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Abstract
Backgrounds/Aims: Bromodomain-containing protein 4 (BRD4) overexpression participates 
in prostate cancer progression by enhancing the transcriptional activity and expression of 
several key oncogenes. AZD5153 is a novel BRD4 inhibitor. Methods: Prostate cancer cells 
were treated with AZD5153. Cell survival was tested by MTT assay and clonogenicity assay. 
Cell proliferation was tested by [H3] DNA incorporation assay. Cell apoptosis was tested by 
caspase-3/-9 activity assay, Histone DNA ELISA assay, Annexin V FACS assay and TUNEL 
staining assay. Cell cycle progression was tested by propidium iodide (PI) FACS assay. Signaling 
was tested by Western blotting assay. The nude mice PC-3 xenograft model was applied 
to test AZD5153’s activity in vivo. Results: AZD5153 inhibited proliferation and survival of 
established and primary prostate cancer cells. AZD5153 induced apoptosis activation and cell 
cycle arrest in prostate cancer cells. AZD5153 was non-cytotoxic to the prostate epithelial cells. 
AZD5153 downregulated BRD4 targets (cyclin D1, Myc, Bcl-2, FOSL1 and CDK4) in PC-3 and 
primary prostate cancer cells. Further studies show that AKT could be the primary resistance 
factor of AZD5153. Pharmacological inhibition or genetic depletion of AKT induced BRD4 
downregulation, sensitizing AZD5153-induced cytotoxicity in PC-3 cells. In vivo, AZD5153 oral 
administration inhibited PC-3 xenograft tumor growth in nude mice. Its anti-tumor activity 
was further enhanced with co-treatment of the AKT specific inhibitor MK-2206. Conclusion: 
Together, our results indicate a promising therapeutic value of the novel BRD4 inhibitor 
AZD5153 against prostate cancer cells.

Introduction

Molecularly-targeted therapy is important for prostate cancer treatment [1-4]. 
Bromodomain and extraterminal (BET) family proteins have four members, including 
bromodomain-containing protein (BRD) 2, BRD3, BRD4 and testis-specific isoform BRDT 
[5, 6]. BET proteins are transcriptional co-activators. They regulate a number of key cellular 
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behaviors, including cell cycle progression, cell proliferation, apoptosis-resistance, migration 
and invasion [5, 6]. BET proteins are often overexpressed in human cancers, correlated with 
cancer initiation, carcinogenesis and progression [5, 6]. BET inhibitors, including JQ1 and 
CPI203, have demonstrated promising anti-cancer efficiency in preclinical cancer studies 
and early clinical trials [5, 6].

BRD4 is the most abundant BET family protein [7-10]. It binds to acetylated-histones, 
acting as a key epigenetic regulator [7-9, 11]. BRD4 helps to maintain the normal chromatin 
structure in the daughter cells [7-9]. BRD4 recruits P-TEFb (the positive transcription 
elongation factor b) and the RNA polymerase II, both are essential for transcription elongation 
[9]. BRD4 targets are mostly key oncogenes, including Bcl-2 [12, 13], Myc [11, 14, 15] and 
cyclin D1 [16, 17]. Recent studies have proposed BRD4 as a potential therapeutic target of 
prostate cancer [18-20]. Recent studies have developed a novel, potent and specific BRD4 
inhibitor, AZD5153 [21-23]. Unlike other BRD4 inhibitors, AZD5153 is a bivalent BRD4 
inhibitor targeting two bromodomains of BRD4 [22]. It displaces BRD4 from chromatin at 
relatively lower concentration [22]. It’s activity against human prostate cancer cells is tested 
here.

Materials and Methods

Chemicals and reagents
AZD5153 was purchased from Medkoo Bioscience (Beijing, China). The antibodies were all provided 

by the Cell Signaling Tech (Beverly, MA). The AKT inhibitor MK-2206 was purchased from Sigma (Shanghai, 
China). The AKT inhibitor AKTi-1/2 [24, 25], the BRD4 inhibitors (JQ1 and CPI203) were obtained from 
Selleck (Shanghai, China).

Cell lines
Human prostate cancer cell lines, PC-3 and LNCaP, were purchased the iBS cell bank of Fudan 

University (Shanghai, China). Cells were cultured as monolayer in RPMI-1640 with 10% FBS (fetal bovine 
serum). RWPE1, the non-transformed prostate epithelial cell line, was provided by Dr. Shuo [26]. RWPE1 
cells were cultured in Defined Keratinocyte-SFM medium supplemented with described growth factors [26]. 
The reagents for cell culture were all obtained from Hyclone (Suzhou, China).

Primary culture of human cells
One patient administrated at the first-affiliated hospital of Soochow University was enrolled in this 

study. The written-informed patient, male, 52-year old, didn’t receive prior chemical, hormonal, or radiation 
therapy before surgery (see our previous study [27]). The prostate cancer tissues and surrounding epithelial 
tissues were separated carefully. Tissues were minced, digested, and pipetted to disperse clumps [27]. Cells 
cultured on collagen-coated tissue-culture plates (BD Biosciences, Suzhou, China) in the described medium 
[26]. Primary human cells at passage 3-10 were utilized for further experiments, with approval by the ethics 
committee of Nantong University.

MTT assay
As described [27], methyl thiazolyl tetrazolium (MTT) assay was performed to test cell survival. MTT 

was dissolved in DMSO. MTT optical density (OD) at 570 nm was recorded.

Clonogenicity assay
Prostate cancer cells (5 ×105 per well) with the indicated treatment were trypsinized and re-suspended 

in agarose-containing medium. Cells were then plated on the top of six-well plates. AZD5153-containing 
medium was renewed every two days for a total of 10 days. Afterwards, the colonies were counted.
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Western blotting assay
The lysis buffer (Biyuntian, Suzhou, China) was added to cultured cells [28, 29]. Total cellular 

lysates were resolved by SDS-PAGE gels, and then transferred onto the PVDF membrane. The blot was 
incubated with PBST with 10% non-fat dry milk and desired primary/secondary antibodies. The enhanced 
chemiluminescence (ECL) method was applied to detect the immuno-reactive bands. Band intensity was 
quantified by the ImageJ software (NIH).

Caspase-3/-9 activity assay
Twenty μg of cytosolic extracts were mixed with the caspase assay buffer [26] and the caspase-3 

substrate Ac-DEVD-AFC (15 μg/mL) or the caspase-9 substrate Ac-LEHD-AFC (15 μg/mL) (Calbiochem, 
Darmstadt, Germany). After incubation, the amount of released AFC was tested by the spectrofluorometer 
(Thermo-Labsystems, Helsinki, Finland) with excitation of 380 nm and emission wavelength of 460 nm.

Annexin V assay
Briefly, cells with the applied treatment were harvested, washed, and incubated with Annexin V and 

propidium iodide (PI). Afterwards, cells were analyzed by fluorescent-activated cell sorting (FACS) on a 
FACSCalibur machine (BD Biosciences). Percentage of Annexin V positive cells was recorded .

Histone DNA apoptosis ELISA assay
The Histone-DNA ELISA assay detects apoptotic cell death by quantifying cytoplasmic histone-

associated DNA fragments [26]. The assay was performed with the instruction from the manufacturer 
(Roche, Shanghai, China). Histone-DNA ELISA OD at 450 nm was recorded.

TUNEL assay
TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling) In Situ Cell Death Detection 

Kit (Roche, Shanghai, China) was utilized to quantify cell apoptosis. The percentage of apoptotic cells was 
determined by the TUNEL percentage (TUNEL/Hoechst×100%). At least 100 cells per preparation in five 
random views were counted.

Cell cycle analysis
After the treatment, cells were labeled with PI (10 μM), analyzed on a FACSCalibur machine (BD 

Biosciences). Cell cycle percentages were recorded.

Quantitative reverse transcriptase real-time polymerase chain reaction (qRT-PCR) assay
Total cellular RNA was extracted by the TRIzol reagents [2]. The First-Strand Synthesis Kit 

(SABiosciences, Frederick, MD) was utilized for cDNA synthesis. qRT-PCR was performed in Quant studio 
3 (Applied Biosystems, Foster City, CA) via the SYBR GREEN kit (TaKaRa, Japan). The 2−ΔΔCt method was 
applied to quantify BRD4 mRNA using GAPDH as the internal control. The mRNA primers for BRD4: 
5’-ACCTCCAACCCTAACAAGCC-3’ and 5’-TTTCCATAGTGTCTTGAGCACC-3’ [30], the mRNA primers for GAPDH: 
5’-GCACCGTCAAGGCTGAGAAC-3’ and 5’-TGGTGAAGACGCCAGTGGA-3’ [30] were synthesized by Genechem 
(Shanghai, China).

AKT1 shRNA
AKT1 shRNA lentiviral particles (Santa Cruz Biotech, sc-29195-V) were added to PC-3 cells for 12 

hours. Afterwards, puromycin (10 μg/mL, Sigma) was added to select stable cells. AKT1 knockdown in 
stable cells was verified by Western blotting assay. Control cells were transfected with lentiviral scramble 
control shRNA (Genechem).

CRISPR/Cas9 knockout of AKT1
The lentiCRISPR plasmid with the AKT1 CRISPR/Cas9 KO Plasmid, provided by Genepharm (Shanghai, 

China), was transfected to PC-3 cells. Afterwards, puromycin (10μg/mL, Sigma) was added to select stable 
cells. AKT1 knockout in the stable cells was verified by Western blotting assay.
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Fig. 1. AZD5153 inhibits prostate cancer cell survival and proliferation. The established (LC-3 and LNCaP 
lines) or the primary human (patient-derived) prostate cancer cells, the prostate epithelial RWPE1 cells or 
the primary human (patient-derived) prostate epithelial cells were cultured in complete medium, and cells 
were treated with applied concentration of AZD5153 (A-F), JQ1 (500 nM) (F) or CPI203 (500 nM) (F) for 
indicated time, cell survival was tested MTT assay (A, D and F) and clonogenicity assay (B); Cell proliferation 
was tested by the [H3] DNA incorporation assay (C and E). “C” stands for cells without treatment. For each 
assay, n=5. Data are mean ± SD. # P<0.05 vs. “C” cells. * P<0.05 vs. AZD5153 treatment. Experiments in this 
Fig. were repeated four times, and similar results were observed.

Xenograft assay
Male nude mice (6-8 weeks old, 17-19 g weight) were provided by the experimental animal center of 

Soochow University (Suzhou, China). Mice were maintained in accordance with Institutional Animal Care 
Use Committee guidelines. PC-3 cells (3×106 cells per mouse, dissolved in Matrigel, 1:1 ratio, in 0.1 mL total 
volume) were injected subcutaneously (s.c.) on the right flanks. Four weeks post tumor implantation, the 
volume of each tumor was close to 100 mm3. Mice were then randomly assigned into four groups. Tumor 
volumes, mice body weights and tumor weights were determined as described [27].

Statistical analysis
Results were expressed as the mean ± standard deviation (SD). Ordinary one-way ANOVA test was 

employed for comparison between groups. Multiple comparisons were performed using Tukey’s honestly 
significant difference procedure. To determine significance between two treatment groups, a two-tailed 
unpaired t test was applied. A P value <0.05 was considered statistically different.

Results

AZD5153 inhibits prostate cancer cell survival and proliferation
First, PC-3 pancreatic cancer cells [31] were treated with applied concentration of 

AZD5153 (1-1000 nM). MTT assay results in Fig. 1A demonstrate that AZD5153 dose-
dependently inhibited PC-3 cell survival, causing significant MTT OD reduction (Fig. 1A). 
The anti-survival effect by AZD5153 was also time-dependent (Fig. 1A). At least 48 hours 
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Fig. 2. AZD5153 induces apoptosis activation in prostate cancer cells. The established (LC-3 and LNCaP 
lines) or the primary human prostate cancer cells, the prostate epithelial RWPE1 cells or the primary 
human prostate epithelial cells were cultured in complete medium, and cells were treated with applied 
concentration of AZD5153 (A-I), JQ1 (500 nM) (I) or CPI203 (500 nM) (I) for indicated time, cell apoptosis 
was tested by the assays mentioned in the text. Cleaved-Caspase-3 and cleaved-PARP expression were 
quantified (A). “C” stands for cells without treatment. For each assay, n=5. Data are mean ± SD. # P<0.05 vs. 
“C” cells. * P<0.05 vs. AZD5153 treatment (I). Experiments in this Fig. were repeated four times, and similar 
results were observed.

were required for AZD5153 to achieve significant activity (Fig. 1A). AZD5153’s IC-50 (the 
concentration using 50% inhibition of cell survival) was close to 100 nM at 72 hours and 
around 10 nM at 96 hours (Fig. 1A). Clonogenicity assay was performed to test cell survival 
as well. Results in Fig. 1B show that the number of viable PC-3 cell colonies was significantly 
decreased after AZD5153 (10-1000 nM) treatment. To test cell proliferation, [H3] DNA 
incorporation assay [32] was performed, results show that AZD5153 dose-dependently 
inhibited the amount of incorporated [H3] DNA in PC-3 cells (Fig. 1C), suggesting that 
AZD5153 inhibited PC-3 cell proliferation.

Next, we tested the potential effect of AZD5153 on other prostate cancer cells. In 
established (LNCaP cell line) and primary (patient-derived) human prostate cancer cells, 
treatment with 100 nM of AZD5153 significantly decreased cell viability (MTT OD, Fig. 1D) 
and [H3] DNA incorporation (Fig. 1E). RWPE1, the non-transformed prostate epithelial cells 
[26] and the primary cultured prostate epithelial cells were treated with AZD5153 as well. 
By performing MTT assay and [H3] DNA incorporation assay, we show that AZD5153 failed to 
affect survival (Fig. 1D) and proliferation (Fig. 1E) of epithelial cells. Significantly, 100 nM of 
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Fig. 3. AZD5153 induces cell cycle arrest in prostate cancer cells. PC-3 cells, LNCaP cells and primary human 
prostate cancer cells (“Primary Cancer”) were cultured in complete medium, and cells were treated with 
100 nM of AZD5153 for 24 hours, cell cycle distribution was tested by the PI-FACS assay, representative 
FACS images were shown (A) and data were quantified (B-D). “C” stands for cells without treatment. For 
each assay, n=5. Data are mean ± SD. # P<0.05 vs. “C” cells. Experiments in this Fig. were repeated four times, 
and similar results were observed.

AZD5153 was more potent in inhibiting PC-3 cell survival than higher concentration of other 
BRD4 inhibitors, including JQ1 (500 nM) [16, 33] and CPI203 (500 nM) [34] (Fig. 1F). These 
results demonstrate that AZD5153 inhibits prostate cancer cell survival and proliferation in 
vitro.

AZD5153 induces apoptosis activation in prostate cancer cells
The potential effect of AZD5153 on cell apoptosis was tested. Western blotting assay 

results in Fig. 2A demonstrate that AZD5153 dose-dependently induced cleavages of 
caspae-3 and its substrate poly (ADP-ribose) polymerase (PARP) in PC-3 cells. Activities of 
caspase-3 (Fig. 2B) and caspase-9 (Fig. 2C) were significantly increased as well, followed 
by the increased content of Histone-bound DNA (Fig. 2D). Additionally, the percentage of 
PC-3 cells with positive Annexin V-positive staining (“apoptotic cells”) was increased after 
AZD5153 treatment (Fig. 2E and F).

Further studies show that 10-1000 nM of AZD5153  increased the percentage of PC-3 
cells with TUNEL staining (Fig. 2G). AZD5153-induced apoptosis activation was dose-
dependent (Fig. 2A-G). TUNEL staining assay results in Fig. 2H suggest that AZD5153 (100 
nM) induced apoptosis in LNCaP and primary human prostate cancer cells. Conversely, after 
AZD5153 treatment, TUNEL ratio was unchanged in RWPE1 and primary prostate epithelial 
cells (Fig. 2H). Significantly, TUNEL assay results in Fig. 2I demonstrate that AZD5153 (100 
nM) was more efficient in inducing PC-3 cell apoptosis than JQ-1 and CPI203 (at 500 nM). 
Together, AZD5153 induces apoptosis activation in prostate cancer cells.
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Fig. 4. AZD5153 downregulates BRD4 targets in prostate cancer cells. PC-3 cells (A-C) or the primary human 
(patient-derived) prostate cancer cells (D-F) were treated with 100 nM of AZD5153 for 24 hours, expression 
of listed proteins in total cell lysates were tested by the Western blotting assay (A and D); The total gray of 
each band was quantified, which was normalized to the corresponding loading control (B, C, E and F). “C” 
stands for cells without treatment. Data are mean ± SD. # P<0.05 vs. “C” cells (ANOVA test). Experiments in 
this Fig. were repeated five times, and similar results were observed.

AZD5153 induces cell cycle arrest in prostate cancer cells
As discussed, BRD4 regulates activation of P-TEFb and RNA polymerase II, both are 

essential for cell cycle progression [9]. PI FACS assay results in Fig. 3A demonstrate that 
AZD5153 (100 nM, 24 hours) significantly decreased G1-phase PC-3 cells, yet increasing S- 
and G2-M phase cells. Results in Fig. 3B confirm that AZD5153-induced cell cycle arrest was 
significant. The similar results were also observed in AZD5153-treated LNCaP cells (Fig. 3C) 
and primary human prostate cancer cells (Fig. 3D). Thus, AZD5153 induces cell cycle arrest 
in prostate cancer cells.

AZD5153 downregulates BRD4 targets in prostate cancer cells
BRD4 is required for the expression of several key oncogenes [12, 13, 15, 35, 36]. 

Western blotting assay results show that treatment with AZD5153 (100 nM, 24 hours) 
induced downregulation of multiple BRD4 targets, including cyclin D1, Myc and Bcl-2 (Fig. 
4A and B) as well as FOSL1 and CDK4 (Fig. 4A and B) in PC-3 cells. BRD4 protein expression 
and AKT expression/activation were not affected by AZD5153 (Fig. 4A and C). The similar 
results were also obtained in the primary human prostate cancer cells, where AZD5153 (100 
nM, 24 hours) efficiently downregulated the BRD4 targets (Fig. 4D and E), while leaving 
BRD4 expression and AKT unaffected (Fig. 4D and F). These results suggest that AZD5153 
inhibits BRD4 in prostate cancer cells.

AKT is a primary resistance factor of AZD5153 in prostate cancer cells
One aim of this study is to identify the possible resistance factors of AZD5153. A 

very recent study by Zhang et al., has implied that AKT activation might be important for 
the resistance of BRD4 inhibitors [18]. First, two known AKT inhibitors, AKTi-1/2 [24] 
and MK-2206 [37], were utilized. As shown in Fig. 5A, AKTi-1/2 or MK-2206 blocked 
phosphorylation of AKT (at Ser-473) and S6K1 (at Thr-389) [38] in PC-3 cells. BRD4 protein 
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Fig. 5. AKT is a primary resistance factor of AZD5153 in prostate cancer cells. PC-3 cells were treated with 
100 nM of AZD5153, with/out AKTi-1/2 (10 μM) or MK-2206 (10 μM), expression of listed proteins and 
BRD4 mRNA were shown (A and B); Cell survival (MTT OD, C) and apoptosis (TUNEL-nuclei ratio, D) were 
tested. The stable PC-3 cells, with AKT1 shRNA or CRISPR-Cas9-AKT1 (“AKT1 KO”), as well as the parental 
control PC-3 cells (“Par”), were treated with 100 nM of AZD5153, listed proteins and BRD4 mRNA (E and F) 
were shown. Cell survival (G) and apoptosis (H) were tested. “C” stands for cells without treatment. BRD4 
protein expression was quantified (A and E). Data are mean ± SD. # P<0.05 vs. “C” cells. * P<0.05 vs. AZD5153 
treatment in DMSO (0.1%, C and D) or “Par” cells (G and H). Experiments in this Fig. were repeated five 
times, and similar results were observed.

and mRNA expression were downregulated as well by the AKT inhibitors (Fig. 5A and B). 
AZD5153-induced Myc downregulation was however not affected by the AKT inhibitors 
(Fig. 5A). Significantly, AZD5153 (100 nM)-induced viability reduction (MTT assay, Fig. 5C) 
and apoptosis activation (TUNEL assay, Fig. 5D) were potentiated by the AKT inhibitors. 
The CalcuSyn software was applied to calculate Combination Index (CI) using the Chou-
Talalay method [39]. CI values between AZD5153 and the AKT inhibitors were less than one, 
indicating a possible synergism. The AKT inhibitors alone only induced minor cytotoxicity in 
PC-3 cells (Fig. 5C and D).

To exclude the possible off-target toxicities by the AKT inhibitors, genetic strategies 
were applied. AKT1 shRNA lentivirus were added to PC-3 cells, resulting in significant AKT1 
knockdown (Fig. 5E). Further, CRISPR-Cas-9 gene-editing method was utilized to knockout 
AKT1. AKT1 expression was depleted in stable PC-3 cells with the CRISPR-Cas-9-AKT1 
KO plasmid (“AKT1-KO” cells, Fig. 5E). Significantly, expression BRD4 protein and mRNA 
were reduced by AKT1 shRNA or knockout (Fig. 5E and F). As a result, AZD5153-induced 
viability reduction (Fig. 5G) and apoptosis (Fig. 5H) were significantly potentiated. The 
pharmacological and genetic evidence suggest that AKT is a primary resistance factor of 
AZD5153 in prostate cancer cells.

AZD5153 oral administration inhibits PC-3 xenograft growth in nude mice
The potential effect of AZD5153 in vivo was tested. PC-3 cells were inoculated s.c. to the 

nude mice, treatment was started when tumor volume was around 100 mm3. Tumor growth 
curve results in Fig. 6A demonstrate that oral administration of AZD5153 (10 mg/kg body 
weight, daily, for 18 days) significantly inhibited PC-3 xenograft growth. When analyzing 
estimated daily tumor growth, which was calculated by (volume at Day-35 — volume at Day-
0)/35, we show again that AZD5153 administration inhibited PC-3 xenograft growth (Fig. 
6B). At Day-35, tumors of each group were isolated. AZD5153-treated PC-3 tumors weighted 
much lower than vehicle control tumors (Fig. 6C). Thus, AZD5153 oral administration 
inhibited PC-3 xenograft growth in vivo.

0

10

20

30

40 Par
AKT1 shRNA
AKT1 KO

C AZD5153 (100 nM), 60 Hrs

TU
N

EL
 N

uc
le

i (
%

)

# #
#

0

0.2

0.4

0.6

0.8
DMSO
MK-2206
AKTi-1/2

M
TT

 O
D

# #

# #

#

C AZD5153 (100 nM), 72 Hrs

* *

0

0.2

0.4

0.6

0.8
Par
AKT1 shRNA
AKT1 KO

M
TT

 O
D

C AZD5153 (100 nM), 72 Hrs

# #

# #

#

* *

0

10

20

30

40 DMSO
MK-2206
AKTi-1/2

TU
N

EL
 N

uc
le

i (
%

)

#
#

#

C AZD5153 (100 nM), 60 Hrs

A. B. C.

Figure 5

E. F. G.
Tubulin

p-AKT

AKT1

BRD4

p-S6K1

Myc

DMSO
MK-22

06

AKTi-1
/2

#* #*

#* #*

#

0

0.04

0.08

0.12 DMSO
MK-2206
AKTi-1/2

# # #

BR
D

4 
m

R
N

A 
(v

s.
 G

AP
D

H
)

C AZD5153 (100 nM), 24 Hrs

0

0.4

0.8

1.2

BR
D

4 
m

R
N

A 
(v

s.
 G

AP
D

H
)

#

#

#
#

Par
AKT1 shRNA
AKT1 KO

C AZD5153 (100 nM), 24 Hrs

55kD-

200kD-

60kD-

60kD-

70kD-

60kD-

DMSO
MK-22

06

AKTi-1
/2

Ctrl
AZD5153
(100 nM), 24h

D.

1.65 0.81 0.76 1.76 0.69 0.72 (vs. Tubulin)

55kD-

200kD-

60kD-

60kD-

70kD-

60kD-

Tubulin

p-AKT

AKT1

BRD4

p-S6K1

Myc

Par AKT1 s
hR

NA

AKT1 K
OAZD5153

(100 nM), 24h

0.62 0.27 0.15  (vs. Tubulin)

H.

http://dx.doi.org/10.1159%2F000494244


Cell Physiol Biochem 2018;50:798-809
DOI: 10.1159/000494244
Published online: 12 October 2018 806

Cellular Physiology 
and Biochemistry

Cellular Physiology 
and Biochemistry

© 2018 The Author(s). Published by S. Karger AG, Basel
www.karger.com/cpb

Shen et al.: AZD5153 Inhibits Prostate Cancer Cell Growth

Fig. 6. AZD5153 oral administration inhibits PC-3 xenograft growth in nude mice. PC-3 tumor-bearing nude 
mice were administrated with AZD5153 (10 mg/kg body weight, daily, p.o.) and/or MK-2206 (5 mg/kg 
body weight, daily, i.p.) for a total of 18 consecutive days, tumor volume (A) and the mice body weight (D) 
were recorded every 5 days for a total of 35 days; Estimated daily tumor growth (in mm3 per day) was 
calculated as described (B). At Day-35, tumors of each group were isolated and weighted (C). For each assay, 
n= 10 mice. Data are mean ± SD. # P<0.05 vs. “Vehicle” group (ANOVA test) (A-C). * P<0.05 vs. AZD5153 only 
treatment (A-C).

PC-3 xenograft-bearing nude mice were also co-administrated with MK-2206. As 
demonstrated, MK-2206 (5 mg/kg body weight, daily, i.p., for 18 days) co-treatment potentiated 
AZD5153-induced inhibition on PC-3 xenografts (Fig. 6A-C). MK-2206 administration alone 
only induced relatively weak tumor inhibition (Fig. 6A-C). The combined activity was more 
potent than each single treatment (Fig. 6A-C). Experimental animals were well-tolerated to 
the treatment regimens. We failed to detect any significant body weight differences among 
the mice (Fig. 6D). Therefore, MK-2206 co-administration sensitizes AZD5153-induced anti-
tumor activity in vivo.

Discussion

BRD4 regulates transcription and expression of several key oncogenes, including cyclin 
D1, c-Myc, Bcl-2 and androgen receptor (AR) [15]. Recent studies have proposed BRD4 as 
an important oncotarget protein for prostate cancer [12-14]. Here, we show that AZD5153, 
a novel bivalent BRD4 inhibitor [21-23], inhibited survival and proliferation of established 
(PC-3 and LNCaP lines) and primary human prostate cancer cells. Further, AZD5153 induced 
apoptosis activation and cell cycle arrest in prostate cancer cells. AZD5153-induced anti-
prostate cancer cell activity in vitro was more potent than other known BRD4 inhibitors (JQ1 
and CPI203). In vivo, AZD5153 oral administration inhibited PC-3 xenograft tumor growth 
in nude mice.

Resistances to BET inhibitors have been well-documented, the molecular mechanisms 
of acquired resistance of BRD4 inhibitors are largely unknown until recently. The gene 
encoding the E3 ubiquitin ligase substrate-binding adaptor speckle-type POZ protein 
(SPOP) is commonly mutated in human prostate cancers [40]. Cancer-associated SPOP 
mutations are observed in the meprin and TRAF (Tumor necrosis factor receptor-associated 
factor) homology (MATH) domain, inhibiting substrate binding [40]. Recent studies have 
demonstrated that BET proteins, including BRD2, BRD3 and BRD4, are the targets of SPOP 
[18-20]. Wild-type SPOP binds to the a degron motif in the BET proteins, causing their 
ubiquitination and proteasomal degradation [18-20]. Conversely, prostate cancer-associated 
SPOP mutants are not able to bind to BET proteins, which will lead to impaired BET proteins 
proteasomal degradation [18-20].

A very recent study by Zhang et al., has suggested that activation of AKT-mTORC1 
signaling could be a consequence of BRD4 stabilization in human prostate cancer cells [18]. 
In this study, we show that inhibition of BRD4 by AZD5153 failed to affect AKT-mTORC1 
signaling in prostate cancer cells. Rather, AKT activation could be a major resistance factor 
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of AZD5153. AKT activation is important for BRD4 expression in prostate cancer cells. 
Pharmacological inhibition (MK-2206 or AKTi1-2) or genetic depletion (by shRNA/CRISPR-
Cas9 method) of AKT induced BRD4 downregulation, which significantly potentiated 
AZD5153-induced cytotoxicity in prostate cancer cells. In vivo, AZD5153-induced anti-tumor 
activity was sensitized with co-treatment of MK-2206. Thus, AKT inhibition could efficiently 
sensitize AZD5153 in prostate cancer cells. Further studies will be needed to explore the 
underlying mechanism of AZD5153 sensitization by AKT inhibition.
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