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Abstract

Latent Markov (LM) models represent an important class of models for the analysis
of longitudinal data, especially when response variables are categorical. These models
have a great potential of application in many fields, such as economics and medicine.
We illustrate the R package LMest that is tailored to deal with the basic LM model and
some extended formulations accounting for individual covariates and for the presence of
unobserved clusters of units having the same initial and transition probabilities (mixed
LM model). The main functions of the package are tailored to parameter estimation
through the expectation-maximization algorithm, which is based on suitable forward-
backward recursions. The package also permits local and global decoding and to obtain
standard errors for the parameter estimates. We illustrate the use of the package and
its main features through some empirical examples in the fields of labour market, health,
and criminology.

Keywords: expectation-maximization algorithm, forward-backward recursions, hidden Markov
model, missing data.

1. Introduction

In this paper we illustrate the R (R Core Team 2017) package LMest (Bartolucci and Pandolfi
2017), available from the Comprehensive R Archive Network (CRAN) at https://CRAN.
R-project.org/package=LMest, which provides a collection of functions that can be used
to estimate latent Markov (LM) models for longitudinal categorical data. The package is
related to the book by Bartolucci, Farcomeni, and Pennoni (2013), where these models are
illustrated in detail from the methodological point of view. Additional insights are given in
the discussion paper by Bartolucci, Farcomeni, and Pennoni (2014b).
LM models are designed for the analysis of univariate and multivariate longitudinal/panel

http://dx.doi.org/10.18637/jss.v081.i04
https://CRAN.R-project.org/package=LMest
https://CRAN.R-project.org/package=LMest
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data based on the repeated observation of a sample of units across time. These models are
specially tailored to study the evolution of an individual characteristic of interest, when this
characteristic is not directly observable. For this aim, the models at issue rely on a latent
process following a Markov chain. Another reason for using LM models is to account for
time-varying unobserved heterogeneity in addition to the effect of observable covariates on
the response variables.

The initial LM formulation introduced by Wiggins (1973), see also Wiggins (1955), has been
developed in several directions and in connection with applications in many fields, such as
economics, medicine, psychology, and sociology. In particular, the basic LM model, which
relies on a homogeneous Markov chain of first order, has been extended in several ways on the
basis of parameterizations that allow us to incorporate certain hypotheses in the model. The
most relevant extended version includes individual covariates that may affect the distribution
of the latent process (Vermunt, Langeheine, and Böckenholt 1999; Bartolucci, Pennoni, and
Francis 2007) or the conditional distribution of the response variables given this process
(Bartolucci and Farcomeni 2009). LM models may be also formulated to take into account
certain types of unobserved heterogeneity. In particular, we are referring to the mixed LM
model (Van de Pol and Langeheine 1990) and to the LM model with random effects (Altman
2007; Maruotti 2011; Bartolucci, Pennoni, and Vittadini 2011). Within the first formulation,
the initial and transition probabilities of the latent process are allowed to vary across different
latent subpopulations.

LM models are conceived quite similarly to hidden Markov (HM) models (Zucchini and Mac-
Donald 2009) for time-series data, but they are tailored to longitudinal data where many
individuals are observed at only a few occasions, typically no more than ten. Differently from
LM models, HM models with covariates or for complex data structures are rarely applied
because these structures are typical of longitudinal studies.

Some R packages already exist that can handle LM and related models. In particular,
HM models can be estimated by using packages HMM (Himmelmann 2010), HiddenMarkov
(Harte 2017), or depmixS4 (Visser and Speekenbrink 2010). The last one is the most closely
related to our package LMest as it is tailored to deal with HM models based on a generalized
linear formulation that can include individual covariates. On the other hand, package dep-
mixS4 is designed to deal with repeated measurements on a single unit, as in a time-series
context. Packages mhsmm (O’Connell and Højsgaard 2011) and hsmm (Bulla and Bulla
2013) may be used to estimate hidden semi-Markov models. Package msm (Jackson 2011) is
tailored to deal with HM and related continuous time models. Finally, it is worth mentioning
package hmm.discnp (Turner 2016), which can be used to fit multiple hidden Markov models,
and package seqHMM (Helske and Helske 2017), which also includes graphical tools to visu-
alize sequence data and categorical time series with multiple units and covariates. The latter
one is related to package LMest as it can be used to estimate certain versions of mixed hidden
Markov models. A commercial software to perform data analyses based on certain types of
LM models is Latent GOLD (Vermunt and Magidson 2016). Additionally, some MATLAB
(The MathWorks Inc. 2014) toolboxes are available for this aim; see for example the HMM
toolbox implemented by Murphy (1998).

The distinguishing features of the LMest package with respect to the packages mentioned
above are the following:



Journal of Statistical Software 3

• LMest is designed to work with longitudinal data, that is, with (even many) i.i.d. repli-
cates of (usually short) sequences of data.

• It can deal with univariate and multivariate categorical outcomes.

• It allows for missing responses, drop-out, and non-monotonic missingness, under the
missing-at-random assumption (Little and Rubin 2002).

• Standard errors for the parameter estimates are obtained by exact computation or
through reliable approximations of the observed information matrix.

• Individual covariates are included through suitable parameterizations.

• Additional discrete random effects can be used to formulate mixed LM models.

• Computationally efficient algorithms are implemented for estimation and prediction of
the latent states, also by relying on certain Fortran routines.

The present article is organized as follows. Section 2 briefly outlines the general formulation
of LM models and deals with their maximum likelihood estimation. Section 3 describes the
use of the LMest package to estimate the basic LM model without covariates. Section 4 is
focused on LM models with individual covariates included in the measurement model, while
Section 5 is focused on the case of individual covariates affecting the distribution of the latent
process. In Section 6 we introduce the mixed LM model and we describe the R function for
its estimation. Finally, Section 7 summarizes the main conclusions.

2. Latent Markov models for longitudinal data
In the following we provide a brief review of the statistical methodology related to LM models.
The illustration closely follows the recent paper by Bartolucci et al. (2014b). We also focus on
maximum likelihood estimation of these models on the basis of the expectation-maximization
(EM) algorithm (Dempster, Laird, and Rubin 1977). Moreover, we deal with more advanced
topics which are important for applications, such as selection of the number of latent states
and prediction of these states via local or global decoding (Viterbi 1967; Juang and Rabiner
1991).

2.1. The general latent Markov model formulation

Consider the multivariate case where for a generic unit we observe a vector Y (t) of r categorical
response variables at T occasions, so that t = 1, . . . , T . Each response variable is denoted by
Y

(t)
j and has cj categories, labeled from 0 to cj−1, with j = 1, . . . , r. Also let Ỹ be the vector

obtained by stacking Y (t) for t = 1, . . . , T ; this vector has then rT elements. Obviously, in
the univariate case we have a single response variable Y (t) for each time occasion, and Ỹ is
composed of T elements. When available, we also denote by X(t) the vector of individual
covariates available at the t-th time occasion and by X̃ the vector of all the individual
covariates, which is obtained by stacking vectors X(t) for t = 1, . . . , T .
The general LM model formulation assumes the existence of a latent process, denoted by
U = (U (1), . . . , U (T )), which affects the distribution of the response variables. Such a process is
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assumed to follow a first-order Markov chain with state space {1, . . . , k}, where k is the number
of latent states. Under the local independence assumption, the response vectors Y (1), . . . ,Y (T )

are assumed to be conditionally independent given the latent process U . Moreover, the
elements Y (t)

j of Y (t), with t = 1, . . . , T , are conditionally independent given U (t). This
assumption leads to a strong simplification of the model, but it can be relaxed by allowing
serial dependence through the inclusion of the lagged response variable among covariates, as
in Bartolucci and Farcomeni (2009).
The parameters of the measurement model are the conditional response probabilities

φ
(t)
jy|ux = P(Y (t)

j = y|U (t) = u,X(t) = x), j = 1, . . . , r, y = 0, . . . , cj − 1,

which reduce to

φ
(t)
y|ux = P(Y (t) = y|U (t) = u,X(t) = x), y = 0, . . . , c− 1,

in the univariate case, with t = 1, . . . , T and u = 1, . . . , k.
The parameters of the latent process are the initial probabilities

πu|x = P(U (1) = u|X(1) = x), u = 1, . . . , k,

and the transition probabilities

π
(t)
u|ūx = P(U (t) = u|U (t−1) = ū,X(t) = x), t = 2, . . . , T, ū, u = 1, . . . , k,

where x denotes a realization of X(t), y a realization of Y (t)
j , u a realization of U (t), and ū a

realization of U (t−1).
On the basis of the above parameters, the conditional distribution of U given X̃ may be
expressed as

P(U = u|X̃ = x̃) = πu(1)|x(1)

T∏
t=2

πu(t)|u(t−1)x(t) ,

where u = (u(1), . . . , u(T )) and x̃ denotes a realization of the vector of all response variables
X̃. Moreover, the conditional distribution of Ỹ given U and X̃ may be expressed as

P(Ỹ = ỹ|U = u, X̃ = x̃) =
T∏

t=1
φ

(t)
y(t)|u(t)x(t) ,

where, in general, we define φ
(t)
y|ux = P(Y (t) = y|U (t) = u,X(t) = x) and, due to the

assumption of local independence, we have

φ
(t)
y|ux =

r∏
j=1

φ
(t)
jyj |ux.

In the above expressions, ỹ is a realization of Ỹ made by the subvectors y(t) = (y(t)
1 , . . . , y

(t)
r )

whereas y is a realization of Y (t) with elements yj , j = 1, . . . , r.
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In the presence of individual covariates, the manifest distribution of the response variables
corresponds to the conditional distribution of Ỹ given X̃, which is defined as

P(ỹ|x̃) = P(Ỹ = ỹ|X̃ = x̃)

=
∑
u

πu(1)|x(1)π
(2)
u(2)|u(1)x(2) · · ·π

(T )
u(T )|u(T −1)x(T ) × φ

(1)
y(1)|u(1)x(1) · · ·φ

(T )
y(T )|u(T )x(T ) . (1)

In the basic version of the model, individual covariates are ruled out; therefore, we use symbol
P(ỹ) to refer to the manifest distribution. Moreover, when these covariates are available, we
suggest to avoid that they simultaneously affect the distribution of the latent process and
the conditional distribution of the response variables given this process. In fact, the two
formulations have different interpretations, as explained in more detail in the following, and
the resulting model would be difficult to interpret and estimate.
Finally, it is important to note that computing P(ỹ|x̃), or P(ỹ) for the basic LM model,
involves a sum extended to all possible configurations of the vector u, which are kT ; this
typically requires a considerable computational effort. However, in order to efficiently compute
such a probability we can use a forward recursion due to Baum, Petrie, Soules, and Weiss
(1970), as illustrated in Bartolucci et al. (2013, Chapter 3).

2.2. Maximum likelihood estimation

We illustrate maximum likelihood estimation in the general case in which covariates are
available. In this case, for a sample of n independent units that provide the response vec-
tors ỹ1, . . . , ỹn and given the corresponding vectors of covariates x̃1, . . . , x̃n, the model log-
likelihood has the following expression:

`(θ) =
n∑

i=1
log P(ỹi|x̃i).

Each vector ỹi is a realization of Ỹ that, in the multivariate case, is made up of the subvectors
y

(t)
i , t = 1, . . . , T , having elements y(t)

ij , j = 1, . . . , r; similarly, x̃i may be decomposed into
the time-specific subvectors x(1)

i , . . . ,x
(T )
i . Moreover, P(ỹi|x̃i) corresponds to the manifest

probability of the responses provided by subject i, see Equation 1, and θ is the vector of all
free parameters affecting P(ỹi|x̃i).
The above log-likelihood function can be maximized by the EM algorithm (Baum et al. 1970;
Dempster et al. 1977), as described in the following section.

Expectation-maximization algorithm

The EM algorithm is based on the complete data log-likelihood that, with multivariate cate-
gorical data, has the following expression:

`∗(θ) =
r∑

j=1

T∑
t=1

k∑
u=1

∑
x

cj−1∑
y=0

a
(t)
juxy log φ(t)

jy|ux +
k∑

u=1

∑
x

b(1)
ux log πu|x+

T∑
t=2

k∑
ū=1

k∑
u=1

∑
x

b
(t)
ūux log π(t)

u|ūx, (2)
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where, with reference to occasion t and covariate configuration x, a(t)
juxy is the number of

individuals that are in the latent state u and provide response y to variable Y (t)
j , b(t)ux is the

frequency of latent state u, and b(t)ūux is the number of transitions from state ū to state u.
The EM algorithm alternates the following two steps until convergence:

• E-step: This step consists in computing the posterior (given the observed data) ex-
pected value of each frequency involved in Equation 2 by suitable forward-backward
recursions (Baum et al. 1970); these expected values are denoted by â

(t)
juxy, b̂

(t)
ux, and

b̂
(t)
ūux.

• M-step: This step consists in maximizing the complete data log-likelihood expressed
as in Equation 2, with each frequency substituted by the corresponding expected value.
How to maximize this function depends on the specific formulation of the model and, in
particular, on whether the covariates are included in the measurement or in the latent
model.

The convergence of the EM algorithm is checked on the basis of the relative log-likelihood
difference, that is, [

`(θ(s))− `(θ(s−1))
]
/|`(θ(s))| < ε, (3)

where θ(s) is the parameter estimate obtained at the end of the s-th M-step and ε is a suitable
tolerance level (e.g., 10−8).
The EM algorithm could converge to a mode of the log-likelihood that does not correspond to
the global maximum, due to the multimodality of this function. In order to avoid this problem,
we suggest to use different initializations of this algorithm, either deterministic or random,
and to take as final estimate the one corresponding to the highest log-likelihood; this estimate
is denoted by θ̂. In particular, for LM models without covariates, the random initialization is
based on suitably rescaled random numbers drawn from a uniform distribution from 0 to 1 for
the initial and transition probabilities of the Markov chain and for the conditional response
probabilities.
We refer the reader to Bartolucci et al. (2013) for a detailed description of the EM algorithm
and its initialization.

Standard errors

After the model is estimated, standard errors for the parameter estimates may be obtained on
the basis of the observed information matrix, denoted by J(θ̂). In particular, each standard
error is obtained as the square root of the corresponding diagonal element of the inverse of
this matrix, J(θ̂)−1. The LMest package computes the observed information matrix, and
then provides the standard errors, by using either the exact computation method proposed
by Bartolucci and Farcomeni (2015) or the numerical method proposed by Bartolucci and
Farcomeni (2009), depending on the complexity of the model of interest.
The exact computation of J(θ̂) is based on the Oakes’ identity (Oakes 1999). This method
uses the complete data information matrix, produced by the EM algorithm, and a correction
matrix computed on the basis of the first derivative of the posterior probabilities obtained
from the backward-forward recursions. On the other hand, with the approximate method,
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J(θ̂) is obtained as minus the numerical derivative of the score vector s(θ̂) at convergence.
The score vector, in turn, is computed as the first derivative of the conditional expected value
of the complete data log-likelihood, which is based on the expected frequencies â(t)

juxy, b̂
(t)
ux,

and b̂(t)ūux corresponding to the final parameter estimates θ̂, that is,

s(θ̂) = ∂Eθ̄[`∗(θ)|X ,Y]
∂θ

∣∣∣∣∣
θ=θ̂, θ̄=θ̂

,

where X and Y stand for the observed data; see Bartolucci et al. (2013) and Pennoni (2014)
for details.
For the basic LM model and for the model with individual covariates affecting the distribution
of the latent process, the LMest package also provides functions to obtain standard errors by
parametric bootstrap (Davison and Hinkley 1997).

2.3. Criteria for selecting the number of latent states

In certain applications, the number of latent states, k, can be a priori defined, as in the
univariate case in which it is reasonable to fix k equal to the number of response categories.
Otherwise, the following criteria are typically used to select the number of latent states: the
Akaike information criterion (AIC) of Akaike (1973) and the Bayesian information criterion
(BIC) of Schwarz (1978). They are based on the indices

AIC = −2ˆ̀+ 2 #par,
BIC = −2ˆ̀+ log(n) #par,

where ˆ̀ denotes the maximum of the log-likelihood of the model of interest and #par denotes
the number of free parameters.
According to each of the above criteria, the optimal number of latent states is the one corre-
sponding to the minimum value of AIC or BIC; this model represents the best compromise
between goodness-of-fit and complexity. If the two criteria lead to selecting a different number
of states, the second one is usually preferred. However, other criteria may be used, such as
those taking into account the quality of the classification; for a review see Bacci, Pandolfi,
and Pennoni (2014) and Bartolucci, Bacci, and Pennoni (2014a).

2.4. Local and global decoding

The LMest package allows us to perform decoding, that is, prediction of the sequence of the
latent states for a certain sample unit on the basis of the data observed for this unit.
In particular, the EM algorithm directly provides the estimated posterior probabilities of U (t),
denoted by P(U (t) = u|X̃ = x̃, Ỹ = ỹ), for t = 1, . . . , T , u = 1, . . . , k, and for every covariate
and response configuration (x̃, ỹ) observed at least once. These probabilities can be directly
maximized to obtain a prediction of the latent state of each subject at each time occasion t;
this is the so-called local decoding. Note that this type of decoding minimizes the classification
error at each time occasion, but may yield sub-optimal predictions of U (1), . . . , U (T ).
In order to track the latent state of a subject across time, the most a posteriori likely se-
quence of states must be obtained through the so-called global decoding, which is based on
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an adaptation of the Viterbi (1967) algorithm; see also Juang and Rabiner (1991). The algo-
rithm proceeds through a forward-backward recursion of a complexity similar to the recursions
adopted for maximum likelihood estimation within the EM algorithm, so that global decoding
may be even performed for long sequences of data; see Bartolucci et al. (2013, Chapter 7).

3. Basic latent Markov model
Following Bartolucci et al. (2013), and as already mentioned above, the basic LM model rules
out individual covariates and assumes that the conditional response probabilities are time
homogeneous. In symbols, we have that φ(t)

y|ux = φy|u in the univariate case and φ(t)
jy|ux = φjy|u

in the multivariate case; we also have πu|x = πu and π(t)
u|ūx = π

(t)
u|ū.

In order to fit this model, we use function est_lm_basic as illustrated, through a specific
application, in the following.

3.1. Application to job satisfaction data

The illustration is based on data coming from the Russia Longitudinal Monitoring Survey
(RLMS)1. The data are obtained by the “adult questionnaire”, which is also focused on as-
pects concerning primary and secondary employment. In particular, we consider the question
concerning job satisfaction related to the primary work. The resulting response variable,
named IKSJ, has five ordered categories: “absolutely satisfied”, “mostly satisfied”, “neutral”,
“not very satisfied”, “absolutely unsatisfied”, which are coded from 1 to 5. The data we
use are referred to a sample of n = 1,718 individuals followed for T = 7 years from 2008 to
2014. According to the economic theory proposed by Stiglitz, Amartya, and Fitoussi (2010),
job satisfaction connects two main latent factors concerning individual characteristics and
working environment that may evolve in time. Therefore, the LM approach is particularly
suitable for the analysis of the data at issue.
The data are already contained in the data frame RLMSdat included in the LMest package.
As illustrated in the following, each line of this data frame refers to an individual and each
column contains the observed responses from the first to the last year of interview.

R> library("LMest")
R> data("RLMSdat", package = "LMest")
R> head(RLMSdat)

IKSJQ IKSJR IKSJS IKSJT IKSJU IKSJV IKSJW
1 2 2 2 2 1 1 2
2 2 2 3 2 2 2 2
3 2 4 4 2 3 4 2
4 2 3 2 2 2 2 2
5 2 2 3 2 2 2 2
6 3 4 3 2 2 4 3

Function est_lm_basic requires the following main input arguments:
1For more details on the study see http://www.cpc.unc.edu/projects/rlms-hse, http://www.hse.ru/

org/hse/rlms.

http://www.cpc.unc.edu/projects/rlms-hse
http://www.hse.ru/org/hse/rlms
http://www.hse.ru/org/hse/rlms
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• S: Design array for the response configurations (of dimension n × TT × r, where TT
corresponds to the number of time occasions) with categories starting from 0; missing
responses are allowed, coded as NA.

• yv: Vector of frequencies of the available configurations.

• k: Number of latent states.

• mod: Model on the transition probabilities; mod = 0 when these probabilities depend on
time, mod = 1 when they are independent of time (i.e., the latent Markov chain is time
homogeneous), and mod from 2 to TT when the Markov chain is partially homogeneous
of order equal to mod.

• tol: Tolerance level for checking convergence, which corresponds to ε in definition (3);
the default value is 1e-8.

• maxit: Maximum number of iterations of the algorithm; the default value is 1000.

• start: Equal to 0 for deterministic starting values of the model parameters (default
value), to 1 for random starting values, and to 2 for initial values provided as input
arguments.

• piv, Pi, Psi: Initial values of the initial probability vector, of the transition probability
matrix, and of the conditional response probabilities, respectively, when start = 2.

• out_se: Equal to TRUE to require the computation of the information matrix and the
standard errors; FALSE is the default option.

In order to obtain the estimates for the data reported above, we use function aggr_data that,
starting from a unit-by-unit data frame, returns the set of distinct observed response patterns
and the corresponding frequencies:

R> out <- aggr_data(RLMSdat)
R> yv <- out$freq
R> S <- 5 - out$data_dis

Note that the response categories must start from 0 in order to be used in est_lm_basic;
therefore, these categories are rescaled in a way that also accounts for their reverse order in
the initial dataset. In this way, level 0 corresponds to category “absolutely unsatisfied” and
level 4 corresponds to category “absolutely satisfied”.
In this illustrative application, we estimate the basic LM model under the assumption of time
homogeneous transition probabilities (mod = 1) with a fixed number of states, k = 3, so as to
obtain three groups of individuals clustered on the basis of the level of job satisfaction. For
this aim, we use the following command:

R> mod1 <- est_lm_basic(S, yv, k = 3, mod = 1, start = 0, out_se = TRUE)

In this application we use the deterministic initialization (start = 0). Moreover, option
out_se = TRUE is used to obtain the standard errors for the parameter estimates on the basis
of the observed information matrix, which is exactly computed as described in Section 2.2.
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The running time of the above command is around 13 seconds when run, as the other codes
illustrated in the paper, on an Intel Core i7 processor with 2.7 GHz.
In the following, we show the estimation results, by using the print method, which provides
the maximum log-likelihood, the number of free parameters, and values of AIC and BIC
indices:

R> mod1

Call:
est_lm_basic(S = S, yv = yv, k = 3, start = 0, mod = 1, out_se = TRUE)

Convergence info:
LogLik np AIC BIC

[1,] -13557.21 20 27154.41 27263.39

The main outputs of function est_lm_basic may be displayed using the following command:

R> summary(mod1)

Call:
est_lm_basic(S = S, yv = yv, k = 3, start = 0, mod = 1, out_se = TRUE)

Coefficients:

Initial probabilities:
est_piv

[1,] 0.3638
[2,] 0.4623
[3,] 0.1739

Standard errors for the initial probabilities:
se_piv

[1,] 0.0185
[2,] 0.0244
[3,] 0.0189

Transition probabilities:
state

state 1 2 3
1 0.8863 0.0991 0.0145
2 0.0472 0.9335 0.0193
3 0.0469 0.0774 0.8757

Standard errors for the transition probabilities:
state

state 1 2 3
1 0.0105 0.0109 0.0051
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2 0.0069 0.0088 0.0059
3 0.0105 0.0198 0.0196

Conditional response probabilities:
, , item = 1

state
category 1 2 3

0 0.0731 0.0000 0.0031
1 0.2442 0.0224 0.0233
2 0.4421 0.0965 0.0448
3 0.2197 0.8166 0.3480
4 0.0209 0.0645 0.5808

Standard errors for the conditional response probabilities:
, , item = 1

state
category 1 2 3

0 0.0048 0.0001 0.0019
1 0.0092 0.0035 0.0056
2 0.0103 0.0079 0.0087
3 0.0137 0.0105 0.0245
4 0.0038 0.0075 0.0256

According to the estimated conditional probabilities φ̂y|u (returned in Psi), we can interpret
the first latent state as the one corresponding to a low level of satisfaction (high probability
of responding “not very satisfied” and “neutral”), the second state to an intermediate level of
this characteristic (probability of around 0.82 of responding “mostly satisfied”), whereas the
last state corresponds to the highest level of satisfaction. The output displayed above also
contains the estimated initial probability vector (piv), with elements π̂u, u = 1, 2, 3, that may
be easily interpreted as quantities proportional to the size of each latent state at the beginning
of the period of observation. Accordingly, we conclude that in 2008 most individuals belong
to the second latent state, 36% of them belong to the first state, and only 17% to the last
latent state. Moreover, according to the estimated transition probabilities π̂u|ū (returned in
Pi), the selected model leads to the conclusion that there is a quite high persistence in the
same state during the years of the survey.

Selection of the number of states

It is important to recall that, when the value of k is not a priori known, it must be selected on
the basis of the observed data. Moreover, different initializations of the EM algorithm must
be attempted in order to prevent the problem of multimodality of the likelihood function.
Both issues, that is, model selection and multimodality, can be addressed by using function
search.model.LM that may be also used for the more complex models that will be illustrated
later on. In the present application, we use this function to estimate the basic LM model for
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increasing values of k from 1 to 5 so as to select the optimal number of latent states using BIC.
Moreover, considering that the likelihood function may be multimodal, search.model.LM uses
one deterministic initialization (start = 0) and a number of random initializations (start =
1) proportional to the number of latent states. In this preliminary exploration, the tolerance
level is set equal to 1e-5 to reduce the computing time. Starting from the best solution
obtained in this way, a final run is performed (start = 2), with a default tolerance level
equal to 1e-10.
Function search.model.LM requires the following main input arguments (for additional de-
tails we refer to the help page of the function):

• version: Model to be estimated ("basic" = basic LM model – parameters are es-
timated by function est_lm_basic; "manifest" = LM model with covariates in the
measurement model – function est_lm_cov_manifest; "latent" = LM model with
covariates in the distribution of the latent process – function est_lm_cov_latent).

• kv: Vector of possible number of latent states.

• nrep: To fix the number of random initializations for each element of kv; this number
is equal to nrep×(k - 1) and the default value is nrep = 2.

• ...: Additional arguments for functions est_lm_basic, est_lm_cov_manifest, or
est_lm_cov_latent.

Using the following commands, we obtain the results of the model selection strategy illustrated
above:

R> set.seed(14326)
R> res1 <- search.model.LM(version = "basic", kv = 1:5, S, yv, mod = 1,
+ out_se = TRUE)
R> summary(res1)

Call:
search.model.LM(version = "basic", kv = 1:5, S, yv, mod = 1,

out_se = TRUE)
states lk np AIC BIC

[1,] 1 -14943.73 4 29895.45 29917.25
[2,] 2 -13921.09 11 27864.18 27924.12
[3,] 3 -13557.20 20 27154.41 27263.39
[4,] 4 -13392.93 31 26847.86 27016.78
[5,] 5 -13369.45 44 26826.90 27066.65

The computing time required to run the above model selection strategy is around 159 seconds.
Note that we fix the seed, by command set.seed(14326), so that the reader can reproduce
exactly the same results. On the basis of the above output, the model corresponding to
the minimum BIC is that with k = 4 latent states. Function search.model.LM returns
out.single as main output, which contains, in a list format, the output of each model for
every k in kv. Therefore, summary method may be used to show the results for the model
with the selected number of states:
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R> summary(res1$out.single[[4]])

Call:
est_lm_basic(S = ..1, yv = ..2, k = k, start = 2, mod = 1, tol = tol2,

out_se = out_se, piv = out[[k]]$piv, Pi = out[[k]]$Pi,
Psi = out[[k]]$Psi)

Coefficients:

Initial probabilities:
est_piv

[1,] 0.1863
[2,] 0.2021
[3,] 0.4400
[4,] 0.1717

Standard errors for the initial probabilities:
se_piv

[1,] 0.0211
[2,] 0.0255
[3,] 0.0250
[4,] 0.0187

Transition probabilities:
state

state 1 2 3 4
1 0.7645 0.1568 0.0642 0.0145
2 0.0183 0.8727 0.0925 0.0165
3 0.0088 0.0520 0.9219 0.0173
4 0.0266 0.0250 0.0675 0.8809

Standard errors for the transition probabilities:
state

state 1 2 3 4
1 0.0251 0.0299 0.0199 0.0103
2 0.0119 0.0208 0.0171 0.0077
3 0.0047 0.0093 0.0105 0.0064
4 0.0085 0.0110 0.0198 0.0197

Conditional response probabilities:
, , item = 1

state
category 1 2 3 4

0 0.1748 0.0111 0.0009 0.0030
1 0.4541 0.1035 0.0248 0.0222
2 0.1851 0.5576 0.0635 0.0493
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3 0.1679 0.3040 0.8413 0.3463
4 0.0181 0.0239 0.0694 0.5793

Standard errors for the conditional response probabilities:
, , item = 1

state
category 1 2 3 4

0 0.0175 0.0042 0.0010 0.0019
1 0.0244 0.0137 0.0038 0.0055
2 0.0277 0.0212 0.0082 0.0091
3 0.0216 0.0218 0.0115 0.0243
4 0.0072 0.0055 0.0080 0.0255

The specific output for the selected model with 4 classes may be interpreted starting from the
estimated conditional response probabilities to identify the different latent states and then
considering the initial and transition probabilities to have a picture of the distribution of
these states across time.

4. Covariates in the measurement model
When the individual covariates are included in the measurement model, the conditional distri-
bution of the response variables given the latent states may be parameterized by generalized
logits. In such a situation, the latent variables account for the unobserved heterogeneity, that
is, the heterogeneity between individuals that we cannot explain on the basis of the observable
covariates. The advantage with respect to a standard random-effects or latent class model
with covariates is that the unobservable heterogeneity is allowed to be time-varying; for a
deeper discussion see Bartolucci and Farcomeni (2009) and Pennoni and Vittadini (2013).

4.1. Assumptions

In dealing with univariate data in which each response variable has an ordinal nature, as
in the next illustrative example, we denote the number of its response categories by c. In
formulating the model we rely on a parameterization based on global logits of the following
type:

log P(Y (t) ≥ y|U (t) = u,X(t) = x)
P(Y (t) < y|U (t) = u,X(t) = x)

= log
φ

(t)
y|ux + . . .+ φ

(t)
c−1|ux

φ
(t)
0|ux + . . .+ φ

(t)
y−1|ux

= µy + αu + x>β, (4)

with t = 1, . . . , T , u = 1, . . . , k, and y = 1, . . . , c−1. Note that these logits reduce to standard
logits in the case of binary variables, that is, when c = 2. In the above expression, µy are the
cut-points, αu are the support points corresponding to each latent state, and β is the vector
of regression parameters for the covariates.
As mentioned in Section 2.1, the inclusion of individual covariates in the measurement model
is typically combined with the constraints πu|x = πu and π(t)

u|ū,x = πu|ū, t = 1, . . . , T , ū, u =
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1, . . . , k, in order to avoid interpretability problems of the resulting model. Also note that,
under these constraints, the transition probabilities are assumed to be time homogeneous so
as to reduce the number of free parameters.
The LM model with individual covariates in the measurement model may be estimated by
function est_lm_cov_manifest that is illustrated in the following.

4.2. Application to health related data

We provide an illustration based on data collected within the Health and Retirement Study
(HRS) conducted by the University of Michigan2. The data concern aspects related to retire-
ment and health among elderly individuals in the USA. The sample is nationally representa-
tive of the population aged over 50 years, whereas the response variable is the Self-Reported
Health Status (named SRHS) and it is measured on a scale based on five ordered categories:
“excellent”, “very good”, “good”, “fair”, and “poor”. The sample we use includes n = 7, 074
individuals interviewed at T = 8 occasions every two years. Therefore, it is reasonable to
expect that unobserved factors affecting the health status may change during a so long period,
and then time-invariant latent variables are not suitable to represent these factors. The LM
model with covariates directly takes this issue into account.
The data are reported in long format and, therefore, for each subject the number of records is
equal to the number of occasions. There are no missing responses or dropout in the dataset.

R> data("data_SRHS_long", package = "LMest")
R> data_SRHS <- data_SRHS_long
R> data_SRHS[1:10, ]

id gender race education age srhs
1 1 1 1 3 56 4
2 1 1 1 3 58 4
3 1 1 1 3 60 3
4 1 1 1 3 62 3
5 1 1 1 3 64 4
6 1 1 1 3 66 3
7 1 1 1 3 68 3
8 1 1 1 3 70 3
9 2 2 1 5 54 3
10 2 2 1 5 55 3

The first column contains the id code of each subject, then there are columns for the available
covariates. Gender is coded as 1 for male and 2 for female, whereas race has three categories
coded as 1 for white, 2 for black, and 3 for others. Educational level is represented by five
ordered categories coded as 1 for high school, 2 for general educational diploma, 3 for high
school graduate, 4 for some college, and 5 for college and above. Finally, age is measured in
years for each time occasion. The last column is related to the categorical response variable
with c = 5 categories that are originally coded from 1 to 5. For instance, the individual with
id equal to 1 provides responses “good” or “fair” at each time occasion.

2For more details on the study see http://hrsonline.isr.umich.edu/.

http://hrsonline.isr.umich.edu/
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Function est_lm_cov_manifest requires the following main input arguments (see the help
page of the function for additional arguments):

• S: Design array for the response configurations (of dimension n × TT) with categories
starting from 0.

• X: Array of covariates (of dimension n × TT × nc, where nc corresponds the number of
covariates).

• k: Number of latent states.

• mod: Type of model to be estimated, coded as mod = "LM" for the model illustrated in
Section 4.1 based on parameterization (4). In such a context, the latent process is of first
order with initial probabilities equal to those of the stationary distribution of the chain.
When mod = "FM", the function estimates a model relying on the assumption that the
distribution of the latent process is a mixture of AR(1) processes with common variance
σ2 and specific correlation coefficients ρu. This model strictly follows the one proposed
by Bartolucci et al. (2014a); see also Pennoni and Vittadini (2013) for a comparison
between the two types of model and the help page of the function for further details.

• q: Number of support points of the AR(1) structure described above.

• tol: Tolerance level for checking convergence; the default value is 1e-8.

• maxit: Maximum number of iterations of the algorithm; the default value is 1000.

• start: Equal to 0 for deterministic starting values of the model parameters (default
value), to 1 for random starting values, and to 2 for initial values in input.

• mu, al, be, la, PI: Initial values of the model parameters when start = 2 (vector of
cut-points, vector of support points for the latent states, vector of regression parameters,
vector of initial probabilities, and transition probability matrix, respectively).

• output: Equal to TRUE to print additional output; FALSE is the default option.

• out_se: Equal to TRUE to calculate the information matrix and the standard errors;
FALSE is the default option.

Function est_lm_cov_manifest, as well as other estimation functions for LM models, require
the data to be in array format. To give this structure to data that are originally in long format,
we can use function long2matrices that is included in the package.

R> out <- with(data_SRHS, long2matrices(id = id, X = cbind(gender - 1,
+ race == 2 | race == 3, education == 4, education == 5, age - 50,
+ (age - 50)^2/100), Y = srhs))

Function long2matrices mainly requires, as input arguments, the vector of the individual
labels, id, the matrix of the covariates, X, and the vector of the responses, Y; see the help page
of the function for details. Note that, in using the previous command, gender is included as a
dummy variable equal to 1 for female, race is included as a dummy variable equal to 1 for non-
white, and two dummy variables are used for the educational level: the first is equal to 1 for
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some college education and the second is equal to 1 for college education and above. Moreover,
age is scaled by 50, and age squared is also included (suitably rescaled). An alternative
formulation, which may result in a simpler interpretation of the parameter estimates, is
based on considering as covariates the baseline age and the time since the beginning of the
longitudinal study.
Function long2matrices generates the array of the responses YY, which are rescaled to vary
from 0 (“poor”) to 4 (“excellent”), as required by est_lm_cov_manifest:

R> S <- 5 - out$YY

It also returns the array XX containing the covariate configurations of each individual for
every time occasion. For example, individual with id == 3994 has the following covariate
configuration:

R> X <- out$XX
R> X[3994, , ]

[,1] [,2] [,3] [,4] [,5] [,6]
[1,] 1 0 0 0 1 0.01
[2,] 1 0 0 0 3 0.09
[3,] 1 0 0 0 5 0.25
[4,] 1 0 0 0 7 0.49
[5,] 1 0 0 0 9 0.81
[6,] 1 0 0 0 11 1.21
[7,] 1 0 0 0 13 1.69
[8,] 1 0 0 0 15 2.25

The individual considered above is a female (see first column), white (second column), with
high school diploma (third and fourth columns); she is 51 years old at the first interview, 53
years old at the second interview, and so on (fifth column).
As a preliminary example, to estimate the model at issue with a given number of states, say
k = 3, the command is

R> mod2 <- est_lm_cov_manifest(S, X, k = 3, mod = "LM", tol = 1e-8,
+ start = 1, output = TRUE, out_se = TRUE)

However, instead of showing and commenting the output produced in this way, we prefer to
directly illustrate how to deal with this model by function search.model.LM, which addresses
the problem of model selection, in terms of k, and that of multimodality of the likelihood
function. Moreover, as the sample size is particularly large and the model selection strategy
may require a considerable amount of computing time, we extract a subset of observations
to make the results easily reproducible. Accordingly, we consider only those individuals who
are 70 years old at the third interview so as to account for the influence of the covariates on
the oldest individuals. Then, we run the search.model.LM function for a number of states k
from 1 to 5, as follows:

R> ind <- (X[, 3, 5] >= 20)
R> Sn <- S[ind, , ]
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R> Xn <- X[ind, , ]
R> set.seed(71432)
R> res2 <- search.model.LM(version = "manifest", kv = 1:5, Sn, Xn,
+ mod = "LM", out_se = TRUE, tol2 = 1e-8)
R> summary(res2)

Call:
search.model.LM(version = "manifest", kv = 1:5, Sn, Xn, mod = "LM",

tol2 = 1e-08, out_se = TRUE)
states lk np AIC BIC

[1,] 1 -1557.692 10 3135.384 3164.363
[2,] 2 -1419.621 13 2865.242 2902.914
[3,] 3 -1354.151 18 2744.302 2796.463
[4,] 4 -1332.653 25 2715.306 2787.752
[5,] 5 -1323.122 34 2714.244 2812.770

Under this setting, the function requires about 5,041 seconds to run. Note that option out_se
= TRUE allows us to obtain standard errors for the parameter estimates, by means of the
numerical method described in Section 2.2, so as to evaluate the effect of the covariates on
the probability of responding in a certain way. According to these results, the minimum BIC
index corresponds to the model with k = 4 latent states; the estimation results are illustrated
in the following:

R> summary(res2$out.single[[4]])

Call:
est_lm_cov_manifest(S = ..1, X = ..2, k = k, mod = "LM", tol = tol2,

start = 2, mu = out[[k]]$mu, al = out[[k]]$al, be = out[[k]]$be,
si = out[[k]]$si, rho = out[[k]]$rho, la = out[[k]]$la, PI = out[[k]]$PI,
out_se = out_se)

Coefficients:

Vector of cut-points:
[1] 5.4921 2.4152 -0.1917 -2.8573

Support points for the latent states:
[1] -1.6147 -5.0482 0.7809 4.0389

Estimate of the vector of regression parameters:
[1] -0.9669 0.7219 2.1244 2.4585 0.0312 -0.3574

Vector of initial probabilities:
[1] 0.2810 0.1130 0.4368 0.1692

Transition matrix:
[,1] [,2] [,3] [,4]
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[1,] 0.9032 0.0334 0.0245 0.0388
[2,] 0.1788 0.7962 0.0000 0.0250
[3,] 0.0092 0.0301 0.9606 0.0002
[4,] 0.0177 0.0029 0.0611 0.9184

Standard errors for the regression parameters:
[1] 0.3257 0.3945 0.3784 0.3489 0.1424 0.2730

The above output contains the estimated cut-points (mu), corresponding to µ̂y, the estimated
support points for the latent states (al), corresponding to α̂u, and the estimated vector of
regression parameters (be), β̂, as in expression (4). Note that the support points could be
sorted so that the latent states result ordered from the worst to the best perceived health
conditions. The estimated coefficients in β̂ are reported in the same order adopted to de-
fine the array X of covariates. The list of objects returned by the function, contained in
res2$out.single[[4]], may also be displayed in the usual way; for a complete list of the
returned arguments, we refer to the help pages of the package. As an example, the standard
errors for the estimated regression coefficients (sebe) may be obtained as

R> round(res2$out.single[[4]]$sebe, 3)

[1] 0.326 0.394 0.379 0.349 0.142 0.273

On the basis of the estimated regression parameters, we can evaluate the effect of the covari-
ates on the probability of reporting a certain level of the health status. In particular, women
tend to report worse health status than men (the odds ratio for females versus males is equal
to exp(−0.967) = 0.380), whereas individuals having a higher number of years of schooling
tend to have a better opinion about their health status than subjects having lower education
(the odds ratio for college education and above is equal to exp(2.458) = 11.682). We also
observe that white individuals have a lower probability of reporting a good health status with
respect to non-white individuals, but the coefficient is not significant. Among the selected
individuals aged 70 years and over, the effect of age is positive but it is not significant. Also
the quadratic term of age is not significant.
In this example, the time-varying random effects are used to account for the unobserved
heterogeneity and the interpretation of the latent distribution is not of primary interest. The
fact that the optimal number of states is k = 4 provides evidence for the presence of this
type of heterogeneity, that is, that SRHS cannot be only explained on the basis of the few
covariates we have used.
From the estimated initial probabilities πu, returned in the vector la, we observe that many
individuals start in the third latent class (44%), which corresponds to subjects with a quite
good perceived health status. The estimated transition matrix (PI), with elements corre-
sponding to πu|ū, ū, u = 1, . . . , 4, shows a quite high persistence in the same state. The
highest transition probability is 0.18 and is observed from the second state, corresponding
to the worst health condition, to the first state. The remaining transition probabilities are
always lower than 0.07. For another application of the LM model to ordinal longitudinal data
see Pennoni and Vittadini (2013).
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5. Covariates in the latent model
When the covariates are included in the latent model, we suppose that the response variables
measure the individual characteristic of interest (e.g., the quality of life) that is represented
by the latent variables. This characteristic is not directly observable and may evolve over
time. In such a case, the main research interest is in modeling the effect of covariates on
the latent distribution, as is illustrated in the following; see also Bartolucci, Lupparelli, and
Montanari (2009).

5.1. Assumptions

A natural way to allow the initial and transition probabilities of the LM chain to depend on
individual covariates is by adopting a multinomial logit parameterization as follows:

log P(U (1) = u|X(1) = x)
P(U (1) = 1|X(1) = x)

= log
πu|x
π1|x

= β0u + x>β1u, u = 2, . . . , k, (5)

log P(U (t) = u|U (t−1) = ū,X(t) = x)
P(U (t) = ū|U (t−1) = ū,X(t) = x)

= log
π

(t)
u|ūx

π
(t)
ū|ūx

= γ0ūu + x>γ1ūu, (6)

for t = 2, . . . , T and ū, u = 1, . . . , k, with ū 6= u. In the above expressions, βu = (β0u,β
>
1u)>

and γūu = (γ0ūu,γ
>
1ūu)> are parameter vectors to be estimated which are collected in the

matrices β and Γ.
For a more parsimonious model, instead of using (6) we can rely on the following parameteri-
zation for the transition probabilities, that is, a multinomial logit parameterization based on
the difference between two sets of parameters:

log P(U (t) = u|U (t−1) = ū,X(t) = x)
P(U (t) = ū|U (t−1) = ū,X(t) = x)

= γ0ūu + x>(γ1u − γ1ū), (7)

where γ11 = 0 to ensure model identifiability. The parameterization used for modeling the
initial probabilities is again based on standard multinomial logits, as defined in (5).
As already mentioned, when the covariates affect the distribution of the latent process, these
covariates are typically excluded from the measurement model and we adopt the constraint
φ

(t)
y|ux = φy|u in the univariate case or φ(t)

jy|ux = φjy|u in the multivariate case. We also rely on
the assumption of time homogeneity for the conditional response probabilities. Parameteri-
zations based on (5) and (6) or (7) are implemented in the R function est_lm_cov_latent,
which allows us to estimate the resulting LM models.

5.2. Application to health related data

To illustrate function est_lm_cov_latent, we consider the HRS data introduced in Sec-
tion 4.2. In such a context, an interesting research question concerns the relationship between
SRHS and the covariates. When the latter ones are included in the latent model, the initial
and transition probabilities are estimated accounting for the covariate configurations and this
may be useful to identify clusters of individuals related to specific needs.
The R function is based on the following main input arguments:
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• S: Array of observed response configurations (of dimension n × TT × r) with categories
starting from 0; missing responses are allowed, coded as NA.

• X1: Matrix of covariates affecting the initial probabilities (of dimension n × nc1, where
nc1 is the number of corresponding covariates).

• X2: Array of covariates affecting the transition probabilities (of dimension n × (TT -
1) × nc2, where nc2 is the number of corresponding covariates).

• k: Number of latent states.

• start: Equal to 0 for deterministic starting values of the model parameters (default),
to 1 for random starting values, and to 2 to define initial values as input arguments.

• tol: Tolerance level for checking convergence; the default value is 1e-8.

• maxit: Maximum number of iterations of the algorithm; the default value is 1000.

• param: Type of parameterization for the transition probabilities, coded as param =
"multilogit" (default) for the model parameterization defined in (6) and as param =
"difflogit" for the parameterization defined in (7).

• Psi, Be, Ga: Initial values of the matrix of the conditional response probabilities and
of the parameters affecting the logits for the initial and transition probabilities, respec-
tively, when start = 2.

• output: Equal to TRUE to obtain additional output arguments; FALSE is the default
option.

• out_se: Equal to TRUE to compute the information matrix and standard errors; FALSE
is the default option.

• fixPsi: Equal to TRUE if the matrix of conditional response probabilities is given in the
input and is kept fixed during the estimation process; FALSE is the default option.

The model to be fitted is specified by means of two design matrices for the initial and transition
probabilities as defined in the following:

R> data("data_SRHS_long", package = "LMest")
R> data_SRHS <- data_SRHS_long
R> out <- with(data_SRHS, long2matrices(id = id, X = cbind(gender - 1,
+ race == 2 | race == 3, education == 4, education == 5,
+ age - 50, (age - 50)^2/100), Y = srhs))
R> S <- 5 - out$YY
R> X <- out$XX
R> X1 <- X[, 1, ]
R> TT <- 8
R> X2 <- X[, 2:TT, ]
R> colnames(X1) <- c("gender", "race", "some college",
+ "college and above", "age", "age^2")
R> dimnames(X2)[[3]] <- c("gender", "race", "some college",
+ "college and above", "age", "age^2")
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Note that the array of the response configurations, S, is rescaled; this is because the first
response category must be coded as 0, corresponding to the worst self-reported health status.
Moreover, matrix X1 is referred to the first time occasion and it includes the covariates
affecting the initial probabilities of the latent process, as in (5). Accordingly, for t = 2, . . . , T ,
matrix X2 includes the covariates affecting the transition probabilities of the latent process,
as in (6).
We illustrate the function considering the full sample of n = 7, 074 individuals, with T = 8
time occasions. In particular, we fit the model defined in Section 5.1, with a number of
latent states equal to the number of response categories (i.e., k = 5), by using the following
command:

R> mod3 <- est_lm_cov_latent(S = S, X1 = X1, X2 = X2, k = 5, start = 0,
+ param = "multilogit", fort = TRUE, output = TRUE)

Here, we rely on a deterministic initialization of the estimation algorithm. The computing
time required to run the above function, again on an Intel Core i7, is around 30 seconds.
The results can be displayed by using the print method, which returns the main output
arguments:

R> mod3

Call:
est_lm_cov_latent(S = S, X1 = X1, X2 = X2, k = 5, start = 0,

param = "multilogit", fort = TRUE, output = TRUE)

Convergence info:
LogLik np AIC BIC

[1,] -62426.58 188 125229.2 126519.6

The summary method displays the estimation results:

R> summary(mod3)

Call:
est_lm_cov_latent(S = S, X1 = X1, X2 = X2, k = 5, start = 0,

param = "multilogit", fort = TRUE, output = TRUE)

Coefficients:

Be - Parameters affecting the logit for the initial probabilities:
logit

2 3 4 5
intercept 0.7363 1.7189 1.6036 1.6193
gender -0.0047 -0.2998 -0.1043 -0.2342
race 0.0203 -0.3720 -1.1436 -1.4381
some college 0.4496 1.1250 1.4969 1.7694
college and above 0.2917 1.7028 2.4876 3.0017
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age -0.0357 -0.0338 -0.0426 -0.0727
age^2 0.3170 0.2118 0.2071 0.2415

Ga - Parameters affecting the logit for the transition probabilities:
, , logit = 1

logit
2 3 4 5

intercept -3.4506 -30.3104 -7.3260 -0.7017
gender -0.1625 -10.1897 -1.0196 -6.8384
race -0.2798 -8.4566 1.1111 -10.7134
some college -0.1829 0.3931 -8.2008 -1.3429
college and above 0.7692 2.3875 -7.4341 -9.0080
age 0.3068 1.8111 0.1387 -0.4990
age^2 -1.4401 -2.9503 -0.0329 0.9238

, , logit = 2

logit
2 3 4 5

intercept -3.0686 -2.1749 -16.3128 -14.5490
gender 0.2511 -0.1756 -1.4647 -0.4473
race -0.3063 -0.6950 0.5331 9.3810
some college 0.0422 0.5414 -8.4763 -6.8829
college and above 0.2865 -0.0138 -2.5061 -6.9650
age 0.0230 -0.0457 1.7420 0.0202
age^2 -0.0697 0.0633 -5.9457 0.0991

, , logit = 3

logit
2 3 4 5

intercept -4.6189 -2.0081 -3.4384 -4.0396
gender -0.4507 -0.2624 -0.1901 -1.8983
race 0.2696 -0.0602 -0.0040 2.7118
some college -1.7920 -0.2221 -0.6352 -0.5840
college and above -0.5082 -0.6282 -1.0302 -1.7189
age -0.0398 -0.0387 0.0223 -0.0833
age^2 0.3219 0.1620 0.0080 -0.1805

, , logit = 4

logit
2 3 4 5

intercept -6.9963 -6.0078 -2.1665 -2.9657
gender -0.5585 0.2142 -0.1654 -0.7564
race 0.8580 0.9215 0.3901 0.0079
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some college 0.8565 -0.4858 -0.2066 -0.3965
college and above -1.0905 0.0214 -0.4433 -1.5825
age 0.0658 -0.0476 0.0075 -0.0887
age^2 0.1313 0.6135 0.0284 0.3115

, , logit = 5

logit
2 3 4 5

intercept -16.2170 -2.2457 -2.2154 -1.3555
gender 1.4289 -2.3098 -0.7527 -0.2012
race 3.3827 0.7291 2.0447 0.1940
some college -6.8843 -1.9841 -1.5632 -0.0773
college and above -6.6738 -4.1917 -1.7000 -0.3858
age 1.6782 0.0318 -0.0374 -0.0139
age^2 -8.2599 -1.1975 0.0345 0.0545

Psi - Conditional response probabilities:
, , item = 1

state
category 1 2 3 4 5

0 0.6981 0.0597 0.0043 0.0017 0.0004
1 0.2670 0.6828 0.0844 0.0083 0.0014
2 0.0255 0.2203 0.7131 0.1454 0.0314
3 0.0083 0.0288 0.1813 0.7567 0.1871
4 0.0012 0.0084 0.0169 0.0879 0.7797

The estimated conditional response probabilities (Psi), corresponding to φ̂y|u, allow us to
characterize the latent states: individuals in the first latent state have the highest probability
of reporting the worst health status, whereas the last state corresponds to subjects having the
highest probability of reporting the best health status. Individuals in the remaining states
show intermediate levels of the perceived health status.
The argument Be returned by the function contains the estimated regression parameters
affecting the distribution of the initial probabilities, and corresponds to β̂; see definition
(5). The estimated positive intercepts indicate a general tendency to report a good health
status at the beginning of the survey. Gender log-odds (second row of Be) are all negative,
indicating that females report a worse health status than males at the first time occasion.
The two log-odds corresponding to the educational level are positive, indicating that a higher
educational level leads to better health. Finally, the negative estimates for age indicate that,
at the beginning of the study, older individuals generally tend to report a poor health status.
The output Ga contains the estimated parameters affecting the distribution of the transi-
tion probabilities, and corresponds to matrix Γ̂; see definition (6). To offer some insights
for the interpretation of this output, note that parameters in γ1ūu refer to the transition
from level ū to level u of the latent process. Therefore, as an example, the first column of
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Ga[, , , 5] contains the parameter estimates measuring the influence of each covariate on
the transition from the fifth state, corresponding to the best health conditions, to the first
state, corresponding to the worst conditions. On the basis of these results, we notice that
the influence of gender is positive, meaning that for females the probability of this transition
is higher with respect to males. The influence of education, measured on the logit scale, is
negative meaning that individuals with a higher level of education tend to move from the
fifth to the first state less frequently than those with a lower education. At the same time,
age has a positive effect on the chance of transition from the highest to the lowest state.
Using option output = TRUE, the function also returns some additional outputs. In partic-
ular, it is possible to obtain the estimated initial probability matrix, Piv, and the estimated
transition probabilities matrices, PI. On the basis of these estimates, it is possible to compute
the average initial and transition probabilities for a group of individuals of interest. For ex-
ample, if we select white females with high level of education (college education and above),
we obtain the corresponding average estimated initial and transition probabilities by means
of the following commands:

R> ind1 <- (X1[, 1] == 1 & X1[, 2] == 0 & X1[, 4] == 1)
R> piv1 <- round(colMeans(mod3$Piv[ind1, ]), 4)
R> piv1

1 2 3 4 5
0.0069 0.0192 0.1501 0.3449 0.4789

R> PI1 <- round(apply(mod3$PI[, , ind1, 2:TT], c(1, 2), mean), 4)
R> PI1

state
state 1 2 3 4 5

1 0.8429 0.1570 0.0000 0.0000 0.0000
2 0.0788 0.8640 0.0570 0.0002 0.0000
3 0.0041 0.0452 0.9389 0.0116 0.0002
4 0.0005 0.0067 0.0656 0.9239 0.0033
5 0.0000 0.0001 0.0060 0.1184 0.8755

In a similar way, it is possible to compute the average initial and transition probabilities for
non-white females with the same educational level:

R> ind2 <- (X1[, 1] == 1 & X1[, 2] == 1 & X1[, 4] == 1)
R> piv2 <- round(colMeans(mod3$Piv[ind2, ]), 4)
R> piv2

1 2 3 4 5
0.0191 0.0547 0.2898 0.3096 0.3268

R> PI2 <- round(apply(mod3$PI[, , ind2, 2:TT], c(1, 2), mean), 4)
R> PI2
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state
state 1 2 3 4 5

1 0.8777 0.1223 0.0000 0.0000 0.0000
2 0.0607 0.9086 0.0305 0.0003 0.0000
3 0.0053 0.0426 0.9377 0.0114 0.0029
4 0.0011 0.0145 0.0926 0.8886 0.0032
5 0.0000 0.0001 0.0438 0.1350 0.8210

On the basis of the results above we conclude that, at the beginning of the period of obser-
vation, white females have a probability approximately equal to 0.82 of being in the last two
states corresponding to very good or excellent health conditions. On the other hand, non-
white females have a higher probability of being in the first three states, corresponding to
worse health conditions, than white females. Moreover, the estimated transition probability
matrices show a quite high persistence in the same latent state for both groups of individ-
uals. However, the lower diagonal elements of the transition matrix for non-white females
are higher than those referred to white females, except for some transitions, showing a worse
perception of their health status.

Decoding

Local and global decoding are implemented in the R function decoding, which allows us to
predict the sequence of latent states for a certain sample unit on the basis of the output of the
main estimation functions in the package. Function decoding requires the following input
arguments:

• est: Object containing the output of one of the following functions: est_lm_basic,
est_lm_cov_latent, est_lm_cov_manifest, or est_lm_mixed.

• Y: Vector or matrix of responses.

• X1: Matrix of covariates affecting the initial probabilities (for est_lm_cov_latent) or
affecting the distribution of the responses (for est_lm_cov_manifest).

• X2: Array of covariates affecting the transition probabilities (for est_lm_cov_latent).

For the application above, the most likely sequence of latent states for all sample units may
be obtained by the following command:

R> out <- decoding(mod3, S, X1, X2)
R> head(out$Ug)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[1,] 2 2 3 3 3 3 3 3
[2,] 3 3 3 3 3 3 3 3
[3,] 5 5 4 3 3 3 3 3
[4,] 3 3 2 2 2 2 2 2
[5,] 5 5 5 5 5 5 5 5
[6,] 4 4 4 4 4 4 4 4
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For instance, we conclude that for the first subject there is only one transition, at the third
time occasion, from the second to the third latent state.

6. Mixed latent Markov model
Another relevant extension of LM models may be formulated to take into account additional
sources of (time-fixed) dependence in the data. In this paper, we provide an illustration of
the mixed LM model (Van de Pol and Langeheine 1990) in which the parameters of the latent
process are allowed to vary in different latent subpopulations defined by an additional discrete
latent variable.

6.1. Assumptions

Let U be a (time-invariant) discrete latent variable that defines unobserved clusters (or latent
classes) of units having the same initial and transition probabilities. The latent process is
here denoted by V = (V (1), . . . , V (T )), which substitutes the symbol U used in the previous
sections. In such a context, the variables in V follow a first-order Markov chain only con-
ditionally on U . This additional latent variable has k1 support points (corresponding to the
latent classes) and mass probabilities denoted by λu, u = 1, . . . , k1. Accordingly, we denote
by k2 the number of latent states, corresponding to the number of support points of every
latent variable V (t), t = 1, . . . , T .
Note that, under this approach, which may be useful from a perspective of clustering, the
initial and transition probabilities of the latent Markov chain differ between sample units in
a way that does not depend on the observable covariates.
The parameters to be estimated are the conditional response probabilities, denoted by

φjy|v = P(Y (t)
j = y|V (t) = v), j = 1, . . . , r, t = 1, . . . , T, v = 1, . . . , k2, y = 0, . . . , cj − 1,

the initial probabilities

πv|u = P(V (1) = v|U = u), u = 1, . . . , k1, v = 1, . . . , k2,

and the transition probabilities

πv|uv̄ = P(V (t) = v|U = u, V (t−1) = v̄), t = 2, . . . , T, u = 1, . . . , k1, v̄, v = 1, . . . , k2.

This model relies on the assumption that the conditional response probabilities and the tran-
sition probabilities are time-homogeneous. Obviously, this formulation may be extended by
also including observable covariates as illustrated in the previous sections; see Bartolucci et al.
(2013, Chapter 6), for a detailed description.
We derive the manifest distribution of Ỹ by extending the rules given in Section 2. In
particular, the conditional distribution of V given U is equal to

P(V = v|U = u) = πv(1)|u

T∏
t=2

πv(t)|uv̄(t−1) ,

where v = (v(1), . . . , v(T )) denotes a realization of V . Given the assumption of local indepen-
dence that is maintained under this model, the conditional distribution of Ỹ given U and V
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reduces to

P(Ỹ = ỹ|U = u,V = v) = P(Ỹ = ỹ|V = v) =
T∏

t=1
φy(t)|v(t) =

r∏
j=1

T∏
t=1

φ
jy

(t)
j |v(t) ,

whereas the conditional distribution of Ỹ given U is expressed as

P(Ỹ = ỹ|U = u) =
∑
v

πv(1)|uπv(2)|uv(1) . . . πv(T )|uv(T −1)φy(1)|v(1) . . . φy(T )|v(T ) .

Finally, the manifest distribution of Ỹ is now obtained by the following sum

P(ỹ) = P(Ỹ = ỹ) =
k1∑

u=1
P(Ỹ = ỹ|U = u)λu,

which depends on the mass probabilities for the distribution of the latent variable U . Even
in this case P(ỹ) may be computed through a forward recursion (Baum et al. 1970).
Referred to the maximum likelihood estimation of the mixed LM model formulated above, we
can extend the procedure illustrated in Section 2.2, where the complete data log-likelihood
has now the following expression:

`∗(θ) =
r∑

j=1

T∑
t=1

k2∑
v=1

cj−1∑
y=0

a
(t)
jvy log φjy|v +

k1∑
u=1

(
k2∑

v=1
b(1)

uv log πv|u +
T∑

t=2

k2∑
v̄=1

k2∑
v=1

b
(t)
uv̄v log πv|uv̄

)

+
k1∑

u=1
cu log λu.

In the previous expression, a(t)
jvy is the number of sample units that are in latent state v at

occasion t and provide response y to variable j. Moreover, with reference to latent class u
and occasion t, b(t)uv is the number of sample units in latent state v, and b(t)uv̄v is the number of
transitions from state v̄ to state v. Finally, cu is the overall number of sample units that are
in latent class u.

6.2. Application to data from criminology

The mixed LM model is illustrated by using a simulated dataset similar to the one analyzed
in Bartolucci et al. (2007); see also Francis, Liu, and Soothill (2010) and Pennoni (2014).
The data are related to the complete conviction histories of a cohort of offenders followed
from the age of criminal responsibility, 10 years. The offense code has been reduced to
73 major offenses and they have been grouped according to the Research Development and
Statistics Directorate (1998)3 on the basis of the following ten typologies: “violence against the
person”, “sexual offenses”, “burglary”, “robbery”, “theft and handling stolen goods”, “fraud
and forgery”, “criminal damage”, “drug offenses”, “motoring offenses”, and “other offenses”.
The main interest is in evaluating the patterns of criminal behavior among individuals.
For the simulated data, we consider n = 10,000 individuals (including the proportion of non-
offenders): 4,800 females and 5,200 males. We also consider T = 6 age bands of length

3See http://discover.ukdataservice.ac.uk/catalogue/?sn=3935.

http://discover.ukdataservice.ac.uk/catalogue/?sn=3935
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equal to five years (10–15, 16–20, 21–25, 26–30, 31–35, and 36–40 years) and r = 10 binary
response variables, corresponding to the typologies of offenses defined above. For every age
band, each response variable is equal to 1 if the subject has been convicted for a crime of the
corresponding offense group and to 0 otherwise.
Then, the data matrix, reported below in long format, has been simulated on the basis of the
same parameter estimates reported in Bartolucci et al. (2007):

R> data("data_criminal_sim", package = "LMest")
R> head(data_criminal_sim)

id sex time y1 y2 y3 y4 y5 y6 y7 y8 y9 y10
[1,] 1 1 1 0 0 0 0 0 0 0 0 0 0
[2,] 1 1 2 0 0 0 0 0 0 0 0 0 0
[3,] 1 1 3 0 0 0 0 0 0 0 0 0 0
[4,] 1 1 4 0 0 0 0 0 0 0 0 0 0
[5,] 1 1 5 0 0 0 0 0 0 0 0 0 0
[6,] 1 1 6 0 0 0 0 0 0 0 0 0 0

The first column of the data matrix contains the id code of each subject, whereas the covariate
gender (second column named sex) is coded as 1 for male and 2 for female, the column named
time is referred to the age band, and the last ten columns are related to the binary response
variables.
The R function aimed at estimating the mixed LM models is est_lm_mixed, which requires
the following input arguments:

• S: Array of response configurations (n × TT × r) with categories starting from 0.

• yv: Vector of frequencies of the configurations.

• k1: Number of support points, corresponding to latent classes, of the distribution of the
latent variable U .

• k2: Number of support points, corresponding to latent states, of the distribution of the
latent process V .

• start: Equal to 0 for deterministic starting values of the model parameters (default
value) and to 1 for random starting values.

• tol: Tolerance level for checking convergence; the default value is 1e-8.

• maxit: Maximum number of iterations of the algorithm; the default value is 1000.

• out_se: Equal to TRUE to calculate the information matrix and the standard errors;
FALSE is the default option.

For this example we also use function long2wide that allows us to convert the data from
the long to the wide format. It requires to specify the name of the data matrix, the column
referred to the identification number of the individuals, the column of the age band (time
occasions), and the names of the columns of the covariates and of the responses, as follows:
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R> out <- long2wide(data = data_criminal_sim, nameid = "id", namet = "time",
+ colx = "sex", coly = paste0("y", 1:10))
R> YY <- out$YY
R> XX <- out$XX
R> freq <- out$freq

Other options can be found in the help page of the function. The main objects in output
are the array YY of response configurations, the array XX of covariate configurations, and the
vector freq of the corresponding frequencies. For the data at hand, the design matrix for the
responses, YY, contains 915 different response configurations, for T = 6 age bands, and r = 10
response variables. Similarly, for the covariate gender, matrix XX contains 915 configurations
for T = 6 age bands. In the following, we show two response patterns with the associated
covariate configurations and the corresponding frequency in the sample:

R> YY[148, , ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 0 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0 0
[6,] 1 0 0 0 0 0 0 0 0 0

R> XX[148, ]

[1] 2 2 2 2 2 2

R> freq[148]

[1] 3

R> YY[149, , ]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]
[1,] 0 0 0 0 1 0 0 0 0 0
[2,] 0 0 0 0 0 0 0 0 0 0
[3,] 0 0 0 0 0 0 0 0 0 0
[4,] 0 0 0 0 0 0 0 0 0 0
[5,] 0 0 0 0 0 0 0 0 0 0
[6,] 0 0 0 0 0 0 0 0 0 0

R> XX[149, ]

[1] 2 2 2 2 2 2

R> freq[149]
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[1] 113

From the above configurations, we observe that only 3 females have been convicted for violence
against the person (first response variable) in the last age band, which is from 36 to 40 years
old, whereas 113 females committed a theft (fifth variable) during the first time window,
related to age 10–15.
To illustrate the use of function est_lm_mixed, we fit the model in Section 6 on such data
with k1 = 2 latent classes, k2 = 2 latent states, restricting the analysis to females. We use
the following commands in R:

R> YY <- YY[XX[, 1] == 2, , ]
R> freq <- freq[XX[, 1] == 2]
R> mod4 <- est_lm_mixed(S = YY, yv = freq, k1 = 2, k2 = 2)

Using an Intel Core i7 processor, the above function takes around 46 seconds to converge.
Then, we obtain the value of the log-likelihood at convergence by the print method:

R> mod4

Call:
est_lm_mixed(S = YY, yv = freq, k1 = 2, k2 = 2)

Convergence info:
LogLik np BIC

[1,] -18347.08 27 36925.18

Moreover, the summary command provides the estimated mass probability vector (la), with
elements corresponding to λ̂u, the estimated initial (Piv) and transition probability matrices
(Pi), with elements π̂v|u and π̂v|uv̄, respectively, and the array of the estimated conditional
response probabilities (Psi), containing φ̂jy|v, for j = 1, . . . , 10, y = 0, 1, and v = 1, 2:

R> summary(mod4)

Call:
est_lm_mixed(S = YY, yv = freq, k1 = 2, k2 = 2)

Coefficients:

Mass probabilities:
[1] 0.2175 0.7825

Initial probabilities:
u

v 1 2
1 1 0.9087
2 0 0.0913
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Transition probabilities:
, , u = 1

v1
v0 1 2

1 0.8525 0.1475
2 0.6414 0.3586

, , u = 2

v1
v0 1 2

1 1.0000 0.0000
2 0.3382 0.6618

Conditional response probabilities:
, , j = 1

v
y 1 2

0 0.9952 0.8242
1 0.0048 0.1758

, , j = 2

v
y 1 2

0 0.9983 0.9809
1 0.0017 0.0191

, , j = 3

v
y 1 2

0 0.9963 0.7436
1 0.0037 0.2564

, , j = 4

v
y 1 2

0 0.9999 0.9737
1 0.0001 0.0263



Journal of Statistical Software 33

, , j = 5

v
y 1 2

0 0.9773 0.4546
1 0.0227 0.5454

, , j = 6

v
y 1 2

0 0.9982 0.8892
1 0.0018 0.1108

, , j = 7

v
y 1 2

0 0.9957 0.8177
1 0.0043 0.1823

, , j = 8

v
y 1 2

0 0.9976 0.9105
1 0.0024 0.0895

, , j = 9

v
y 1 2

0 0.9999 0.9815
1 0.0001 0.0185

, , j = 10

v
y 1 2

0 0.9987 0.7912
1 0.0013 0.2088

The estimated conditional probability of committing each type of crime, φ̂j1|v, may be also
displayed as follows:

R> round(mod4$Psi[2, , ], 3)
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j
v 1 2 3 4 5 6 7 8 9 10

1 0.005 0.002 0.004 0.000 0.023 0.002 0.004 0.002 0.000 0.001
2 0.176 0.019 0.256 0.026 0.545 0.111 0.182 0.090 0.019 0.209

According to the above probabilities, we can identify the first latent state as that of those
females with null or very low tendency to commit crimes, whereas the second latent state
corresponds to criminals having mainly as type of activity: “theft”, “burglary”, and “other
offenses”.
The model formulation allows us to characterize the two clusters of individuals at the be-
ginning of the period of observation and to follow their evolution over time. According to
the estimated mass probabilities, the first cluster, which includes around 22% of females, is
characterized by individuals having, at the beginning of the period of observation, a proba-
bility equal to 1 to be in the first latent state (corresponding to null tendency to commit a
crime). On the other hand, females included in the second cluster (78%) are characterized
by an initial probability of being in the second latent state of around 0.09. Comparing the
estimated transition probability matrices we observe, within each cluster, a very high level of
persistence in the first latent state. Moreover, females classified in the first cluster present
a higher probability (of around 0.64) to move from the second to the first state than those
assigned to the second cluster (0.34), revealing a more pronounced tendency to improve in
their behavior.

7. Conclusions
We illustrate the R package LMest that allows us to efficiently fit latent Markov (LM) models
for categorical longitudinal data. For a comprehensive overview about these models we refer
the reader to Bartolucci et al. (2013) and Bartolucci et al. (2014b). Both manifest and la-
tent distributions of the model can be parameterized so as to include the effect of individual
covariates. The mixed formulation includes additional latent variables in these parameteri-
zations. It shall be noted that all functions above can be used with multivariate categorical
outcomes, with the only exception of est_lm_cov_manifest, which is restricted to univariate
categorical outcomes. Functions est_lm_basic and est_lm_cov_latent also allow us to deal
with missing data, non-monotone missingness, and dropout, under the missing-at-random as-
sumption.
Overall, we consider this package as a relevant advance for applied researchers interested in
longitudinal data analyses in the presence of categorical response variables. In particular,
we recall that in this context LM models are particularly useful at least from three different
perspectives: (i) to represent and study the evolution of an individual characteristic (e.g.,
quality of life) that is not directly observable; (ii) to account for unobserved heterogeneity due
to omitted covariates in a time-varying fashion; and (iii) to account for measurement errors
in observing a sequence of categorical response variables. We recall that, when covariates are
available, they are typically included in the measurement model for applications of type (ii),
so that the response variables are affected by observed covariates and latent variables that
are considered on the same footing, whereas the covariates are included in the latent models
for applications of type (i) and (iii), so that they affect the distribution of the latent process.
Further updates of the package will include the possibility to use multivariate outcomes in
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function est_lm_cov_manifest and new functions with different formulations of mixed LM
models, also for sample units collected in clusters (Bartolucci et al. 2011). We also plan to
include estimation methods which are alternative to pure maximum likelihood estimation,
as the three-step method proposed by Bartolucci, Montanari, and Pandolfi (2015) as well as
the estimation procedure proposed by Bartolucci, Pennoni, and Vittadini (2016) to allow the
model to be suitable in a potential outcome research framework (Rubin 1974).
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