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Time-of-day modulations affect both performance on a wide range of cognitive tasks

and electrical activity of the brain, as recorded by electroencephalography (EEG). The

aim of this work was to identify fluctuations of fractal properties of EEG time series due

to circadian rhythms. In twenty-one healthy volunteers (all males, age between 20 and

30 years, chronotype: neutral type) high density EEG recordings at rest in open and

closed eyes conditions were acquired in 4 times of the day (8.00 a.m., 11.30 a.m., 2.30

p.m., 7.00 p.m.). A vigilance task (Psychomotor Vigilance Test, PVT) was also performed.

Detrended fluctuation Analysis (DFA) of envelope of alpha, beta and theta rhythms was

performed, as well as Highuchi fractal dimension (HFD) of the whole band EEG. Our

results evidenced circadian fluctuations of fractal features of EEG at rest in both eyes

closed and eyes open conditions. Lower values of DFA exponent were found in the time

T1 in closed eyes condition, likely effect of the sleep inertia. An alpha DFA exponent

reduction was found also in central sensory-motor areas at time T3, the day time in which

the sleepiness can be present. In eyes open condition, HFD lowered during the day. In

eyes closed condition, an HFD increase was observed in central and frontal regions at

time T2, the time in which alertness reaches its maximum and homeostatic sleep pressure

is low. Complexity and the persistence of temporal correlations of brain rhythms change

during daytime, parallel to changes in alertness and performance.

Keywords: detrended fluctuation analyses, higuchi fractal dimension, circadian rhythm, amsterdam resting-state

questionnaire (ARSQ), electroencephalography

INTRODUCTION

According to the traditional model of control, physiological systems self-regulate their activity to
preserve steadiness by reducing fluctuations around a homeostatic equilibrium point. Differently
from this view, a wide bulk of evidence has recently been provided that several physiological
time signals exhibit intrinsic fractal fluctuations (Goldberger et al., 2002; Stam, 2005). Indeed,
heartbeat, respiration, gait rhythm, dynamics of neurotransmitter release, electromyography, brain
activity reveal similar temporal patterns over multiple time scales (Hausdorff et al., 2001; Meyer
and Stiedl, 2003; Fadel et al., 2004; Leao et al., 2005; Stam, 2005; Swie et al., 2005; He et al.,
2007, 2010; Milstein et al., 2009; Scafetta et al., 2009; Zappasodi et al., 2015). An object exhibits
fractal properties if similar details can be observed on different scales (Mandelbrot, 1983; Voss,
1988; Feder, 2013). These properties come up from nonlinear feedback interactions between
mechanisms operating on multiple scales, sign of high integrity and adaptability of the whole
system (Di Ieva et al., 2014). Also, a time process X(t) can display fractal properties if it possesses
a scale-invariant structure over time and statistical similarity emerges at different time scales
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of its dynamics. For this process a self-affinity behavior can
be retrieved (Barabasi and Albert, 1999), as X(ct) = cH X(t).
The estimation of the scaling exponent H, the Hurst exponent
(Feder, 2013), has been found to be particularly attractive
for describing the brain dynamics. Indeed, the amplitude
modulation of oscillations of neuronal pools dynamics, revealed
by electrophysiological techniques as electroencephalography
(EEG) or magnetoencephalography (MEG), reveal long-term
spatiotemporal structure in a temporal range from few seconds
to tenth of minutes in resting state conditions at both eyes
closed and eyes open (Linkenkaer-Hansen et al., 2001). The de-
trended fluctuation analysis (DFA) is a widely-used method for
the detection of long-range correlations in time series. Indeed,
amplitude fluctuations of alpha, beta, and theta oscillations obey
a power-law scaling behavior.

The fractal behavior of a time series has been linked to its
“complexity,” that can be seen as the amount of information
required to describe the time series (Mandelbrot, 1985). The
concept of “complexity” refers to a highly structured temporal
structure observed in the brain signal in an intermediate situation
between pure randomness, like in white noise, and the absence
of variability (constancy or pure periodicity), both conditions
evidenced as non-physiological states (Di Ieva et al., 2014;
Zappasodi et al., 2014; Smits et al., 2016). Since the existence
of long term correlation is no guarantee of complexity, the
complexity of a time series can be directly evaluated by its
fractal dimension (Mandelbrot, 1985). Indeed, this measure
quantifies the complexity and the self-similarity of a time series.
The algorithm proposed by Higuchi (Higuchi fractal dimension,
HFD, Higuchi, 1988) has been successfully directly applied to
EEG signals to evidence modulation of complexity in different
physiological conditions, as well as alterations in pathologies (for
a review see Kesić and Spasić, 2016).

Fractal dimension and Hurst exponent quantify different
properties: while the first is a local property, measuring the
“roughness” of a signal (i.e., a “mild” or “wild” randomness),
the latter quantifies a global characteristic, i.e., the long-memory
dependence (long-range correlation) of the time series. For self-
affine processes, where fractal properties can be retrieved, the
local properties are reflected in the global one. Therefore, fractal
dimension and Hurst exponent are linked.

Although the fractal properties have been recently
described in brain time series both in health and disease,
the neurophysiological mechanisms of fractal regulation are
unknown. Recently the circadian pacemaker (suprachiasmatic
nucleus) has been described to play a crucial role in generating
fractal patterns in behavioral activity and heart rate at long
time scales, and modulates their fluctuations at short time
scales (Pittman-Polletta et al., 2013). Indeed, in humans,
temporal fluctuations in physiological parameters and behavioral
performance, on a wide range of cognitive functions, vary
over the 24-h light-dark cycle. This cycle is driven by two
interacting processes: the homeostatic sleep pressure (process
S), which increases with time spent awake, and the circadian
pacemaker (process C), a nearly 24-h endogenous process
that drives at specific times of the day wakefulness and sleep
(Borbély, 1982; Cajochen and Dijk, 2003; Rogers et al., 2003;

Dijk and von Schantz, 2005; Cajochen et al., 2010). The circadian
and homeostatic processes interact to provide stable levels of
vigilance/alertness and cognitive performance during daytime
(16-h) of normal wakefulness, when the circadian timing system
fights the wake-dependent (or homeostatic) arousal decline.
Indeed, alertness reaches its maxima during the early morning,
when homeostatic sleep pressure is low, whereas decreases at
its lowest level during the evening hours, when homeostatic
sleep pressure is high (Van Dongen et al., 2003), even if exist
a mid-afternoon window of sleep propensity (from ∼14:00 to
∼16:00) and an alertness window in the early evening hours
from ∼19:00 to ∼22:00 (Lavie, 1989; Johnson, 1990). However,
individual chronotype, namely “diurnal preference” in the timing
of daily activities (Horne and Ostberg, 1976) under the control
of the circadian clock (Roenneberg et al., 2007), influences peaks
and troughs in alertness and performance. Hence, some people
are more alert and perform better in the morning, whereas others
in the evening, an effect referred to as the “synchrony effect”
(May and Hasher, 1998) depending on individual chronotype.

In awake adults, data collected by sleep deprivation protocol
and forced desynchrony protocol (i.e., sleep–wake cycle induced
to uncouple from endogenous circadian rhythm) showed that
both factors (process C and process S) contribute to a frequency-
specific variation of EEG activity (Finelli et al., 2000; Cajochen
and Dijk, 2003; Marzano et al., 2010). Moreover, resting waking
EEG recordings are considered as an objective measure of
alertness levels (Strijkstra et al., 2003). Specifically, an increase
of EEG power density in the theta (4–8Hz) and alpha (8–
12Hz) frequency range across prolonged periods of wakefulness
has been associated with a decline of alertness and sleepiness
(Drapeau and Carrier, 2004). In a recent EEG study, Meisel et al.
(2017) reported a decline in long term correlation in alpha band
as sleep deprivation progresses. Moreover, HFD has been applied
to detect behavioral microsleep (Peiris et al., 2006) and changes
from awake to drowsy states (Bojić et al., 2010; Pavithra et al.,
2014).

The aim of this work was to identify fluctuations of fractal
properties of EEG time series due to circadian rhythms. To this
aim, high density EEGwas collected in 4 different times of the day
in both closed and open eyes conditions. Given the exploratory
aspect of this study, we did not aim to differentiate the sleep
pressure from endogenous factors, as usually done by using sleep
deprivation or forced de-synchrony protocols but investigate if
modulation of fractal properties over different day times can be
retrieved in EEG at rest in physiological conditions.

METHODS

Subjects
Twenty-one healthy volunteers (all males, age 23.6 ± 1.7)
participated to the study. To avoid any kind of sleep debt
and alterations of the sleep-wake cycle all selected participants
reported no history of sleep, medical or psychiatric disorders and
a good sleep quality (sleep schedule of 7-8 h/night), as assessed
by self-rating questionnaires (Vignatelli et al., 2003; Violani
et al., 2004). Moreover, in all participants, chronotype has been
investigated by the Morningness Eveningness Questionnaire
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(MEQ, Horne and Ostberg, 1976), that assesses chronotype based
on diurnal preferences (e.g., preferred time of day to perform
physical and mental work; Horne and Ostberg, 1976). With this
questionnaire, chronotype is categorized as a score (range:16–
86), with high numbers corresponding to morning types (59
and above), low numbers corresponding to evening types (41
and below), and numbers between 42 and 58 corresponding to
intermediate types. All selected participants had an intermediate
chronotype (mean and standard deviation 53 ± 4). Exclusion
criteria included shift workers, athletes and participants that had
traveled crossing time zones in the 3 months before the study.
The protocol was approved by the local Ethical Committee. All
subjects gave written informed consent in accordance with the
Declaration of Helsinki.

Experimental Procedure
For one week before the experiment, participants were asked
to maintain a regular sleep-wake schedule. The night before
the experiment, participants were asked to go to bed at their
usual bedtime and to wake up at ∼ 7:00 a.m. The quality of
the sleep was checked by a wrist-worn actigraph (wActiSleep+,
ActiGraph, Pensacola, FL, ActiGraph). A Sleep Efficiency >85%
was required, to avoid any kind of sleep debt. These data were
analyzed with Actilife (v.6.7.1, Actigraph1, Pensacola, FL), using a
sleep/wake detection validated algorithm (Cole et al., 1992; Sadeh
et al., 1994). Bed and rise times from the sleep diaries helped
to frame the time in bed during which actigraphy data were
analyzed.

The day of the experiment high density EEG recordings were
acquired in 4 times of the day (T1: 8.00 a.m., T2: 11.30 a.m., T3:
2.30 p.m., T4: 7.00 p.m.) in 2 conditions: 10min of eyes open and
10min of eyes closed. The 2 conditions were randomized across
subjects and times. The four times were chosen on the basis of
well-known peaks of levels of vigilance/alertness and cognitive
performance during daytime. Indeed, T0 correspond to the time
were sleep inertia may be present (Jewett et al., 1999), in T2
alertness reaches its maxima and homeostatic sleep pressure is
low, T3 is a mid-afternoon window of sleep propensity and in T4
homeostatic sleep pressure is high, but alertness is high (Lavie,
1989; Jewett et al., 1999; Van Dongen et al., 2003).

During the recordings, subjects were sitting on a comfortable
armchair in a low light room and, in the eyes open condition,
fixed a cross on a screen. Soon after both closed and open eyes
recordings, participants were asked to complete the Amsterdam
Resting-State Questionnaire (ARSQ). The questionnaire was
presented on a screen and consisted of 55 statements about
the feelings and thoughts experienced during the 10min rest.
For each statement, a 5-points rate from completely disagree
to completely agree was used. Questions were grouped into 10
factors: Discontinuity of Mind, Theory of Mind, Self, Planning,
Sleepiness, Comfort, Somatic Awareness, Health Concern, Visual
Thought, and Verbal Thought (Diaz et al., 2013). Finally, a
10min vigilance task (Psychomotor Vigilance Test, PVT; (Dinges
and Powell, 1985) was done. Subjects were asked to fix a

1ActiGraph. Available online at: https://www.actigraphcorp.com/ (Accessed July

24, 2018).

monitor with a red rectangular box and press a button when
a counter appeared to the screen. The response stopped the
counter and was required to be delivered as soon as possible.
The period between the end of the counter and the begin of
the following stimulus was randomly distributed between 2 and
10 s. To quantify the performance, the following parameters were
extracted for each time (Basner and Dinges, 2011): number of
lapses (i.e., number of responses>500ms), number of false starts
(i.e., response shorter than 100ms), response speed (i.e., mean of
the inverse of reaction times).

The EEG activity was recorded by a 128-channel system
(Electrical Geodesic). The impedances were kept below 100 k�.
EEG data were sampled at 250Hz and collected for off line
processing.

Data Analysis
Data were visually inspected to exclude saturated epochs of EEG
signals from further analysis. A semi-automatic procedure, based
on Independent Component Analysis (Barbati et al., 2004), was
applied to identify and remove ocular, cardiac, and muscular
artifacts. Signals were down-sampled to 125Hz and re-referenced
to the common average. Noisy channels were excluded and
replaced by spline interpolation.

Band Power
The Power Spectral Density (PSD) was estimated for each EEG
channel bymeans of theWelch procedure (Hamming windowing
of 8 s, resulting in a frequency resolution of 0.125Hz, 50%
overlap). For each EEG channel and both conditions, band
powers were obtained by the sum of the power spectrum in each
frequency band normalized by the number of frequency bins. The
considered frequency bands were: alpha (from 8 to 13Hz), beta
(from 15 to 25Hz), and theta (from 4 to 7.5Hz).

Detrended Fluctuation Analysis
The DFA was applied to analyze the scale-free decay of temporal
correlations in the amplitude envelope of brain rhythms. Peng
et al. (1994) introduced this method to quantify long-range
temporal correlation with less strict assumptions about the signal
stationarity. The method quantifies the detrended fluctuations
F(n) of the envelope at different time scales n. Firstly, each
EEG signal was band-pass filtered in theta (4–7.5Hz), alpha
(8–13Hz), or beta (15–25Hz) band (Figures 1A,B). A Finite
Impulse Response filter set to 2 cycles of the lowest frequency was
used (filter order: 62 for theta, 31 for alpha, 16 for beta band).
The envelope of the band-passed signals was computed by the
modulus of its analytic signal, obtained by Hilbert transform. The
cumulative sum y of the envelope x was then calculated:

y
(

k
)

=

k
∑

i=1

|x (i)− < x >|

Where, <x> denotes the mean of the envelope x. By applying
scaling analysis to y(k) no a priori assumptions about the signal
stationarity is required (Hardstone et al., 2012).

The cumulative sum was then partitioned into Ns windows of
length s (j = 1, 2, ... Ns). For each window, the local trend was
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FIGURE 1 | (A) Example of whole band EEG signal of one occipital channel in eyes closed condition. (B) Example of DFA calculation. Left: signal shown in (A) filtered

in alpha band (black) and envelope obtained by modulus of analytic signal (red). Right: plot on logarithmic axes of the mean fluctuation per windows size, obtained

from cumulative sum of alpha envelope, against the window size (expressed in seconds). The DFA exponent is the slope of the best-fit line. (C) Example of HFD

calculation. Left: example sequence determination on the portion of EEG signal in the dotted box in A for the length calculation of xm
k
, with k = 5. The values are

calculated as follows:
∣

∣x (m+ i k) − x(m+ (i − 1) k)
∣

∣, for i = 1,2,3,... 18. The length of the curve L(k) is evaluated as average over m of these values. Right: plot of

log(L(k)) against log(1/k), for k = 1,.. kmax (kmax = 8). The curve is said to have fractal dimension β if L(k) ∼ k−β .

calculated by a least-square line fitting procedure (Kantelhardt
et al., 2002). If xj,s(i) is the ordinate of the fitting line of the j-th
segment of length s at time bin i (i = 1,2,...s), the fluctuation of
the j-th segment of length s, i.e., the root-mean-square deviation
from the trend, was calculated as:

RMSsj =
1

2

s
∑

i=1

{

x
[(

j− 1
)

s+ i
]

− xj,s(i)
}2

To obtain the fluctuation function, for each scale s the average
of the root mean square deviation from the trend was obtained

(Kantelhardt et al., 2002):

F (s) =

√

√

√

√

1

Ns

S
∑

j=1

RMSsj

The scaling behavior of the fluctuation function can be obtained
by the log-log plot of F(s) over s (Figure 1B). If a long-range
power-law correlation exists, the following relationship holds:

F(s) ∼ sH

and the plot is a line, with slope equal to H, the DFA exponent or
Hurst exponent (Feder, 2013).
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The inclusion of very short windows in the fitting range of the
fluctuation function introduces correlation between neighboring
samples of the signal. For this reason, we applied the procedure
presented in Hardstone et al. (2012) to estimate the effect of
narrow-band filtering in DFA values for theta, alpha and beta
bands. Briefly, for each band 1000 realizations of white noise were
generated and band-pass filtered. On each signal, the amplitude
envelope was extracted, DFA performed and the lowest fitting
time window estimated from the log-log plot of scale against
fluctuation function. The investigated scale ranges from 0.1 s to
100 s. Since for a white-noise signal a DFA exponent of 0.5 is
expected, the lowest fitting time window was chosen as the value
of the scale after that the trend line of the fluctuation function has
a slope of 0.5. Based on obtained results, we found a lowest fitting
time window of 2 s for alpha band, of about 1.4 s for beta band
and of 4 s for theta band. Therefore, we estimated DFA exponent
with a scale in a range of 2 s to 1min for alpha and beta band and
of 4 s to 1min for theta band.

Higuchi Fractal Dimension
For both conditions and in each time, HFD values of each EEG
channel were computed for the whole band signal (i.e., signal
filtered between 1 and 40Hz). As a global measure of HFD, all
HFD values obtained for the single channels were averaged.

Fractal dimension is considered as a measure of complexity
of a curve. For time series representing this curve, HFD ranges
from 1 for deterministic constant functions to 2 for white noise.
The algorithm proposed by Higuchi was used (Higuchi, 1988;
Accardo et al., 1997). Briefly, the algorithm directly estimates
the mean length of the curve L(k) through a measure unit of a
segment of k samples. From any given time series of N samples:
x(1), x(2), ... x(N), k new time series with initial time sample m
and time step k are derived as:

xmk : x (m) , x
(

m+ k
)

, x
(

m+ 2k
)

, . . . x

(

m+ int

(

N −m

k

)

k

)

The length of each curve xm
k
is calculated as follows (Figure 1C):

Lm
(

k
)

=
1

k







N − 1

int
(

N−m
k

)

k







int
(

N−m
k

)

∑

i=1

∣

∣x
(

m+ i k
)

− x(m+ (i− 1) k)
∣

∣













For each k, the length of the curve L
(

k
)

is evaluated as:

L
(

k
)

=
1

k

k
∑

m=1

Lm(k)

The calculation of the curve length L
(

k
)

is repeated for k from 1
to kmax. The curve is said to have fractal dimension β if:

L(k) ∼ k−β

In this case the plot of log(L(k)) against log(k) should fall on a
straight line with slope equal to –β, so HFD can be obtained by a
least-squares linear best-fitting procedure (Figure 1C).

Since HFD is highly dependent on the value of Kmax,
this parameter has a crucial role in HFD estimation. In our

knowledge, the studies addressing this issue tested different
values directly on their data (for a review see the Appendix A
in Kesić and Spasić, 2016). For this reason, according to previous
studies (Zappasodi et al., 2014, 2015), a value of kmax = 8 was
applied to the whole-band EEG with a sampling frequency of
125Hz.

Statistical Analysis
The aim of the statistical analysis was to test if differences
across times were present in the non-linear fractality measures
depending on the condition (eyes open or closed). Firstly,
the topographies of both Hurst exponent and HFD were
obtained separately for each band in all the 4 times and the 2
conditions. For each subject, each time and each condition, in
the topographical maps the channels of maximum amplitude
have been chosen and the channels around the maxima with
values exceeding the 90% of maximum have been individuated.
Clusters of electrodes have been obtained by conjunctions of
these groups of electrodes. The mean Hurst exponent and
HFD values over these channels were considered for further
analysis. Repeated measure Analyses of Variance (ANOVAs)
were separately performed for Hurst exponent and HFD. A 4 X 2
X N design was applied, with Time (T1, T2, T3, T4), Conditions
(eyes open, eyes closed) and Region (N maxima individuated on
the topographies) as within-subject factors. Greenhouse-Geisser
correction has been applied if the sphericity assumption was not
valid. Post-hoc paired samples t-tests were carried out to assess
significant differences among times. Post-hoc comparisons were
FDR corrected.

DFA exponent values could depend on band power. Indeed,
estimates of DFA exponent can be biased toward lower values
when amplitude of the rhythm reduces, and signal-to-noise ratio
increases and vice-versa toward higher values when amplitude
increases. Therefore, Spearman’s correlations between DFA
exponent and corresponding band powers were calculated to
evidence positive correlations. Moreover, the same ANOVA
design of DFA and HFD was applied on band powers, by
considering regions with the same channels used for the fractal
measures.

Finally, to verify if band power of rest EEG or non-linear
measures (DFA exponents or HFD) predict ARSQ factors,
multiple regression analysis was separately performed on each
ARSQ factor, considered as dependent variables of the model.
Values of each time and both conditions were considered together
(4 times X 2 conditions X 20 subjects, resulting in 160 variables).
Independent variables were all the band powers, DFA exponents
and HFD values in the considered regions. Times and conditions
were also included in the model as categorical variables.

RESULTS

The mean topographies of DFA exponent of alpha and beta
bands and of HFD were similar across the four times, with the
maximal values in specific regions, depending on condition. In
alpha band, maximal values were located in occipito-parietal
and frontal regions, in particular in eyes closed condition, while
in eyes open condition maxima of DFA exponents were also
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observed in bilateral sensorimotor regions (C3 and C4 of the 10–
20 international system, Figure 2). In beta band, the posterior
maximum of DFA exponents in eyes closed and central areas
in eyes open condition were found approximately on the same
electrodes of alpha band. The mean topographies of HFD values
showed maxima in central sensorimotor regions and minima in
parieto-occipital and frontal regions. A maximum of HFD was
observed in the temporo-parietal electrodes of left hemisphere
(T5 and TP9) in eyes open condition. Channels around the
maxima of the posterior, frontal, and bilateral central areas were
chosen to average DFA exponents in alpha and beta bands
(Figure 2) for the ANOVA design. The same channels were
chosen for HFD values, with in additions channels around
the left temporo-parietal maximum. In theta band, no specific
topographies of DFA exponents over the 4 times were observed.
Therefore, to assess whether DFA exponents changed over times,
a global DFA theta value was calculated for each subject and both
condition as the mean over all EEG channels.

Detrended Fluctuation Analysis
Fifth, ninety-fifth percentile of Hurst exponent values ranged
from 0.57 to 0.86 in alpha band (mean ± standard deviation
across subjects and times: 0.73 ± 0.09 and 0.69 ± 0.08,
respectively for closed and open eyes), from 0.57 to 0.85 in beta
band (0.72 ± 0.09 and 0.67 ± 0.07, respectively for closed and
open eyes), and from 0.53 to 0.74 in theta band (0.62 ± 0.06 and
0.60± 0.07, respectively for closed and open eyes). All mean DFA
values were significantly different from 0.5, the DFA exponent
value of uncorrelated white noise (one-sample t-test p < 0.0001
for each band, region, and condition).

In alpha band, repeated measures ANOVA with Time (four
levels: T1, T2, T3, and T4), Condition (two levels: Eyes Closed,
Eyes Open), and Region (three levels: posterior, central, frontal)
as within-subject factors showed significant main effects of Time
[F(3, 60) = 3.492; p = 0.021] and Condition [F(1, 20) = 5.808;
p= 0.026], as well as significant Condition∗Time [F(3, 60) = 4.183;
p= 0.009], and Condition∗Region [F(1.5, 29.8) = 4.218; p= 0.034]
interaction effects, but not significant main effect of Region
(p = 0.301) and interactions Region∗Time (p = 0.101) and
Condition∗Region∗Time (p = 0.718). Looking at the alpha DFA
exponent over time (Figure 3), we noticed that at T1 no
differences were observed between conditions in all regions. The
marked differences were present only at time T2, T3, and T4 for
occipital regions and T2 and T4 for frontal and central regions,
as assessed by paired t-test between eyes closed and eyes open
conditions (p < 0.05, FDR corrected, Figure 3). Moreover, while
in open eyes condition no difference among DFA exponent in the
different times was found, in closed eyes condition DFA exponent
values at time T1 was lower than values at other times in occipital
and frontal regions (paired sample t-test between T1 and the
other times consistently p < 0.05, FDR corrected). In central
regions, only differences between T1 and T2 and between T1 and
T4 were observed.

In beta band, repeated measures ANOVA with Time,
Condition, and Region as within-subject factors showed
significant main effects of Time [F(3, 60) = 4.128; p = 0.010],
Condition [F(1, 20) = 14.319; p = 0.001], Region [F(2, 40) = 9.433;

p < 0.001] as well as significant Condition∗Region
[F(1.3, 27.0) = 4.222; p= 0.039] and Region∗Time [F(6, 120) = 2.234;
p = 0.044] interaction effects. No significant interactions
Condition∗Time was found [F(3, 60) = 2.526; p = 0.066] and
Condition∗Region∗Time (p = 0.374). Also, in this band, DFA
exponent values in the eyes open conditions did not differ
over time. On the contrary, in closed eyes condition, T1 values
were lower than values at other times in all regions (p < 0.05
consistently, FDR corrected). Differences between the conditions
were observed in all regions at T2, T3, and T4 (p < 0.05, FDR
corrected).

Finally, Repeated measures ANOVA on theta DFA values with
Time and Condition showed only a significance of the main
effect Time [F(3, 60) = 4.669; p = 0.005]. The lack of Condition
effect (p = 0.155), or interaction Time∗Condition (p = 0.428),
indicated that in the 4 times the theta DFA exponents were not
different between open closed and eyes conditions. Post-hoc t-test
indicated a difference between T1 vs. T3 and T1 vs. T4 (p < 0.05,
Figure 3).

Higuchi Fractal Dimension
Fifth, ninety-fifth percentile of HFD values ranged from 1.44 to
1.69 (mean ± standard deviation across subjects and times: 1.54
± 0.08 and 1.59± 0.08, respectively for closed and open eyes).

Repeated measures ANOVA with Time, Condition, and
Region (four levels: posterior, central, frontal, left temporo-
parietal) as within-subject factors showed significant main
effects of Condition [F(1, 20) = 21.193; p < 0.001] and
Region [F(3, 60) = 19.608; p < 0.001], as well as significant
Condition∗Time [F(3, 60) = 7.280; p < 0.001], Region∗Time
[F(5.0, 100.6) = 2.933; p = 0.016] interaction effects, but not
significant main effect of Time [F(3, 60) = 2.319; p = 0.084],
and interactions Region∗Condition (p = 0.405) and
Condition∗Region∗Time (p = 0.932). In parieto-occipital
and central regions differences between open and closed eyes
conditions were observed in T1, T2, and T3 times (p < 0.05),
with eyes open HFD values higher than eyes closed HFD values.
This difference was also present in all times in left temporo-
parietal regions and at times T1 and T3 in frontal regions.
Moreover, while in central regions eyes open HFD values did
not significantly changed over times, in the other condition a
reduction was observed over time (Figure 4). In eyes closed
condition, an increase at T2 and T4 with respect to T1 and T3
were observed in central regions and the T1 values were lower
than the values at the other times in frontal regions (Figure 4).

Band Power
Repeated measures ANOVA with Time, Condition, and Region
on alpha band power values revealed significant main effects of
Condition [F(1, 20) = 28.764; p< 0.001], Region [F(3, 60) = 64.231;
p < 0.001], and Time [F(3, 60) = 4.874; p = 0.004]. The
first 2 main effects confirmed that alpha power in closed
eyes condition were higher than in eyes open condition and
that alpha power was higher in parieto-occipital regions. The
lack of interactions Time∗Condition (p = 0.574), Time∗Regions
(p = 0.311), Time∗Condition∗Regions (p = 0.549) and the
presence of the main effect Time, confirmed that during the
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FIGURE 2 | Mean topographies of DFA exponents in alpha and beta bands and of HFD values in eyes closed and open conditions in the 4 times T1: 8:00 am; T2:

11:30 am, T3: 2:30 pm; T4: 7:00 pm. The selection of channels used for averaging the DFA and HFD values are displayed on the right (red: posterior parieto-occipital

region; blue: central sensorymotor regions; gray: frontal region; green: left temporo-parietal region).

day the alpha power uniformly changed in all the considered
groups of electrodes (mean and standard error over conditions
and regions: 6.29 ± 0.10 at T1, 6.38 ± 0.09 at T2, 6.40 ± 0.09 at
T3, 6.42 ± 0.10 at T4). In particular, post hoc tests showed that
the difference was significant only between T1 and T4 (p= 0.036
Bonferroni corrected). The same results were found in beta
band: the main significant effects Condition [F(1, 20) = 8.062;
p = 0.010], Region [F(3, 60) = 49.261; p < 0.001], and Time
[F(3, 60) = 8.643; p < 0.001] and the lack of interactions (p
> 0.1) confirmed a similar increase of power (5.50 ± 0.07 at
T1, 5.60 ± 0.07 at T2, 5.62 ± 0.07 at T3, 5.63 ± 0.07 at T4).
Post hoc tests showed differences of beta band at T1 vs. T2
(p = 0.009), at T1 vs. T3 (p = 0.029), at T1 vs. T4 (p = 0.007).

Finally, repeated measures ANOVA with Time and Condition
on theta band power showed only a significant main effect of
Time [F(3, 60) = 3.492; p = 7.834]. Also, for this band, T1 values
were different by T2, T3, and T4 (p = 0.042, p = 0.018 and
p = 0.011, respectively; mean and standard over conditions: 5.99
± 0.08 at T1, 6.11 ± 0.08 at T2, 6.15 ± 0.08 at T3, 6.16 ± 0.07 at
T4).

In closed eyes condition, no correlations between DFA
exponent and band powers were observed for alpha and beta
bands. A positive correlation was found for theta band. On the
contrary, positive correlations were found between all the band
powers and DFA exponent in all bands in eyes open condition
(Table 1).

Frontiers in Physiology | www.frontiersin.org 7 November 2018 | Volume 9 | Article 1567

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/physiology#articles


Croce et al. Ciracadian Fractal EEG

FIGURE 3 | Mean (bars indicate standard error of mean) of DFA exponent values in the different regions for alpha, beta, and theta bands at the 4 times in closed eyes

(gray) and open eyes (red) conditions. Significances of the paired t-test between times are shown (gray for closed eyes and red for open eyes; *p < 0.05, FDR

corrected). The difference between eyes closed and eyes open conditions at one time is evidenced by a star as apex of corresponding time.

FIGURE 4 | Mean and standard error of HFD values in the different regions at the 4 times in closed eyes (gray) and open eyes (red) conditions. Significances of the

paired t-test between times are shown (gray for closed eyes and red for open eyes; *p < 0.05, FDR corrected). The difference between eyes closed and eyes open

conditions at one time is evidenced by a star as apex of corresponding time.

Psychomotor Vigilance Test
The numbers of lapses and false starts did not change over time
and was lower or equal to 1 for each conditions and subject.

Repeated measure ANOVA design on response speed indicated
a significant Time effect. Indeed, T4 speed was higher than T1
(p = 0.012, Bonferroni corrected) and tended to be higher also
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than the T3 speed (p = 0.085). Mean (standard deviation) values
of response speed were (in s−1): 3.574 ± 0.231 at T1; 3.639 ±

0.387 at T2; 3.568± 0.330 at T3; 3.678± 0.288 at T4.

Amsterdam Resting-State Questionnaire
Repeated measure ANOVA with Time and Condition as within
subject factors separately applied to ARSQ factors, revealed
significant effects only for Sleepiness and Somatic Awareness.
In particular, in Sleepiness a significant effect of the main
factor Time [F(3, 54) = 4.992; p = 0.004] and an interaction
Condition∗Time [F(3, 54) = 3.101; p = 0.034] were found, but not
the main effect of Condition (p = 0.877). Post-hoc tests revealed
that, while no differences in times were found in open eyes
condition (mean values ± standard deviation for T1, T2, T3,
and T4: 1.67 ± 0.20; 2.13 ± 0.25; 2.22 ± 0.26; 1.88 ± 0.22), T1
scores were lower than the scores at the other times in eyes closed
condition (T1: 1.27 ± 0.19; T2: 2.02 ± 0.26; T3: 2.26 ± 0.25; T4:
2.19 ± 0.25, paired-sample t-test T1 vs. T2, p = 0.009; T1 vs.
T3, p = 0.006; T1 vs. T4, p = 0.010, Bonferroni corrected). For
Somatic Awareness, only the significance of the main factor Time
was found [F(3, 54) = 3.661; p = 0.009] and neither Condition (p
= 0.475) nor the interaction Condition∗Time (p= 0.862) resulted
significant. Post-hoc tests revealed a difference only between T1
and T4 times (p = 0.050, mean scores between the 2 conditions:
2.14 ± 0.14; 1.98 ± 0.16; 1.85 ± 0.15; 1.69 ± 0.18 at the 4
times).

Relationship Between Spectral and Fractal
Features With ARSQ Factors
As shown in Table 2, different spectral and fractal features
entered the regression model, predicting factors of ARSQ.
Up to the 27% of the variance was explained (minimum
9% for Sleepiness, maximum 27% for Somatic Awareness). A
positive sign of the estimated coefficients indicates a positive

TABLE 1 | Rho (p-values in italics, not corrected for multiple comparisons) of

Spearman’s correlations between DFA exponents and band powers in eyes

closed and eyes open conditions.

Eyes Closed Eyes Open

Posterior alpha 0.111 0.462

0.374 <0.001

Central alpha 0.115 0.422

0.310 <0.001

Frontal alpha 0.079 0.478

0.486 <0.001

Posterior beta 0.184 0.352

0.102 <0.001

Central beta 0.188 0.421

0.094 <0.001

Frontal beta 0.194 0.425

0.085 <0.001

Theta 0.455 0.684

<0.001 <0.001

relationship between the spectral/fractal variables and the ARSQ
factors, i.e., the higher the power band or fractal measure,
the higher the score of ARSQ. A negative sign indicated the
opposite. No variables entered the model for the Comfort
factor.

TABLE 2 | Regression models with ARSQ factors as dependent variables and

spectral/fractal features as independent variables.

Dependent

variables

Independent

variables

Estimated

coefficients

R-values ANOVA

Discontinuity

of Mind

Left temp Beta

Pow

−1.157 F (3, 154) = 11.369;

p < 0.001

Theta Pow 0.776 0.425

Central DFA exp

- alpha

1.428

Theory of

Mind

Left temp Beta

Pow

−1.326 0.438 F (2, 155) = 18.434;

p < 0.001

Theta Pow 0.603

Self Frontal HFD 2.970

Central Beta

Pow

−1.121 0.475 F (3, 154) = 14.973;

p < 0.001

Posterior Beta

Pow

0.651

Planning Central Beta

Pow

−0.796

Posterior Beta

Pow

1.297 0.406 F (3, 154) = 10.154;

p < 0.001

Left temp Beta

Pow

−1.013

Sleepiness Central DFA exp

– beta

3.005 0.308 F (2, 155) = 8.108;

p < 0.001

Time 0.157

Comfort No variables

entered

Somatic

Awareness

Frontal DFA exp

- alpha

−0.755

Posterior Alpha

Pow

−0.178 0.524 F (5, 152) = 11.537;

p < 0.001

Posterior HFD 9.829

Frontal HFD −6.298

Time −0.103

Health

Concern

Central HFD 1.854

Frontal DFA

exp—alpha

−1.463 0.350 F (3, 154) = 7.182;

p < 0.001

Condition −0.216

Visual

Thought

Left temp Beta

Pow

−0.937 F (3, 154) = 8.200;

p < 0.001

Theta Pow 2.101 0.372

Central Beta

Pow

−1.345

Verbal

Thought

Left temp Beta

Pow

−2.051 F (3, 154) = 14.853;

p < 0.001

Central HFD −3.007 0.473

Theta Pow 1.058

Times and conditions were included as categorical variables.
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DISCUSSION

Our results evidenced circadian modulations of fractal features
of EEG at rest in both eyes closed and eyes open conditions.
The investigated fractal characteristics were long term memory
of amplitude modulation of alpha, beta, and theta rhythms in
a time range from few seconds to 1min, as assessed by Hurst
exponent estimated by Detrended Fluctuation Analysis, and
global complexity, as assessed by Higuchi Fractal Dimension.

According to previous results (Linkenkaer-Hansen et al.,
2001; Nikulin and Brismar, 2004, 2005), in our study scaling
exponent values (approximately between 0.6 and 0.8) indicated
the presence of long range temporal correlation of neuronal
oscillations in alpha, beta and theta bands. The presence of high
long-term correlation indicates a more temporally structured
amplitude modulation of the neuronal rhythms, building up
through neural local interactions until they extend throughout
the whole system (Linkenkaer-Hansen et al., 2001). It is not
yet understood if the less temporally uncorrelated modulation
of the rhythm is a sign of a reduced functionality of the brain
areas. It has been suggested that the temporal correlations of
amplitude modulation of oscillations on time scales of seconds
to tens of seconds may be important for the temporal integrity
of cognition, since a reduction of scaling exponent is related
to several neurological impairments and diseases (Hausdorff
et al., 2001; Parish et al., 2004; Linkenkaer-Hansen et al.,
2005; Montez et al., 2009). Moreover, a more whitened state,
characterized by a lower scaling exponent, has been found to lead
more often to percept destabilization (Sangiuliano Intra et al.,
2018).

Topography of DFA exponents confirmed a scalp distribution
coherent with the physiological distribution of cortical rhythms,
in posterior occipital-parietal, central sensory-motor, and
frontal regions. This distribution indicates a topographical
specialization of brain areas. Indeed, all cortical circuits
accumulate information over time to continuously use past
information to process the incoming one. As shown in an
electrocardiographic study (Hasson et al., 2015), the timescale
of accumulation, linked to the scaling exponent, changes
hierarchically from short processing timescale, typical of sensory
regions, to higher-order regions, which show typically long
processing timescales.

No differences in eyes open conditions over day times were
observed in our data. On the contrary, lower values of DFA
in both alpha and beta bands were observed in eyes closed
condition in the first time, between 8.00 and 9.00 a.m. In
this line, the significantly lower values of DFA exponent we
found in the time T1 may be the expression of a lowered
arousal, causing a decrement in cognitive performances in the
first hours of the morning, due to effects of the sleep inertia
(Jewett et al., 1999; Ferrara and De Gennaro, 2000). This
reduction in T1 was observed only in closed eyes condition,
in which it is likely that arousal levels were lower. In line
with this interpretation, we found that the PVT performance
was lower in the time T1, suggesting a reduced vigilance in
this time. A reduction in beta activity upon awakening has
been previously found in EEG recording as sign of sleep

inertia (Marzano et al., 2011). Interestingly, an alpha scaling
exponent reduction was found also in central sensory-motor
areas at time T3 in closed eyes condition. In our data, the
maximum of mean values of sleepiness factor in the ARSQ,
also if not reaching significance, was reached in the T3 time.
These results may be interpreted as a reduced functionality in
the day time in which the sleepiness can be present (Jewett et al.,
1999).

In a recent EEG study, Meisel et al. (2017) found in a sustained
wakefulness protocols, a decline of scaling exponent in alpha
band as sleep deprivation progresses, apparently contrary to our
finding of a DFA exponent increase during the day. However,
the aims of this study were different from ours, as subjects were
sleep deprived. We tried to keep the physiological conditions
as ecological as possible: subjects were outside the laboratory
between 2 consecutive measures, the light exposure was natural,
and, under the supervision of an experimenter, they were in their
habitual environment. The differences between the 2 studies may
be caused also by individual variation in the circadian influence
on fractal neural activity control (21 subjects in our study, 7
subjects in Meisel et al., 2017).

As previously pointed out (Kantelhardt et al., 2002; Hardstone
et al., 2012), power amplitude could bias the values of DFA
exponent, since low amplitude could be associated to low signal
to noise ratio, and scaling exponent could be reduced toward
values more similar to scaling exponent of white noise. On the
contrary, high amplitude, resulting in high signal to noise ratio,
could bias toward higher values of DFA exponents. For this
reason, we investigated also the effect of time on power bands.We
found both in eyes open and eyes closed conditions, an increase
in all bands over time. However, the lack of correlation between
DFA exponent values and alpha and beta band powers in eyes
closed condition confirmed that our results on DFA exponents
are not due to the increase of band power. On the contrary,
in theta band, no difference between eyes closed and eyes
open condition was found and a similar trend between scaling
exponent and power was evidenced. Since a high correlation
between the scaling exponent and the theta power was found, we
cannot exclude that the results in theta bandmay be biased by the
power changes over time.

Our results in band power are in accordance to previous
studies. In protocols with 40 h sustained wakefulness, theta
band exhibited a minimum ∼1 h after the onset of melatonin
secretion and alpha band activity showed a minimum close
to the body temperature minimum (Aeschbach et al., 1999),
therefore minima of daily theta and alpha activity were found in
the first hours of the morning. In these studies, both circadian
effects and endogenous processes interact. In contrast, in forced
desynchronized paradigms, where subjects were kept several days
in an environment free of time cues with an artificial dim light,
the circadian rhythm of plasma melatonin desynchronized and
the contribution of circadian phase (process C) can be separated
by the elapsed time awake effects (process S). In this situation,
effects on EEG band power in wakefulness of both processes
have been described (Cajochen et al., 2002). Specifically, circadian
oscillations of theta, alpha, and beta bands have been found,
with increase during the daytime and decrease during the
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biological night hours. Minimum of beta and theta activity was
in correspondence of the onset of melatonin secretion, located in
fronto-central derivation, and the minimum of alpha activity in
posterior and frontal regions was close to the peak of melatonin
rhythm (Cajochen et al., 2002). Our findings in band power are
in line with these results, since an increase during the day was
observed, with minima in the first T1 time. Wake-dependent
variations in desynchronized protocols are more pronounced
in frontal regions, with an increase of beta band. A reduction
of alpha activity with elapsed time awake was also observed
(Cajochen et al., 2002; for a review see Cajochen and Dijk,
2003).

Our data showed changes during the daytime also onHFD in a
spatial-dependent modality, depending on condition (eyes closed
or open). Indeed, in eyes open condition, fractal dimension
lowered during the day, in particular in occipital, frontal, and
temporo-parietal regions. In eyes closed condition, an HFD
increase was observed at time T2 in central and frontal regions.
Decrease of complexity over time during the day in the open
eyes condition may be interpreted as a circadian modulation of
efficiency of neural activity parallel to changes in arousal and
cognitive performance (Wright et al., 2012). In line with this
interpretation, an increase of complexity in central and frontal
areas was found at T2, the time in which alertness reaches its
maximum and homeostatic sleep pressure is low.

The fluctuations over daytime of fractal features we observed,
tend to implicate that the complexity of brain electrical activity
cannot be entirely described by a single scaling exponent. This
may suggest a multi-fractal nature of brain dynamics. Indeed,
previous studies evidenced multi-fractal nature of the human
sleep EEG activity (Ma et al., 2006; Weiss et al., 2009, 2011),
and showed that multifractality might be an adequate approach
for compact modeling of brain activities and a useful pattern
classification technique to distinguish among different brain
states during sleep (Weiss et al., 2011; Zorick and Mandelkern,
2013). Future studies with an extensive characterization and a
detailed topographic analysis of EEG multi-fractal features in
awake human EEG are needed to systematically address this
point.

A direct causal influence of circadian rhythm to scaling
properties cannot be supported by our data. Indeed, scaling
would be the result of stochastically perturbed oscillatory
entrapment across a broad range of times scales (Bak et al., 1987;
Turcotte, 1999), and circadian rhythms could come out from
a background of stochastically fluctuating biological processes
at different temporal scales. From a theoretical perspective, this
view would overturn the more intuitive notion that very regular
biological oscillations regulate physiology, and regulate also
scaling, in favor of the idea that scaling itself is the background
model for the dynamics of physiological time series and thus also
for their fluctuations at different time scales. In this context, we
can hypothesize that homeostatic sleep pressure, together with
other endogenous and exogenous physiological factors (Muto
et al., 2016), contribute to brain dynamics, characterized by a
fractal, or even better multi-fractal, behavior. As a result, daily
fluctuations of scale exponents and complexity can be found in
brain dynamics.

The question arises as to whether fractal dimension and Hurst
exponent provide additional information to spectral features in
describing the rest conditions. Previous studies reported evidence
that variation in spectral and fractal feature of EEG can be
linked to retroactive self-reports of subjective experiences at rest
(Knyazev, 2013; Diaz et al., 2016). Even if with an exploratory
purpose, we separately performed a regression analysis for
each factor of ARSQ, considered as dependent variable, and
with fractal dimension, scaling exponents and band powers as
independent variables. We found that not only spectral features,
but also fractal characteristics entered the model to explain up
to the 20% of the variance. These relationships are suggestive of
the ability of fractal features to summarize the neuronal activity
in terms of temporal structuring or complexity in relation to
cognition or behavior. In particular, reduction of left temporo-
parietal or central beta power and increase of theta activity was
linked to higher scores of several ARSQ factors, underling the
role of beta desynchronization/theta synchronization of these
rhythms in several cognitive domains (Engel and Fries, 2010).
Positive signs of the estimated coefficients of the regression
models were found for beta DFA exponents andHFD values. This
finding indicates that increase in complexity in specific areas or
a greater persistence of temporal correlations in alpha or beta
bands predict higher score of specific ARQS factor. A negative
coefficient was found only for frontal alpha DFA exponent in
Somatic Awareness and Health Concern. Irrmischer et al. (2018)
found an increase of Somatic Awareness during meditation and
a decrease of alpha scaling exponent most pronounced above
parietal, central, and frontal regions, but also a decrease in Health
Concern was found. A direct link between ARSQ factor and
spectral or fractal features is beyond the aim of this work. The
interesting finding here is that our results underline the fact
that spectral features cannot be considered alone in explaining
highly non-linear phenomena and that fractal characteristics of
the signal have per se physiological meaning.

Even if growing evidence has accumulated that circadian
rhythm dysregulation not only is a risk factor for metabolic and
cardiovascular diseases (Broussard and Van Cauter, 2016; Morris
et al., 2016), but also contributes to neurodegenerative processes
(Musiek et al., 2015), little attention has been paid to circadian
rhythm modulations of brain dynamics in real clinical settings.
Our data add evidence of circadian modulation in spectral and
fractal features in healthy subjects. These results can help to
characterize factors of intra-individual variability in describing
brain dynamics and to personalize interventions or therapies in
clinical applications. Indeed, if complexity of neuronal dynamics
and long-term correlation of brain rhythms, factors related
to the modality of neuronal responses to incoming input or
sensory plasticity (Palva and Palva, 2011; Palva et al., 2013),
changes during the daytime, it would be expected that the correct
information on the time of the day when the individual state
optimizes the individual response could be utilized to indicate
the correct timing for a therapeutic or rehabilitative intervention.
Therefore, the characterization of fractal phenomena can provide
new psychophysical models (Zueva, 2015). In this direction,
future studies are needed to underline alteration of circadian
modulation of fractal features in neurological or psychiatric
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diseases, as well as to understand the link between fractal features,
brain functions and behavior.

In conclusion, in our study differences in fractal features of
rest EEG activity during the 4 daily times have been evidenced.
Complexity and the persistence of temporal correlations of brain
rhythms changes during daytime, parallel to changes in alertness
and performance. The characterization of circadian modulations
of fractal features may in future provide important information
to build meaningful physiological models. Further studies under
condition known to induce desynchrony amongst circadian
oscillators are needed to disentangle the effects of circadian
endogenous factors and homeostatic sleep pressure.
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