain, attentional mechanisms allow access to limited
neural resources to select a small fraction of this information.
Such attentional selection is controlled through exogenous
‘‘bottom-up’’ processes and endogenous ‘‘top-down’’ processes
(e.g., Corbetta and Shulman, 2002; Fecteau and Munoz, 2006;
Awh et al., 2012; Buschman and Kastner, 2015; Womelsdorf and
Everling, 2015). Bottom-up attentional control is determined by
the physical salience of a stimulus resulting in a stimulus-driven
selection process. Top-down attentional control is determined
by previous experiences and expectations: when associated with
reward during behavioral tasks, top-down attentional selection
is determined by the relevance of a stimulus to current
goals resulting in a goal-driven selection process. However,
attentional control biases due to previous selection and reward
histories must also be taken into account when considering
top-down attentional processes (Awh et al., 2012; Womelsdorf
and Everling, 2015). This general scheme of stimulus-driven
and goal-driven attentional selection can be readily applied to
information processing in the thalamus.

Because of its unique combination of properties—positional,
connectional, physiological, and neurochemical—TRN has long
been thought to play a role in attention (Crick, 1984; Guillery
et al., 1998; Pinault, 2004). This view is consistent with the
strong contribution that the inhibitory neurons of TRN make
in gating thalamocortical transmission (Sherman and Koch,
1986) and with the evidence that TRN connections with some
thalamic nuclei—those containing first order TC neurons—and
their associated cortical areas are topographically organized
(Guillery et al., 1998; Crabtree, 1999; Guillery andHarting, 2003).
Early behavioral tests of bottom-up (Weese et al., 1999) and
top-down (McAlonan et al., 2000) stimulus selection in the rat
found that TRN is indeed involved in attentional processes.
To implement these processes, activation of TRN neurons by
glutamatergic driver inputs is required. This requirement is
met in the bottom-up condition by driver TC→TRN circuits
(Figure 2) but descending (top-down) L6 CT afferents are
usually considered to be modulators (Guillery, 1995; Sherman
and Guillery, 1998, 2001; Guillery and Harting, 2003; Gentet
and Ulrich, 2004) and thus would not be expected to activate
TRN neurons. However, under conditions of synchronous
activity, convergent glutamatergic inputs from L6 CT neurons
are capable of producing action potentials in TRN neurons
(Landisman and Connors, 2007; Cruikshank et al., 2010; Lam
and Sherman, 2010; Paz et al., 2011) and thus can act like driver
inputs.
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Bottom-Up Attentional Processes
As determined by the salience of a stimulus, bottom-up
attentional processes play a prominent role in sensory detection
and discrimination. To examine such processes in TRN, one
line of enquiry has focused on synaptic interactions between
VPM—containing first order TC neurons—and ssTRN in the rat
(Salt and Eaton, 1995; Salt and Turner, 1998; Binns et al., 2003;
Turner and Salt, 2003; Copeland et al., 2012); in rodents, both
VPM (Van der Loos, 1976) and ssTRN (Shosaku et al., 1984)
contain a particularly large vibrissal (whisker) representation.
VPM neurons were recorded in vitro during combined
electrical stimulation of TRN and bath-applied compounds
or recorded in vivo during combined whisker stimulation
and local application of compounds at recording sites. In
feedback VPM→ssTRN→VPM circuits (Figure 2), the effects
of various compounds on inhibition arising from ssTRN were
assessed in VPM neurons before and during drug application
by recording inhibitory postsynaptic potentials (IPSPs) and
whisker-evoked tonic firing. Activation of presynaptic glutamate
receptors on ssTRN axon terminals—involving Groups II
and III metabotropic receptors and ionotropic kainate
receptors—results in reduced release of GABA from these
terminals and a subsequent attenuation of feedback inhibition of
VPMneurons; thus, IPSP amplitudes are reduced and tonic firing
of VPMneurons increases. Under physiological conditions, these
presynaptic receptors are most likely activated by spillover of
glutamate released at synapses on VPM neurons during
their activation by ascending sensory afferents. Accordingly,
glutamate receptors would be activated on terminals of ssTRN
neurons engaged in either closed-loop (recurrent) or open-loop
(lateral) inhibition of VPM neurons. However, attenuation of
feedback inhibition of VPM neurons would be particularly
pronounced if VPM and ssTRN neurons have the same
dominant receptive field center (e.g., primarily driven by the
same principal whisker) and engage in closed-loop circuits. Thus,
attenuation of inhibition in closed-loop VPM→ssTRN→VPM
circuits (Figure 2) provides a local attentional mechanism
that promotes sensory discrimination (Salt, 2002; Binns et al.,
2003)—the firing rate of a stimulus-driven VPM neuron
would be relatively enhanced compared to the firing rates of
neighboring VPM neurons.

Top-Down Attentional Processes
As determined by the reward-associated relevance of a stimulus
to current behavioral goals, top-down attentional processes also
play a prominent role in sensory detection and discrimination.
To examine such processes in TRN, recent studies have
focused on the activity of neurons in visTRN (McAlonan
et al., 2008; Halassa et al., 2014; Wimmer et al., 2015; Chen
et al., 2016). Single cells were recorded in dLGN—containing
first order TC neurons—and visTRN in monkeys performing
an oculomotor task in which saccades were made to visual
stimuli or central fixation was maintained (McAlonan et al.,
2008); correct responses were rewarded. During trials, the
activity of neurons in visTRN is modulated in a time- and
location-dependent manner: when two stimuli are presented,
tonic firing is reduced for stimuli lying within the receptive

fields of recorded cells (‘‘ATTin’’) compared to stimuli lying
outside their receptive fields (‘‘ATTout’’). Conversely, under the
same experimental conditions, dLGN neurons increase their
firing rate. Thus, after presentation of stimuli, modulation
of visTRN neurons (reduced firing) precedes that of dLGN
neurons (increased firing) consistent with a role for visTRN
in visual attention. As to the source of this modulation in the
monkey, the projection to TRN from the dorsolateral prefrontal
cortex (DLPFC; Zikopoulos and Barbas, 2006)—neurons here
participate in cognitive functions (Vertes, 2006)—may provide
the anatomical basis for the attentional modulation. However,
the terminals of this projection in TRN are mainly concentrated
in mtrTRN and do not reach the dorsocaudal visTRN. L6 CT
neurons that project to visTRN specifically originate from visual
cortical areas (Guillery et al., 1998; Crabtree, 1999; Guillery and
Harting, 2003) and this specificity strongly suggests that visual
cortex must be involved in attentional modulation of neurons in
visTRN.

Furthermore, single cells were recorded in dLGN and
visTRN of mice performing a visual detection task (Halassa
et al., 2014; Chen et al., 2016) or a rule-specific (‘‘attend to
vision’’ or ‘‘attend to audition’’) discrimination task (Wimmer
et al., 2015) in which leftward or rightward movements were
made to the locations of visual or auditory stimuli; correct
responses were rewarded. During visual detection trials and
attend to vision trials, tonic firing of neurons in visTRN
is reduced during a stimulus ‘‘anticipation’’ period prior to
stimulus presentation. This modulation—a reduction in the
inhibitory output of visTRN neurons—is causally linked to
latency and accuracy of responses in the tasks and produces an
increase in the firing rate of dLGN neurons specifically through
feedforward L6 CT→visTRN→dLGN circuits (Figure 2).
Furthermore, an optogenetic manipulation (light spread of
about 600 µm) was used to disrupt function in the prelimbic
prefrontal cortex (PLPFC)—in the rodent, PLPFC is involved
in cognitive functions and is homologous to DLPFC in the
monkey (Vertes, 2006); such disruption during the stimulus
anticipation period diminishes the attentional modulation of
neurons in visTRN and the accuracy of stimulus detection
in the attend to vision task. These results indicate that,
during attentional processes, PLPFC exerts a strong influence
on neurons in visTRN, possibly through a direct pathway.
However, in rodents, PLPFC afferents to TRN are restricted
to mtrTRN (Vertes, 2002); so, if the dorsocaudal visTRN is
not a target of PLPFC inputs, through what connectional route
does the mouse PLPFC influence dLGN-connected neurons
in visTRN? In rodents, these neurons occupy the lateral two
thirds of this sector (Coleman and Mitrofanis, 1996) and they
receive L6 CT inputs that specifically arise from visual cortical
areas, which include areas 1 (V1) and the medial part of
2 (V2m) that flanks V1 medially (Coleman and Mitrofanis,
1996; Wang and Burkhalter, 2007). So, L6 CT neurons in
V1 and V2m must be involved in attentional modulation of
dLGN-connected neurons in visTRN—together, V1 and V2m
extend approximately 3.0 mm rostrocaudally and 2.0 mm
mediolaterally and contain three representations of the visual
field. However, using the same optogenetic manipulation as
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before, disrupting function in V1 during stimulus anticipation
does not diminish the accuracy of stimulus detection in the
attend to vision task; but this result is not surprising given that
the optogenetic manipulation perturbed only a small fraction
(about 5%) of the total V1 and V2m cortical area leaving
neurons in the vast majority of this area functionally unperturbed
and capable of mediating top-down attentional processes. Thus,
involvement of V1 and V2m cannot be ruled out in a PLPFC-
originating pathway through which attentional processes can
influence neurons in visTRN. Because PLPFC does not project
directly to V1 and V2m in rodents (Vertes, 2006), this pathway
most likely involves disynaptic corticocortical connections from
PLPFC to V1 and V2m (Nguyen et al., 2015) before reaching
visTRN.

Combining genetic manipulations and behavioral testing, a
recent study in the mouse has revealed a role for ErbB4 in
top-down attentional mechanisms in the thalamus (Ahrens
et al., 2015)—ErbB4 is a neuregulin-1 (NRG1) receptor
expressed in somatostatin-positive (SOM+) TRN neurons that
make up approximately four fifths of the cell population
in the mouse TRN. In SOM+ TRN neurons, activation of
ErbB4 normally reduces the strength of the glutamatergic
drive that specifically arises from L6 CT neurons. However,
in SOM-ErbB4 knockout (KO) mice, this reduction is lost
resulting in an enhanced L6 CT→TRN drive and thereby
an enhanced TRN→TC/TS inhibition. Complementing this
genetic approach, mice were initially trained to make leftward
or rightward movements to visual or auditory cues and
were subsequently tested in a sensory discrimination task
or in a rule-specific (‘‘attend to vision’’) discrimination task;
correct responses were rewarded during training and testing.
The sensory discrimination task contained ‘‘auditory/auditory’’
trials—a relevant (reward-associated) auditory stimulus among
distracting auditory stimuli cued a leftward or rightward
movement—and the rule-specific discrimination task contained
‘‘congruent’’ or ‘‘incongruent’’ trials—a relevant visual target
and a previously relevant (now distracting) auditory stimulus
cued the same (congruent) movement or opposite (incongruent)
conflicting movements. Compared to wild-type (WT) mice, loss
of ErbB4 in KOmice improves performance in auditory/auditory
trials and impairs performance in visual/auditory incongruent
trials—these changes in performance do not occur in KO mice
when the enhanced L6 CT→TRN drive is reduced by blocking
the postsynaptic delivery of the AMPA receptor subunit GluA4 in
SOM+ TRN neurons. To account for the improved performance
in auditory-auditory trials, enhanced TRN-mediated lateral
inhibition of neurons responding to distracting stimuli in
the ventral medial geniculate nucleus (vMGN)—containing
first order TC neurons that convey auditory information
from the inferior colliculus to auditory cortex—is proposed
(Ahrens et al., 2015), whereas to account for the impaired
performance in incongruent trials, TRN-mediated interactions
between dLGN and vMGN (Ahrens et al., 2015)—producing
enhanced cross-modal lateral inhibition—and between visTRN
and audTRN (Ahrens et al., 2015; Makinson and Huguenard,
2015)—producing enhanced cross-modal disinhibition—are
proposed. However, there is no evidence for such functional

connections between dLGN and vMGN or between visTRN and
audTRN.

Alternatively, the impaired performance of KO mice in
visual/auditory incongruent trials (Ahrens et al., 2015) may
specifically involve ILc neurons and striatal parvalbumin (PV)
interneurons and an enhanced inhibition they receive from TRN
neurons. Neurons in ILc are a major source of glutamatergic
driver inputs to the striatum (Galvan and Smith, 2011;
Smith et al., 2014), respond to the occurrence of behaviorally
relevant (reward-associated) stimuli (Matsumoto et al., 2001;
Minamimoto and Kimura, 2002; Minamimoto et al., 2005, 2014),
and convey this information to cholinergic interneurons that
are strategically distributed throughout the striatum (Graybiel
et al., 1994; Smith et al., 2004; Galvan and Smith, 2011; Schulz
and Reynolds, 2013). During classical conditioning in monkeys,
the responses of these cholinergic interneurons are gradually
modified by ILc driver inputs and reward-related nigrostriatal
dopaminergic inputs (Aosaki et al., 1994a,b; Graybiel et al., 1994;
Matsumoto et al., 2001)—this process constitutes an experience-
dependent form of plasticity during sensorimotor learning. In
turn, the cholinergic interneurons strongly modulate the activity
of striatal output neurons (Pakhotin and Bracci, 2007; Ding et al.,
2010; Schulz and Reynolds, 2013)—the spiny projection neurons
(SPNs)—resulting in their development of response biases that
facilitate the selection of future actions (Kimura et al., 2004;
Graybiel, 2008; Minamimoto et al., 2009). It is important to
note that the activity of striatal outputs can also be modulated
by disynaptic TRN→PV interneuron→SPN pathways (Klug
et al., 2018). Shaped and maintained by ILc and reward-related
dopaminergic inputs, similar striatal response biases would be
expected to develop in WT and ErbB4 KO mice trained to make
reward-associated movements to visual and auditory cues. Thus,
during the initial test session in visual/auditory incongruent
trials (Ahrens et al., 2015)—when visual (relevant) and auditory
(now irrelevant) stimuli cue conflicting movements—competing
response biases of SPNs could largely account for the poor
performance of WTmice (approximately 64% correct responses)
and the even poorer performance of KO mice (approximately
40% correct responses) whose performance could be additionally
hampered by an enhanced TRN-mediated lateral inhibition
of ILc neurons responding to relevant cues as well as
by an enhanced TRN-mediated inhibition of striatal PV
interneurons accentuating previously acquired striatal response
biases through disinhibition of SPNs. However, by the final
test session, the performance of WT mice has markedly
improved (approximately 86% correct responses) as has the
performance of KOmice (approximately 70% correct responses).
For WT and KO mice, their gradual improvements over test
sessions (>1,000 trials) resemble inverted extinction curves
and may reflect the gradual loss of an action-selection bias
of SPNs to a previously rewarded but now unrewarded
auditory cue.

Internuclear Attentional Processes
Activation of neurons in one thalamic nucleus can lead to a
temporary TRN-mediated interruption of the tonic firing of
neurons in another thalamic nucleus (Crabtree and Isaac, 2002).
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Such intrathalamic activation-interruption sequences provide a
mechanism for attentional control between competing sensory-
and/or motor-related processes. Through TRN-mediated
circuits, homologous regions in specific pairs of thalamic
nuclei are interconnected and transmission through neurons
in one of the two regions could be selected depending on
the relative strength of the bottom-up salience or top-down
relevance of the messages that are reaching the thalamus at any
given moment. Thus, selection could occur between messages
about ongoing sensory processes—through interactions among
VPM, POm and ILc—ongoing motor processes—through
interactions between VL and ILr—and ongoing sensory and
motor processes—through interactions between ILc and
ILr—and these selections would relate to different stages of
information processing such as detection of events (ILc and
ILr), detailed thalamic analyses (VPM and VL), or detailed
cortical analysis (POm). Furthermore, through the wide range
of known TRN-mediated intrathalamic interactions (Crabtree
and Isaac, 2002), messages could be simultaneously selected
representing multiple channels for attentional control in the
thalamus. Concurrently, intrathalamic activation-interruption
sequences could also provide a mechanism for selection between
messages related to motor output processes. For example,
descending axons from neurons in SC (Chevalier and Deniau,
1984) and from neurons in L5 cortex (Deschênes et al., 1994)
convey motor instructions to motor regions of brainstem or
spinal cord and branches of these axons carrying copies of
these instructions (efference copies) are sent, respectively, to
SC-recipient thalamic nuclei—for example, ILc—and thalamic
nuclei containing higher order TC neurons—for example, POm.
Because neurons in homologous regions of ILc and POm can
interact, selection could alternate between messages about motor
instructions implementing orienting responses—originating
from SC—and motor instructions implementing goal-directed
behaviors—originating from L5 cortex—thereby informing
higher brain areas about ongoing shifts in motor output
priorities through ILc and POm efferents.

In summary, TRN is involved in attentional processes that
select sensory and motor information through bottom-up, top-
down, and internuclear mechanisms. Of the two firing modes
exhibited by thalamic neurons, tonic and burst firing (Jahnsen
and Llinás, 1984; Kim and McCormick, 1998; Sherman, 2001),
attentional mechanisms are often expressed by the modulation
of tonic firing of TRN neurons—the possible modulation of their
burst firing during these processes has yet to be determined.
For messages that reach the thalamus, selection of information
depends on their salience in bottom-up attentional control, their
reward-associated relevance in top-down attentional control,
and their salience or relevance in internuclear attentional
control. During internuclear attentional processes, an increase
in tonic firing of TRN neurons would occur—in response
to glutamatergic driver inputs from neurons in one thalamic
nucleus, an increase in activity and inhibitory output of TRN
neurons enables them to temporarily interrupt the tonic firing
of neurons in another thalamic nucleus. Conversely, during
bottom-up and top-down attentional processes, TRN neurons
play a key role in increasing themagnitude, or gain, of the sensory

responses of TC neurons. Thus, the amount of GABA released
by ssTRN neurons and the tonic firing of visTRN neurons are
reduced, respectively, in bottom-up and top-down processes
resulting in a reduction of these cells’ inhibition of TC neurons.
During top-down attentional control, reduced firing of visTRN
neurons occurs in a time-dependent manner during a stimulus
anticipation period; prefrontal cortex is strongly influential
in this process but does not directly affect some TRN sectors
(e.g., visTRN). Furthermore, the strength of the feedforward
L6 CT→TRN→TC/TS inhibition (Figure 2)—regulated by
ErbB4-containing SOM+ TRN neurons—normally allows
top-down attentional processes to effectively switch between
sensory modalities depending on current behavioral goals.
Because the various attentional processes can potentially
engage an entire sensory or motor representation within
TRN, large numbers of neurons could operate within the
various TRN sectors to meet this requirement—for example,
in top-down attentional processes, SOM+ neurons expressing
ErbB4 constitute approximately 80% of the cell population in the
mouse TRN.

CONCLUSIONS AND FUTURE
DIRECTIONS

The studies surveyed in this review identify a diverse array of
functional neuronal subnetworks in TRN. Their presence has
been revealed using various combinations of anatomical,
electrophysiological, genetic/molecular, and behavioral
techniques. For some of these subnetworks, clarification of
the distributions of their constituent neurons is needed, such
as the distributions that mediate intrathalamic interactions
among neurons in various groups of thalamic nuclei (Figure 3D;
Crabtree and Isaac, 2002). TRN-mediated intrathalamic
interactions among other groups of thalamic nuclei most likely
exist and have yet to be revealed (e.g., between VA and MD
suggested earlier). With one exception (McAlonan et al., 2008),
the identified TRN subnetworks have been demonstrated in
rodents; so, comparative studies of other mammalian species are
also needed. Even so, in the monkey (McAlonan et al., 2008) and
mouse (Halassa et al., 2014; Wimmer et al., 2015; Chen et al.,
2016), top-down attentional control involves a TRN subnetwork
that employs a similar functional mechanism, indicating that
at least one such subnetwork is conserved across mammals
(Schmitt and Halassa, 2017). Pending further interspecies
comparisons, our current view of TRN subnetworks indicates
considerable functional versatility among TRN neurons.

ErbB4, an NRG1 receptor expressed in SOM+ TRN neurons,
regulates the strength of the L6 CT→TRN glutamatergic drive
and hence the strength of TRN-mediated inhibition in thalamic
nuclei (Ahrens et al., 2015). Differential NRG1 activation of
ErbB4 receptors enables TRN neurons to efficiently switch
between intramodality and intermodality attentional processes
according to behavioral demands. This attentional flexibility
suggests functional versatility among TRN neurons. Loss of
ErbB4 receptors in TRN neurons markedly alters their flexibility
and surprisingly, for such a basic cognitive function as
attention, this loss does not appear to trigger cellular/molecular
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compensatorymechanisms; attentional flexibility is only restored
after a further experimental manipulation that blocks trafficking
of the AMPA receptor GluA4 subunit in SOM+ TRN
neurons. However, there could be a circuit-based compensatory
mechanism involving an interaction between enhanced strength
of TRN-mediated inhibition (due to loss of ErbB4) and previous
reward history—a steady improvement in performance over test
trials in a task requiring intermodality attentional switching
is consistent with the idea of a gradual extinction of an
earlier action-selection bias mediated by BG circuits. Further
work is required to test this and other possible compensatory
mechanisms that allow substantial behavioral recovery following
loss of NRG1/ErbB4 signaling in TRN neurons.

Functionally distinct neural subnetworks can occupy different
TRN sectors as defined by different neuronal firing patterns
during wakefulness and sleep (Halassa et al., 2014; Chen et al.,
2016). Furthermore, connectivity with first order TC neurons
in either sensory- or motor-related thalamic nuclei provides
a possible anatomical basis for this functional heterogeneity
between TRN sectors. In turn, these connections suggest a
fundamental sensory-motor dichotomy among TRN neural
subnetworks with different state-dependent activity profiles. This
hypothesis needs to be comprehensively tested by examining
the functional characteristics of more populations of TRN
neurons and their various connections not only with other
types of thalamic projection neurons—higher order and driver-
like-recipient projection neurons—but also with a broad
assortment of thalamic nuclei, particularly those involved in
motor functions. Firmly establishing a sensory-motor dichotomy
among TRN subnetworks would provide a valuable insight into
the functional organization of the thalamus.

Functionally distinct neuronal subnetworks in TRN are
often widely distributed in sensory and motor sectors. Two
such subnetworks are made up of either elongated or broad
AZ-related neural clusters that provide convergent inhibitory

inputs onto neurons in various thalamic nuclei (Lam and
Sherman, 2005, 2007, 2015). According to their efferent
connections, elongated clusters are topographically organized,
providing local modulation of first order TC neurons, and broad
clusters are non-topographically organized, providing more
global modulation of higher order TC neurons. The widespread
distributions of TRN neurons in these two subnetworks
can be thought of as forming templates, which possess the
necessary anatomical and physiological properties that could
guide the operations of other subnetworks such as those
engaged in attentional processes. TRN subnetworks have been
demonstrated to mediate bottom-up and top-down attentional
mechanisms involving first order TC neurons, indicating that
the TRN subnetwork of elongated neural clusters mediates
these mechanisms (Figure 3C). Such mediation suggests
considerable functional versatility among TRN neurons as their
inhibitory outputs would rapidly adjust to meet attentional
demands through axonal terminal mechanisms—in bottom-up
attentional processes—or in response to cortical inputs—in
top-down attentional processes. Whether AZ-related neural
clusters in TRN similarly mediate attentional processes involving
higher order TC neurons—through broad clusters—and driver-
like-recipient TC/TS neurons—through elongated or broad
clusters—remains a major challenge for future investigation.
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