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Laboratory demonstrations of brain-computer interface (BCI) systems show promise

for reducing disability associated with paralysis by directly linking neural activity to the

control of assistive devices. Surveys of potential users have revealed several key BCI

performance criteria for clinical translation of such a system. Of these criteria, high

accuracy, short response latencies, and multi-functionality are three key characteristics

directly impacted by the neural decoding component of the BCI system, the algorithm

that translates neural activity into control signals. Building a decoder that simultaneously

addresses these three criteria is complicated because optimizing for one criterion

may lead to undesirable changes in the other criteria. Unfortunately, there has been

little work to date to quantify how decoder design simultaneously affects these

performance characteristics. Here, we systematically explore the trade-off between

accuracy, response latency, and multi-functionality for discrete movement classification

using two different decoding strategies–a support vector machine (SVM) classifier

which represents the current state-of-the-art for discrete movement classification in

laboratory demonstrations and a proposed deep neural network (DNN) framework. We

utilized historical intracortical recordings from a human tetraplegic study participant, who

imagined performing several different hand and finger movements. For both decoders,

we found that response time increases (i.e., slower reaction) and accuracy decreases

as the number of functions increases. However, we also found that both the increase of

response times and the decline in accuracy with additional functions is less for the DNN

than the SVM. We also show that data preprocessing steps can affect the performance

characteristics of the two decoders in drastically different ways. Finally, we evaluated

the performance of our tetraplegic participant using the DNN decoder in real-time to

control functional electrical stimulation (FES) of his paralyzed forearm. We compared his
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performance to that of able-bodied participants performing the same task, establishing a

quantitative target for ideal BCI-FES performance on this task. Cumulatively, these results

help quantify BCI decoder performance characteristics relevant to potential users and the

complex interactions between them.

Keywords: brain-computer interface, decoding, machine learning, deep learning, support vector machines,

response time

INTRODUCTION

Intracortical brain-computer interface (BCI) systems that link
neural activity to the control of assistive devices have the potential
to reduce disability associated with paralysis (Lebedev, 2014;
Chaudhary et al., 2016). Recent years have seen numerous
demonstrations of BCI control, including computer cursors,
robotic arms, communication devices, and even the patients’
own paralyzed limbs (Simeral et al., 2011; Hochberg et al., 2012;
Collinger et al., 2013b; Gilja et al., 2015; Jarosiewicz et al.,
2015; Bouton et al., 2016; Ajiboye et al., 2017). In anticipation
of BCI systems transitioning from laboratory demonstration to
clinical usage, it is important to consider the priorities of the
end user to ensure widespread adoption. Surveys of potential
users have revealed that high accuracy, fast response times, and
multi-functionality are among the most desired features for a
BCI system (Huggins et al., 2011, 2015; Collinger et al., 2013a;
Kageyama et al., 2014). Designing BCI systems to meet these
priorities may facilitate the adoption of these systems for every
day, clinical usage.

Accuracy, response latency, and the number of functions
provided by a BCI system are all directly affected by the neural
decoding component of the system (Kao et al., 2014; Lebedev,
2014). The decoding algorithm is responsible for translating the
user’s neural activity into an intended action that is selected from
a set of possible functions. As a result, the decoding algorithm
is tied not only to the number of functions/actions that can be
decoded, but also to how accurately and how fast they can be
decoded. Additionally, the response time–the time between the
user intending to act and the BCI identifying the user’s intention–
is crucial for BCI user’s sense of agency (the feeling of being in
control of the BCI action; Evans et al., 2015;Moore, 2016; Sitaram
et al., 2017).

Designing a decoder that meets BCI-user expectations for

accuracy, response time, and number of functions first requires

establishing minimal acceptable criteria for each feature. By
surveying potential BCI users with spinal cord injuries, Huggins

et al. (2015) found that the majority of respondents would be
satisfied with an accuracy of 90% or above. Although this can

be treated as a minimal acceptable criterion, one must keep in
mind that accuracy can have different meanings depending upon
the BCI-enabled task (Thomas et al., 2013; Thompson et al.,
2014). For example, BCI systems for continuous cursor control
can be evaluated using several different metrics, such as the
correlation between the predicted and actual cursor movement
(R2) (Simeral et al., 2011; Nuyujukian et al., 2014; Sussillo
et al., 2016). On the other hand, BCIs used for discrete control

signals, e.g., “on” “off,” or “left” “right,” are typically evaluated
using standard classification accuracy–the percent of time bins
where the decoder correctly classifies the discrete function (e.g.,
Bouton et al., 2016). As such, the minimal acceptance criterion
for BCI accuracy may be task-dependent. Huggins et al. also
found that their respondents desired a target response time of at
least 20–24 characters per minute (2.5–3 s per response) for BCI
communication systems. Currently, no specific latency criteria
exist for BCI devices aimed at restoring hand function. However,
studies of cursor control, via imagined hand movements with
EEG-based BCI systems in able-bodied participants, suggest that
users experience a decline in sense of agency with delays as
short as 750ms (Evans et al., 2015). Lastly, while potential users
prioritized the number of available BCI functions, the surveys
did not suggest a target number that users would find acceptable.
In the absence of specific data, we aim to maximize the number
of functions while still meeting performance expectations for
accuracy and response time.

Simultaneously addressing these three user-desired
performance priorities for a BCI decoder is complicated by
the fact that they represent competing demands. For example,
in BCI virtual keyboard communication devices, increased
accuracy of key selection can come at the price of slower
response times (Santhanam et al., 2006). Similarly, for BCI
cursor control, increased accuracy is associated with decreased
speed (Willett et al., 2017). Additionally, BCI systems with
discrete control signals often suffer from decreased accuracy
when the number of overall functions are increased (Thomas
et al., 2013). To address these issues, we systematically explore
the trade-off between these three performance criteria in a BCI
system that decodes discrete hand movement from intracortical
neural recordings. To do so, we use two different decoding
strategies–a support vector machine (SVM) classifier which
represents a commonly used method for BCI decoding (e.g.,
Lotte et al., 2007; Siuly and Li, 2012; Bouton et al., 2016;
Friedenberg et al., 2016; Sharma et al., 2016; Glaser et al.,
2017; Colachis et al., 2018) and a deep neural network (DNN)
framework (Schwemmer et al., 2018). Building on the recent
work by Schwemmer et al. (2018), we evaluate the decoders
using historical intracortical recordings from our participant
with tetraplegia where he imagines performing several hand
and finger movements. We find that response time increases
and accuracy decreases as the number of functions increases for
both decoders. However, we show that this slowing of response
times and decline in accuracy with added hand functions is
significantly less for the DNN than the SVM. Interestingly, we
find that data preprocessing steps affect the response times of
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the two decoders in different ways. We also show that the DNN
decoder can be used in real-time to control functional electrical
stimulation (FES) of the participants’ paralyzed forearm,
allowing him to perform six different hand/finger movements.
Finally, to establish quantitative benchmark that can be used
to evaluate the performance of the BCI-FES system against an
ideal target we collected data from three able-bodied individuals
who performed the same six-movement task. These results
help characterize BCI decoder performance features relevant to
potential users and the complex interactions between them.

MATERIALS AND METHODS

Study Design–Clinical Trial Participant
The study (ClinicalTrials.gov NCT01997125) was approved by
the U.S. Food and Drug Administration (Investigational Device
Exemption G130055) and the Ohio State University Wexner
Medical Center Institutional Review Board (IRB Protocol
2013H016, OSUWMC, Columbus, Ohio) and conformed to
institutional requirements for the conduct of human subjects.
All experiments were performed in accordance with the relevant
guidelines and regulations set by OSUWMC. The participant
referenced in this work provided permission for photographs
and videos and completed an informed consent process prior to
commencement of the study.

The study participant has a C5 AIS category A traumatic
spinal cord injury acquired 4 years prior to the initiation of the
study. He is currently 26 years old. On April 22, 2014, A Utah
microelectrode array (Blackrock Microsystems, Inc., Salt Lake,
Utah) was implanted in the hand area of his left primary motor
cortex as previously described (Bouton et al., 2016). During the
experiments reported in this manuscript, a computer monitor
displayed two animated hands to the participant (Figure 1A). For
the imagined movement tasks, the cues to think about specific
movements were given by a small hand in the lower left corner
of the screen. During rest periods, the hand remained in a
neutral position. During experiments where the participant had
volitional control of functional electrical stimulation and was
given visual feedback, the larger hand centered on the screen
provided real-time feedback from the BCI system. Otherwise, the
feedback hand remained in a neutral resting position.

Datasets for Offline Analyses
For offline analyses, data was collected from two separate
tasks where the participant imagined making hand/finger
movements without controlling FES or receiving visual feedback
on performance. These imagined tasks allow for the independent
evaluation of algorithms without the confounding effect of
the participant adapting to the decoder that is generating
the feedback. The two-movement task cued the participant to
imagine hand open or hand close for 2.5 s separated by 6.5 s of
rest (the rest cue showed the virtual hand in a neutral position).
Each movement was replicated five times and the presentation
of the cues was randomly shuffled to prevent the participant
from anticipating the next cue. We called this entire 90 s (25 s
of cues and 65 s of rest) sequence a block. The four-movement
task cued the participant to imagine performing index extension,

index flexion, wrist extension, and wrist flexion. Each movement
cue lasted for 2.5 s and movement cues were separated by 4 s of
rest. Each movement was repeated four times and, as with the
two-movement task, the movement cues were randomly shuffled.
Each block of the four-movement task lasts 104 s (40 s of cues and
64 s of rest). Figure 1B shows an illustration of the structure for a
typical block.

Two blocks of both the four- and two-movement experiments
per session were collected during fifty experimental sessions
ranging from June 1, 2016 to November 28, 2017. The first forty
sessions were treated as training data and the remaining ten
sessions were considered the testing data.

Definitions of Key Metrics
The result of a cued movement was considered to be successful
if the correct movement was predicted and sustained for a
minimum of 1 s within the 2.5 s cue time window (Figure 1C).
The success rate for an experimental block was defined as
the percentage of cues in the block that were successes. The
failure rate was the percentage of cues that are not successes.
Ensuring that the correct response was sustained allowed us to
filter out functionally irrelevant situations where the decoder
correctly predicts the cue for a brief window and then switches to
predicting a different, erroneous movement. To further quantify
decoder performance, we also calculated the decoder accuracy,
defined as the proportion of 100ms time bins where the decoder
correctly predicted the cued hand movement.

To demonstrate the different accuracy metrics consider the
90 s two movement task which has ten movement cues. The
success rate is the percentage of the 10 cues where the correct
movement was predicted continuously for at least 1 s. In contrast,
the accuracy is the percentage of the 900 time bins (90 s× 10 time
bin/s) where the decoder predictionmatched the cue. The success
rate is meant to approximate an observer scoring eachmovement
cue as a success or failure, whereas the accuracy is the standard
machine learning classification accuracy.

Response time was defined as the time between the start of
the cue to the initiation of a successful movement (where success
was defined as above). In offline analyses, the initiation of the
successful movement was determined by the first 100ms time bin
where the decoder predicted the correct movement and sustained
the correct prediction for at least 1 s (Figure 1C) In the real-
time demonstrations, where hand movements were evoked, the
initiation of the correct hand movement was calculated from
the first frame of video where the hand began moving toward
the cued position for a successful movement. Note that for both
the response time and success rate, the first cued movement was
ignored because the DNN starts predicting during the middle of
cue due to the time lagged input.

Data Acquisition and Preprocessing
Data was collected at 30 kHz from the 96 channel Utah
microelectrode array with 1.5mm electrodes using the
NeuroportTM neural data acquisition (Blackrock Microsystems).
A 0.3Hz first order high-pass and a 7.5 kHz third order low-pass
Butterworth analog hardware filters were applied to the data.
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FIGURE 1 | Experimental design. (A) The participant performing the six-movement task using the BCI-FES system. The cued movement is displayed and the

participant is asked to imagine replicating the cued movement. (B) Design of the six-movement task where each movement is repeated for a total of four replicates in

random order. Each cue remains for 2.5 s with variable rest time of 2.5–4.5 s between the cues. (C) Sample decoder output demonstrating the response time.

Response time is the difference between the start of the cue to when the decoder output initiates the correct movement. To be successful, the movement must be

sustained for a minimum of 1 s. (D) Impact of the boxcar filter. The yellow line shows the wavelet coefficient across time for a single channel and wavelet scale, whereas

the gray line shows the same data with the boxcar filter applied. While the two lines track the same general trends, there is substantially more variation without the filter.

The data were then transferred to a PC running Matlab R2014b
and Python 2.7 for further processing.

The raw data was reduced using wavelet decomposition with
the “db4” mother wavelet and 11 wavelet scales in Matlab
R2014b. Features for decoding were created by extracting the
wavelet coefficients for scales 3, 4, and 5, spanning frequency
range 234–1,875Hz. Every 100ms, the coefficients were averaged
over time, providing 96∗3 = 288 features per bin. Next, these
averaged wavelet coefficients for each channel were individually
standardized over a single block of data. During the training
period, each block of data was standardized to itself, while during
the testing period, the mean and standard deviation of the first
block was used to standardize both the first and second blocks.
Once the 288 features were standardized, the 3 averaged and
standardized coefficients for each channel were then averaged
together to create a single feature, called Mean Wavelet Power
(MWP), resulting in 96 features, one per channel, for each 100ms
time bin. Previous work from our group has demonstrated the
success of using MWP in decoding movement intent (Sharma
et al., 2015, 2016; Bouton et al., 2016; Friedenberg et al., 2017;
Colachis et al., 2018).

We performed an additional preprocessing step where the
MWP features for each channel were smoothed by replacing the
current time point with the average of the most recent 10 time
points (i.e., a 1 s boxcar filter, see Figure 1D) on a subset of
analyses to determine the effect of this preprocessing step on the
two different decoders.

Neural Decoding and Offline Analyses
We evaluated two different decoding algorithms with respect
to their impact on both accuracy and response time. The first
decoding algorithm is a support vector machine (SVM) classifier
that we have used previously (Bouton et al., 2016; Friedenberg
and Schwemmer, 2016; Sharma et al., 2016). The SVM is trained
de novo each day during the testing period using only the first
block of data and evaluated on the second block of data from
the same day (Figure 1D). That is, the SVM is only ever trained
on a single block of data, but it is retrained every single session.
The SVM uses nonlinear Gaussian radial basis functions kernels
with a γ parameter value of 0.005 and uses the MWP features
at the current time point only in order to predict the intended
movement. The SVM was trained using the sci-kit learn toolbox
(Pedregosa et al., 2011) in Python 2.7 using the default parameter
values except for the value of the γ which we based on our
previous experience using the SVM. The SVM retrained daily is
used as the benchmark comparison since it reflects the standard
of practice for this clinical study and daily retraining is the
standard mode of operation for most intracortical BCI systems.

The second decoding algorithm is a deep neural network
(DNN) decoder constructed and trained with Python 2.7 using
the package Keras (Chollet, 2015) with TensorFlowTM (Abadi
et al., 2016) as the backend. The architecture of the network is
similar to one used in our previous work (Schwemmer et al.,
2018). The network takes as input a 96 × 9-dimensional array
corresponding to 900ms of MWP data. That is, the model uses
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a sliding window of 900ms to predict the imagined movement
for the current time point. The first layer in the network is a long
short-termmemory (LSTM) layer (Hochreiter and Schmidhuber,
1997) containing 80 hidden units. The LSTM is a variant of a
recurrent neural network that is capable of learning long-term
dependencies and has been widely used in the processing of
temporal (or sequential) data (LeCun et al., 2015; Goodfellow
et al., 2016). The LSTM layer outputs an 80 × 9-dimensional
array that is passed to a one-dimensional convolutional layer that
contains twenty-five 80× 9-dimensional filters. The convolution
is performed in the time domain only. The output of this layer is
then flattened to a 225-dimensional vector which is then passed
to a fully connected (dense) layer with 50 units using the rectified
linear unit activation function. The output from this layer is
passed to a final dense layer containing units equaling the total
number of movements plus rest. The units in this final layer use
the softmax activation function scaling the outputs to correspond
to probabilities.

The 80 blocks from the first 40 sessions of the two- and four-
movement tasks were used to train the DNN model. The DNN
was trained using random batches of size 200 using the optimizer
RMSprop (Ruder, 2016) and the categorical cross-entropy loss
function. All network parameters were randomly initialized at
the start of the training using the Keras defaults. During each
training epoch, each layer in the model underwent a random 50%
dropout of the connection weights in order to prevent overfitting
to the training data (Srivastava et al., 2014). The training lasted
for 80 epochs and was completed using an NVIDIA Quadro
K5000 GPU on a Linux system running Centos 7.3. The 80
epochs of training was based upon the model reaching a stable
loss and accuracy value for the validation data during training.
Subsequently, the number of training epochs was treated as a
fixed hyperparameter (at 80) to prevent overfitting to the training
dataset. The DNN’s performance was then evaluated on the
second blocks of each of the last 10 sessions.

Simulating Datasets With Different
Numbers of Movements
To quantify the trade-off between accuracy, response-time, and
the number of movements, the two- and four-movement datasets
were concatenated in each session, creating an aggregate dataset
with six separate movements. To create datasets that contained
fewer movements, we excised data corresponding to different
cues and created a series of synthetic datasets that covered the
range of all possible combinations of the six hand movements
(ranging from one to six movements). For example, there were
six different one-movement datasets, one for each of the six
movements, and one six-movement dataset. For each of the
two through five-movement datasets, we created a synthetic
dataset for every permutation of the different movements. In
these synthetic datasets, data associated with cues for excluded
movements were removed but all rest cues were retained.

Real-Time Demonstration of the
Six-Movement Task
In this experiment, the DNN model decoder controlled
functional electrical stimulation (FES) of the participants’
paralyzed forearm. The FES system consists of a multi-channel

stimulator and a flexible sleeve consisting of up to 150 electrodes
that is wrapped around the participant’s arm. Offline, electrode
stimulation patterns corresponding to the six movements in this
task were calibrated using knowledge of forearm physiology and
trial and error. A six-movement task was performed using the
same movements in the previous sections but with random rest
intervals varying from 2 to 5 s and a cue time of 2.5 s. Each cue
was repeated four times for a total of 24 movements per block.
A DNN model was first trained offline using the concatenated
imagined six-movement dataset and was updated for 15 epochs
using cued data from a single block. This model was then used
for five blocks of the six-movement task within a single session
on January 15, 2017. The same model was then updated using
the five blocks of collected data and trained for 10 epochs. This
updated model was then used in a subsequent session to make
predictions on the participants intended hand movements to
direct the FES system.

On January 22, 2018 the participant performed three blocks
of the six-movement task to assess his response times when
using the BCI-FES system. The time from the start of the
cue to the initiation of the hand movement was measured
from using video data with a timer displayed on the monitor
(Movie S1). Response time measurements were recorded as
the time from cue presentation to initiation of the correct
hand movement based upon the stopwatch in the video
recording. Additional response times were computed for the
tetraplegic participant using the decoder outputs as previously
described.

Able-Bodied Six-Movement Task
To establish a baseline for movement response times that
could be used to quantitatively compare the response time
of the BCI-FES system, three able-bodied participants also
performed the six-movement task under an IRB-exempt protocol
approved by the Battelle Memorial Institute (Columbus, Ohio).
The three participants ranged in ages from 20 to 25 and
volunteered to participate in the demonstration. The able-bodied
participants were asked to perform the same six-movement
task and were cued using the same animated hand and timing
profiles described above. They were instructed to mimic the
hand movements in a “natural and comfortable” manner. Each
participant performed 3 blocks of the six-movement task. Videos
were recorded and the time from the start of the cue to
the initiation of the hand movement was measured in the
same manner as described for the clinical trial participant. The
results were aggregated across the participants and blocks to
obtain average able-bodied response times for a given hand
movement.

Statistical Analyses
Analyses to compare the success rate or accuracy between
paired observations were done with a Wilcoxon signed rank
test. Comparisons across multiple groups were completed using
generalized linear or ANOVA models. Analyses comparing
regression slopes were conducted by the F-test for significance
of slopes. All model assumptions were explored graphically, and
data is presented to validate these assumptions.
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RESULTS

Comparison of Decoding and Data
Preprocessing Methods
We first explored the differences in success rates and response
times for the two decoding methods on the two- and four-
movement tasks offline. Figure 2A plots the success rate (% of
cued movements where the model correctly predicts and sustains
the correct movement for at least 1 s) of the decoders (SVM and
DNN) during the testing period as a function of the number of
days since the end of the initial training period for the DNN.
Recall that the DNN is trained on 40 sessions of historical data
and then held fixed during the testing period while the SVM is
retrained each day. Also shown is the success rate of the models
when an additional preprocessing step (replacing the MWP at
the current time point with the average of the most recent 10-
time points, i.e., a 1 s sliding boxcar filter) is applied to the data
prior to being input to the decoders. We have included this
additional comparison (boxcar on vs. boxcar off) since we have
previously found that including the boxcar filter is key to the
SVM’s decoding performance. This is illustrated in Figure 2A,
which shows that the success rate of the SVM without the boxcar
(dashed blue lines) was significantly less than the SVM with the
boxcar (solid blue lines). The average success rate for the SVM on
the four-movement (two-movement) task with the boxcar was
60.0 ± 19.3 (71.1 ± 23.0, mean ± s.d.) while the success rate
without the boxcar was 12.7 ± 11.5 (28.9 ± 17.5). In contrast,
the success rate of the DNN appeared to be unaffected by the
inclusion of the boxcar filter preprocessing step (compare solid
and dashed red lines). A two-way ANOVA of the success rate
fit against the model type and the presence of the boxcar filter
found that there were significant differences between both model
type and use of the boxcar filter (p < 0.001), except there was
not a significant difference between the boxcar on and off DNN
models. This finding was consistent for both the two- and four-
movement tasks. The DNN’s success rate without the boxcar
(with the boxcar) was 97.3 ± 3.4 (96.0 ± 4.7) on the four-
movement task and 96.7± 5.4 (97.8± 4.7) on the two-movement
task. The classification accuracies (% of correctly predicted time
bins) shown in Figure 2B showed the same pattern. The DNN
(SVM with boxcar) accuracy was 87.8 ± 1.3 (75.9 ± 3.6) on
the four-movement task and 91.9 ± 1.5 (85.2 ± 2.2) on the
two-movement task.

Response times also significantly varied for each of the four

models as shown in Figure 3. Recall that the response time was

calculated as the time from cue onset until the model predicts
the correct cue and sustains it for at least 1 s. Figure 3 plots

histograms of the model responses times broken out by the
individual movements from the two- and four-movement tasks.
Even though the response times are aggregated by individual
movement, note that the movements were performed in different
tasks (as indicated by the coloring of the histograms). The black
vertical line indicates the mean of each distribution. Although
we found the success rate for the DNN was not significantly
different whether or not the boxcar filter was used, there is a clear
increase in response time when using the boxcar filter for both
tasks (p < 0.001). The mean response time for the DNN across

all movements on the four-movement (two-movement) task
without the boxcar was 524 ± 128ms (506 ± 150ms), whereas
the mean response time with the boxcar was 719 ± 218ms
(683 ± 211ms). This makes intuitive sense as the boxcar filter
averages past information in with the most current information
(see Figure 1D), which smooths the data but can slow the model
response times. As we have shown, this tradeoff is necessary for
the SVM to accurately decode the imaginedmovements but is not
required for the DNN.

The mean response time of the SVM with the boxcar filter
on the four-movement (two-movement) task was 946 ± 205ms
(855 ± 196), which was significantly slower than both DNN
models. Comparisons to the SVM without the boxcar filter were
not conducted due to the poor success rate of the models (12.6
and 28.9% for the four-movement and two-movement tasks).
These results show that the DNN model does not require the
additional preprocessing step of the boxcar filter and has both
higher accuracy and faster response times than the SVM.

Characterizing Performance Trade-Offs via
Simulation
In the previous section, we compared the response times, success
rates, and accuracies of the two decoding algorithms on both
the two- and four-movement tasks offline. Although these results
provide insight into how the number of decoder functions
(two vs. four) affects performance, it does not provide a full
characterization of the trade-offs that may exist between the
three metrics. Thus, we conducted a simulation experiment
which allowed us to use historical data from the two- and
four-movement tasks to more fully quantify the performance
characteristics as a function of the number of movements.
As detailed in methods, the data sets from both tasks were
concatenated for each experimental session yielding a synthetic
six-movement task. We then excised data by movement from
each set and created additional synthetic datasets ranging from
each movement individually to all six movements. For the
datasets that contained<6 movements, all possible permutations
of movement combinations were extracted. For example, the
one movement dataset consisted of each individual movement
where data corresponding to all other movements were removed
(i.e., one block of the six-movement task yielded 6 separate
one-movement blocks). Next, for the two movement datasets, a
dataset was created for each possible pair of movements. This
was repeated for three, four five, and six movements leading to
synthetic datasets for all possible permutations. Decoders were
trained and tested for each movement combination and then
aggregated according to the total number of movements. We
chose to compare the SVM decoder with the boxcar filter and
the DNN decoder without the boxcar filter as they were best
performing combination for each algorithm from the previous
section.

Figure 4A plots the model accuracies for each test session
as a function of the number of total movements. Note that
even though there are only 10 test sessions, the number of data
points shown in the figure can vary for the different numbers of

movements owing to the fact that there are
(

6
k

)

combinations
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FIGURE 2 | (A) Success rate for both the two-movement and four-movement offline tasks during the testing period. The redlines represent the performance of the

DNN and the blue line represents the SVM. Solid lines and circles use the boxcar filter and dashed lines with triangles are without the filter. (B) Accuracy as a function

of days since last training session. The redlines are the performance of the DNN and the blue line is the performance of the SVM. Solid lines and circles are decoders

using the boxcar filter and dashed lines with triangles are without the boxcar filter.

for each total number of movements k. The data points in
the figure are also randomly jittered in the x-coordinate for
easier visualization. Overall, model accuracy during the testing
set declined as the number of movements increased for both
decoders. However, the rate of the decline was significantly
greater (p < 0.001) for the SVM (slope = −3.7, p < 0.001)
than the DNN (slope = −2.4, p < 0.001), indicating a relatively
greater cost to accuracy for additional movements with the SVM
compared to the DNN. Next, we explored how the individual
movement response times changed as the number of total
movements increased. Figure 4B plots the average response time
(averaged across testing sessions and movement combinations)
as a function of the number of total movements, broken out by
the specific movement and the decoding model. As expected,
response time increased with the number of movements (DNN:
slope = 23.8, p < 0.001; SVM: slope = 11.82, p < 0.001). The
slope of the SVM does appear to be smaller than the slope
of the DNN, but the difference was only marginally significant
(p = 0.046) based upon a likelihood ratio test comparing models
with and without separate slopes for decoder. Although the
timing varied by the movements themselves, the rates of change
were not significantly different across the movements. The DNN
consistently had faster average response times than the SVM
across all movements. Additionally, the average response times
across testing sessions, movement combinations, and individual
movements ranged from 566 ± 130 to 694 ± 55ms for the
DNN and 862 ± 130 to 914 ± 63ms for the SVM. For this
task, increasing the number of total movements clearly leads to

increased response times and decreased accuracy for both the
DNN and SVM.

Lastly, we investigated whether the models displayed a speed-
accuracy trade-off in terms of their response times. Figure 5 plots
the average model response time as a function of accuracy for
each test session broken out by model type and the number of
total movements. The SVM does not appear to have a significant
interaction between accuracy and response time while the DNN
displays a negative interaction. That is, the faster responses
correlate with more accurate responses, which makes intuitive
sense since the accuracy is the percent of correctly classified time
bins and decreasing the response time leads to increased chance
of correctly classifying time bins within a cue time window. Thus,
it appears that when decoding movement intentions from neural
data, both accuracy and response time display a trade-off with the
number of total functions, while accuracy and response time can
either interact beneficially (DNN) or not significantly (SVM).

Real-Time Demonstration and Able-Bodied
Comparisons
Having found that the DNN displays the highest accuracy and
shortest response times as the number ofmovements is increased,
we tested how these performance gains might translate to a real-
time BCI control scenario. We designed an experiment where the
study participant used the DNN decoder to control functional
electrical stimulation (FES) of his paralyzed forearm. The BCI-
FES system (Figure 6A) uses a flexible sleeve with up to 150
electrodes to stimulate forearm muscles and evoke movements
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FIGURE 3 | Histograms of response times for the offline tasks. The distribution response times for each successful hand movement across the testing period, broken

out by decoder-filter combination and task. The two-movement task is in blue and the four-movement task is in green. Mean response times for a decoder-filter

combination and hand movement are represented by solid black lines.

every 100ms based on decoder outputs as used in previous
work [(Bouton et al., 2016; Sharma et al., 2016; Colachis et al.,
2018) and see Methods]. When a movement is decoded, the
predetermined FES pattern is triggered for that movement [as
opposed to Sussillo et al. (2015) where muscle activity was
directly modeled]. The participant used the BCI-FES system to
perform 3 blocks of the six-movement task. Video recordings
were used to determine the participants’ response times for each
of the cued movements (see Methods). In addition to previous
sections where response time was determined by the time from
cue onset to the correct movement being decoded, here we also
calculated the response time from cue onset to the time when the
participant visibly initiated the correct movement with his own
hand. This allowed us to quantify the time to actual movement
and assess how much of that delay is due to the decoder. We
also recorded 3 able-bodied participants performing three blocks
of the same task to quantify ideal response times. Figure 6B
shows a boxplot comparing the response times of our tetraplegic
participant to those of the able-bodied participants. The able-
bodied participants had an aggregate mean response time of
390 ± 96ms while our tetraplegic participant had a mean of
997 ± 224ms. Table 1 shows the mean response times for each
individual movement. Overall, these results indicate that the
tetraplegic participant responds∼600ms slower on average than
our able-bodied participants.

The tetraplegic participant’s response times in this experiment
are consistently higher than in the imagined movement
experiments. When we computed the response times based on
the decoder outputs as shown in Figure 7, the response time of
the decoder was 821 ± 226ms. In addition, there was on average
a 176 ± 311ms delay between the decoder being active and
the participant’s hand beginning to move that can be attributed
to processing time on both the computer and stimulator, the
response of the participant’s muscles to the stimulation as well
as any variability in the video processing. The overall success rate
of the tetraplegic participant was 76.4% whereas the able-bodied
participants had a success rate of 100%.

DISCUSSION

Recent years have seen promising advances in BCI systems aimed
at reducing disability due to paralysis. Translating these advances
into clinically viable systems requires thoughtful integration
of patient design priorities and performance expectations with
device capabilities. To that end, surveys of potential BCI users
have been conducted with the goal of identifying desired
system features. The results of these surveys revealed that high
accuracy, fast response times, and multi-functionality are among
the top prioritized system features. As the neural decoding
component of the BCI system impacts all three of these features,
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FIGURE 4 | (A) Accuracy as a function of the number of movements during the offline simulation. The accuracy across each of the testing days in the simulation, with

the DNN is in red and the SVM is in blue. A jitter is applied to easy visualization and a linear regression model is fit to the original data. (B) Response time as a function

of the number of movements during the offline simulation. The mean response time of successful movements for the DNN and SVM color coded by the different hand

movements. As the number of movements increase, so does the mean response time for both model types.

designing and evaluating BCI decoders with these priorities
in mind can facilitate the transformation of investigational
systems into clinical devices and maximize the likelihood of
widespread acceptance and adoption by end-users. However,
designing decoders in such amanner poses a significant challenge
as the user-desired priorities place competing demands on
decoder performance. Characterizing the trade-offs in decoder
performance that exists between the user-desired priorities is an
important step toward clinically viable BCI decoders.

Here, we have explored the trade-offs that exist between
accuracy, response time, and the total number of functions
in decoders that infer discrete hand movement signals from
intracortical neural recordings. Specifically, we trained and
evaluated DNN and SVM decoders using historical data from
our tetraplegic participant where he imagined performing several

different hand movements. Using synthetic datasets created from
this historical data, we were able to systematically investigate
how increasing the number of decoded movements affects
performance. Overall, we found that response time increases
and accuracy decreases as the number of functions increases
for both decoders, while accuracy and response time can
either interact beneficially (DNN) or not significantly (SVM).
Lastly, we performed an experiment where the participant
used the DNN decoder in real-time to control functional
electrical stimulation (FES) of the participants’ paralyzed
forearm, allowing him to perform six different hand/finger
movements. We then compared the participants’ performance
with the system to that of able-bodied individuals in order
to quantify the response time delay induced by the BCI-FES
system.

Frontiers in Neuroscience | www.frontiersin.org 9 October 2018 | Volume 12 | Article 763

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles


Skomrock et al. Characterization of BCI Performance Metrics

FIGURE 5 | Response time as a function of accuracy for the offline simulation. For each number of hand movements in the simulation, the mean response time is

plotted against the accuracy for each separate test days. The SVM with the boxcar is in blue and the DNN is in red. Linear regression models were fit to each set of

points to provide interpretation of the trends. For the SVM, all of the models appear to be flat, allowing for large variation in accuracy while maintaining similar response

times. For the DNN, the trend shows a decrease in response time with an increase in accuracy.

Data Pre-processing Affects Decoder
Performance in Different Ways
Clearly, the manner in which the raw neural data is processed
before entering the predictive model can have an impact on
the performance of the model. With more sophisticated models,
the impact of pre-processing may be more difficult to evaluate
a priori. Our results show surprisingly divergent performance
for two different decoding algorithms (SVM and DNN) based
on whether the input data was initially smoothed with a 1-s
boxcar filter. In our previous work, we have used the boxcar
filter to smooth the neural features prior to using them in the
SVM. By averaging the neural data from the current time point
with the previous nine time points we reduced the variance of
the input features but lessen the effect of the most recent time
point which may slow down the response time. However, as the
SVM only has access to the current time point and can thus
make movement predictions based solely upon this single data
point, including the boxcar filter effectively allows the SVM to
incorporate information from prior time points, thus improving

prediction accuracy. As we have shown, this smoothing is critical
for the SVM–removing the boxcar filter decreases the success rate
from 60.0 to 12.7%. However, the DNN does not show this same
reduction in performance when the boxcar filter is removed,
the success rate is not significantly different whether or not the
boxcar filter is used. This can be attributed to the DNN model’s
ability to synthesize temporal patterns more effectively than the
simpler SVM. However, as expected, using the boxcar filter does
increase the response time of the DNN on average from 524 to
719ms. Thus, data pre-processing can have a significant effect on
decoder performance, but that effect can be highly dependent on
the type of decoder used.

Quantifying Performance Trade-Offs
In the machine learning community, it is generally known that
the accuracy of a classifier tends to decrease as the number of
output classes increases (e.g., Fernández-Delgado et al., 2014).
For BCI decoders, some work has been done to quantify the
trade-offs between accuracy and number of functions (Thomas
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FIGURE 6 | (A) Demonstration of data processing for the real-time demonstration. The decoder is used to decipher the neural signals to determine the desired hand

movement. This information is passed to a stimulator the uses electrical signal to stimulate the participants arm to evoke the desired hand movement. (B) Response

time layout. The two hands on the screen are the cue hand (lower-left corner) and the decoded output (center) that play in real-time. In the upper-left corner a stop

watch is synched with the cue to obtain time measurements for the hand movements. (C) Able-bodied compared to SCI participant response times measured from

videos. This is a boxplot of the response time for the six-movement task broken out by each of the hand movements. The SCI is in yellow, and the aggregate of the

three able-bodied participants are in gray.

TABLE 1 | Response times for each participant by hand movement (mean ± s.d.).

Participant Index extension Index flexion Hand close Hand open Wrist flexion Wrist extension

Able-bodied (3) 365 ± 85 399 ± 86 401 ± 87 384 ± 96 373 ± 80 387 ± 96

Participant 1 Movement 936 ± 158 1,128 ± 181 1,044 ± 193 1,031 ± 154 888 ± 150 957 ± 376

Participant 1 Decoder 714 ± 107 830 ± 241 962 ± 213 1,018 ± 194 745 ± 137 600 ± 151

et al., 2013), as well as speed and accuracy in BCI virtual
keyboard communication devices (Santhanam et al., 2006).
However, a characterization of the trade-offs between accuracy,
response times, and number of functions is currently lacking
for BCI decoders. Using synthetic datasets, we systematically
changed the number of output functions from one to six
and explored how these performance criteria interact with one
another for the DNN and SVMdecoders. Perhaps unsurprisingly,
we found that accuracy decreases as the total number of
movements increases. We also found that response times tend

to increase with the number of total movements. Interestingly,
the performance detriment to accuracy and response times
caused by increasing the number of movements was less severe
for the DNN than for the SVM, with the rate of decline in
accuracy being significantly less with the DNN than SVM.
Additionally, we found no interaction between response time
and accuracy for the SVM and a positive correlation between
the two for the DNN. Though the positive correlation between
response time and accuracy makes intuitive sense for BCI
task presented here, it is counter to the trade-off observed
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FIGURE 7 | Response times of the SCI participant as measured by the decoder output. The decoder output was used to determine response times in order to

separate the time that can be attributed to the algorithm vs. the rest of the system. The response times based upon the decoder are about 200ms less than the

response times determined by the video, attributing 200ms delay to the FES system.

for other BCI systems, such as those for virtual typing, where
faster responses tend to be less accurate (Santhanam et al.,
2006). This shows that the trade-offs between these three
BCI performance aspects are task-specific and further work
should be done to characterize the trade-offs for additional BCI
tasks.

Online Performance
Surveys of potential BCI users emphasize the desire for systems
to have fast response times, but did not specify target response
times for BCIs that enable discrete hand movements (Collinger
et al., 2013a; Huggins et al., 2015). This motivated us to
perform an experiment to quantify the gap in performance
between our participant and able-bodied individuals. Assuming
the ideal target response time for a potential BCI user would be
the response time of an able-bodied individual, the difference
between BCI and able-bodied responses provides a functional
metric that can be used to gauge performance. Thus, we
had the participant use the DNN decoder in real time to
control FES of his paralyzed forearm. We chose to use the
DNN decoder as it performed better than the SVM in our
offline analyses. Using the BCI-FES system, the tetraplegic
participant performed the six-movement task. As the decoders
all had their slowest responses when six movements were
enabled, having the participant perform this task in real-time
provided a “worst-case” example to compare to able-bodied
responses. Our results indicate that the tetraplegic participant
responds about 607ms slower on average than our able-bodied
participants. The response time can be further subdivided into
the time it takes for the decoder to accurately predict the
user’s intent (821ms on average) and the lag between decoder
activation and forearm movement (176ms on average). This

highlights that the neural decoder response latency is only
part of the total response latency. While these results are
necessarily dependent on the choice of decoding algorithm and
the assistive device being controlled, quantifying the difference
in latency of BCI responses from that of able-bodied individuals
provides a useful benchmark that is broadly applicable and
can be generalized to other systems that use intracortical
activity.

Limitations
Our study is currently limited to data collected from a
single participant. However, owing to the invasiveness of the
surgical procedures and the experimental nature of intracortical
BCIs, it is not uncommon for studies to involve only one
human subject (Collinger et al., 2013b; Bouton et al., 2016;
Ajiboye et al., 2017). Future work will explore how well our
results generalize to other subjects. Next, the performance
trade-offs we report here are specific to SVM and DNN
decoders designed to infer discrete movement commands
from intracortical neural data. Different tasks, decoders, or
modalities (e.g., EEG) may display different trade-offs. Thus,
future work should explore how these trade-offs vary across
tasks, decoders, and recording modalities. Much of our
analysis was performed using offline, imagined data where
the participant received no feedback. Additionally, we created
synthetic datasets using the offline data in order to better
investigate the performance changes with increasing number of
functions. Though our online demonstration provides evidence
that DNN decoders may work well for online decoding with
FES and visual feedback, further work is needed to verify
that the trade-offs we observed carry-over to the online
scenario.
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CONCLUSIONS

The accuracy, response time, and number of functions are
important characteristics of a BCI system that are directly
influenced by the neural decoding algorithm. In this work,
we have characterized the performance trade-offs for our
BCI-FES system using both SVM and DNN decoders across
different combinations of pre-processing methods and number
of functions. We found that the DNN has several advantages over
the SVM including reduced data pre-processing requirements
and less performance degradation with additional movements.
Finally, we showed that a subject with tetraplegia was able to
use the DNN model to control FES of his paralyzed arm to
complete six different hand/wrist movements and benchmarked
that performance to able-bodied individuals performing the same
task. While our model training is focused on optimizing only
accuracy, future work will explore whether multiple performance
characteristics can be jointly optimized directly during decoder
training. Optimizing a weighted average of competing objective
functions has been highly successful in other fields using DNN
models (e.g., Gatys et al., 2016) and may provide a more
principled and tunable way to balance competing performance
characteristics. As BCI technologies improve, optimizing them
to simultaneously address multiple competing performance
priorities will help facilitate adoption by end-users. We also
suggest that such systems should aim to maximize the number of
functions while simultaneously maintaining an accuracy above
90%, and a response time of <750ms. However, we recognize
that the exact metrics and targets will necessarily vary based
on the type of system being used. Additionally, benchmarking
against abled-bodied users for certain tasks may provide useful
context for evaluating BCI systems. As more subjects are enrolled
in studies for these types of assistive devices, it will become
important to solicit their opinions on performance criteria, as

the experience of actual users (e.g., Kilgore et al., 2001) may
lead to different conclusions compared to surveys of potential
users.
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Movie S1 | Example video of Participant 1 performing the six-movement task with

the BCI-FES system. The hand in the lower left corner of the monitor provides the

cue to the participant, and the hand in the middle of the screen corresponds to

the decoder predicted hand movement that is evoked with the FES.
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