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Abstract. An approximate formulation is given to a dynamic coupled thermo-mechanical problem for physically non-
linear inelastic thin-walled structural elements within the framework of a geometrically linear theory and the Kirchhoff–
Love hypotheses. A simplified model is used to describe the vibrations and dissipative heating of inhomogeneous physi-
cally non-linear bodies under harmonic loading. Unsteady vibration self-heating problem is solved. The dissipative func-
tion obtained from the solution for steady-state vibrations is used to simulate internal heat sources. For the partial case of 
forced vibrations of a beam, the amplitude–frequency characteristics of the field quantities are studied within a wide fre-
quency range. The temperature characteristics for the first and second resonance modes are compared. 
Keywords: thin-wall structure, coupled thermo-mechanical problem, dissipative self-heating, monoharmonic approxima-
tion. 

 
1. Introduction 
The forced-vibration analysis of structures and their ele-
ments occupies a significant place in the dynamics of 
deformable systems. This research area attracts great 
interest because of the need for a deeper theoretical ana-
lysis (especially of non-linear systems) and purely practi-
cal requirements in various fields of engineering (Kar-
kauskas 2004). Under intensive dynamic loads, e.g. 
resonance vibrations, there are several factors that deter-
mine the behaviour of a structure. Among them are iner-
tia effects, non-linearity of material properties and the 
coupling of the mechanical and thermal fields. In particu-
lar, dynamic loading may cause plastic deformation of 
elements of damping systems, building structures, test 
specimens in low-cycle fatigue tests, etc. (Karkauskas 
2007; Norkus and Karkauskas 2004). 

This may result in elevated temperatures due to dissipa-
tive self-heating. The heating, in turn, may change the strength 
characteristics of the structure, deteriorate its performance, 
and, under adverse conditions, even cause fracture. 

Cyclic (in particular harmonic) loading is one of the 
most widespread types of load on structural elements and 
equipment. Under high-level loading, the material of a 
structure may go over into a viscoplastic state, which, in 
long-term operation, may be accompanied by intensive 
dissipative heating. In most cases, this is the cause of 
altered mechanical characteristics and degraded perform-
ance of structural elements and equipment. 

The interaction of the mechanical and thermal fields 
in inelastic bodies is investigated within the framework of 
a coupled thermo-mechanical problem (Allen and Haisler 
1985). Recently, generalized flow theories (for example, 

Chan et al. 1990; Bodner and Partom 1975) have widely 
been used to describe the behaviour of materials. Within 
the framework of these models, the physical relations 
include a system of evolution equations for the internal 
state parameters, which are essentially non-linear. In the 
case of long-term inelastic deformation, the complexity 
of the solution is due to the necessity of storing a large 
body of data and performing extensive computations to 
allow for the deformation history. To overcome these 
difficulties in the specific case of harmonic loading, a 
simplified model of thermo-mechanically coupled proc-
esses was developed by Karnaukhov (1982), Senchenkov 
et al. (1997a, b). The model is based on the concept of 
complex moduli, determined by a modified technique of 
equivalent linearization (Karnaukhov 1982; Senchenkov 
et al. 1997a). In terms of these moduli, the initial problem 
is reduced to a scleronomous system of equations for 
complex amplitudes of mechanical field quantities – dis-
placements, stresses, total and inelastic strains. 

Here we use the simplified model of the coupled 
behaviour of physically non-linear bodies under harmonic 
loading to give an approximate formulation to the cou-
pled dynamic problem for thin-walled structural ele-
ments. Within the framework of this formulation, an ele-
mentary thin-walled element – a beam – is used as an 
example to study the laws governing the forced vibrations 
and dissipative heating of thin-walled elements over a 
wide frequency range. 

 
2. Coupled problem statement 
The approximate model is based on the assumption that 
when elements of a solid are under harmonic loading 
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nearly harmonic, 
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where kle  and kls  are the deviators of the strain and 
stress tensors, respectively, ')(⋅  and ")(⋅  are the real and 
imaginary parts of complex amplitudes, ")(')()~( ⋅+⋅=⋅ i , 
and ω  is the frequency of vibrations. 

We determine the effective strain, stress, and inelas-
tic strain (the intensities of the corresponding quantities) 
as follows: 
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The procedure of harmonic linearization assumes 
that the complex amplitudes of the strain deviator 

ijijij eiee ′′+′=~ , inelastic-strain deviator "'~ p
ij

p
ij

p
ij iε+ε=ε  and 

the stress deviator ijijij siss ′′+′=~  are related by means of 
the complex shear modulus  G~ , GiGG ′′+′=~  and the 
inelasticity factor pκ~ , ppp iκ ′′+κ′=κ~  (Senchenkov et al. 
1997a, b) 
 ,~~~,~~2~
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p
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where G~  and pκ~  under proportional loading are func-
tions of the effective strain (or stress), frequency and 
temperature, 
 ( ) ( )θωκ=κθω= ,,~~,,,~~

ippi eeGG . (2.5) 
The components of the complex moduli G~  and pκ~  

are found from the condition of equality of dissipation 
rates and from the cyclic diagrams ii es ~  and i

p
i e~ε  

for the initial and approximate models. For a deformation 
cycle, we obtain 
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To determine the complex characteristics appearing 
on the right-hand sides of relations (2.6), the dissipation 
rate D′  and the cyclic curves ii es ~  and i

p
i e~ε  are 

determined through direct integration of the Bodner–
Partom equations (Chan et al. 1990; Bodner and Partom 
1975) for torsion of a thin-walled cylinder. Introducing a 
cylindrical coordinate system ( )ϕOrz , where the Oz -axis 
coincides with the cylinder axis, we obtain 
 ,,,,sin 00 p

zpzzzz seetee ϕϕϕϕϕ ε∆=εσ∆==ω−=  (2.7) 

where ϕσ∆ z  and p
zϕε∆  are the ranges of stresses and 

inelastic strains in a cycle. 
The real parts G′  and pκ′  of the moduli are calcu-

lated by relations (2.6) and (2.7): 
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Using the fact that elastic and inelastic strains ap-
pear in the total strain additively and using Eqs (2.4), it is 
easy to show that the moduli G~  and pκ~  are linked by the 
relation 
 ( ).~1~

pGG κ−=  (2.9) 
In the approximate formulation of the coupled ther-

mo-mechanic problem for physically non-linear inelastic 
bodies, the following heat-conductivity equation is used 
(Senchenkov et al. 1997b): 
 ( ) ( ) ,0,,33 00 =−θ−′−θα−εθα+θ rkDKc iikkVv

&&&  (2.10) 
which is averaged over the period of vibrations.  

Here vc  is the heat capacity at constant volume, k  
and 0α  are the coefficients of thermal conductivity and 
linear thermal expansion, respectively, VK  – the bulk 
modulus of the material, and r  – a given heat source. 

Averaging Eq. (2.10) over the period of vibrations 
in view of 0≡r  and neglecting the thermo-elastic ef-
fects, kkVK εθα &03 , 09 0 ≈θα vV cK , we obtain 
 ( ) .0,, =′−θ−θ Dkc iiv &  (2.11) 

The dissipative function can be represented as (2.6) 
 .

pp
ijij WsD && =ε=′  (2.12) 

Reasoning as we did to derive relation (2.9), we can 
represent the first equation in (2.4) in an alternative form 
 ( ) ( ) .~~12~~2~

ijp
p
ijijij eGeGs κ−=ε−=  (2.13) 

Since a unique dependencies ( )iii ess =  exists for 
proportional loading with given ω  and θ , the moduli G~  
and pκ

~  can be considered as functions of is , 
 ( ) ( )θωκ=κθω= ,,~~,,,~~

ippi ssGG  (2.14) 
Relations (2.5) and (2.14) are formally equivalent. 

However, it is more convenient, from the computational 
point of view, to use smooth relationships (2.5) for mate-
rials with a very weak cyclical hardening. 

The equations for the volumetric components are 
 .~3~ kkVkk K ε=σ  (2.15) 

If we neglect the mechanical transient, then the vi-
bration equation takes the form 
 ,0~,~ 2 =ρω+σ ijij u  (2.16) 
where ku~  is the displacement amplitude, kkk uiuu ′′+′=~ . 

Supplementing Eqs (2.4), (2.11), (2.15), and (2.16) 
with boundary conditions and initial conditions for tem-
perature, we obtain an approximate formulation of the 
coupled problem for physically non-linear bodies under 
harmonic loading. 
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The derived equations are valid for arbitrary 3-D solid.  
There are some limitations for the applications of 

the developed monoharmonic approach. The limitations 
are imposed by the processes under consideration, types 
of the materials and phenomena studied. The structure 
response should be close to the monoharmonic one (the 
most vivid case is the case of resonance). The loading 
should provide the stress-strain state that is quite close to 
the proportional one. The objects of the investigation 
should be the amplitudes (ranges) of the main field vari-
ables and values averaged over the period (dissipated 
energy, for example). The approach developed is incapa-
ble in describing the peculiarities of the structure re-
sponse within one separate cycle of vibration, sub- and 
super-harmonic resonance and chaotic scenarios. 

The main advantage of the technique elaborated is 
significant reduction in the calculation time. Application 
of the generalized flow theories for simulating the physi-
cally non-linear response of the structural material leads 
to the necessity of following the complete response his-
tory. This process is extremely time-consuming, espe-
cially for high-cycle problems. However, having deter-
mined steady complex moduli, one can avoid the time 
integration of the significantly non-linear equations of the 
model describing inelastic behaviour of the material. 

Furthermore, under some circumstances, the general 
equations developed above can be significantly simpli-
fied. 

 
3. Problem statement for thin-wall  
structural members 

For approximate formulation of the coupled dynamic 
problem for laminated thin-walled shells of revolution 
under harmonic loading, we adopt the model considered 
in Section 2. The equations for thin-walled elements of 
more general geometry are derived similarly. 

Let a shell have a constant thickness H  and consist 
of an arbitrary number, K , of layers of thickness ih  
each. Initially, the material of the layers is isotropic. The 
layers are in perfect mechanical and thermal contact. 
Consider a cylindrical coordinate system ( )ζφOr . The 
datum surface of the shell is referred to a curvilinear or-
thogonal coordinate system ( )φrz . The meridian of the 
datum surface is described by the equation ( )zrr = . The 
datum surface itself is bounded by the lines of principal 
curvatures const=s  and const=φ , where s  is the an-
gular position of the meridian of the datum surface. The 
thickness coordinate is reckoned form the datum surface 
along the external normal. We assume that { } { }321 ,,,, uuuwvu =  are the displacement components 
of an arbitrary point of the shell and consider the steady-
state vibrations of the shell under harmonic force or ki-
nematic loading. Let ϕ  be an angle between the normal 
to datum surface and axis direction; sR  and ϕR  are main 
radii of curvature. Let us also use the classical nomencla-
ture of shell theory, as it has been adopted in Shevchenko 
and Prokhorenko (1981) and Grigorenko et al. (1986). 

We also assume that all the kinematic and force cha-
racteristics vary harmonically: 
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Using relations (2.13) and (2.15), we write Hooke’s 
law for the material of the jth layer as 
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where jν
~  is a complex-value Poisson ratio, ( ) ( )jVjjVjjjj GKGKi ~26~23~ +−=ν ′′−ν′=ν . 

According to (2.14) and (2.15), jG
~  and jν

~  are 
functions of the intensity ie  or is  (2.3). 

Relations (3.2) formally coincide with the linear 
elastic equations in the case of harmonic deformation 
with the only difference that Eqs (3.2) include complex 
quantities. Therefore, to construct an approximate model 
of shells, we will use the general procedure developed in 
Karnaukhov and Kirichok (1986), Shevchenko and Prok-
horenko (1981), Grigorenko et al. (1986). 

From the force hypothesis 0~ =σzz  and Eq. (3.2), we 
obtain equations for thickness deformation: 
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Formally substituting (3.3) into the other equations 
in (3.2), we obtain 
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In view of the hypotheses adopted above, we obtain 
the following expressions for the intensities: 
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The manner of the hypothesis 0~ =σzz  implementa-
tion depends on whether the complex characteristics are 
functions of is  or ie . In the former case, we cannot ex-
clude the strain zzε

~  explicitly. Therefore, the condition 
0~ =σzz  is equivalent to non-linear relation (3.3). It is 

regarded as an additional non-linear equation that is satis-
fied in the course of the general iterative process of 
boundary-value solution. In the latter case, the equations 
of plane stress state follow from this hypothesis (3.4) 
without additional relations such as (3.3). 
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To derive the equations for complex forces and mo-
ments, we substitute the stresses into the classical formulas 
for forces and moments per unit arc length of the datum 
surface and then use the geometrical equations of the shell 
theory (Karnaukhov and Kirichok 1986; Shevchenko and 
Prokhorenko 1981; Grigorenko et al. 1986). As a result, 
the complex analogue of the plastic relations can be written 
as (Karnaukhov and Kirichok 1986): 
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Here ijε
~  and ijκ~  ( 2,1, =ji ) are the complex analogu-

es of the deformation characteristics of classical shell theory, 
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~K  and 12
~D  are determined from 

the corresponding formulas of shell theory, in which the 
parameters jE  and jν  are replaced by the complex charac-
teristics jE

~  and jν
~  depending on is  or ie , i.e. 
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It should be noted that Eqs (3.7) have no terms 
θ

αβ
,PN  and θ

αβ
,PM , accounting for the thermal and inelastic 

strains (Shevchenko and Prokhorenko 1981; Grigorenko 
et al. 1986). The components of plastic strains are deter-
mined from 

Eqs (2.4) for each jth layer: 
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Based on (3.1), we derive the vibration equations for 
shells by means of the substitution 
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As a result, the equations of motion take the form 
(Zhuk and Senchenkov 2002; Zhuk et al. 2004): 

,0~~~cos~~~
2 =ρω+++φ−ϕ∂

∂+∂
∂

ϕ
ϕ urHqrQR

rNN
s
Nr

sss
s

ss

 
,0~~sin~cos~~~

2 =ρω++φ+φ+ϕ∂
∂+∂

∂
ϕϕϕ

ϕϕ vrHqrQNN
s
Nr

sss
s  

,0~~sin~~~~
2 =ρω++φ−−ϕ∂

∂+∂
∂

ϕ
ϕ wrHqrNNR

rQ
s
Qr

szs
s

s  

,0~~cos~~~~
22 =ρω++φ−−ϕ∂

∂+∂
∂

ϕ
ϕ urHmrMQrM

s
Mr

sss
ss  

,0~~cos~~~~
22 =ρω++φ+−ϕ∂

∂+∂
∂

ϕϕϕ
ϕϕ vrHmrMQrM

s
Mr

ss
s  

.0
~~

~~
=−+−

ϕ

ϕ

ϕ
ϕϕ

s

ss
ss R

M
R
M

NN  

∑ ∫ρ=ρ∑ ∫ρ=ρ −

=

−
−

=

−
++ 1

0

21

0

1
11

,

J

j

z

z
js

J

j

z

z
js dzzHdzH

j

j

j

j
, 

where jρ  are densities of the layer materials. 
The dissipative function (2.12) in the heat-

conductivity equation 
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for the jth layer, in view of (3.4), takes the form 
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Here cθ  is the ambient temperature, 2,1yα  and 2,1zα  are 
the heat-transfer coefficients for the surfaces 2yhy ±=  
and 2Hz ±= , respectively, yh  is the beam width, and 
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The following dissipative function averaged over 
the thickness gives a good approximation for single-
layered shells made of materials with good heat conduc-
tivity: 
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Thus, the approximate coupled dynamic problem for 
thin-walled elements under harmonic loading is reduced 
to complex analogues of 5 equilibrium equations, 6 com-
plex geometrical equations, 6 inelastic relations (3.7), and 
heat-conductivity equations (2.11) for 18 unknowns ssε

~ , 
ϕϕε
~ , ϕεs

~ , 11
~κ , 22

~κ , 12
~κ , sN

~ , ϕN~ , ϕsN
~ , sM~ , ϕM~ , 

ϕsM~ , sQ~ , ϕQ~ , u~ , v~ , w~ , and θ . 
Once the problem is solved, the inelastic strains p

αβε
~  

are determined by formulae (3.8). The boundary condi-
tions on the shell periphery are formulated in an ordinary 
manner (Karnaukhov and Kirichok 1986; Shevchenko 
and Prokhorenko 1981; Grigorenko et al. 1986), includ-
ing complex variables (Senchenkov et al. 1997a, b). 

 
4. Formulation of the problem for a beam 
Let us study some laws governing the coupled thermo-
mechanical behaviour of thin-walled elements by an ex-
ample of the flexural vibrations of a beam Lx ≤≤0  of 
thickness H . In this case, the system of mechanical 
equations (2.4), (2.11), and (2.15) is reduced to 
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where ϑ~  is the complex angle of rotation,  
 { } { }zyx uuuwvv ~,~,~~,~,~ = , 
 ( )211111

~~~~~ KDCDQ −= , 
 ( )211112

~~~~~ KDCKQ −= , 
 ( )211113

~~~~~ KDCCQ −= . 
The vibration of the beam are excited by moments 

applied at the ends Lx ,0=  and varying in time as 
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where 0
xxσ  is the maximum amplitude of the stress dis-

tributed linearly along the beam’s ends Lx ,0= . The 
corresponding complex conditions have the form 
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To solve the thermal problem, we use a more accu-
rate two-dimensional formulation rather than shell rela-
tions (3.9–3.11): 
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with the boundary conditions 
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and the initial condition 
 ( ) .0,0, ==θ tzx  (4.5) 

In (4.3–4.5), 0θ−θ=θ  is the redundant tempera-
ture, 1α , 2α  and 2α  are the heat-transfer coefficients for 
the surfaces Lx ,0= , 2Hz ±= , and 2yhy ±= , re-
spectively. 

Thus, in such a formulation, we solve an unsteady 
heat conductivity problem in which internal heat sources 
are simulated by a dissipative function calculated in the 
steady-state vibration problem. 

 
5. Numerical analysis 
Let a beam be made of AMg-6 aluminum alloy. How to 
determine the parameters of the approximate model is 
described in Senchenkov et al. (1997a), Zhuk et al. 
(2001) in detail. Specific parameters corresponding to the 
chosen material are taken from Zhuk and Senchenkov 
(2000, 2001). 

The mechanical problem (4.1), (4.2) formulated in 
Section 4 is solved by an iterative method similar to the 
method of variable elastic parameters (Shevchenko and 
Prokhorenko 1981). In linearizing the problem at the nth 
iteration, the mechanical properties of the material are 
determined from the amplitudes of the strain intensity cal-
culated at the ( 1−n )th iteration. To accelerate the conver-
gence process, the Steffensen–Aitken algorithm is used, 
according to which an improved approximation is con-
structed as a linear combination of the two previous ones. 

After stationary solution of the mechanical problem 
is found, the unsteady heat-conductivity problem (4.3–
4.5) is solved using the finite-difference method with an 
explicit difference scheme (Tikhonov and Samarskii 
1972). The expediency of using difference methods is 
determined, first of all, by practical considerations – the 
simplicity of computational algorithms and their adequate 
accuracy in solving Eq. (4.3) with non-linearity of quite 
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general form for bodies of arbitrary shape. If one wants to 
account for the temperature dependence of the material 
properties, one should use a step-by-step (in time) solu-
tion scheme. 

The calculations were performed for the following 
geometrical parameters of the beam: 
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We analyzed the following basic mechanical charac-
teristics: the amplitude of deflections zz uu ~=∆ , the am-
plitudes of the intensities of stress deviator is , the total-
strain deviator ie , and the inelastic-strain deviator p

ie  
(see relations (2.3)), the dissipated energy D ′  averaged 
over the period of vibrations, the stored energy VW  
maximum in the period and averaged over the volume, 
the absorption coefficient VV

WD ω′π=ψ 2 , and the 
redundant temperature θ . The expressions for 

V
D ′  

and VW  and the formula for W  in terms of complex-
value amplitudes are given below: 
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where *~a  – complex conjugate to a~ , aiaa ′′−′=*~ . 
Fig. 1 shows the amplitude–frequency characteris-

tics of the forced vibrations of the beam for 
=σ0xx 50 MPa. Curves 1–4 represent the quantities zu∆ , 

ie , p
ie , and is , respectively. The frequency interval of 

interest includes the first and second resonances of the 
beam =1rf 248 Hz and =1rf 1348 Hz (symmetric mo-
des). Near the first resonance, the field quantities have 
high amplitudes. The second resonance extends, however, 
over a wider frequency range. 

The magnitudes of the stress intensity for the first 
and second resonance are the same. It can be explained 
by the nature of the physical non-linearity considered. 

Cyclic behaviour of the aluminum alloy stress-strain 
diagram in terms of amplitudes is very close to the dia-
gram for elastic-perfectly plastic material diagram. Under 
these circumstances, the peaks in stress intensity are “cut” 
at the value of cyclic yield stress. As a result, plateaus in 
the stress amplitude-frequency characteristics are formed 
(see line 4 in Fig. 1). 

The accuracy of the results is estimated by compar-
ing them with data obtained by other methods. This can 
be treated as the verification of the technique elaborated.  

Table 1 presents, for a frequency of 250 Hz, the fi-
nite-element solution of the problem (the first column). 

 
 
 

 Fig. 1. Amplitude–frequency characteristics of the forced 
vibrations of the beam for =σ0xx 50 MPa 
 Table 1. Accuracy estimation 
Model 1 2 3 
is , МPа 196.9 195.4 195.2 
ie , % 0.552 0.488 0.533 
p
ie , % 0.251 0.192 0.238 
D ′ ,  

MWt/m3 
933.8 738.4 920.9 

W ,  
MJ/m2 0.714 0.702 0.700 
10⋅∆ zu , m 0.950 0.880 0.885 

 
This problem was solved in an unsteady formulation 

and the behaviour of the material was described by the 
Bodner–Partom model (Chan et al. 1990; Bodner and Par-
tom 1975). The second column contains the finite-element 
solution by an approximate model based on the concept of 
complex moduli developed in Karnaukhov (1982), 
Senchenkov et al. (1997a, b). The third column represents 
the solution by the approach developed here. The tabulated 
values correspond to the point =x 0.413 m, =z 0.015 m. 
The data are in a good agreement. 

Fig. 2a shows how the intensities is  (curves 1) and 
p
ie  (curves 2) are distributed along the length of the beam 

on its surface. The results correspond to frequency 
=1f 250 Hz and =σ0xx 50 MPa. 
The same dependencies calculated for =1rf 1350 Hz 

are presented in Fig. 2b. Near those two frequencies, the 
amplitude–frequency characteristics have peaks within the 
first and second resonance domains, respectively. An 
analysis of these results reveals that the vibration mode 
determines the nature of those distributions. In particular, 
the domains of inelastic deformation are located near the 
regions of the stress maximum. 

 



Journal of Civil Engineering and Management, 2009, 15(1):  67–75 

 

73 

 a)  
 

 b) 
 

Fig. 2. Stress and inelastic strain intensities distributions 
along the length of the beam: a) == 1ff 250 Hz and 
=

0
xxσ 50 MPa; b) == 2ff 1350 Hz and =

0
xxσ 50 MPa 

 
 

 Fig. 3. Time evolution of the maximum over the volume 
redundant temperature 

The energy aspect of vibrations at the frequencies 
1f  and 2f  may be evaluated from the coefficient of ab-

sorption of mechanical energy ψ . At 250 Hz and 1350 
Hz, it is equal to 0.27 and 0.12, respectively. Thus, under 
the given conditions, the first-mode vibrations are charac-
terized by intensive internal loss. Significant values of ψ  
are one of the reasons for employing the plastic mecha-
nism to damp vibrations of high amplitude (Chiba and 
Kobayashi 1990). 

The results of the vibration self-heating study are re-
flected in Figs 3 and 4.  

Fig. 3 shows the evolution in time of the maximum 
(within the volume) redundant temperature at frequencies 
of 250 Hz (curve 1) and 1350 Hz (curve 2) 
=

0
xxσ 16 MPa. It is worth to emphasize that in both cases 

curves demonstrate the saturation type behaviour of the 
temperature. The highest heating temperature is less than 
250°C. Therefore, it is well founded that temperature 
dependencies of the material parameters are not taken 
into account under those conditions. The heating level is 
not enough to change material properties significantly. 

Low heating levels are caused by 2 main factors. 
The first one is relatively high heat conductivity of the 
metal alloy. The second factor is the heat convection at 
the beam faces. 

For plastic structural elements, self-heating can sig-
nificantly affect the strength, durability and performance 
mainly because the heat conductivity of the most plastics 
is poor. 

 

 Fig. 4. Steady state temperature distributions along the 
beam length 
 
Fig. 4 demonstrates the stationary distributions of 

the temperature along the beam length. The line numbers 
correspond to those shown in Fig. 3. An analysis of the 
results reveals that under the given conditions, the first-
mode vibrations are accompanied by smaller heating, and 
the spatial distribution of temperature, as well as the me-
chanical field characteristics, is determined by the vibra-
tion mode. 
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6. Conclusions 

1. The coupled thermo-mechanical problem state-
ment is used to investigate the interaction of the mechani-
cal and thermal fields in the inelastic solids. Recently, 
generalized flow theories have been widely used to de-
scribe the elastic-viscoplastic behaviour of materials. 
Within the framework of these models, a set of internal 
variables is used to describe spectrum of inelastic effects. 
However, the physical relations include a system of evo-
lution equations for the internal state variables, which are 
essentially non-linear. In the case of long-term inelastic 
deformation, the complexity of the solution leads to the 
necessity of storing an extensive information and per-
forming vast computations to allow for the deformation 
history. 

2. To overcome these difficulties in the specific 
case of harmonic loading, a simplified model of thermo-
mechanically coupled processes is developed. 

3. The model is based on the concept of complex-
value moduli, which are determined by a modified tech-
nique of equivalent linearization. In terms of these 
moduli, the initial problem is reduced to a scleronomous 
system of equations for complex-value amplitudes of 
mechanical field variables – displacements, stresses, total 
and inelastic strains.  

4. The simplified model of the coupled behaviour 
of physically nonlinear bodies under harmonic loading is 
used to develop an approximate formulation of the cou-
pled dynamic problem for thin-walled structural ele-
ments.  

5. Within the framework of this formulation, for 
the partial case of forced vibrations of a beam, the ampli-
tude–frequency characteristics of the main field variables 
are studied within a wide frequency range. The tempera-
ture characteristics for the first and second resonance 
modes are compared. 

6. Approximate monoharmonic approach provides 
quite reliable and accurate results for the considered class 
of processes under harmonic loading and described con-
ditions. 
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MONOHARMONINIS BŪDAS TIRIANT PLONASIENIŲ NETAMPRIŲ ELEMENTŲ SVYRAVIMUS IR DISIPACINĘ ŠILUMĄ 
Y. Zhuk, I. Senchenkov 
S a n t r a u k a  
Naudojant geometrinio tiesiškumo ir Kirchhofo ir Love hipotezes, pateikiama apytikslė jungtinė dinamikos ir disipacinės 
šilumos uždavinio formuluotė fiziškai netiesiniams konstrukciniams elementams. Apytikslis modelis taikomas harmonine 
apkrova veikiamo nehomogeninio fiziškai netiesinio kūno svyravimams ir išskiriamai šilumai aprašyti. Sprendžiamas 
neharmoninių svyravimų disipacinės šilumos uždavinys. Pasitelkus harmoninių svyravimų uždavinį, gaunama disipacijos 
funkcija, kuri naudojama vidinės šilumos šaltiniams modeliuoti. Esant priverstiniams sijos svyravimams, plačiai nagrinė-
jamos amplitudės ir dažnio charakteristikos. Lyginamos temperatūros charakteristikos, atitinkančios pirmojo ir antrojo re-
zonanso formas.  
Reikšminiai žodžiai: plonasienė konstrukcija, jungtinis temperatūrinis ir mechaninis uždavinys, disipacinė šiluma, mono-
harmoninė aproksimacija.  
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