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Particle-in-Cell (PIC) methods are widely used computational tools for fluid and kinetic

plasmamodeling. While both the fluid and kinetic PIC approaches have been successfully

used to target either kinetic or fluid simulations, little was done to combine fluid and

kinetic particles under the same PIC framework. This work addresses this issue by

proposing a new PIC method, PolyPIC, that uses polymorphic computational particles.

In this numerical scheme, particles can be either kinetic or fluid, and fluid particles can

become kinetic when necessary, e.g., particles undergoing a strong acceleration. We

design and implement the PolyPIC method, and test it against the Landau damping

of Langmuir and ion acoustic waves, two stream instability and sheath formation. We

unify the fluid and kinetic PIC methods under one common framework comprising both

fluid and kinetic particles, providing a tool for adaptive fluid-kinetic coupling in plasma

simulations.

Keywords: polymorphic-particle-in-cell, fluid-particle-in-cell, plasma simulations, fluid-kinetic simulations,

computational plasma physics

1. INTRODUCTION

Particle-in-Cell (PIC) methods are among the most popular computational methods for plasma
simulations. There are two major families of PIC methods: the first one comprises the fluid PIC
methods that solve the plasma equations in fluid approximation such as magnetohydrodynamic
(MHD); the second one includes kinetic PIC methods for solving the kinetic equations of
collisionless plasmas.

Quite surprisingly, the fluid and kinetic PIC methods originated and evolved rather
independently. The fluid PIC method was first developed in the Sixties by Harlow to solve the
fluid equations by advecting fluid quantities (mass, momentum, and energy) with computational
particles [1]. New fluid PIC schemes were developed to decrease numerical diffusion and to solve
plasma and material science problems [2, 3]. In particular, the fluid PIC method eventually merged
with the Material Point Method for simulating continuous materials [4]. FLIP MHD [5] and
Slurm [6] are among the most successful fluid PIC codes for plasma simulations.

The first kinetic PIC methods were developed by Buneman and Dawson in the late Fifties and
early Sixties to model collisionless plasma [7, 8]. After their inception, the development of kinetic
PICmethods focusedmore on increasing numerical stability with large simulation time steps [9, 10]
and ensuring energy conservation [11–13]. VPIC [14] and iPIC3D [15–17] are among the most
widely used kinetic PIC codes for plasma simulations.
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Although the two PIC families developed independently
with little cross-fertilization, they share the same conceptual
framework [18] as they both use computational particles for
solving the advection term in the governing equations. The
goal of this work is to unify and couple the fluid and kinetic
PIC methods under the same framework by allowing the PIC
computational particles to be polymorphic and have either fluid
or kinetic nature. Amajor result of this work is the possibility of a
fluid particle to become kinetic enabling a seamless fluid-kinetic
coupling within the PIC method.

How to couple fluid and kinetic models within the same
computational framework is a topic of several recent studies
and projects [19–22]. The fluid-kinetic PIC method is an
extension of the implicit-moment PIC method [9] using particles
to calculate the pressure tensor without relying on an ad-
hoc equation of state [23]. The MHD-EPIC (MHD with
Embedded PIC) by Daldorff et al. [24] is probably the
most successful realization of coupling a PIC code, iPIC3D,
and a fluid code, BATS-R-US, under the Space Weather
Modeling Framework (SWMF) [25]. In this implementation,
the whole computational domain is modeled by solving the
MHD equations while the selected regions of space where
kinetic effects are important are modeled with the kinetic PIC
method. The coupling is achieved by feeding the MHD results
to the kinetic solver via boundary conditions while the kinetic
results replace the MHD in the specified domain. The MHD-
EPIC method has been successfully used to model planetary
magnetospheres [26–29].

This work is inspired by the Vlasov spectral methods using
Hermite polynomials [30] and combining fluid and kinetic
models within the same framework [31]. In fact, by dynamically
changing the number of Hermite polynomials during the
simulation, it is possible to smoothly transition from fluid to
kinetic within the same framework [32]. In the spirit of these
Vlasov spectral methods, this work investigates how to smoothly
transition from fluid to kinetic within the PIC framework by
transforming fluid particles to kinetic particles.

We propose a novel PICmethod, PolyPIC, using polymorphic
computational particles that allow for a smooth transition from
fluid to kinetic approach. The PolyPIC method is tested against
four standard benchmark problems, showing that it provides a
seamless transition from fluid to kineticmodeling under the same
computational framework. The paper is organized as follows.
Section 2 presents the PolyPIC governing equations, explains
the algorithm, discretization, and implementation. Section 3
presents the results of testing the PolyPIC method against
standard benchmark problems. Finally, section 4 summarizes this
work, discusses its potential and limitations, and outlines future
developments.

2. THE POLYMORPHIC-PARTICLE-IN-CELL
METHOD

In this section, we present the governing equations, the
Polymorphic-Particle-in-Cell (PolyPIC) algorithm, its
discretization, and numerical stability conditions.

2.1. Governing Equations
The microscopic state of a plasma species α (electrons or ions) is
described by the distribution function fα(x, v, t) that provides the
number of plasma particles in the neighborhood of the position
x and velocity v in the six-dimensional coordinate-velocity phase
space. The evolution of a collisionless plasma species α with mass
mα and charge qα in the presence of an electric field E (for sake
of simplicity, magnetic field is absent) is governed by the Vlasov
equation, which is a conservation law for the phase space density:

∂fα(x, v, t)

∂t
+ v · ∇xfα(x, v, t)+

qα

mα

E · ∇vfα(x, v, t) = 0, (1)

where t is time, x and v are the coordinates in the position
and velocity spaces. The Vlasov equation provides the full time-
dependent description of the plasma and allows modeling of
all plasma processes which depend on particle velocity, such
as resonance phenomena. However, the numerical solution of
the Vlasov equation in multi-dimensional phase space is often
prohibitive as it requires to resolve the smallest time and space
scales in the system.

The macroscopic state of the plasma species α can be
conveniently characterized by the fluid approach, in terms of
its mass density (ρα,m) or charge density (ρα,c), fluid bulk
velocity (uα), internal energy (Iα), and pressure (pα). If we
neglect heat flux, heat sources, viscosity, and external forces, the
evolution of such system is determined by the conservation of
mass, momentum, and energy, accompanied with an equation of
state (EoS):

∂ρα,m(x, t)

∂t
+

(

uα(x, t) · ∇
)

ρα,m(x, t) = −ρα,m(x, t)∇ · uα(x, t)

ρα,m(x, t)

[

∂uα(x, t)

∂t
+

(

uα(x, t) · ∇
)

uα(x, t)

]

= −∇pα(x, t)+ ρα,cE

ρα,m(x, t)

[

∂Iα(x, t)

∂t
+ (uα · ∇) Iα(x, t)

]

= −pα∇ · uα

pα(x, t) = pα(ρα,m, Iα).

(2)

The above fluid quantities used to describe the plasma are
essentially the averages of the distribution function fα(x, v, t)
in the velocity space. The fluid equations can be derived from
the first three moments of Vlasov equation (see e.g., [33]). To
compute each moment, the Vlasov equation is multiplied by the
corresponding power of v and integrated over the velocity space:

{ρα,m, ρα,c, uα , pα} =
∫

{mα , qα , v,mα(v− uα)(v− uα)}fα(x, v, t)dv.

(3)
The fluid approximation drastically simplifies the treatment of
the evolution of plasma, but loses information about individual
particles, therefore it can not describe microscopic phenomena.

In both kinetic and fluid electrostatic models, and in the
electric field E can be described in terms of the electrostatic
potential 8

E(x, t) = −∇8, (4)

and is governed by the Poisson’s equation

∇28 = −ρnet(x, t), (5)
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where ρnet(x, t) =
∑

α ρα,c(x, t) is the net charge density of the
plasma.

2.2. Algorithm
The algorithms of fluid PIC methods are discussed in detail
in Bacchini et al. [3], Olshevsky et al. [6], and Brackbill et al.
[34], while kinetic PIC methods are extensively presented in
two textbooks [35, 36]. In essence, both fluid and kinetic PIC
methods are semi-Lagrangian numerical methods. Themain idea
of the PICmethod is in using computational particles to calculate
the advection term (u · ∇) of the governing equation(s), the
Vlasov Equation 1, or the fluid (Equations 2). This step for
calculating the advection term is called Lagrangian step. The
remaining terms of governing equations are solved on a discrete
computational grid. This other step is called Eulerian step.

At each PIC computational cycle, the advection is computed
by updating computational particle positions and velocities xp, vp
for both fluid and kinetic particles. In addition, particle internal
energy ep is also updated in the case of fluid particles. Each
polymorphic particle carries mass mp and charge qp. These two
quantities are calculated initially dividing the total charge and
mass per cell by the number of particles per cell. While it is
possible to have different mp and qp, particles belonging to the
same species have the samemp and qp in this work.

In the fluid PIC, the mass density (ρm), fluid velocity (u),
internal energy (I), and pressure (p) are defined on the grid.
On the other hand, only the charge density (ρc) is defined in
the electrostatic kinetic PIC method. Because PolyPIC combines
fluid and kinetic PIC methods, ρm, ρc, u, I, and p are defined on
the grid in PolyPIC. In addition, the electrostatic field quantities,
electric field (E), and electrostatic potential (8), are defined on
the grid.

Our algorithm uses a staggered grid where u and E are defined
on the grid nodes with subscripts ..., g − 1, g, g + 1, ..., while
ρc, ρm, 8, and I are defined on the centers of grid cells with
subscripts ..., g − 1/2, g + 1/2, ..., as illustrated in Figure 1. Such
discretization makes computation of gradients straightforward
(the derivative of a cell-based quantity is a node quantity, and
vice versa). In addition, a staggered grid is necessary to keep
the magnetic field solenoidal without using artificial divergence
cleaning, when the algorithm is extended to magnetized plasmas.

At any time in the PIC algorithm, it is possible to move from
particle quantities to grid quantities simply using interpolation
functions. Properties on grid points xg are calculated by means of
the interpolation functionsW(xg−xp) (dropping the α subscript
in the notation)

{ρm, ρc, u, I}g =
Np
∑

p

{mp, qp, vp, ep}W(xg − xp). (6)

Several interpolation functions can be used. In this work, piece-
wise linear interpolation functions [35, 36] are used:

W(xg − xp) =
{

1− |xg − xp|/1x if |xg − xp| < 1x
0 otherwise.

(7)

In the fluid PIC method, the pressure on each grid point is
derived from I using and Equation of State (EoS). In this work,
we use the ideal gas EoS:

p = ρmI(γ − 1) (8)

where γ = cp/cV is the specific heats ratio.

The PolyPIC method comprises an initialization ( 0 in
Figure 2) for setting up the simulation parameters and a
computational cycle that is repeated at each simulation time

step. The computational cycle consists of five stages 1 – 5 , as
illustrated in Figure 2.

0 Initialization. During the initialization phase, fluid
quantities (densities and fluid velocity) are defined on the grid
and particles are set to be either fluid or kinetic. Particle positions
are typically initialized as uniform in space. If particle is fluid,
its mass and charge are determined from the local mass and
charge densities, while its velocity is set to the local fluid velocity
u. If particle is kinetic, its charge and mass are still calculated
from local densities, but its velocity is randomly sampled from
a Maxwellian distribution centered at u, with the variance equal
to the thermal velocity.

After the initialization, the following five phases are carried
out at each computational cycle.

1 Interpolation Particles → Grid. The values of the fluid
quantities on the grid points (ρm, ρc, u, and I) are computed
using the particle to grid interpolation functions (Equation 6
and Figure 1). It is important to note that both kinetic and fluid
particles participate in this interpolation step. Because of the
thermal spread of kinetic particles, the quantities interpolated
from kinetic particles are affected by thermal noise.

2 Electric Field Calculation on the Grid. After the particle
to grid interpolation, it is possible to calculate the net charge
density ρnet =

∑

α ρc,α . The electrostatic potential 8 is
computed by solving the Poisson’s equation (Equation 5) on the
grid. In this work, we use one dimensional geometry and finite
difference discretization of Equation (5) resulting in an algebraic
equation for each grid point g + 1/2:

8g−1/2 − 28g+1/2 + 8g+3/2

1x2
= −ρnet,g+1/2. (9)

The set of equations for each grid point constitutes a tridiagonal
linear system that can be solved to find 8. After the solution
of the linear solver, the electric field is calculated from 8 by
discretizing Equation (4) with finite difference:

Eg = −
8g+1/2 − 8g−1/2

1x
. (10)

3 Update Grid Quantities (Eulerian Step). In this phase,
the new u and I values are calculated solving the fluid equations
on the grid without the advection term. The momentum and
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FIGURE 1 | Spatial discretization of PolyPIC method.

energy fluid equations to be solved on the grid are:

ρm(x, t)
∂u(x, t)

∂t
= −∇(p(x, t)+ µ(x, t))+ ρc(x, t)E(x, t)

ρm(x, t)
∂I(x, t)

∂t
= −(p(x, t)+ µ(x, t))∇ · u(x, t),

(11)

where µ is the artificial bulk viscosity.
These equations are discretized in time and space in 1D

geometry as follows:

ρ
n+1/2
m,g

un+1
g − ung

1t
= −

png+1/2 + µn
g+1/2 − png−1/2 − µn

g−1/2

1x
+ ρn+1/2

c,g Eng

ρ
n+1/2
m,g+1/2

In+1
g+1/2 − Ing+1/2

1t
= −(png+1/2 + µn

g+1/2)
u
n+1/2
g+1 − u

n+1/2
g

1x
,

(12)
where n is the time level of the discretization and
pn = ρn

mI
n(γ − 1).

In this work, we use an artificial bulk viscosity µ that has been
proposed by Kuropatenko [37] and Chandrasekhar [38]. This
artificial bulk viscosity is non-zero only on grid cells for which
∇ · u > 0 and is formulated as follows [39],

µ = ρm



c2
γ + 1

4
|1u| +

√

c22

(

γ + 1

4

)2

(1u)2 + c21c
2
s



 |1u| ,

(13)
where |1u| =

∣

∣1ux + 1uy + 1uz
∣

∣ is the velocity jump across
the grid cell, cs =

√

γ p/ρm is the adiabatic sound speed, c1 and
c2 are constants.

4 Update Particle Quantities (Lagrangian Step). In this
phase, the new particle quantities are calculated to perform
advection of the fluid and kinetic quantities. We use an explicit
time-marching to advance both fluid and kinetic equations in
time.

Kinetic and fluid particle are updated in different ways as they
advect different quantities in the fluid and kinetic PICmethods:

• Each fluid particle quantity is updated by solving theOrdinary
Differential Equations (ODEs):

dvp

dt
=

du

dt

∣

∣

∣

∣

xp

dep

dt
= mp

dI

dt

∣

∣

∣

∣

xp

dxp

dt
= vp.

(14)

The discretized equations in 1D, using changes in fluid velocity
and internal energy to reduce numerical diffusion [34, 40], are:

vn+1
p = vnp + (un+1 − un)|xp
en+1
p = enp +mp(In+1 − In)|xp
xn+1
p = xnp + v

n+1/2
p 1t.

(15)

We note that particle position is updated using the previous
fluid particle velocity, differently from the fluid PIC method.
Interpolated quantities at particle positions are calculated
using interpolation functions (this time from particle onto
grid):

{un+1−un, In+1−In}|xp =
Ng
∑

g

{un+1
g −ung , I

n+1
g −Ing }W(xg−xnp).

(16)
• Each kinetic particle quantity is updated by solving the ODEs:

dvp

dt
=

q

m
E|xp

dxp

dt
= vp.

(17)

The discretized equations are:

vn+1
p = vnp +

q

m
En|xp1t

xn+1
p = xnp + v

n+1/2
p 1t.

(18)
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FIGURE 2 | The computational cycle of the PolyPIC method.

The electric field at the particle position is calculated from
the values of the electric field defined on the grid using the

interpolation function as En|xp =
∑Ng

g EngW(xg − xnp).

5 Transforming a Fluid Particle to Kinetic Particle? The
PolyPIC algorithm allows us to dynamically flip a particle’s type
from fluid to kinetic, according to a predefined rule. It is possible
to define several rules depending on the problem under study.
An obvious choice is to switch from fluid to kinetic particles
when fluid particles reach a threshold velocity or acceleration (in
practice, we found that a multiple of local thermal velocity is a
convenient threshold velocity):

|vn+1
p | > c1vth or

|vn+1
p − vnp | > c2vth

(19)

Similarly to other approaches in fluid-kinetic coupling, another
obvious choice is to switch to kinetic particles in the regions
where the kinetic effects are relevant. For instance, when studying
plasma sheath formation close to a wall, it is useful to have
kinetic electrons and/or ions close to the wall to model the sheath
kinetically. This case is shown in the left panels of Figure 3

where fluid ions become kinetic when entering the spatial regions
x < 6 and x > 19. However, we found that this choice creates
numerical artifacts between the fluid and kinetic regions. Indeed,
our experiments show that if we confine kinetic particles in a
given spatial region, an artificial sheath forms at the interface
between the kinetic and fluid regions. The formation of this
artificial sheath is clear when analyzing the potential 8 profile in
proximity of x = 10 and x = 17 (bottom left panel of Figure 3).
For this reason, in this work we do not switch to kinetic particles
in selected parts of the domain. Instead, we choose a rule based
either on reaching a threshold velocity or acceleration so that the

FIGURE 3 | Ion phase space and electrostatic potential 8 for a simulation with

ions becoming kinetic when entering the regions x < 6 and x > 15 (left

panels). An artificial sheath between the kinetic and the fluid ions is formed. In

the right panels, ion phase space and electrostatic potential 8 is shown for a

simulation with ions becoming kinetic when their velocity is greater than a

threshold velocity (0.1). In this case, the artificial sheath is not formed.

transition is smoother and no evident sheath forms between fluid
and kinetic regions (bottom right panel of Figure 3).

When a fluid particle becomes kinetic, it obtains a new
velocity. This velocity is sampled randomly from a Maxwellian
distribution centered on the local fluid velocity u|xp , with

variance (σ 2) equal to the local thermal velocity:

vp = u|xp + randn(σ 2 = vth) (20)
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The local (to the particle) fluid and thermal velocity (vth) are
calculated using interpolation functions as

u|xp =
∑Ng

g ugW(xg − xp)

vth =
∑Ng

g

√

pg/ρm,gW(xg − xp).
(21)

In the transformation from fluid to kinetic particle, we assume
a Maxwellian distribution function for kinetic particles while
different kinds of distribution function might occur in non-
equilibrium plasmas.

2.2.1. Numerical Stability
Both fluid and kinetic PIC methods in this work use an
explicit discretization in time, and are subject to their respective
numerical stability constraints:

• Because we use an explicit formulation of equations in 3 , the
fluid PIC simulation time step and grid spacing must satisfy
the Courant condition 1t ≤ 1x/cs = 1x/

√

γ (γ − 1)I.
An implicit discretization of equations with pressure term

evaluated half time (stage 3 ) would remove this stability
condition [34, 40]. In addition, explicit fluid PIC methods are
unstable against the ringing instability when the plasma flow is
lower than a critical velocity [41].

• The kinetic PIC component requires a time step resolving the
plasma period ωp1t ≤ 0.1 to retain numerical stability. In
addition, grid spacing should be smaller than the local Debye
length (3D) to avoid numerical heating and the finite grid
instability (see e.g., [35]).

2.2.2. Implementation
We implement the PolyPIC method in a proof-of-concept
Matlab code, available at http://www.github.com/smarkidis/. In
our implementation, we use only vector operations with masks to
avoid conditional branching and achieve increased performance.
The Poisson equation requires the solution of a linear system that
is calculated with the Matlab solver for tridiagonal matrices. The
interpolation operations that are implemented as a large sparse
matrix vector multiplications take most of the simulation time.
In most of the simulations presented in section 3, interpolation
operations account for more than 50% of the total simulation
time.

The interpolation step in phase 1 of the PolyPIC method
requires interpolation of both fluid and kinetic particles onto
the grid. Because of the thermal spread of kinetic particles,
the fluid quantities calculated with kinetic particles are affected
by numerical noise. This noise appears as relatively small
discontinuities in the fluid quantities, densities, fluid velocity and

pressure. During the update of the fluid quantities in step 3 ,
spurious oscillations might originate because of these small-scale
discontinuities.

To address this problem, we use artificial bulk viscosity in
Equation (12) to dissipate these spurious oscillations. In addition,
a Laplacian smoothing of fluid quantities is beneficial to eliminate
small-scale discontinuities in fluid quantities [35, 42] before

solving the fluid equations on the grid (phase 3 ). The Laplacian

smoothing operation in one dimension on a grid quantity Q is
defined as follows:

S(Qg) =
Qg−1 − 2Qg + Qg+1

4
. (22)

More than one smoothing pass can be also performed as
S(...S(Q)...).

3. RESULTS

We present four different verification tests of the PolyPIC model.
The first two tests are the Landau damping of the Langmuir
and ion acoustic waves tests, showing the use of fluid ions and
kinetic electrons (Langmuir wave test) and kinetic ions and
fluid electrons (ion acoustic wave test). The third and fourth
tests, the two-stream instability and sheath formation tests, show
the dynamic change from fluid to kinetic description within
one simulation. All the tests are performed in one-dimensional
geometry in the electrostatic limit.

3.1. Landau Damping of Langmuir Waves
The first test is the simulation of a Langmuir wave propagation
in a plasma. A Langmuir wave undergoes Landau damping due
to kinetic resonance between the wave and electrons moving
approximately at the phase velocity of the Langmuir wave. The
kinetic energy of such electron population increases at expense of
the Langmuir wave damping. For this reason, a kinetic treatment
of electrons is required for modeling the Landau damping of
Langmuir waves.

We perform a simulation of the Langmuir wave propagation
using one population of kinetic electron particles and one
population of fluid ion particles. The initial electron thermal
velocity is Vthe = 1 with equal temperature for electrons and
ions. The charge to mass ratio is set to −1 for electrons and to
1/1,836 for ions. There are 10,000 kinetic electrons and fluid ions
per cell. The simulation box of size L = 4π3D is divided in
64 cells and has periodic boundaries. To initiate the Langmuir
wave we perturb the initial positions of kinetic electrons: xp =
xp + 0.1 sin(2πxp/L). The simulation step is 1t = 0.1/ωp; a
simulation lasts for 150 computational cycles. The specific heat
ratio for the fluid ions is γ = 7/5. We perform a two-pass
binomial smoothing of the ion fluid quantities at each time step,
and no artificial viscosity is introduced (c1 = 0 and c2 = 0 in
Equation 13).

The k = 1/3D spectral component of the electric field in
Figure 4 (asterisks) is compared with the damping rate obtained
from the linear theory γ = −0.15139ωp (dashed line) and
simulation results of a fluid PIC. To assess the importance of
kinetic electrons, we also perform a simulation of Langmuir wave
propagation with a fluid PIC simulation. The open circles in
Figure 4 represent the electric field spectral component for the
fluid PIC simulation, showing that the Langmuir wave is not
damped when fluid approach is used.
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FIGURE 4 | Comparison between linear theory and PolyPIC simulation of

Langmuir wave damping. The k = 1/3D spectral component of the electric

field for the simulation with kinetic electrons and fluid ions (asterisks)

decreases as predicted by the linear theory (dashed line). The fluid PIC

simulation with both fluid electron and ions (open circles) do not show

damping of the Langmuir wave.

3.2. Landau Damping of Ion Acoustic
Waves
The second test for the PolyPIC method is similar in nature
to the first test of Langmuir wave propagation as it investigates
the kinetic damping of an ion acoustic wave. Differently from
the previous test, we use fluid electrons and kinetic ions in
PolyPIC. As in the previous test, the ion acoustic wave is expected
to damp in time because of kinetic effects. The simulation is
initialized with 10,000 fluid electrons and kinetic ions per cell.
The charge/mass ratio is −1 for electrons and 1/1,836 for ions.
The periodic simulation box of size L = 4π is divided in 64
cells. The ion acoustic wave is excited by perturbing the initial
positions of the kinetic ions: xp = xp + 0.2 sin(2πxp/L). The
initial thermal velocity of ions is Vthi =

√
1/3 and electron/ion

temperature ratio is Te/Ti = 5. A simulation lasts for 600
computational cycles with 1t = 0.025/ωp. The specific heats
ratio for fluid ions is γ = 5/3. We perform a two-pass Laplacian
smoothing (Equation 22) of the ion fluid quantities at each time

step before phase 3 , and artificial viscosity with c1 = 10 and
c2 = 10 is used in Equation (12).

The ion acoustic wave is damped by the resonant interaction
of the wave with particles as shown in Figure 5, where
asterisks depict the electric field’s first spectral component in the
simulation with PolyPIC. A theoretical damping rate −0.25ωp is
plotted with dashed line for comparison. In addition, the results
of kinetic PIC with 10,000 electrons and ions per cell (open
circles) and fluid PIC (open squares) simulations are shown in
Figure 5. The fully kinetic simulation shows a damping rate
similar to the rate in the PolyPIC simulation. However, the wave
trapping period differs and at the end of the simulation the
effects of numerical noise become evident. Additional kinetic
PIC simulations with larger number of particles shows a decrease

FIGURE 5 | Simulation of ion acoustic propagation in plasma using fully kinetic

simulation (open circles), fluid electrons and kinetic ions (asterisks) and fully

fluid (open squares) simulations.

FIGURE 6 | Electron phase space during the two-stream instability at different

times. Initially all the electrons are fluid. Electrons undergoing strong

acceleration become kinetic. This clear from inspecting the electron

phase-space at time = 27, 29/ωp. At time = 42/ωp all the electrons are

kinetic. A video of electron phase space is available here.

of numerical noise and a convergence to correct representation
of wave-particle interaction. On the other hand, fluid PIC
simulation misrepresents the physics, and the ion acoustic wave
is not damped.

3.3. Two-Stream Instability
The two-stream instability test aims at verifying the dynamic
change from fluid to kinetic electrons. The two-stream instability
is a kinetic instability occurring in presence of two counter-
streaming electron beams. The linear growth of the instability
can be described correctly by two electron fluid theory [35]. For
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FIGURE 7 | The k = 1 spectral component of the electric field is shown for two fluid PIC simulation (open circles), PolyPIC simulation (asterisks) and linear theory

(dashed line) in the top panel. The two fluid PIC simulation becomes unstable during the non-linear stage of the instability. The bottom panel shows the ratio of kinetic

electrons over the total number of electrons during the PolyPIC simulation. Initially, all the electrons are fluids; during the non-linear phase of the instability, the

electrons become kinetic.

FIGURE 8 | Electron (black dots) and ion (gray dots) phase space in the sheath

simulation. Initially all the electrons are kinetic and ions are fluid. If ion particle

velocity becomes higher than 40 times the initial ion thermal velocity, the ion

particle becomes kinetic. Fluid ion particles become kinetic in the sheath close

to the walls (x = 0 and x = L). A video of phase space is available here.

this reason, the PolyPIC simulation can start from fluid electrons
where each beam constitutes a fluid. However, the non-linear part
of the instability cannot be described correctly by the two fluid

theory and a kinetic treatment is required. During the non-linear
part of the instability, many of the fluid electrons undergo strong
acceleration and flip their type from fluid to kinetic.

The simulation initializes the two electron beams as two
separate fluid particle species with 100 particles/beam/cell in
a periodic domain with L = 2π/3.06 divided into 64 grid
cells. We initialize the electron beams of relatively cold electrons
with thermal speed Vthe = 0.01, and beam drift velocity ±0.2.
Motionless ions provide only a background charge density to
neutralize the system (they are not explicitly considered in the
simulation). The simulation lasts for 2,100 cycles with 1t =
0.02/ωp. The time step is chosen to resolve electron dynamics
during instability and satisfies the numerical stability constraints.
The two-stream instability is initiated by perturbing the initial
electron positions: xp = xp + 0.1 sin(2πxp/L). The specific heats
ratio for electrons in this simulation is γ = 7/5. An artificial
viscosity (Equation 13) is used with c1 = 1 and c2 = 1.

In the PolyPIC simulation, fluid electrons become kinetic
when they undergo a strong acceleration. Namely, when a
particle’s fluid velocity variation in a time step vn+1

p − vnp is larger
than Vthe/10. We found that in practice such a threshold value
allows fluid particles to become kinetic during the initial stage of
the non-linear part of the instability.

Initially in the PolyPIC simulation, the two electron beams
consist of only fluid particles. This is clear from inspecting the
top left panel of Figure 6 showing the electron phase space at
time 0. Approximately at t = 27/ωp, fluid electrons undergoing
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FIGURE 9 | (Top) The electrostatic potential in the simulation domain at three time steps: tωp = 50 (open circles), t = 75/ωp (open squares), t = 100/ωp (asterisks).

(Bottom) The ratio of kinetic ions during the sheath simulation.

a strong acceleration start turning to kinetic. This is visible by the
spread of electrons due to thermal noise in the four regions in
the top right panel of Figure 6. The extent of these kinetic regions
increases with time until a certain moment when it covers the
entire simulation domain. Finally, all electrons are kinetic at time
t = 42/ωp (bottom right panel of Figure 6).

The PolyPIC method is verified against linear theory
prediction of the instability growth rate. The top panel of
Figure 7 shows a comparison of the simulated electric field
component k = 1 (asterisks) with the instability growth rate of
0.35355ωp, predicted by the linear theory (dashed line). Open
circles show the growth of the instability in the two fluid PIC
simulation. The two fluid PIC simulation models correctly the
linear stage of the instability growth, but then becomes unstable
at t = 31/ωp. We note that higher values of artificial viscosity
allows the simulation to progress for longer period in the non-
linear regime of the instability, but eventually the fluid simulation
becomes numerically unstable. The bottom panel of Figure 7
shows the ratio of kinetic electrons over the total number of
electrons in the PolyPIC simulation. Initially, all the electrons
are fluid. The first electrons become kinetic approximately at
t = 26/ωp. The electrons are all kinetic at t = 31/ωp.

3.4. Plasma Sheaths
The last problem used to test the PolyPIC method is the sheath
formation in the proximity of walls. Because of the higher
mobility of electrons, initially more electrons exit than ions,
leading plasma to have positive potential with respect to the wall.

This simulation is initiated with kinetic electrons and fluid
ions. During the simulation, ions can become kinetic if their
velocity is greater than a specific threshold velocity. Ions are
accelerated close to the domain walls, hence we expect the kinetic
regions to form adjacent to the walls. The simulation box with
L = 253D long is divided into 256 cells. We eliminate particles
exiting the simulation box and fix the electrostatic potential on
the walls to 0. Initially, there are 500 electrons and ions per
cell. The charge/mass ratio is −1 for electrons and 1/1,836 for
ions. The initial thermal velocity of electrons is Vthe = 1 and
electron/ion temperature ratio is 1. The fluid ions become kinetic
when they reach a threshold velocity of 40Vthe. The simulation
lasts for 2,000 computational cycles with 1t = 0.05/ωp. The
specific heats ratio for the fluid ions is γ = 7/5. We perform a
two-pass binomial smoothing of the ion fluid quantities, and an
artificial viscosity (Equation 13) is used with c1 = 1 and c2 = 1.

Initially all ions in the simulation are fluid and depicted with
gray dots in the phase space plot shown in the upper left panel of
Figure 8. As the simulation progresses, in proximity of the walls
ions reach velocity higher than the threshold velocity and become
kinetic. Subsequent panels in Figure 8 show the widening regions
adjacent to the walls where kinetic ions are spread by thermal
noise. The top panel of Figure 8 shows electrostatic potential
at different simulation times. The electrostatic potential remains
similar during the simulation and it is not impacted by ions
switching from fluid to kinetic. The bottom panel of Figure 9
shows the ratio of kinetic ions over the total number of ions in the
PolyPIC simulation. Initially all the ions are fluid. At t = 18/ωp
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the first ions start turning to kinetic; after this, the number of
kinetic ions increases linearly with time.

4. DISCUSSION AND CONCLUSION

A new PIC method using polymorphic computational particles
has been formulated and implemented to combine the fluid and
kinetic PIC methods under a unified common framework. The
PolyPIC method is adaptive as it allows fluid particles to become
kinetic when undergoing a strong acceleration or reaching a
threshold velocity. We implemented a proof-of-concept code
based on the explicit discretization of the governing equations
and used it to solve successfully four different test problems.

A first challenge when coupling fluid and kinetic approaches is
to eliminate spurious effects occurring at the boundary between
fluid and kinetic regions. For instance, we showed that a sheath
forms at the interface between the regions with kinetic particles
and with fluid particles in the same way a sheath forms when two
different plasmas are put in contact. It is preferable to change the
type of the particle from fluid to kinetic depending on its velocity
instead of its position to allow a smooth transition between
the fluid and kinetic regions. Currently, the criterion to switch
particles from fluid to kinetic are set empirically. A dedicated
study is needed on how to set these criteria automatically.

A second major challenge in coupling fluid and kinetic
approaches in the same PIC method is that moments (densities,
fluid velocity, . . . ) computed from kinetic particles are not
smooth, as fluid quantities typically are, because of the kinetic
particle noise. This noise produces small discontinuities in
the computed moments which might result in unphysical
oscillations. An artificial bulk viscosity introduced into fluid
equations effectively remedies the effects of numerical noise. In
addition, smoothing and filtering can reduce noise from kinetic
particles before updating the fluid quantities. How to eliminate
such spurious effects without affecting energy conservation, is a
topic of future research.

One of the advantages of fluid PIC method with respect
to the kinetic PIC approach is the fact fluid PIC method

requires only a small number of particles to describe accurately
the evolution of the system. However, kinetic PIC methods
typically require a very large number of particles to describe
accurately kinetic effects such as wave-particle interaction. In
order to use few fluid particles but many kinetic particles
when needed, the PolyPIC method requires a particle splitting
technique when switching from one fluid particle to many kinetic
particles [43].

In this work we did not address the change of a kinetic particle
to fluid particle. Presently there is no clear and simple use case
to present. However, such techniques can be easily designed. An
efficient implementation might require the coalescence of several
kinetic particles in one fluid particle.

To conclude, we have unified the fluid and kinetic PIC
methods under a unified common framework comprising both
fluid and kinetic particles. This approach allows the simulation
to change smoothly from fluid to kinetic description in time and
space providing a powerful tool for adaptive fluid-kinetic plasma
simulations.
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