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Viral infections trigger robust secretion of interferons and other antiviral cytokines by

infected and bystander cells, which in turn can tune the immune response and may lead

to viral clearance or immune suppression. However, aberrant or unrestricted cytokine

responses can damage host tissues, leading to organ dysfunction, and even death.

To understand the cytokine milieu and immune responses in infected host tissues,

non-human primate (NHP) models have emerged as important tools. NHP have been

used for decades to study human infections and have played significant roles in the

development of vaccines, drug therapies and other immune treatment modalities, aided

by an ability to control disease parameters, and unrestricted tissue access. In addition to

the genetic and physiological similarities with humans, NHP have conserved immunologic

properties with over 90% amino acid similarity for most cytokines. For example,

human-like symptomology and acute respiratory syndrome is found in cynomolgus

macaques infected with highly pathogenic avian influenza virus, antibody enhanced

dengue disease is common in neotropical primates, and in NHP models of viral hepatitis

cytokine-induced inflammation induces severe liver damage, fibrosis, and hepatocellular

carcinoma recapitulates human disease. To regulate inflammation, anti-cytokine therapy

studies in NHP are underway and will provide important insights for future human

interventions. This review will provide a comprehensive outline of the cytokine-mediated

exacerbation of disease and tissue damage in NHP models of viral infections and

therapeutic strategies that can aid in prevention/treatment of the disease syndromes.
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INTRODUCTION

Microbial pathogens are constantly evolving to evade the host’s immune system, and even with
several decades of research and modern therapeutics, chronic diseases such as those caused by
human immunodeficiency virus (HIV-1) and hepatitis C virus (HCV) are still globally prevalent.
Viruses use multiple evasive strategies such as avoiding detection by pattern recognition receptors,
T cell receptors and antibodies, mimicking or blocking cytokines, chemokines and other host
proteins, and/or directly depleting immune cell subsets [reviewed in (1)]. Disruption of the
cytokine milieu is also an important and commonly used strategy by viruses (2–4), since cytokines
play important roles in shaping both innate and adaptive immunity. Cytokines are soluble proteins
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secreted by cells during inflammation that act as key mediators
of immune cell recruitment and modulators of the immune
response via a complex network of cellular interactions and
signaling pathways. So far, more than 300 cytokines including
chemokines, interferons (IFN), and lymphokines have been
described (5). While cytokines can be broadly classified based
on the nature of the immune response as pro-inflammatory
cytokines such as interleukin (IL)-1, IL-6, type 1 IFN, tumor
necrosis factor (TNF)-α, and anti-inflammatory cytokines such
as IL-4, IL-10, and transforming growth factor (TGF)-β, they
have pleiotropic functions whereby individual cytokines can have
either pro- or anti-inflammatory properties according to the cell
system involved.

In viral infections, cytokines play central roles in the
development of protective anti-viral responses, but also potential
immunopathology associated with chronic viral diseases.
Viral interactions with host cellular receptors triggers pro-
inflammatory cytokine secretion which are essential for viral
clearance. However, dysregulations in the cytokine type and
quantitative levels can lead to overactivation of immune cells,
which in turn cause tissue damage leading to fatal complications.
For instance, extensive characterization of IFN-α and its direct
antiviral activity since its discovery in 1957 (6), has led to
successful treatment of “non-A, non-B (NANB) hepatitis” even
before the actual identification of HCV as the causative agent
(7). Combination therapy of pegylated IFN-α with ribavirin
was the standard therapeutic regime for chronic HCV-infected
patients until the recent introduction of directly acting antivirals.
However, IFN-α therapy can induce side effects such as fever and
headache to severe life threatening conditions including thyroid,
visual, auditory, renal and cardiac impairments, and pulmonary
interstitial fibrosis (8). The therapeutic use of cytokines for
infectious diseases, autoimmune diseases and malignancies, may
also come at a steep price, since prolonged use of cytokines
present severe side-effects due to the pleiotropic nature of
these molecules (9–14). While, it is necessary to understand
cytokine dysregulations in viral diseases to anticipate potential
tissue injury and deterioration, their pleotropic, rapid, and in
some cases local and long term tissue effects make the study of
cytokines in humans challenging with potential development of
fatal complications. These challenges can be met by the use of
animal models. Animal models have been used since more than
2400 years and currently are employed in all areas of biomedical
research including basic biology, infections, immunology, cancer,
metabolic diseases, and behavioral studies (15). This review is
primarily focused on the virus mediated cytokine dysfunctions in
animal models specifically non-human primates (NHP), which
are already fundamental in the validation of human data.

NEED FOR ANIMAL MODELS IN STUDIES
OF VIRAL IMMUNITY

Much of what is known regarding antiviral immunity and
tissue inflammation comes from studies conducted in animal
models of human diseases. Animal models act as preclinical and
translational gatekeepers since they allow the study of cellular

interactions in vivo and elucidation of disease pathogenesis in
tissues that may be difficult to access in humans. While mouse
models have provided tremendous benefits to immunologists in
understanding immune responses in humans, 65 million years
of divergent evolution has contributed to significant differences
in cytokines and cytokine receptors for the two species.
Studies have shown poor correlation in genomic responses
to acute inflammatory stress between humans and mice (16),
and engagement of different chemokine/cytokine pathways in
response to oxygen and glucose deprivation by human neurons
compared to murine neurons (17). IL-13 seems to induce B cell
class switching for IgE production specifically in humans whereas
mice require IL-4 (18, 19). Similarly, IL-7 receptor deficiency
inhibits development of all T and B lymphocytes in mice (20), but
only T cells in humans (21). Furthermore, a number of pathogens
like influenza, HIV, or dengue are highly tropic to their respective
hosts and do not mimic human pathologies in mice, potentially
restricting the use of mice as models for some infectious diseases
[reviewed in (22)].

NHP are perhaps the most commonly utilized models
to study and understand immune responses against human
infectious agents and for preclinical evaluation of therapeutics
and vaccines (Figure 1). NHP have proven essential for research
breakthroughs in maladies such as cancer, Parkinson’s disease,
heart diseases, and various infectious diseases such as HIV,
Zika, Ebola, influenza, and others (23, 24). Even though
NHP research accounts for <1% of the all the biomedical
laboratories working in animal models (24), the advantages
offered by NHP due to the genetic and physiological homology
to humans are manifold. Indeed, human and NHP cytokines
are relatively conserved with 95% amino acid identity of most
cytokines such as IL-2 and IFN-γ for Old World NHP and
up to 90% amino acid identity for New World NHP (25).
In addition, many cross reactive reagents and monoclonal
antibodies for the detection of cytokines have been evaluated and
validated for NHP species (NIH Non-human Primate Reagents
Resource; http://www.nhpreagents.org) (25–28), making NHP
attractive animal models to study viral pathogenesis and
disease progression.

NHP MODELS COMMONLY USED FOR
VIRAL DISEASES

Great Apes
The great apes used previously as animal models include
chimpanzees (Pan troglodytes), and to a lesser extent
orangutans (Pongo pygmaeus) and gorillas (Gorilla beringei) (29).
Chimpanzees share >98% DNA sequence homology to humans;
and yet surprisingly, have immune systems that respond much
more robustly to infections like HIV and hepatitis B virus
(HBV). HBV and HCV can only pathogenically infect humans
and chimpanzees, thus making chimpanzees, at one time, the
primary animal model for therapeutics and vaccine research
(30–32). However, the use of great apes in biomedical research
has become increasingly restricted for ethical and cost reasons
and therefore other NHP models are being increasingly utilized.
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FIGURE 1 | NHP models for viral infections. Representation of NHP models that are used commonly to study human viral infections with respect to the evolutionary

divergence from humans. GBV-B, GB virus-B; ZIKV, Zika virus; DENV, Dengue virus; WNV, West Nile virus; EBOV, Ebola virus; SIV, Simian Immunodeficiency virus;

SHIV, Simian/Human Immunodeficiency virus; RhCMV, rhesus cytomegalovirus; HEV, Hepatitis E virus; rhLCV, rhesus lymphocryptovirus; SVV, simian varicella virus;

CHIK, chikungunya virus, HIV, Human Imunodeficiency virus; HCV, Hepatitis C virus; and HBV, Hepatitis B virus are some of the most common examples for viral

studies in NHP.

Old World Monkeys
The Old World monkeys are primarily found in the continents
of Africa, Asia, and Europe with rhesus macaques (Macaca
mulatta), cynomolgus macaques (Macaca fascicularis),
sooty mangabeys (Cercocebus atys), African green monkeys
(Chlorocebus aethiops), and baboons (Papio spp.) being
the predominant species used in biomedical research.
Rhesus/cynomolgus macaques are perhaps the most widely
utilized NHP animal models to study human infectious diseases.
Besides HIV (33), macaque models have been used for infectious
diseases such as influenza (34, 35), HBV (36, 37), HCV (38–40),
measles (Morbillivirus) (41–43), cytomegalovirus (CMV) (44–
46), among many others (47). Sooty mangabeys and African
green monkeys are also used to study HIV and African green
monkeys are used as a model for influenza (48). Less commonly
used tree shrews (Tupaia belangeri) have also been explored as a
model for HCV infection (49, 50).

New World Monkeys
New World monkeys or neotropical primates include cotton-
top tamarins (Saguinus Oedipus), commonmarmosets (Callithrix
jacchus), owl monkeys (Aotus lemurimus), and squirrel monkeys
(Saimiri boliviensis), which are commonly located in Central and
South America. Although, the New World monkeys are more
divergent than Old World NHP from humans, they provide a
distinct advantage in biomedical research due to their relatively
smaller size and lower cost compared to other NHP. Marmosets
and tamarins have been used to study many flaviviruses such as

HCV, Dengue, and Zika (51–56). Owl monkeys can be infected
with Hepatitis E Virus (57) and at least some individual animals
might have HIV-1 compatible CD4 alleles (58) making them
potentially useful for HIV research. Squirrel monkeys have been
utilized as animal models for HTLV-1 pathogenesis and vaccine
development (59, 60) and as an experimental model for Nipah
Virus (61).

CYTOKINE DYSREGULATION IN VIRAL
INFECTION MODELS

HIV/Acquired Immunodeficiency Syndrome
(AIDS)
The emergence of HIV (Genus: Lentivirus, Family: Retroviridae)
is the result of the combination of at least four simian
immunodeficiency virus (SIV) transmission events from
chimpanzees or gorillas to humans (62, 63). Therefore, SIV
and simian/human immunodeficiency virus (SHIV) infections
in NHP are commonly used to model HIV pathogenesis
and development of vaccines and therapeutics. Specifically,
rhesus macaques and sooty mangabeys have been critical in
understanding the early phase of the infection (33, 64). Several
studies (discussed below) have shown the principal involvement
of an unusually vigorous immune activation leading to the
progression and establishment of AIDS.

Based on plasma parameters from HIV-infected patients, the
virus-mediated cytokine storm starts early in infection even
before peak viremia is reached (65, 66). It rapidly initiates a
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cascade of events characterized by the production of the early
pro-inflammatory cytokines, IL-15, and IFN-α, quickly followed
by the more sustained TNF-α and monocyte chemoattractant
protein (MCP)-1 during infection. Other pro-inflammatory
cytokines like IL-6, IL-8, IL-18, and IFN-γ are elevated 2 days
post the first wave of proinflammatory cytokines. At the same
time, the secretion of IL-10, an immunoregulatory cytokine
exponentially increases until it peaks at 5 days of infection (65).
While, the IL-10/IL10-R pathway has a major role in preventing
tissue damage observed during HIV infection by inhibiting Th1
responses and the production of anti-viral cytokines (IFN-α,
IFN-γ, IL-2), it also contributes to viral persistence. Furthermore,
the expression of the PD-1/PDL-1 pathway drives the inhibition
of T cell function (67) and indirectly up-regulates expression
of IL-10 (68). Indeed, blockade of PD-1 by anti-PD-1 antibody
in infected rhesus macaques augmented SIV specific IFN-γ
responses in CD8+ T cells in the blood, and could be synergized
with vaccination and anti-retroviral therapies (69, 70). However,
more NHP studies are necessary to establish the importance of
PD-1 blockade particularly in mucosal tissues.

The magnitude of the cytokine storm is broadly associated
with the clinical outcome in infected rhesus macaques and
sooty mangabeys (66, 71). Indeed, the progressive infection in
rhesus macaques is associated with production of IL-15, IL-18,
IFN-γ, granulocyte-colony stimulating factor (G-CSF), MCP-1
and macrophage inflammatory protein (MIP)-1β but not in non-
progressive sootymangabeys (66). Similar cytokine dysregulation
evidenced as elevated IL-12 has also been reported in HIV
seroconverts (72) and South African women who are high risk
population for acquisition of HIV infection (73). Furthermore,
the cytokine storm leads to immune activation with global
damage in mucosal tissues, specifically the gut and gut-associated
lymphoid tissue (GALT) which are the early and major sites of
virus replication (74). Specifically, the virus targets the IL-17/Th-
17 pathway that is essential for preservation of the gut barrier,
maintenance of the gut microbial environment, and prevention
of translocation of microbial products into the circulation that
could otherwise cause immune activation (75, 76). However,
it is shown that cART can partially restore effective CD4+ T
cells (more than 50% compared to non-treated) in the gut and
enhance the Th17 subset which is associated with a better clinical
outcome (77). This further illustrates the importance of NHP to
study gut immunity in HIV infection and evaluate therapeutic
modalities at mucosal tissues (78).

SIV infection in sooty mangabeys leads to a long non-
progressive infection as observed in some HIV-infected
individuals (79). Sooty mangabeys do not develop disease
symptoms due to a low level of immune activation despite
high level of viral replication (80). Instead of an inflammatory
immune response, elevated regulatory T cells (Treg) and
associated cytokines, TGF-β and IL-10 limit the level of immune
activation (80). Similarly in infected African green monkeys,
an anti-inflammatory environment is rapidly established due
to increases in Treg frequency, TGF-β, and IL-10 levels in the
plasma (81). Interestingly, a comparison of acute infection in
African green monkeys and rhesus macaques revealed that a
rapid and elevated IFN-α is triggered in both models but return

to baseline levels after 28 days of infection was observed only in
African green monkeys (82). Further, no changes in the levels
of pro-inflammatory cytokines such as IL-6, IL-18, and TNF-α
were reported in infected African green monkeys compared to
uninfected controls (83). It was also shown that sooty mangabeys
have a unique genome that protects them from developing AIDS
(84). Of importance, these animals possess a different TLR-4
gene compared to NHP that develop AIDS. TLR-4 is a pattern
recognition receptor that senses lipopolysaccharides on bacteria
and initiates pro-inflammatory cytokine induction. HIV can
induce microbial translocation that elicited exacerbated TLR-4
stimulation and lead to chronic immune activation (85, 86).
Therefore the differential cytokine response and an overall lower
immune activation, in part confers immune protection, less
tissue damage and maintenance of gut barrier in non-pathogenic
SIV infection of sooty mangabeys as well as African green
monkeys (87, 88).

Rhesus macaques are not natural hosts of SIV infection and
therefore, some SIV strains can induce strong viral load and the
development of AIDS similar to HIV-infected individual (89).
In a rhesus macaque cohort infected with pathogenic or non-
pathogenic strains of SIV/SHIV, the progressor cohort exhibited
low IFN-γ induced by CD4+ T cells compared to CD8+ T cells
whereas, the non-progressor monkeys did not develop a similar
immunomodulation (90). Furthermore, infection with virulent
SIVmac251 strain directly upregulated the cytokine production
(IFN-α/β, IL-12, IL-18) and led to the activation of natural killer
(NK) cells which are one of the major antiviral innate immune
cells and also act as a bridge to the adaptive system. Interestingly,
the production of antiviral cytokines (IFN-α, IFN-γ, IL-2) was
also associated with viral establishment (91). An over production
of IL-7 in the gut during the early days of acute SIV infection
in rhesus macaques could contribute to the cytokine storm by
inducing elevated chemokine expression triggering immune cell
recruitment (92). Overall, the cytokine storm induces a vicious
cycle by spreading the infection and causing tissue damage due
to an extensive inflammation in SIV progressive NHP models.
To overcome this cytokinemediated disease exacerbation, several
therapeutic formulations that use cytokines including IL-12,
IL-15, and IL-2 or block cytokine receptors are increasingly being
tested in SIV infection models (discussed in later section).

Hepatitis B and C
Hepatitis B and C infections together are the leading causes
of chronic liver disease worldwide (93). HBV (Genus:
Orthohepadnavirus; Family: Hepadnaviridae) and HCV (Genus:
Hepacivirus; Family: Flaviviridae) are hepatotropic viruses and
cause both acute and chronic liver infections, which can progress
to fibrosis and hepatocellular carcinoma. Interestingly, both
viruses have a narrow host range (humans and chimpanzees)
and have similar pathogenesis for progressive liver damage
and persistence of infection. Studies in chimpanzees showed
that HBV and HCV are not directly cytopathic (94–97) but
instead cause liver injury due to chronic immune activation.
Adaptive T cell and NK cell immunity are important in the
control of viral hepatitis, but they can also prove detrimental in
persistent infection. In cases of uncontrolled replication, infected
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hepatocytes secrete cytokines IL-8, CXCL-9, and CXCL-10,
which recruit T cells to the infected liver, all correlating with
histological damage (98–100). Further, innate immune NK
cells are activated and recruited by high levels of IFN-α and
IL-8 in the liver and induction of cytotoxic TRAIL pathway
leads to killing of hepatocytes and liver injury (101). HCV-
mediated liver inflammation is promoted by IL-1β and the TNF
superfamily cytokines such as TNF-α, TNF-β, TWEAK, and
LIGHT through the activation of NF-kB and MLCK-signaling
pathways to reduce hepatocellular tight junction integrity
(102, 103). In HBV infection, TNF-α secretion was associated
with significant fibrosis, and IL-10 and IFN-γ were associated
with necroinflammation (104). Additionally, as a result of viral
overload, induction of interferon stimulated genes and elevated
IL-8 and chemokines such as CCL2, CXCL1, and CXCL5
results in cholestatic HCV, which is associated with metabolic
dysregulation (105, 106).

Due to the narrow host range, chimpanzees were critical for
initially understanding the natural history and pathogenesis of
HCV and HBV (32, 107). However, because of the limited use of
chimpanzees currently, other surrogate animal models are being
employed. Tomodel HBV, cynomolgus macaques have been used
but with an indirect infection approach: ex-vivo baculovirus-
mediated HBV genome transfer in hepatocytes to cross the
species barrier (108). Recently, a new virus called the capuchin
monkey hepatitis B virus (CMHBV) has been discovered in
Brazilian capuchin monkeys, a neotropical primate and has
potential implications in the development of the much needed
animals model for hepatitis B (109). The more commonly used
NHP models for HCV are infections of neotropical primates,
marmosets and tamarins, with the surrogate hepacivirus GBV-
B of the same family Flaviviridae (51, 110, 111). Several studies
showed that activated T cell immune responses and IFN-γ
secretion are important for clearance of GBV-B (112, 113).
However, similar to HCV-infected liver, immune activation
correlated with liver damage in primary infections and re-
infections inmarmosets (114, 115). Activated NK cells expressing
IFN-γ and perforin were accumulated in the liver and in
addition elevated plasma IFN-γ and RANTES were associated
with acute hepatitis in infected animals (114). Further, infected
marmosets developed metabolic dysfunctions associated with
GBV-B infection even after clearance of viremia indicating that
viral hepatitis induces a cascade of events toward hepatic and
systemic inflammation. Particularly, imbalance in levels of pro-
inflammatory adipocytokines such as resistin and plasminogen
activator inhibitor-1 secreted by dysfunctional adipose tissues
contribute to local, systemic, and metabolic malfunctions (116).
Given the importance of liver immune responses in progression
of viral hepatitis, limited access to liver tissues has severely
impeded development of HCV vaccine and HBV therapeutics.

Zika
Infections with Zika virus (ZIKV; Genus: Flavivirus; Family:
Flaviviridae) have recently caused a pandemic due to abortions,
stillbirths, congenital birth defects, and neonate deaths called the
congenital Zika syndrome (CZS) (117). ZIKV induced neuronal
necrosis in the cortical layer of the brain is mediated by a

complex array of cytokines and immune factors (118–120).
While studies in brain tissue are limited, in-situ immunostaining
of infected fetal brain samples showed that the predominant
immune response was characterized by IL-4, IL-10, IL-33, iNOS,
and arginase and therefore was generally skewed toward a
Th2 response (118). IL-33, in particular is directly involved in
pyroptosis, activation of inflammasomes, endoplasmic reticulum
stress potentially leading to cellular damage (119). However,
other cytokine responses indicative of Th1, Th17, Treg, Th9, and
Th22 response were also involved to a lesser extent. Immune cells
including microglia, CD4+ and CD8+ T cells, Treg, NK cells,
M1/ M2 macrophages, and antigen-presenting cells contribute
to the pathogenesis of the ZIKV induced inflammation (118).
Thus, a complex relationship between different immune factors,
cell damage, and direct viral action leads to ZIKVmeningitis and
encephalitis.

While ZIKV induced pathology and pathogenesis studies
in humans are limited to samples obtained from autopsy of
severe fatal cases, NHP have been tremendously helpful in
elucidating pathogenesis and fast tracked development of several
vaccine candidates (121–123). Indeed, fetal neuropathology,
microcephaly, and other CZS symptoms were evidenced in
several NHP models including rhesus, pigtail, and cynomolgus
macaques, common marmosets, and squirrel monkeys infected
during early pregnancy (55, 56, 124–128). Infection studies
in common marmoset dams identified immune pathways in
maternal viral responses. Interestingly, an increase in IFN-
γ and pro-inflammatory cytokines as early as day 2 post-
infection was reported. The pro-inflammatory response was
maintained as elevated induction of type I/II IFN associated
genes and pro-inflammatory cytokines even at day 7 post-
infection and spontaneous abortion after 16–18 days of
infection was reported with extensive viral infection in placenta
and fetal tissues (56, 125). In infected rhesus macaques,
viral persistence in the central nervous system and lymph
nodes correlated with robust and early induction of pro-
inflammatory responses and mTOR signaling pathways as
evidenced by IFN-α induction at day 2, 4, and 6 post-
infection and upregulation of transcript components of IFN-
α and IFN-stimulated genes (ISGs) (OAS2, IFT1/2/3, ISG15,
IRF7, IFI44, MX1, and MX2), pro-inflammatory cytokines and
chemokines (TNF- α, IL-1, IL18, CCR7, CCL2, and CCL20),
immunomodulatory pathways (IL-10, TGF-β, and T regulatory
cells), and inflammasome pathways (NOD2, NLRP3, CXCL10,
BTG2, BST2, OSM) at day 6 post-infection (129). As a result
of these activated pathways, ZIKV persistence could contribute
to the characteristic neuropathology associated with ZIKV.
Further several experiments in NHP are currently underway for
preclinical testing of vaccine candidates and Zika is an excellent
example to illustrate the importance of NHP in developing
vaccines within a short span of time.

Dengue
Dengue virus (DENV; Genus: Flavivirus; Family: Flavivirdae), is
a major vector borne disease in tropical and subtropical countries
affecting approximately 100million people worldwide, which can
progress from the typical Dengue fever to fatal conditions such as
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Dengue hemorrhagic fever (DHF) and Dengue shock syndrome
(DSS). Damage to vascular endothelium and uncontrolled
activation of blood coagulation pathways in DHF can result in
critical hypovolemic shock in DSS. Increased levels of cytokines,
such as IFNs, IL-2, IL-8, TNF-α, and vascular endothelial growth
factor A (VEGF-A) have all been reported to be associated with
vascular leakage (130). Increased T cell activation and cytokine
production in patients during both primary and secondary
Dengue virus infections showed greater clinical severity of illness
associated with cytokine storm characterized by elevated plasma
pro-inflammatory cytokines such as IFN-γ, IL-6, IL-8, IL-10,
CXCL9, CXCL10, CXCL11, MIF, TNF-α, and VEGF (130, 131).

Several NHP species are permissive to Dengue infection
including chimpanzees, rhesus and cynomolgus macaques,
sooty mangabeys, common marmosets, and owl monkeys,
however the DENV induced hemorrhagic disease pattern is less
common in NHP [reviewed in (132)]. In addition to elevated
TGF-α and IFN-γ, increases in MCP-1, which drives immune
cell recruitment, and potential cause of vascular damage was
found elevated in rhesus macaques infected with DENV (133).
A high dose intravenous inoculation of DENV induced classic
dengue hemorrhage in infected rhesus macaques 3–5 days
post-infection, with altered serum biochemical parameters
indicative of coagulopathy (134). Similarly cytokine storm
associated with enhanced dengue disease was detected in DENV
infected marmosets, which showed a significant increase in
plasma TNF-α as early as 3 days post-infection and significantly
increased IFN-γ at 3, 6, and 20 days post-infection (52, 135).
Indeed, antibody enhanced dengue disease in marmosets
lead to CNS injury and was associated with intense TNF-α
immunostaining in brain samples (135). Further, based on
biomarker network analysis, two relevant strong axes during
early stages of dengue fever were identified—a protective axis
composed of TNF-α/lymphocytes/platelets, and a pathological
axis IL-2/IL-6/monocyte/prothrombin time/viremia. Later
time points post-infection showed the interaction of IFN-
γ/platelets/DENV-3/prothrombin time, and the involvement of
type-2 cytokines (IL-4, IL-5) (136). Overall, these studies indicate
that elevated proinflammatory cytokines in dengue-infected
NHP have a pathogenic role associated with disease severity.

Influenza
Influenza A virus (Genus: Influenzavirus A; Family:
Orthomyxoviridae) causes acute and severe respiratory illness in
more than 1 billion people worldwide. The severity of influenza
infection derives from the interplay between the virus and the
host’s ability to control viral infection and spread. In severe
cases the host’s response is hyperactivated and the resulting
inflammatory response produces a cytokine storm (137–139)
that is responsible for tissue injury and potentially death. This
was seen during the 1918 H1N1 pandemic and more recently
via the spread of H5N1. Endothelial cells from the lung have
been implicated as key players in propagating the cytokine
storm, in part from having elevated levels of CCL2, CCL5, and
CXCL10 (140). Further inhibiting S1P1 receptor signaling on
pulmonary endothelial cells, which leads to downregulation
of cytokine/chemokine signaling, has been shown to decrease

the development of cytokine storm following infection with
influenza (140, 141).

One of the major issues in NHP modeling of influenza is the
result of low animal mortality as compared to what happens in
humans. While NHP can be infected with seasonal influenza
strains they do not always display symptoms akin to those
seen in humans (142). Influenza infection in NHP may lead
to a biphasic subclinical fever early during the infection (143,
144), but this seems to be dependent on the mode of infection
and dosage utilized (145, 146). Aerosol delivery using the full
head chamber (145) results in a more lethal outcome, whereas
the facemask leads to less severe symptoms. Infection with
highly pathogenic influenza strains can induce clinical symptoms
such as fever, cough and lethargy, and even showing signs of
acute respiratory distress syndrome (124), bronchointerstitial
pneumonia, peribronchiolar alveolitis, edema, and hemorrhaging
(147–150). Further, in this model and others, increased levels of
IP-10 (CXCL10), MCP-1 (CCL2), and IL-6 have been observed,
which have been characterized as hallmarks of H5N1 human
infection (138, 139, 151–153). Gene expression analyses have also
shown that CXCL10 and CXCL11 are highly upregulated early
during infection with highly pathogenic H1N1 and H5N1 and
associated with elevated tissue damage (151, 152, 154). Using the
full head chamber allows for the macaques to develop fulminant
pneumonia that rapidly progressed to acute respiratory distress
syndrome, which is the result of widespread alveolar epithelial
cell death as well as depletion of alveolar macrophages.

CMV
CMV (Genus: Cytomegalovirus; Family: Herpesviridae)
can infect and persist lifelong in multiple cell types such
as macrophages, neutrophils, fibroblasts, neuronal cells,
hepatocytes and others (155–159). Human CMV (HCMV)
infections are often reported in patients with suppressed
immune system, including the elderly, AIDS patients, cancer
patients, and transplant recipients. After infection, CMV hijacks
cellular machinery, induces significant alterations in gene
expression including IFN signaling genes, followed by a complex
cascade of signaling events (160, 161) leading to upregulation of
transcription factors like NF-κB and altered cytokine production,
and thus successfully evades the host immune surveillance and
disseminates to all organs (162–167). While the pathogenesis
is not completely clear, elevated levels of MCP-1 and MIP-1α
recruiting monocyte and macrophages to the site of infection
could mediate tissue damage with uncontrolled viral replication
in immunocompetent patients (168, 169). In congenital CMV
infections, which cause severe birth defects in newborn babies,
elevated MCP-1 and TNF-α in placenta could lead to adverse
pregnancy outcomes or even death in utero (170, 171). Another
group reported severe CNS abnormalities and brain vasculature
damage in newborn babies due to proinflammatory cytokines
IL-8, IL-6, TNF-α, and IL-1β upregulated by CMV infection of
pericytes (172).

HCMV does not infect animals due to the species specificity
of beta herpesviruses and interestingly the virus has co-evolved
with its host species (173). Therefore, the study of specific
CMV in their respective species of animal models has been
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helpful in elucidating CMV specific immunity. Indeed, simian
CMV seroprevalence was reported in baboons, African green
monkeys, and rhesus macaques as early as 1971 (174) and
currently, rhesus CMV (RhCMV) infections in rhesus macaques
is more commonly used as a NHP model (175). Since the
global prevalence of HCMV ranges from 60 to 100%, animal
models offer a unique advantage of being specific pathogen
free, in this case CMV-free, in order to understand CMV
immunity in comparison to uninfected population. RhCMV
is particularly useful to model congenital infections (176)
and co-infections such as CMV and HIV infections in the
same host (177). Intrauterine inoculation of pregnant dams
and intraamniotic/intracranial inoculations of the fetuses with
RhCMV led to severe neurological defects and CNS lesion
similar to HCMV (45, 176, 178). Further, RhCMV studies
helped identify that the primate CMV encodes and expresses
IL-10 homolog genes in vivo (179). Interestingly, the viral
homolog had evolved functions that are beneficial to viral
replication, primarily through immunosuppressive and anti-
proliferative effects on host immune cells (179). The CMV
IL-10 could also play a role in CMV’s ability to subvert
NK cell reactivity, thus avoiding NK cell lysis (179). Further,
exploration of RhCMV infections in CMV free animals
can identify immunopathogenesis pathways and therapeutic
targets.

IMMUNOTHERAPEUTIC APPROACHES

Recombinant cytokines and anti-cytokine antibodies have
recently gained traction in the pharmaceutical arena as a
novel class of drugs for therapeutic purposes especially in
autoimmune disorders and cancer (180, 181). There are few
cytokine therapies that are already in use for therapy against
viral infections such as IFN-α for HBV and HCV therapy. To
overcome the severe side effects of IFN-α therapy, recently type
III IFNs namely IFN-λ which have similar biological functions as
IFN-α, have been tested preclinically in rhesus macaques (182).
IFN-λ demonstrated antiviral effects similar to IFN-α without
hematologic toxicity and thus could be used as an alternative
therapy in chronic hepatitis patients. IL-12 administration has

been previously studied in chimpanzees and rhesus macaques for
understanding IL-12 mediated pathways and antiviral protection
in SIV infections respectively (183, 184). IL-15 agonist, which
has immunomodulatory functions, activates innate and adaptive
immunity, and has been well characterized in NHP (185–188).
Recently, a novel IL-15 superagonist ALT 803 potentiated T cell
and NK cell responses leading to transient viral suppression
in ART naïve SIV infected rhesus macaques (189). While the
viral suppression was transient, this study illustrates IL-15 as a
potential therapeutic agent particularly in combination therapy
and ALT 803 is already in clinical trials for cancer therapy
(190, 191). Even in DNA vaccine studies, IL-2 administration
augmented vaccine elicited HIV-1, and SIV-1 specific immune
responses in SHIV challenged rhesus macaques (192) thus
showing that cytokine co-administrations can potentiate both
vaccines and therapeutics.

Blocking of cytokine receptors or administration of cytokine
antagonists can also be helpful in control of viral replication.
Antagonists of CCR5 (maraviroc and vicriviroc) and CXCR4
inhibitor (Plerixafor) are relevant as they block HIV entry
in cells and therefore can be used for HIV treatment (193).
In addition to these small molecule CCR5 inhibitors, CCR5
blocking antibodies have also been characterized in preclinical
rhesus macaques model of SIV infection (194–196). Further,
maraviroc prevented cardiac dysfunction and cardiomyopathy
associated with AIDS by blocking CCL5 and its recruitment of
inflammatory macrophages in the heart tissue of SIV infected
rhesus macaques (197).

Cytokine-based therapeutics are increasingly tested for other
non-viral disease models of NHP. IL-13 neutralization for
prevention of IgE mediated allergic responses in airway
inflammation model of cynomolgus macaques (198), IL-6
receptor blocking and anti-TNF agent, infliximab for treatment
of rheumatoid arthritis in cynomolgus macaques and rhesus
macaques, IFN-α treatment effects in rhesus macaques model
of cytokine induced depression (199, 200) are some of the
few examples and could have potential applications in viral
immunity and therapy. While cytokine therapy is advantageous
in controlling viral replication or preventing tissue damage,
systemic administration of cytokine, or cytokine blocking can
result in altered hematopoiesis and immune activation, and

FIGURE 2 | Cytokine responses and sequelae in viral infections.
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severe complications due to the pleiotropic nature of cytokines
in long-term therapy. Even in co-inhibitor receptors/checkpoint
blockade therapy such as anti-PD-1 or CTLA-4 therapy
commonly used for reversion of exhausted T cells in cancer
and chronic diseases, undue immune activation or autoimmune
responses is a primary risk leading to systemic or organ
toxicities associated with uncontrolled inflammatory cytokine
secretion and cytotoxicity by activated immune cells, which
in turn require additional or follow-up immunosuppressive
treatment [reviewed in (201, 202)]. Therefore, development
of site directed biologics or cytokine therapy targeting viral
infected tissues would be more beneficial than systemic
administration.

CONCLUSION

Within the last few years, cytokines have been identified as key
diagnostic, prognostic, and therapeutic agents in human diseases.
Their multifaceted roles in immunity, tissue protection, and
remodeling, maintenance of systemic and metabolic homeostasis
make them important biomarkers for understanding and
treating infectious diseases, cancer, auto-immune diseases,
metabolic dysfunctions and other inflammatory processes.

However, it is very important that their use in conjunction
with other therapeutic and preventative strategies needs to
be tested in pre-clinical models due to their propensity to
cause immunopathology and tissue injury leading to serious
complications in certain conditions (Figure 2). The usage of
NHP models will be helpful for early prevention of tissue injury
and associated autoimmune and metabolic syndromes that arise
in diseases caused by viral and non-viral causes.
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