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The rapid mutation of influenza viruses especially on the two surface proteins

hemagglutinin (HA) and neuraminidase (NA) has made them capable to escape

from population immunity, which has become a key challenge for influenza vaccine

design. Thus, it is crucial to predict influenza antigenic evolution and identify new

antigenic variants in a timely manner. However, traditional experimental methods

like hemagglutination inhibition (HI) assay to select vaccine strains are time and

labor-intensive, while popular computational methods are less sensitive, which presents

the need for more accurate algorithms. In this study, we have proposed a novel low-rank

matrix completion model MCAAS to infer antigenic distances between antigens and

antisera based on partially revealed antigenic distances, virus similarity based on HA

protein sequences, and vaccine similarity based on vaccine strains. The model exploits

the correlations of viruses and vaccines in serological tests as well as the ability of HAs

from viruses and vaccine strains in inferring influenza antigenicity. We also compared the

effects of comprehensive 65 amino acids substitution matrices in predicting influenza

antigenicity. As a result, we applied MCAAS into H3N2 seasonal influenza virus data. Our

model achieved a 10-fold cross validation root-mean-squared error (RMSE) of 0.5982,

significantly outperformed existing computational methods like antigenic cartography,

AntigenMap and BMCSI. We also constructed the antigenic map and studied the

association between genetic and antigenic evolution of H3N2 influenza viruses. Finally,

our analyses showed that homologous structure derived amino acid substitution matrix

(HSDM) is most powerful in predicting influenza antigenicity, which is consistent with

previous studies.

Keywords: hemagglutination inhibition assay, low-rank matrix completion, influenza antigenicity, antigenic map,

HA protein sequence information

INTRODUCTION

According to the United States Centers for Disease Control and Prevention (CDC), seasonal
influenza and its linked respiratory diseases cause approximately 650,000 deaths annually
worldwide, posing a serious threat to human health and socio-economic environment (WHO,
2017). This is mainly attributed to seasonal influenza viruses that frequently evade immunity in
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the human population through mutations in their hemagglutinin
(HA) and neuraminidase (NA) surface glycoproteins (Hay et al.,
2001; Neher et al., 2016). The most effective way to prevent
influenza virus infection is to inoculate vaccines with similar
antigenicity to the influenza virus (Sun et al., 2013). Therefore,
timely and accurate identification of the effectiveness of existing
vaccines on circulating virus strains is critical for vaccine design
and influenza surveillance (Smith et al., 2004; Huang et al.,
2017). However, the task is challenging (Blackburne et al.,
2008; Yao et al., 2017). To facilitate the selection and design
of vaccine strains, the World Health Organization’s (WHO)
Global Influenza Surveillance and Response System (GISRS)
continuously monitors genotypic and antigenic characteristics of
circulating viruses (Barr Ig, 2014).

The hemagglutination inhibition (HI) is one of the most
popular experimental methods for measuring the effectiveness of
a vaccine against an influenza virus (Hirst, 1943). It is a binding
assay used to characterize the ability of antisera (vaccines) to
block HA of antigens (viruses) from agglutinating red blood
cells (RBC). Based on the HI assay, the concept of antigenic
distance can be used to quantitatively describe the closeness
among antigens. The antigenic distance is often defined to be
the Euclidean distance between their representing vectors in a
normalized HI table according to multiple reference antisera
(Cai et al., 2010). HI assay and its derived antigenic distance
provide great convenience for comparing antigenic similarity
among influenza viruses (Fouchier et al., 2010; Neher et al.,
2016). However, HI assays are expensive and time-consuming,
so it is impractical to use it to measure the antigenic similarity
among all antigens and antisera (Sun et al., 2013). This urges
the need to explore effective computational methods (Liao
et al., 2012a,b; Chen et al., 2018) to estimate the antigenic
distance between an antigen and an antiserum (Liao et al.,
2010, 2015a,b; Li et al., 2013; Liang et al., 2016; Peng et al.,
2017).

A popular category of methods for predicting the antigenicity
of influenza virus is the sequence-based method. Unlike
imputation-based methods, sequence-based methods often
explore the association between mutations in the HA protein
and antigenic distances obtained from serological tests (Lee
and Chen, 2004; Barnett et al., 2012; Li et al., 2016). The
antigenic difference between two influenza viruses indicates
whether they antigenic variant, which is measured by either
an antigenic distance or simply a binary value (Lee and
Chen, 2004; Smith et al., 2004; Liao et al., 2008). For
example, a model based on multiple logistic regression was
proposed by Liao et al. to predict antigen variants. For further
exploration, 65 amino acid substitution models based on 20
amino acid physicochemical groups were also studied. The
experimental results showed that high agreement was achieved
in the H3N2 influenza data from 1999 to 2003 (Liao et al.,
2008). Huang et al. introduced a decision tree algorithm to
predict antigenic variants (Huang et al., 2009). Sun et al.
proposed a bootstrapped ridge regression model consisting
of antigenic related sites, which uses the quantitative amino
acid substitutions in the HA1 [a sub-unit of HA forming
globular domain (Wang et al., 2015)] protein sequence to

predict antigenic distances (Sun et al., 2013). Inspired by the
co-evolution of HA1 that may have contributed to antigen
evolution, Yang et al. integrated the single mutation and co-
mutation characteristics of the HA1 sequence and proposed
a Lasso model (Yang et al., 2014). Neher et al. proposed an
optimization model for interpreting known antigen data and
studied its ability to predict future influenza virus population
composition (Neher et al., 2016). However, these methods rely
on the reliability of rapidly changing antigen-associate sites (Sun
et al., 2013).

Imputation-based methods are widely used for predicting and
visualizing the antigenicity of influenza viruses (Smith et al., 2004;
Cai et al., 2010; Barnett et al., 2012). They are based on the
assumption that the antigens and antisera are located in a low
dimensional space (i.e., the normalized HI table is of low rank),
so the HI table can be fully recovered from partially revealed
HI titers (Lapedes and Farber, 2001). For example, Smith et al.
proposed antigenic cartography for visualizing and predicting
antigenic evolution of influenza viruses (Smith et al., 2004). They
first transformed the known values in the HI table to Euclidean
distances and then embedded them into a 2D map using
the modified multidimensional scaling (MDS) method. This
antigenic map implicitly implies the distance between antigen
and antiserum with unknown HI titer. Cai et al. first recovered
the normalizedHI table by a low-rankmatrix completionmethod
(Cai et al., 2010), and then calculated the antigenic distance using
the fully recovery normalized HI table and mapped it into a 2D
or 3D (Barnett et al., 2012) antigenic map. Imputation-based
methods can better detect the antigenic evolutionary trend of
H3N2 influenza virus, but it is still insufficient. For example, the
accuracy of its predicted antigenic distance is yet to be improved
(Huang et al., 2017).

The antigenic evolution of influenza viruses are ultimately
caused by genetic changes of the viruses especially on HA andNA
genes, thus principally the sequence information of antigens and
antisera will help predict missing values in HI. In this study, we
propose a novel algorithm called matrix completion with antigen
and antiserum similarity (MCAAS), which integrates antigen
sequence information and antiserum information in a low-rank
matrix completion model to predict influenza antigenicity. To
our best knowledge, this the first model to leverage both the
low-rank space of viruses spaces and the importance of genetic
mutations in predicting influenza antigenicity. To explore the
influence of different amino acids properties on the prediction of
the antigenicity of the H3N2 influenza virus, we systematically
compared the 65 amino acid substitution matrices in the
AAindex database (Shuichi Kawashima et al., 2008), reflecting a
comprehensive list of amino acid properties, including structural,
physicochemical, and biochemical information. In addition, in
order to make full use of the information, we have proposed a
mixed-rank strategy to improve the sliding window method. The
algorithm proposed in this paper was applied to H3N2 influenza
data from 1968 to 2003. We then constructed an antigenic map
based on the fully recovered HI table and evaluated existing
vaccine strains. Finally, we explored the relationship between the
genetic and antigenic evolution of the influenza virus in H3N2
data.
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MATERIALS AND METHODS

Dataset and Problem Formulation
H3N2 influenza data are used in this study (Smith et al., 2004),
which is a partially revealed HI table consisting of 253 viruses
(antigens) and 79 vaccine (antisera) from 1967 to 2003, i.e., a
matrix of 253 rows and 79 columns. The HI table contains Type
I data, Type II data, Type III data, which are regular HI titers,
low reactors (i.e., the HI titers less than a threshold) and missing
values (Cai et al., 2010). Similar to many literatures (Smith et al.,
2004; Cai et al., 2010; Sun et al., 2013; Huang et al., 2017), the
HI table was normalized to facilitate subsequent analyses. We
also downloaded HA protein sequences of viruses and vaccine
strains related to HI tables from the NCBI influenza database.
Only the sequence on 329 sites belonging to the HA1 protein was
kept for further analysis (Yao et al., 2017). We also downloaded
65 amino acid substitution matrices from the AAindex database
(Shuichi Kawashima et al., 2008) to analyze the effect of amino
acid structure, physical and biological information on predicting
influenza antigenicity. In this paper, the problem is how to
accurately estimate low reactors and predict missing values
based on values on regular entries and fusion information,
which combines multiple amino acids substitution matrices and
sequence information of the viruses and vaccine strains.

Matrix Completion With Antigen and
Antiserum Similarity
In this paper, we consider the problem of predicting the
antigenicity of influenza viruses against vaccines, which is to fill
the missing values in the HI table (as well as corrections for
Type I and Type II data). Without considering the temporal bias
effect, we can convert this problem into a matrix completion
problem (Cai et al., 2010). Specifically, we use H to denote an
HI table with m rows and n columns, which corresponds to m
antigens and n antisera. Let E to represent the corresponding
Type I and Type II data locations in H. Let X be the underlying
matrix to recover H. Since X is in a low-dimensional space for
influenza viruses, we assume that r ≪ min(m, n) as the rank
of X. For some 6r×r matrices, X can be expressed as X =
Um×r6r×r(Vn×r)

T according to singular value decomposition.
In the literature (Huang et al., 2017), it has been shown that

incorporating the HA protein sequence information of viruses
into the matrix completion method achieves better results.
However, since themodel does not use vaccine strainsHAprotein
sequence information, the use of information is incomplete.
Moreover, the calculation of protein sequence similarity in this
model does not take into account the physicochemical and
biochemical properties of amino acids. In addition, the effect
of the antigenic determinant regions on protein properties was
not discussed in detail. Therefore, in order to solve the above
deficiencies, we propose two new models that incorporate the
above information into the matrix completion model.

Model 1 without Type II data
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Model 2 with Type II data
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The function G (X) =
m
∑

i=1
g

(

‖U i‖2
3δr

)

+
n
∑

i=1
g

(

‖V i‖2
3δr

)

is a

regularization term, where g (z) = e(z−1)2 − 1 when z ≥ 1 and
g (z) = 0, otherwise. U iand V i denote the ith row of U and V ,
respectively and δ = max (m, n) (Keshavan et al., 2009a; Cai
et al., 2010). Kij is the HA protein sequence similarity between
virus i and j, Tij is the HA protein sequence similarity between
vaccine strains for vaccine i and j. Xi and Xj represent the ith

row and jth row of X, respectively. (XT)
i
and (XT)

j
represent

the ith column and jth column of X, respectively. The three
parameters λ1, λ2, and λ3 control the contribution of matrix
completion, HA1 protein sequence of antigens and HA1 protein
sequence of vaccine strains to recover the matrix. The third and
fourth terms in the model are based on the assumption that if
the viruses (vaccine strains) have similar HA protein sequences
(especially in antigenic determinant regions), they should have
similar HI titers against the same group of vaccines (viruses).
Based on previous literatures, the antigenic regions B and C
seems to be more important than A, D, and E (Yao et al.,
2017). Thus, we define Kij = ξ1K

ADE
ij + ξ2K

BC
ij + Kother

ij (Tij =
ξ1T

ADE
ij + ξ2T

BC
ij + Tother

ij ) as the similarity calculation formula,

in which ξ1 and ξ2 are the parameter to control the weight of
antigenic determinants. KADE

ij measures sequence similarity on

antigenic determinant regions site A, site D, and site E. KBC
ij

measures sequence similarity on antigenic determinant regions
site B and site C. Kother

ij measures sequence similarity on other

site. Parameters λ1, λ2, λ3, ξ1, and ξ2 were tuned by 10-fold
cross-validation.

An Alternating Gradient Descend Method
To solve Model 1, we propose an alternating gradient descend
AGD method similar to literature (Keshavan et al., 2009a; Cai
et al., 2010). Since the corresponding singular vectors are highly
concentrated on the high-weight row (column) index when |E| =
2(n) (Keshavan et al., 2009b), in order to ensure that the number
of non-zero values per row (column) is less than 2|E|

m ( 2|E|n ), we
need to trim the H matrix. When a row (column) has more non-
zero values than 2|E|

m ( 2|E|n ), we randomly set some non-zero values
to zero.

We replace all missing values in H with 0 to form H(0). After
singular value decomposition (SVD) H(0) = U6VT , we set
U(0) = U0 ∗

√
m and V(0) = V0 ∗

√
n as initial values, where,

U0 and V0 consist of the first r columns of U and V , respectively.
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Then we use the following updates until convergence or
reaching a preset maximum number of iterations.

Fix U(t) and V(t) and calculate the matrix 6r×r to minimize
the Model 1 as follows:

vec(6r×r) =
(

VTV ⊗ VTHTV + λ2V
TV ⊗ UTKT

LU + λ3

UTU ⊗ VTTT
LV

)−1
vec(UTHV)

where ⊗ is Kronecker Product, KL is the Laplacian matrix of K
and TL is the Laplacian matrix of T.

Update U(t+1) and V(t+1) using gradient descent: U(t+1) =
U(t) + α∇U(t) and V(t+1) = V(t) + α∇V(t).
The gradients of U and V are:
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Where α = max (m, n) and f (Cm×r ,Dm×1) = Zm×r with

Zij =
{

1
αrCij ∗Di if Di > 0
0 otherwise

The difference between Model 2 and Model 1 is that Model 2
has Type II data, where the Type II data is treated differently
by multiplying B in the model. Therefore, we use the same
method to solve Model 1 and Model 2. We only need to

replace
∑ ∑

(

XE
ij −HE

ij

)2
with

∑ ∑

(

XE
ij −HE

ij

)2
I(XE

ij ≥ θij)

and replace (
(

U6VT
)E − HE) with (

(

U6VT
)E − HE) · I.

Here, I is an indication matrix, dot multiplication denotes the
multiplication of corresponding elements between the matrices.

A Sliding Window Method
Since there is temporal bias in the HI matrix that can affect the
accuracy of the matrix completion, in this paper we introduce a
sliding window method to reduce this effect. The method mainly

based on the principle that the temporal bias effect becomes
smaller in the temporal-grouped submatrix than in the entire
HI matrix. The generally flow of the method is summarized in
Figure 1: let Y0 and Y be the starting and ending year and W be
the window size. Then the i+ 1th window year span should be
from (Y0 + i) to (Y0 + i+W) and there is a total of (Y −W + 1)
windows. Since the rank of the submatrix is less than or equal
to the rank of the full-matrix, it is reasonable to consider a
mixed rank rather than a single rank consistent with the full-
matrix. In this paper, the rank of the submatrix is set to rank′

and (rank′ − 1) in the window sliding method, and rank′ is the
setting of the full-matrix rank. Missing values are estimated on
each submatrix in the case of rank rank′ and (rank′ − 1), and
then the average of these estimates is taken as the recovered value
of the corresponding position of the matrix. After the window
is sliding, a partially recovered HI matrix is obtained, and on the
basis of this, the algorithm proposed in this paper is performed on
the whole window to fill in the values that has not been recovered.

Performance Evaluation
The performance of imputation algorithms is evaluated
using the root-mean-squared error (RMSE). Given k values
{O1,O2, . . . ,Ok} and {P1, P2, . . . , Pk}, the RMSE is defined as:

RMSE =

√

∑k
i=1 (Oi − Pi)

2

k
(1)

Where Oi represents an observed value and Pi represents the
corresponding predicted value. The smaller the RMSE value is,
the closer the predicted value is to the observed value, indicating
that the performance of the algorithm is better.

In this paper, we use 10-fold cross validation to calculate the
RMSE value. Specifically, the H matrix is randomly divided into
10 equal parts. We will run it repeatedly for 10 times in the
experiment until each part was used as the prediction set once.
Each time, we use 9 parts for matrix completion; then calculate
the RMSE between the completed matrix and the observed
matrix entry in the remaining part. The mean RMSE between the
predicted values and observed values across 10 runs are used to
compare different methods. And themodel parameters λ1, λ2, λ3,
ξ1, ξ2, r, and w are tuned in this process.

Construction of Antigenic and Genetic
Cartography
Similar to literature (Cai et al., 2010; Barnett et al., 2012), we
use the Euclidean distance between viruses after completion of
the matrix as the antigenic distance. Then, multidimensional
scaling (MDS) is used to generate virus coordinates and construct
antigen maps based on antigenic distances. The construction of
the genetic map is similar to the antigenic map. We first calculate
the P-distance matrix between pairs of viruses and use MDS to
construct the genetic map.
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FIGURE 1 | A cartoon to show the sliding window process. Row and column indicate antigen and antiserum, respectively, which are placed chronologically from the

up-left to bottom-right of the window. MCAAS is used from the first window consisting of antigens and antisera starting from Year1 to the t-w+1 window consisting of

antigens and antisera starting from Year t-w+1. In the shaded region, the final values are taken as the mean of the completed values in all related windows. In the end,

MCAAS is performed on the whole window.

RESULTS

Dataset
In this paper, we used the H3N2 influenza data as our test dataset
for HI values from 253 viruses against 79 antisera. There are 3,991
observed HI values in this matrix, and the sparseness is about 0.2.
These viruses formed 11 antigenic clusters, namely HK68, EN72,
VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97, and FU02
(Smith et al., 2004). The HA1 protein sequences of viruses and
vaccine strains were then downloaded from the NCBI Influenza
Virus Database.

Matrix Completion for HI Table of H3N2
In this paper, we used the similarity matrix between protein
sequences to assist matrix completion. There are many amino
acid substitution matrices that reflect different amino acid
properties, and the literatures (Lee and Chen, 2004; Liao
et al., 2008) show that the substitution matrix is critical to
the accuracy of the prediction. To investigate the effect of
different amino acid properties on the evolution of antigens,
we used the method in this article to evaluate 65 amino
acid substitution matrices with parameters set to ξ1 = 500,
ξ2 = 1000, r = 10, w = 32, lam1 = 1E-4, and
lam2 = lam3 = 2.5E-7 (after normalizing the similarity
matrix). The 10-fold cross-validation root mean square errors
(RMSE) for all 65 substitution matrices were presented in
Supplementary Table S1, with the top 12 RMSEs summarized in
Table 1.

As can be seen from Table 1, different substitution matrices
have a certain influence on the prediction result. The best

TABLE 1 | The top 12 amino acids substitution matrices in predicting influenza

antigenicity.

Accession

number

Description RMSE

PRLA000102 Homologous structure derived matrix (HSDM)

for alignment of distantly related sequences

0.6349

HENS920101 BLOSUM45 substitution matrix 0.6351

JOND920103 The 250 PAM PET91 matrix 0.6352

QU_C930101 Cross-correlation coefficients of preference

factors main chain

0.6352

PRLA000101 Structure derived matrix (SDM) for alignment of

distantly related sequences

0.6352

KANM000101 Substitution matrix (OPTIMA) derived by

maximizing discrimination between homologs

and non-homologs

0.6352

CSEM940101 Residue replace ability matrix 0.6353

LUTR910107 Structure-based comparison table for other

class

0.6354

MIYS930101 Base-substitution-protein-stability matrix 0.6354

BENS940104 Genetic code matrix 0.6355

NIEK910102 Structure-derived correlation matrix 2 0.6355

HENS920103 BLOSUM80 substitution matrix 0.6358

substitution matrix is “Homologous structure derived matrix
(HSDM) for alignment of distantly related sequences.” The
RMSE obtained by using it is 0.6349. This implies the importance
of HA1 protein structure in influenza antigenicity, since the best
ones are based on structure-based substitution matrices, which is
very reasonable because the structural information is the key to

Frontiers in Microbiology | www.frontiersin.org 5 October 2018 | Volume 9 | Article 2500

https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/microbiology#articles


Wang et al. Predicting Influenza Antigenicity

TABLE 2 | Ten-fold cross-validation RMSEs for different window sizes and ranks on H3N2 data.

w\r 6 7 8 9 10 11 12 13 14

8 1.2563 1.3737 1.5396 / / / / / /

12 1.0394 1.0995 1.1398 1.1838 1.1749 1.1676 1.4021 / /

16 0.9902 0.9802 0.9666 0.9011 0.9427 0.9909 1.1016 1.1051 1.2234

20 0.9434 0.9125 0.8681 0.9542 0.8833 0.8621 0.8765 0.9284 0.9421

24 0.8322 0.8705 0.8218 0.8648 0.7294 0.7396 0.7475 0.7722 0.8516

28 0.7939 0.6995 0.7879 0.7894 0.6792 0.6320 0.6881 0.7083 0.7958

32 0.7856 0.7294 0.6503 0.5982 0.6068 0.6872 0.7069 0.6779 0.6577

TABLE 3 | Ten-fold cross-validation RMSEs for the analysis of single virus information dependence on H3N2 data.

row 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

10 0.6028 0.5985 0.6052 0.5966 0.6288 0.6385 0.6427 0.6410 0.6268 0.6585

130 0.6049 0.6360 0.6182 0.6583 0.6453 0.6693 0.6746 0.6171 0.6157 0.7115

240 0.5803 0.5762 0.5862 0.5886 0.5933 0.6115 0.6176 0.6405 0.6438 0.7651

“row” means the row where the information was deleted in HI. “10%, ... , 100%” means the proportion of information deleted.

TABLE 4 | Ten-fold cross-validation RMSEs for the analysis of combined virus information dependence on H3N2 data.

row RMSEs row RMSEs row RMSEs row RMSEs

10 0.6585 130 0.7115 10/30 0.7296 10/30/50/70 0.9707

30 0.6987 150 0.7874 50/240 0.8178 90/110/130/150 0.9405

50 0.6958 180 0.7282 70/110 0.8524 180/200/220/240 1.0118

70 0.7742 200 0.7666 90/220 0.7988 10/30/50/70/90/110 1.0101

90 0.7131 220 0.7280 130/180 0.7419 130/150/180/200/220/240 1.1963

110 0.7543 240 0.7651 150/200 0.8243 10/30/50/70/90/110 1.4959

130/150/180/200/220/240

“row” means the row where the information is completely deleted in HI. For example, “10” and “30” mean that the 10th line and the 30th line are deleted, respectively. “10/30” means

the 10th line and the 30th line are deleted at the same time.

the binding affinity between the antigen and the antisera (Hirst,
1943).

We set the mixed low-rank r to vary from 6 to 14, and
the sliding window size W to vary from 8 to 32 with a step
size of 4. Here we used the PRLA000102 substitution matrix to
measure sequence similarity and use the mixed rank window
sliding method proposed in this paper. Other parameters are
consistent with before. We listed the 10-fold cross validation
RMSEs for different r and W in Table 2. As can be seen from
the table, the lowest RMSE 0.5982 is achieved at window size
32 and rank 9 (mixed rank of 8 and 9). According to Huang
et al. (2017), the best RMSE value for BMCSI is 0.6586 and
those for antigenic cartography (Smith et al., 2004; Cai et al.,
2010) and AntigenMap (Barnett et al., 2012) are 1.04 and
1.05, respectively. The above results indicate that the complete
HA1 protein sequence information with discriminating antigenic
determinant regions is a good compensation for low rank matrix
completion. From Tables 1, 2, it is clear that a mixed rank sliding
window method is more appropriate in completing the H3N2
influenza data.

In order to analyze the dependence of the model on
available virus information, we selected 3 viruses for single virus
information analysis, and selected 12 viruses for combined virus
information analysis. In the analysis of single virus information
dependence, we selected the 10th, 130th, and 240th rows of
virus information in the HI table, sequentially deleted about
10% of the information. The results of the analysis were shown

in Table 3. It can be seen from Table 3 that with the increase
of information deletion, the prediction performance of the
model is generally declining. In the analysis of combined virus
information dependence, we ran all the cases where all the
individual virus information was deleted, the case of 2 virus
combinations, the case of 4 virus combinations, the case of 6
virus combinations, and the case of 12 virus combinations. The
results of the analysis were shown in Table 4. As can be seen from
Table 4, asmore virus information is deleted, the prediction effect
becomes worse and worse.

Antigenic Cartography for H3N2 Viruses
Based on the antigenic distance predicted by the MCAAS
method, we constructed an antigenic map of 253 viruses in
H3N2 by multidimensional scaling in Figure 2. As can be seen
from Figure 2, 11 antigen clusters can be distinguished very well,
especially VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97,
and FU02. It is reasonable since there are more HI observations
in these later years, resulting inmore reliable calculations.We can
also find from Figure 2 that the virus has generally evolved locally
along an S-shaped pathway, which are consistent with previous
research (Smith et al., 2004).

We also calculated the average antigenic distances
within cluster and between clusters (see Table 5), which are
generally consistent with Figure 2. For example, the antigenic
distance between BE92 and BE89 is much greater than the
antigenic distance between SI87 and BE89 in Figure 2, whose
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corresponding average antigenic distances were 4.86 and
3.23, respectively. From Table 3, we can find that the average
within-cluster distances of the 11 clusters are all <1.7, and the
inter-cluster distances are >1.7 except for BK79-BK79 (1.64) and
BE92-BE92 (1.68). In addition, the antigenic distance between
viruses becomes larger as the time interval increases.

Relationship Between Influenza Genetic
and Antigenic Evolution of H3N2
To further explore relationship between the genetic and
antigenic evolution of the H3N2 virus, we not only constructed
a genetic map (Figure 3) of the 253 viruses using the
uncorrected P-distance and MDS, but also calculated the
average genetic distance (uncorrected P distance) of viruses
within and between 11 antigen clusters (Table 6). As shown
in Figure 3, it can be seen that the genetic evolution
of the virus proceeds along a semicircle. By comparing

FIGURE 2 | The antigenic cartography of H3N2 influenza viruses from 1968 to

2003 constructed by MCAAS. Each node denotes a virus and the distance

between two nodes reflect their antigenic distance. The viruses in 11 antigenic

clusters (HK68, EN72, VI75, TX77, BK79, SI87, BE89, BE92, WU95, SY97,

and FU02) are marked with different shapes and colors.

Figure 2 with Figure 3, we found that the genetic and
antigenic profiles are partially consistent. However, their
evolutionary shapes are different, and genetic maps are more
continuous, while antigenic maps are more punctual. From
Table 4, we can see that the genetic distance between clusters
increases with the increase of time span. The average genetic
distance within-cluster varies from 0.004 to 0.025, while the
average genetic distance between-clusters varies from 0.025
to 0.165.

Although the genetic map and the antigenic map are roughly
consistent, we also found that some viruses are very close in the
genetic map, but are far apart in the antigenic map. For example,
BE89 and BE92 are very close in the genetic map (Figure 3)
with the average genetic distance only 0.043, but they are far in
the antigenic map (Figure 2) with the average antigenic distance
4.86. This shows that not all genetic changes are equivalent to
cause antigenic changes and different protein sites contribute

FIGURE 3 | The genetic map using the uncorrected-P distance for HA1

protein sequences of H3N2 influenza virus from 1968 to 2003. Each node

denotes a virus and the distance between two nodes reflect their genetic

distance. The viruses in 11 antigenic clusters (HK68, EN72, VI75, TX77, BK79,

SI87, BE89, BE92, WU95, SY97, and FU02) are marked with different shapes

and colors.

TABLE 5 | The average antigenic distances among viruses within and between 11 antigenic clusters for H3N2 influenza.

HK68 EN72 VI75 TX77 BK79 SI87 BE89 BE92 WU95 SY97 FU02

HK68 1.29 1.97 5.00 4.41 6.48 7.27 6.83 4.80 6.15 5.55 7.00

EN72 1.97 0.68 2.12 3.18 6.45 7.68 7.57 6.52 7.01 5.04 8.18

VI75 5.00 2.12 0.52 1.94 3.71 8.49 7.07 10.48 7.77 6.57 16.95

TX77 4.41 3.18 1.94 0.28 1.77 5.08 6.35 4.57 4.32 6.07 11.65

BK79 6.48 6.45 3.71 1.77 1.64 4.44 6.00 6.62 4.51 8.70 16.96

SI87 7.27 7.68 8.49 5.08 4.44 1.40 3.23 4.61 7.14 7.98 12.39

BE89 6.83 7.57 7.07 6.35 6.00 3.23 0.88 4.86 5.21 7.01 9.96

BE92 4.80 6.52 10.48 4.57 6.62 4.61 4.86 1.68 2.55 6.19 8.03

WU95 6.15 7.01 7.77 4.32 4.51 7.14 5.21 2.55 0.85 3.76 5.79

SY97 5.55 5.04 6.57 6.07 8.70 7.98 7.01 6.19 3.76 1.22 2.32

FU02 7.00 8.18 16.95 11.65 16.96 12.39 9.96 8.03 5.79 2.32 1.13
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TABLE 6 | The average genetic distances among viruses within and between 11 antigenic clusters for H3N2 influenza.

HK68 EN72 VI75 TX77 BK79 SI87 BE89 BE92 WU95 SY97 FU02

HK68 0.022 0.04 0.077 0.074 0.113 0.13 0.132 0.143 0.138 0.157 0.165

EN72 0.043 0.02 0.051 0.047 0.089 0.11 0.116 0.126 0.125 0.14 0.15

VI75 0.077 0.05 0.007 0.044 0.084 0.109 0.118 0.126 0.13 0.144 0.154

TX77 0.074 0.05 0.044 0.011 0.056 0.08 0.094 0.098 0.105 0.127 0.138

BK79 0.113 0.09 0.084 0.056 0.024 0.042 0.057 0.07 0.085 0.109 0.12

SI87 0.13 0.11 0.109 0.08 0.042 0.015 0.025 0.042 0.059 0.085 0.109

BE89 0.132 0.12 0.118 0.094 0.057 0.025 0.012 0.043 0.05 0.074 0.101

BE92 0.143 0.13 0.126 0.098 0.07 0.042 0.043 0.021 0.037 0.072 0.099

WU95 0.138 0.13 0.13 0.105 0.085 0.059 0.05 0.037 0.022 0.057 0.085

SY97 0.157 0.14 0.144 0.127 0.109 0.085 0.074 0.072 0.057 0.025 0.051

FU02 0.165 0.15 0.154 0.138 0.12 0.109 0.101 0.099 0.085 0.051 0.004

differently to antigenic evolution (Smith et al., 2004; Lee et al.,
2016).

DISCUSSIONS

It is known that the antigenicity of influenza virus changes very
quickly. To prevent influenza outbreaks caused by changes in
influenza virus antigens, the 80 WHO collaborating laboratories
actively monitored the influenza viruses to determine vaccine
strains for the next flu season. However, the selection of influenza
vaccine strains is a labor-intensive and time-consuming process
that relies on the identification of antigenic variants. In this paper,
we propose a new method for integrating similarity information
between viruses and between vaccines into matrix completion.
The completed matrix was also used for constructing antigenic
map, which helps to select vaccine strains.

With the development of sequencing technology, the
acquisition of sequence information becomes easier. In the
literature (Huang et al., 2017), it is shown that the integration
of sequence information contributes to the prediction of
viral antigenicity. This paper further explores the effect of
fusion of sequence information on the prediction of virus
antigenicity, mainly from four perspectives. (1) The integration
of sequence information improved antigenic prediction. Not
only the similarity information of the virus sequences but also
the similarity information of the vaccine strains was used.
(2) We discussed in more detail the influence of antigenic
determinant regions on antigenic changes and further analyzed
the B and C regions in the five antigenic determinant regions.
(3) We analyzed 65 substitution matrices, which reflect the
different physicochemical and biochemical properties of
amino acids. The results show that the characteristics of the
structure have a greater impact on antigen evolution. (4) We
proposed a mixed rank sliding window method that can solve
matrix completion problems more reasonably than single
rank methods. As a result, our method reduces the prediction
RMSE compared with the literature (Huang et al., 2017) and
previous interpolation methods (Smith et al., 2004; Cai et al.,
2010). On this basis, we also discovered a semi-circular genetic
evolution and S-shaped antigen evolution, which is consistent
with previous findings (Smith et al., 2004; Fouchier et al.,
2010).

It is worth noting that although we used the H3N2 data in
this paper, our method is applicable to all influenza subtype data
such as H1N1, H5N1, and H7N9. In fact, this method could
be applied to any data with a response matrix and predictive
characteristics, such as the prediction of diseases and drugs, the
association between miRNAs with diseases, and the recognition
of protein folds (Wei and Zou, 2016). For example in drug-
response prediction, the entries in the matrix represent the effect
of drugs on samples, which can be formulated as a typical matrix
completion problem. We believe that the similarity among drugs
based on their chemical properties and the samples genetic and
gene expression similarity will also help to infer drug effects.
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